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Ext in the nineties

ROBERT R. BRUNER

Abstract. We describe a package of programs to calculate minimal reso-

lutions, chain maps, and null homotopies in the category of modules over

a connected algebra overe Z

2

and in the category of unstable modules over

the mod 2 Steenrod algebra. They are available for free distribution and

intended for use as an Adams spectral sequence `pocket calculator'. We

provide a sample of the results obtained from them.

1. Introduction

Ext is a collection of programs to calculate Ext(M ) = Ext

A

(M;Z

2

), through

a range of dimensions, where A is a connected augmented algebra over Z

2

and

M is a bounded below A-module. The motivation is to provide the E

2

term of

the Adams spectral sequence for the homotopy of the space or spectrum whose

cohomology is M . To this end, the package includes the routines needed when A

is the Steenrod algebra. It also contains, as samples, the routines needed when

M is the trivial module, Z

2

, or the cohomology of a stunted projective space,

and it is relatively easy to add the routines needed for a new moduleM . There is

also a version which computes Ext in the category of unstable modules over the

Steenrod algebra, for use in calculating the unstable Adams spectral sequence.

Routines are included which produce Postscript (TM) displays of the results

as well as simple listings of elements and relations in tabular form. Thus, the

user can send the resulting �les to a laser printer or, on systems which provide

on-screen display of Postscript, directly to the console screen. These display

programs are also con�gurable, so that by default they show the conventional

charts which display multiplication by h

0

and h

1

, but can easily be made to

display other multiplications or Massey products (e.g., periodicity operators).

An interactive program to examine the results is also provided.

1991Mathematics Subject Classi�cation. Primary 55-04, 55T15, 16-04, 18G10, 18G15; Sec-

ondary 55Q40, 55Q45, 55Q52 .

The �nal version of this paper will be submitted for publication elsewhere.

This work was supported in part by NSF Grant #DMS-8601776.
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2 ROBERT R. BRUNER

The program has been used to calculate Ext(Z

2

) through internal degree 116,

including the complete product structure and a substantial number of Massey

products through degree 90. The Massey products include the periodicity op-

erators wherever they are de�ned, not only in the range in which they are iso-

morphisms. We include here the traditional chart of this calculation showing

the products by h

0

and h

1

. Note that it shows a number of products that were

hidden by �ltration shifts in previous calculations, such as the fact that h

5

0

B

4

in the 60 stem is nontrivial. (This is an example of the tendency for results to

be discovered independently but simultaneously: Tangora found this extension

at almost the same time.) The entire product structure contains an enormous

number of relations that is too massive to include here. However, we include as

a sample of these relations the complete description of the 60-stem, since this

contains a number of previously unknown relations. Our calculations con�rm the

unpublished calculations due to Tangora in the stems between 70 and 80, and

include numerous relations which are not visible in the May spectral sequence.

We have also used the program to calculate stable Ext for stunted projective

spaces, for the mod 2 Moore space, and for the co�bers of � and �. We have

calculated unstable Ext for S

3

, S

7

, and for the co�ber of � : S

10

! S

7

. In the

spirit of [CM88] we include here the charts for unstable Ext of S

3

and for stable

Ext of the Moore space.

2. Implementation and Techniques

The technique is to calculate a minimal resolution forM , chain maps between

resolutions, and null homotopies of composites of chain maps. As described in

[RRB] the resolution yields the additive structure and products by elements of

Ext

1

(Z

2

). The chain map induced by an element b 2 Ext(M ) yields products ab

and Massey products <h; a; b>; for all a 2 Ext(Z

2

) and h 2 Ext

1

(Z

2

). A null

homotopy of the composite of the chain maps induced by elements b 2 Ext(Z

2

)

and c 2 Ext(M ) yields Massey products < a; b; c >; and < h; a; b; c > for all

a 2 Ext(Z

2

) and h 2 Ext

1

(Z

2

). The four foldMassey products are not mentioned

in [RRB], but follow by the techniques there. While the algorithms are the same

as those presented in [RRB], the implementation is entirely new.

This is the third such package of programs that I have written, and is specif-

ically designed to be portable, so that any machine with a C compiler can run

it. Anyone who wants a copy may obtain it by electronic mail addressed to

rrb@math.wayne.edu. Those without access to Internet mail can write to the

author at Wayne State University to �nd suitable means of distribution.

