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Extended powers of manifolds and the Adams spectral

sequence

Robert R. Bruner

Abstract. The extended power construction can be used to create new framed
manifolds out of old. We show here how to compute the effect of such oper-
ations in the Adams spectral sequence, extending partial results of Milgram
and the author. This gives the simplest method of proving that Jones’ 30-
manifold has Kervaire invariant one, and allows the construction of manifolds
representing Mahowald’s classes η4 and η5, among others.

1. Introduction

Many interesting spectra R are S-algebras, or, more generally, H∞-ring spectra.
As such they come equipped with compatible maps Dr(R) −→ R extending the r-

fold product maps R(r) −→ R. Here Dr is the rth extended power of a spectrum
([HRS]), which is an extension to the category of spectra of the familiar space level
construction, DrX = EΣ+

r ∧Σr
X(r). The extension of the product to the extended

powers leads to operations in the homotopy of R and in the Adams spectral sequence
converging to the homotopy of R. These were studied in [HRS], [RJM], [RJM2],
and [RJM72]. When R = S, the sphere spectrum, we may interpret its homotopy
groups as bordism classes of framed manifolds, and the operations derived from the
extended powers assume a natural geometric form. Here we provide a dictionary for
translating between these three contexts and use that translation to give a simple
proof that Jones’ 30-manifold ([JJ]) has Kervaire invariant one, and to construct
manifolds representing a variety of homotopy classes. The key point is that the
calculations are easiest in the Adams spectral sequence. For example, our proof
shows that the natural framing of Jones’ 30-manifold has Kervaire invariant one.
Heretofore it was only known that twisting the framing would alter the Kervaire
invariant, so that some framing had Kervaire invariant one.

We shall work exclusively at the prime 2. All homology or cohomology is to
have mod 2 coefficients. Naturally, there are analogous results at odd primes.

The extended power operations which apply to πnS are parameterized by the
homotopy groups π∗Dr(S

n). Therefore, the set of operations which apply to πn

depends on n. We shall let n denote the degree upon which we are acting throughout
this paper. This will be the degree of the homotopy class, the dimension of the
framed manifold, or the total degree t− s of an element in Exts,t.

1991 Mathematics Subject Classification. Primary: 55Q35, 55T15, 57R15, 55Q45 ; Sec-
ondary: 55S10, 55S12, 55S25, 55Q10, 57R90 .
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Given α ∈ πrn+mDrS
n we define

α∗ : πnS −→ πrn+mS

to take x ∈ πnS to the composite

α∗(x) := ξDr(x)α : Srn+m −→ DrS
n −→ DrS −→ S

where ξ : DrS −→ S is the H∞ structure map of S. Now DrS
n = T (nζr), the

Thom complex of the direct sum of n copies of the permutation bundle ζr induced
by the evident permutation representation Σr −→ O(r). The Thom-Pontrjagin

construction allows us to interpret π∗DrS
n as Ωfr

∗ (BΣr; nζr), the framed bordism
of the classifying space of the symmetric group Σr with twisted coefficients in nζr.
Thus, an extended power operation is specified by giving an m-manifold M , a Σr

covering M̃ → M classified by f : M → BΣr, and a stable isomorphism F of the
normal bundle νM with f∗nζr. Such a triple [M, f, F ] defines an operation

Mf,F : Ωfr
n (∗) −→ Ωfr

rn+m(∗)

as follows. Given a framed n-manifold [N, t], where t is a stable trivialization of
νN , we set

Mf,F (N) = M̃ ×Σr
N r,

where Σr acts on N r by permuting factors, with a framing derived from F and t.
Note that the dimension n of the manifolds upon which Mf,F can act is determined
by the multiple of the permutation bundle f∗ζr which is equal to νM . Since this
equality need hold only in J(M), which is generally finite, an operation applies
to all n satisfying an appropriate congruence modulo the order of f∗ζr in J(M).
Details can be found in Milgram [RJM],[RJM2] and Jones [JJ], where it is shown
that the Thom-Pontrjagin construction converts this operation into the extended
power construction in homotopy.

Before turning to the operations in the Adams spectral sequence, let us de-
scribe the dictionary translating operations on framed manifolds to operations on
homotopy. These and the analogous operations in the Adams spectral sequence are
summarized in Table 1.

We have an especially simple basic operation, the ’cup-i’ operation

∪i : πn −→ π2n+i

which exists whenever n ≡ −(i + 1) modulo the order of the canonical line bundle
over RP i = Si/Σ2. This condition is equivalent to the existence of an isomorphism
F : nζ2 −→ νRP i with which we define the operation

N 7→ Si ×Σ2
N ×N,

the framed manifold version of cup-i.
The sum of homotopy classes corresponds to the pointwise sum of the corre-

sponding operations:

(α1 + α2)(x) = α1(x) + α2(x)

In framed bordism, this corresponds to the disjoint union M1qM2 or connected sum
M1#M2 with the natural framing. Both come from the fold map of the domain.