The package as it is mailed is about 90 K bytes. When unpacked, it occupies

about 200 K. After compilation and creation of the necessary data �les for the

�rst module M , about 800 K is required, and each additional module requires

another 160 K to start with. For the modules I have calculated thus far, the

essential data �les de�ning the resolution occupy about 5 K for t � 30, and
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about 15 K for t � 45. For M = Z

2

and t � 90 they occupy about 400 K. If

intermediate data �les are saved from the calculation of the resolution for use

in calculating chain maps and null homotopies, the storage requirements go up

considerably. For example, about 1.1 M bytes are used for t � 35, 1.6 M for

t � 45, and 200 M for t � 90. Still, on modern machines, these requirements are

quite modest.

The package as currently distributed is intended for use on BSD Unix systems.

On such systems, the various tasks necessary to initiate the calculations for a

new module M are encapsulated in a script called Install, so that the user need

only create the �les which de�ne the module and invoke the script. On other

systems, the script can be used as a guide to the necessary steps.

There are also two versions of the package, one for spectra and one for (nice)

spaces. The package for spectra is the more general in the sense that it simply

calculates minimal resolutions (hence Ext and Tor) in the category of modules

over a connected augmented algebra. The package for spaces computes minimal

resolutions in the category of unstable modules over the Steenrod algebra.

The package is designed to allow networked computers to work in parallel as

well. The granularity is quite coarse, but the speedup is still close to optimum:

the time for N machines to complete the task being roughly 1=N of the time

required by a single machine. Each internal degree, t, is assigned to a speci�c

machine. When it completes bidegree (s � 1; t), it waits until bidegree (s; t� 1)

has been completed before proceeding to bidegree (s; t). It is immaterial which

machine is calculating internal degree t�1: it could be the same machine or an-

other one. Thus, even with only one machine available, it probably makes sense

to start that machine on the calculations for several internal degrees simultane-

ously. The process calculating internal degree t will simply wait for the process

calculating internal degree t � 1 to �nish with �ltration s before it proceeds to

�ltration s. This will take full advantage of the machine's resources, since some

parts of the calculation are IO bound and some are compute bound. With sev-

eral machines of similar speed, it is best to apportion the internal degrees round

robin. Thus with 4 machines available, to calculate internal degrees 20 to 39, I

would assign degrees 20, 24, 28, 32, and 36 to the �rst machine, degrees 21, 25,

29, 33 and 37 to the second, etc.

Experience with computer algebra shows that bugs and other errors are hard

to avoid. To minimize the possibility that any such problems will go unde-

tected, each bidegree of the calculation is tested for various forms of consistency.

First, the data �les are examined to see that they exist and have the expected

format, to catch gross errors due to lack of space or various operating system

failures. Second, the equality dim(Im(d

s;t

)) = dim(Ker(d

s�1;t

)) is checked. This

is a crude test for exactness. The additional test that d

2

= 0 is too slow to

use routinely. Third, the equality dim(Im(d

s;t

)) + dim(Ker(d

s;t

)) = dim(C

s;t

) is

checked, where the dimension of C

s;t

is calculated as the sum of dim(A

t�deg(g)

)

over all A generators g 2 C

s

. Finally, linear independence of the calculated
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bases of Im

s;t

and Ker

s;t

is tested. These four checks can be made very quickly

and, if passed, suggest some con�dence may reasonably be placed in the calcu-

lations. So far, the second test was failed once. When that happened, I ran the

more complete test to check d

2

= 0 and from its results was able to trace the

error to a bug in an early version of the routine which multiplies Milnor basis

elements. The �rst tests are failed irregularly, and indicate the need for the

user to intervene, typically by reducing the number of processes or by �nding

more disk storage. They serve to prevent the program from writing incorrect

results in these circumstances, permitting graceful continuation after correcting

the problem.

3. History

The �rst program of this sort was done by Liulevicius [Liu] in 1964. Using an

IBM 7094 with the equivalent of 294 K bytes of memory, he was able to reach

internal degree 32. After that, I am not aware of any attempts to automate

the calculation of minimal resolutions for non-commutative algebras until 1983,

when I wrote one in LISP. It was e�ective in low dimensions, but spent nearly

all its time in garbage collection by the time it reached internal degree 40.

In 1984 and 1985 I rewrote that program in a form designed for maximal

e�ciency. To that end, the programs were written in Fortran and Assembler,

with the Assembler being used for bit manipulation and for routines that were

called most frequently. Quite a few changes were made at this stage. One

was a switch from the admissible basis to the Milnor basis for the Steenrod

algebra, eliminating the need for recursive application of the Adem relations in

the multiplication routine. Another was the replacement of automatic memory

allocation and garbage collection, as is done in LISP, by explicit allocation and

deallocation of memory. Of major signi�cance in memory usage was a switch

from symbolic representation of elements by characters and numbers to their

representation by bitstrings. For example, in the LISP version, the element

Sq

7

+ Sq

(4;1)

of the Steenrod algebra would have been represented by the list

of lists of numbers ((7) (4 1))). In the bitstring version, Sq

7

+ Sq

(4;1)

could be

represented by the 4 bit string 1100, since the Steenrod algebra is 4 dimensional

in degree 7. This switch also resulted in vastly less e�ort in adding elements,

since the earlier version required an enormous amount of sorting and merging of

lists, while the bit string representation simply requires that blocks of memory

be exclusive or'ed together. Pro�ling of this version showed that more than 50

percent of the program's time was spent in the process of adding vectors, so that

this is a signi�cant issue. This version was able to reach internal degree 69 of

Ext(Z

2

), at which point I stopped because the program falsely claimed that there

were two elements in bidegree (4,69). This is easily checked to be false using the

May spectral sequence. At about that time I moved from the University of Illinois

at Chicago to Wayne State University. The move showed a major fault in the
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notion of writing programs so carefully tailored to the hardware and operating

system. The e�ort of adapting the programs to run at Wayne under a di�erent

operating system with a di�erent �le structure wasted several months of e�ort.

This was in the days before easy access to the Internet made remote logins and

�le transfer a triviality. In addition, limitations on funding and availability of

computer time made it impossible to reach the same dimension again in order to

determine the source of the error that had occurred at UIC. However, I was able

to make some interesting calculations related to MO(8) and to provide actual

minimal resolutions for stunted projective spaces, with the version running at

Wayne.

Having discovered the amount of e�ort required to move the package from one

system to another, even though it was based on the same hardware, it was clear

that portability was a signi�cant factor. Since it is unlikely that great break-

thoughs in homotopy theory will result from mechanical calculations of the E

2

term of the Adams spectral sequence, another important feature of portability

is the ability to distribute the package to other algebraic topologists for use as a

sort of Adams spectral sequence `pocket calculator'. Hence the current version

was written entirely in a high level language, C, and treats all its data �les as

streams of characters, so that no special assumptions need to be made about the

types of �le access available. In fact, it was initially developed on an MS-DOS

machine, an 8 MHz AT clone with 640 K of memory. With this hardware, the

programs reached internal degree 40 in computing Ext(Z

2

). Further develop-

ment, namely the routines for chain maps and null homotopies, and the routines

to report the results in Postscript format, was done in a Unix environment on

a Sun workstation. The programs are su�ciently generic in their design that

they should run with no di�culty on any Unix system. On a non-Unix system,

a number of tasks that are performed by scripts in the Unix environment would

have to be done by hand, or the scripts would have to be rewritten to work

under the operating system in question. Since the scripts are quite elementary,

this should not be di�cult.

Despite the attention to portability in place of e�ciency, this version of the

program has succeeded in signi�cantly surpassing previous calculations. Perhaps

there is a moral here. The current calculations of Ext(Z

2

) were originally stopped

at internal degree 90 so that all the multiplicative structure up to that degree

could be calculated. The point is that, in the process of �nding the minimal

resolution, a Z

2

basis for the image and kernel of each di�erential is computed.

If the bases for the images are saved, computing chain maps and null-homotopies

is very fast. If they are discarded, the bases have to be recomputed in order to

compute chain maps or null-homotopies. Thus, it makes sense to compute all

the multiplicative structure that is wanted before discarding the image �les.

However, at degree 90, I had come to occupy as much of our department's �le

space as I could fairly grab, so stopped there for the time being.