There is also a pointwise product α1 ∗ α2,

(α1 ∗ α2)(x) = α1(x)α2(x),
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Operation Manifolds Homotopy Adams spectral sequence

basic Si ×Σ2
(·)(2) ∪i Sqn+i

sum M1

∐
M2 α1 + α2 a1 + a2

product M1 ×M2 α1 ∗ α2 a1 ∗ a2

composition M̃1 ×Σr
(M2)

r α1α2 := α1 ◦ α2 a1a2 := a1 ◦ a2

Table 1. Translation between the different manifestations of the
extended power operations on an element of degree n.

which is derived from block sum BΣr1
× BΣr2

−→ BΣr1+r2
. This corresponds to

the product M1 ×M2. A special case is scalar multiplication θ ∗α, where θ ∈ π∗S,
which corresponds to the case in which M1 is itself framed (with structure map
f : M1 −→ BΣ0 ' ∗).

The composite α1 ◦ α2 corresponds to the manifold M̃1 ×Σr1
M r1

2 . These are

derived from the natural map EΣr1
×Σr1

(BΣr2
)r1 ' B(Σr1

oΣr2
) −→ BΣr1r2

. As
usual with composition of functions, we shall denote this by juxtaposition: α1α2 :=
α1 ◦ α2 and therefore we must retain the ∗ to denote pointwise product.

The algebraic extended power construction ([JPM]) induces Steenrod oper-
ations in the Ext module which appears as the E2-term of the Adams spectral
sequence ([RJM72],[HRS]). Let A be the Steenrod algebra acting upon Ext of
modules over a cocommutative Hopf algebra ([JPM] or [HRS]), and let A(n) be
its quotient by operations of excess less than n.

The basic operation, corresponding to cup-i, is Sqn+i in the indexing we have
chosen (see section 2). The sum and composite operations are the usual pointwise
sum and composite of Steenrod operations. The pointwise product, however, forces
us to enlarge the set of operations we consider to the polynomial algebra on A. We
shall denote this operation by ∗ as above, so that, for example,

(SqiSqj)(x) = Sqi(Sqj(x))

while

(Sqi ∗ Sqj)(x) = Sqi(x)Sqj(x)

using the product in ExtA(Z2, Z2) on the right hand side of the latter equation.
Let P [V ] be the free commutative algebra generated by the vector space V . We
will define, for each n, a natural ring isomorphism

σn :
⊕

r

H∗BΣr −→ P [A(n)].

Theorem 2. The operation Mf,F is detected by σn(f∗[M ]) in the Adams spec-

tral sequence.

This is the natural generalization to all r of the familiar fact that the cup-i
construction is detected by Sqn+i, since σn(f∗[RP i])) = σn(Qi) = Sqn+i in that
case. This theorem is the key result in our proof that Jones’ 30-manifold has
Kervaire invariant 1.



4 ROBERT R. BRUNER

If f∗[M ] = 0, Theorem 2 tells us only that Mf,F (N) will be detected in higher
than its “natural” filtration. In order to detect such operations by nontrivial oper-
ations in Ext, we must “extend scalars” by means of a spectral sequence ([RRB])

ExtA(Z2, Z2)⊗H∗BΣr =⇒ Ωfr
∗ (BΣr; nζr).

With this extension, the pointwise product by an element π∗S corresponds to point-
wise product by an element of ExtA(Z2, Z2).

Recall that the homology of the symmetric groups can be described in terms
of polynomials q in the Dyer-Lashof operations QI (see section 2).

Theorem 8. If [M, f, F ] is detected by Σaq ⊗ q in this spectral sequence, then

the operation Mf,F is detected by Σaqσn(q) in the Adams spectral sequence.

The edge homomorphism in this spectral sequence is [M, f, F ] 7→ 1⊗ f∗[M ], so
that Theorem 8 is a generalization of Theorem 2. We give examples of this result
which produce framed manifolds representing Mahowald’s elements η4 and η5, in
dimensions 16 and 32, respectively.

I would like to express appreciation to Stephan Stolz for very helpful discus-
sions on the relation between homotopy and bordism, to Jim Milgram for useful
discussions about these operations, and to Peter May for many things, including
the suggestion that I study these operations many years ago.

2. Results

In the Adams spectral sequence

Exts,t
A (Z2, Z2) =⇒ πt−s(S),

the topologically significant total degree is t− s. Let us index the generators of A
so that Sqi raises this by i. Thus

Sqi : Exts,t −→ Exts+t−i,2t

This is a homological, rather than cohomological, indexing, and as a result the
Adem relations and admissability conditions for the Sqi are the same as those for
the Dyer-Lashof operations. If I = (ik, . . . , i1, i0), let SqI = Sqik . . . Sqi1Sqi0 . We
say that I and SqI are admissable if each ij+1 ≤ 2ij. Recall that SqI acts trivially

upon Exts,t if excess(I) < t− s, where the excess of an admissable operation SqI is
defined by excess(I) = ik − ik−1 − . . .− i0. Let A(n) be the quotient of A by those
operations of excess less than n, so that P [A(n)] (redundantly) parameterizes the
nonzero operations on Exts,s+n. This is redundant since an operation of excess n has
the same effect as the square of another operation. Precisely, if excess(I) = n, and

x ∈ Exts,s+n, then SqI(x) = (SqI′

(x))2 where I ′ = (ik−1, . . . , i0). This requires
that we let Sqφ be the identity operation of A, where φ is the empty sequence.