During preparation of the �nal version of this paper, I decided to continue



6 ROBERT R. BRUNER

the calculation without saving the image �les, and had enough computer time to

calculate out to internal degree 116. In internal degree 116, the largest bidegree,

(5,116), has dimension 22465 over Z

2

and took about 16 hours to process on a

Sparc 2 with 32 megabytes of memory.

Other approaches to machine calculation of Ext have been taken by other

authors over the years. Most notably, Tangora's lambda algebra calculations

[MCT], his more recent machine calculations of the May spectral sequence (as

of yet unpublished), and the lambda algebra calculations done by Curtis, Goerss,

Mahowald, and Milgram in various combinations ([CGMM], [CM86], [CM88],

among others). Each approach has its advantages and disadvantages. The May

spectral sequence has reached the highest degrees, but is inherently unable to

give a complete picture of the product structure. The lambda algebra approach

has the great virtue that the unstable calculations are embedded within the sta-

ble calculation. With our approach to calculating unstable Ext, each sphere

requires a distinct calculation. However, the lambda algebra programs currently

available seem to have reached their limit at about t = 80. In addition, retriev-

ing the products and Massey products from the lambda algebra calculations is

sometimes considerably more di�cult than with minimal resolutions. Finally,

there are applications in which a minimal resolution plays an important role

[DM] [Davis]. Our program is the ideal tool for such applications.

4. Results

The �rst task in comparing the chart of Ext(Z

2

) presented here with earlier

calculations, is to determine which di�erences are real and which are simply a

result of di�erent choices of basis. An example of a real di�erence occurs in

the 60 stem, where we show h

5

0

B

4

6= 0, where earlier calculations had only an

associated graded in which h

3

0

B

4

= 0

The �rst instance of an apparent, but unreal, di�erence which is visible in the

charts is in �ltration 9 of the 23-stem. We clearly have h

2

0

i, as expected, but the

h

1

multiple, h

1

P

1

d

0

appears to be the sum of the two terms in this bidegree. In

fact, with the basis for Ext

9;32

which emerges from the program, this is correct:

the machine has found the elements h

2

0

i and h

2

0

i+h

1

P

1

d

0

as its basis for Ext

9;32

.

When all the elements in the bidegree are decomposable, the product structure

allows us to sort out the situation. For example, in Ext

9;32

there is only one

h

0

multiple, and there is only one h

1

multiple, so it is clear how the elements

produced by the program relate to the elements derived from the May spectral

sequence or the lambda algebra or the cobar construction.

A serious possibility of confusion arises when an indecomposable occurs in a

bidegree which has more than one nonzero element. For example, in �ltration

4 of the 18-stem, we have h

3

1

h

4

and an indecomposable, f

0

. The traditional

de�nition of f

0

is by its representative in the May spectral sequence, h

2

2

b

03

,

or the Massey product < h

2

0

; h

2

3

; h

2

>. We can compute the Massey product,
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but its indeterminacy is nonzero, so this is no help. The best de�nition would

be in terms of the Hopf algebra squaring operations: f

0

= Sq

1

c

0

. However, the

mechanical computation of the squaring operations is still out of reach in general

(see the section on coproducts and Steenrod operations below). In the absence of

a resolution of such a question, we can simply proceed with the calculations until

we �nd a question whose answer depends upon whether the machine's generator

is f

0

or f

0

+ h

3

1

h

4

, at which point we will hopefully �nd that the question itself

resolves the issue.

The next such question arises in �ltration 4 of the 38-stem. The generators

chosen by the program both support a nontrivial h

0

. This one is easily resolved

by the techniques of [HRS]. If we de�ne e

1

as Sq

0

e

0

(as we should) then e

1

is

carried on the 21-cell of the stunted projective space P

1

17

. The 22-cell, which

also maps into �ltration 4, implies that 2e

1

= 0 in �ltration 4 modulo �ltration

6. This forces h

0

e

1

= 0. Hence, e

1

is the sum of the two generators found

by the program. Alternatively, the null homotopy of h

2

1

h

2

4

, applied to each

of the generators, contains the term Sq

2

h

2

, and therefore the Massey product

<h

1

; h

2

; h

2

1

; h

2

4

> de�ning e

1

, is the sum of those two generators. The element

h

2

0

h

3

h

5

is easily identi�ed with the second of the two generators found by the

program, since it is the only element divisible by h

0

.

Next, in the 40-stem, we have the question of identifying the second element

of the `f-family', f

1

= Sq

0

f

0

2 Ext

4;44

. The program produces generators which

are h

3

2

h

5

and either f

1

or f

1

+ h

3

2

h

5

. The disposition of this case is presumably

similar to that of f

0

. We will write

~

f

0

and

~

f

1

to avoid prejudging this question.

5. The 60 stem of Ext

A

(Z

2

; Z

2

)

Here is the systematic description of the 60-stem in Ext(Z

2

), listed by �ltra-

tion. All nonzero products are listed, except those which follow from a product

which is listed by multiplication by some power of h

0

. In most cases, only one of

a set of related Massey products is listed. For example, from B

3

=<h

4

; h

0

h

3

; x>

it is easy to derive < h

4

; h

0

x; h

3

> . In fact, from h

2

0

g

2

= h

3

x, both of these

can be derived from <h

4

; h

2

0

g

2

; h

0

> . However, since there is no complete ac-

count of the product structure of Ext in the literature, we have chosen not to

omit brackets related by relations like h

2

0

g

2

= h

3

x or h

3

r = h

2

0

x+ h

1

t. We have

omitted all brackets of the form <h

i

; x; h

i

> , since they contain h

i+1

x by the

relation y(x [

1

x) 2 <x; y; x> . Except for the periodicity operators computed

from null homotopies of h

4

0

h

3

and h

8

0

h

4

, the information here is derived entirely

from chain maps induced by indecomposables. Thus, all the brackets have the

form <h

i

; x; y> with y indecomposable. Finally, this table carries with it the

implicit claim that any such Massey product which cannot be derived from those

listed is zero.



8 ROBERT R. BRUNER

7 B

3

=<h

4

; h

2

0

g

2

; h

0

>= <h

4

; h

0

h

3

; x>= <h

0

; h

1

; D

2

>

8 h

0

B

3

= h

2

Q

2

= h

5

k = <h

4

; h

2

3

; r>= <h

4

; h

2

0

h

2

4

; d

0

>

9 B

4

h

2

0

B

3

= h

2

h

5

j = P

1

D

1

= <h

3

; h

0

c

2

; P

1

h

2

> =<h

1

; h

3

0

; D

2

>

=<h

1

; h

1

h

5

c

0

;

~

f

0

>

10 h

0

B

4

11 h

2

0

B

4

=<h

2

; p; i>

h

1

B

21

= d

0

B

1

=<h

5

; h

2

0

P

1

e

0

; h

2

> =<h

4

;

~

f

0

; j >= <h

4

; j;

~

f

0

>

=<h

4

; z; h

2

> =<h

2

; h

0

B

2

; c

0

>

2<h

0

; h

2

B

2

; c

0

>

relation h

3

x

0

= h

2

0

B

4

+ h

1

B

21

= <h

4

; h

0

d

0

; r>

12 h

3

0

B

4

= h

0

h

3

x

0

= ix = P

2

g

2

=<h

5

; d

2

0

; h

4

0

> 2<h

2

; h

2

2

g; r>

g

3

=<h

4

; P

1

h

1

;m>=<h

2

; h

1

g;m>= <h

1

; h

2

g;m>

2<h

3

; h

2

0

h

3

; w>

relation r

2

= g

3

+ h

3

0

B

4

13 h

4

0

B

4

= h

0

r

2

= <h

2

; h

1

P

1

h

1

; B

1

>

14 h

5

0

B

4

= h

3

ri = h

3

P

2

x =<h

2

; h

4

0

; Q

1

> =<h

2

; h

0

r; j>

15 d

2

0

l = d

0

e

0

k = d

0

gj = e

2

0

j = gie

0

= mP

1

e

0

= <h

2

; h

1

d

0

; z>

=<h

2

; h

0

P

1

h

2

; w>=<h

2

; h

2

0

e

0

; u>= <h

2

; h

2

0

j; r>

=<h

1

; h

0

e

0

; z> =<h

1

; h

0

d

2

0

; r>= <h

0

; h

0

~

f

0

; z>

=<h

0

; h

2

0

d

0

; w>= <h

0

; h

2

0

g; u>= <h

0

; h

2

0

k; r>

18 d

0

i

2

= jP

1

j = rP

2

d

0

=<h

3

; h

4

0

i; k>= <h

2

; P

2

c

0

; l>

=<h

2

; h

2

0

d

0

P

1

d

0

; g>= <h

2

; h

2

0

d

0

P

1

e

0

; e

0

>

=<h

1

; h

1

P

1

c

0

; z> = <h

1

; P

2

h

2

; u>= <h

0

; P

2

h

1

; v>

=<h

0

; P

2

c

0

;m>=<h

0

; h

5

0

r; k>=<h

0

; h

2

0

d

0

P

1

e

0

; g>

24 d

0

P

4

d

0

=<h

2

; P

4

h

1

; i>=<h

1

; h

1

P

1

c

0

; P

3

e

0

> =<h

1

; P

4

h

2

; i>

=<h

0

; P

4

h

1

; j> =<h

0

; h

5

0

P

2

i; g>

25 h

0

d

0

P

4

d

0

= h

2

P

5

e

0

= e

0

P

5

h

2

26 h

2

0

d

0

P

4

d

0

= h

2

2

P

5

d

0

= h

2

d

0

P

5

h

2

=<h

1

; h

2

0

P

4

h

2

; i>

6. Coproducts and Steenrod operations

Chain maps aren't the only way to compute products when A is a Hopf

algebra. We could also compute the diagonal, C ! C 
C. This would have the

added bene�t that it would be relatively easy to then compute cup-i products

to obtain the action of the Steenrod algebra on Ext. In the absence of a Yoneda

type description of the cup-i products, computing the diagonal map appears to

be the only mechanical way of computing the Steenrod operations. Thus, despite

a gut feeling that the e�ort was doomed to failure because of the enormous size of

C
C, I wrote the routines needed to compute the diagonal and set them to work

computing the diagonal for t � 60. The results are summarized in Table 1. The

terms column tells the number of terms in the coproduct when it is written as the

sum of terms x
y with the x's linearly independent monomials. Computing the

coproduct of h

0

h

3

4

= h

0

h

2

3

h

5

was quite discouraging. The problem is that h

0

h

3

4
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Table 1. Coproducts for t � 60, s � 4

generator(s) time size (bytes) terms

�ltration 1

(6 generators) 19 secs 2.5 sec |

�ltration 2

(15 generators) 1047 secs 287 K |

�ltration 3

(21 generators) 54534 secs 2370 K |

�ltration 4 139975 secs

(1

st

20 generators) = 38.9 hrs 3399 K |

h

3

2

h

5

= h

2

1

h

3

h

5

34962 sec (9.7 hours) 668 K 12584

h

0

c

2

59658 secs (16.6 hours) 744 K 13893

g

2

74587 secs (20.7 hours) 961 K 17842

h

0

h

3

4

= h

0

h

2

3

h

5

1285683 secs (14.9 DAYS) 4261 K 19865

h

3

c

2

399092 secs (4.6 days) 1444 K 25087

h

5

c

1

715938 secs (8.3 days) 1713 K 28926

is highly decomposable, and the diagonal contains every possible decomposition.

Thus, the coproduct, naively computed, is virtually useless, both on time and

storage grounds. In comparison, the chain maps are stunningly e�cient: we only

need to know the chain maps induced by indecomposable elements, and we only

need their values on A-generators of the resolution. Unfortunately, this leaves us

with no easy means of �nding the Steenrod operations in Ext in order to decide,

for example, which of the two possibilities in Ext

4;22

is f

0

.

Occasionally, we can compute the cup-1 product using the fact that

y(x [

1

x) 2<x; y; x> :

All we have to do is �nd an element y which annihilates x and which acts

monomorphically on the bidegree containing x [

1

x.

7. Charts

The �rst set of charts consists of Ext for the stable sphere S

0

for t � s � 88,

t � 116, and s < 38. The next set of charts consists of stable Ext of the Moore

space S

0

[

2

e

1

for t � s � 44. The last set consists of unstable Ext of S

3

for

t � s � 91 and t � 100. Comparison of the last 2 sets quite clearly shows the

isomorphism discussed in [CM88]. In the �rst set, due to the density of ink,

only h

0

and h

1

multiples are indicated. In the last two sets, h

2

multiples are

also shown.

The reader is encouraged to xerox these charts so they may be pasted together

to obtain a continuous chart for each Ext. The tick marks along the left and

right edges should be aligned atop one another.
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