Recall that
⊕

r H∗BΣr is the free commutative algebra on the admissable Dyer-
Lashof operations, with H∗BΣr being the summand of weight r operations, where

weight([1]) = 1
weight(xy) = weight(x) + weight(y)

and weight(Qix) = 2 weight(x).

Here [1] ∈ H0BΣ1 is the ‘fundamental class’, the generator [r] ∈ H0BΣr is the
product of [1] with itself r times, and we identify the operation QI = Q(ik,... ,i0)

with the class QI [1] = Qik · · ·Qi1Qi0 [1]. Note that Q0[r] = [2r]. This algebra is
the homology of the little cubes construction applied to S0, H∗CS0, and passes to



EXTENDED POWERS OF MANIFOLDS AND THE ADAMS SPECTRAL SEQUENCE 5

the familiar description of H∗QS0 under the group completion map CS0 → QS0

([CLM]).
There is a similar description of H∗DrS

n, where DrX = EΣ+
r ∧Σr

X(r) is
the rth extended power of a space X . Namely,

⊕
r H∗DrS

n = H∗QSn is the free
commutative algebra on the QIιn, where QI is admissable with excess greater than
n, and H∗DrS

n consists of the weight r summand, where the weight of ιn is 1.

Definition 1. Let

σn :
⊕

r

H∗BΣr → P [A(n)]

be the ring homomorphism with respect to sum and pointwise product defined on

generators by

σn(QI) = σn(QI [1]) = Sqd(I,n),

where d(I, n) = (ik + 2kn, . . . , i1 + 2n, i0 + n) if I = (ik, . . . , i1, i0).

To be clear, we note a few examples. Clearly σn([1]) = Sqφ, which is the
identity operation, and σn([2]) = σn(Q0[1]) = Sqn, which is the squaring operation

in degree n, consistent with the relation [2] = [1] ∗ [1]. In general, σn([r]) is the rth

power operation, the lowest degree operation of weight r. Increasing degree rather
than weight, the operations of weight 2 are the σn(Qi) = Sqn+i.

We can now make the first main theorem precise.

Theorem 2. The operation Mf,F is detected in the Adams spectral sequence

by the operation σn(f∗[M ]).

Example 3. The “cup-i” construction, RP i
f,F : N 7→ Si×Σ2

N ×N , discussed

in the Introduction, is detected by Sqn+i = σn(Qi) in Ext.

This example is well known ([RJM],[RJM2]). It exists whenever n ≡ −(i+1)
modulo the order of the canonical line bundle over RP i = Si/Σ2. The bordism
class in Ωi(BΣ2; nζ2) is that of [RP i, f, F ], where f is the inclusion of the i-skeleton
in RP∞ = BΣ2. Thus f∗[RP i] is the nonzero class Qi ∈ Hi(BΣ2). Theorem 2
implies that any stable isomorphism F of νRP i with −(i + 1)f∗ζ2 will yield an
operation detected by Sqn+i. (See also the comments following Observation 6.)

Some instances of the cup-i operation are

1. S1 ×Σ2
(S1 × S7)2 represents ηη4, if (S1 × S7) is given the product of the η

(i.e., complex) and σ (i.e., Cayley number) framings. This follows from the
calculation Sq9(h1h3) = h2

1h4 + h2h
2
3 = h2

1h4.
2. S1 ×Σ2

N2 represents h0e0 if N represents c0 since Sq9(c0) = h0e0.
3. S3 ×Σ2

N2 represents c1, with the same N , since Sq11(c0) = c1.
4. If Nj is a 2j manifold representing Mahowald’s ηj then S1 ×Σ2

Nj × Nj is

detected by Sq2j+1(h1hj) = h2h
2
j +h2

1hj+1. Now h2
1hj+1 can be constructed

as S1×Nj+1 with the nontrivial framing of S1. It follows that the connected
sum

Vj = (S1 ×Σ2
Nj ×Nj) # −(S1 ×Nj+1)

is detected by h2h
2
j . If there exists a Kervaire invariant one manifold θj ,

we must have a framed cobordism from Vj to S3 × θj where S3 has the
quaternionic framing, at least modulo higher filtration in the Adams spectral
sequence.
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In our next example, we compute the effect in the Adams spectral sequence of
the operation constructed by John Jones [JJ].

Example 4. Let X = RP 2 # S1 × S1 and let f : X → BΣ4 be

X
c
−→ RP 2 ∨ S1 × S1 −→ BΣ2 ∨B(Σ2 × Σ2) -

Bi ∨ Br
BΣ4,

where c is the collapse map, the middle map is made from inclusions of skeleta, i is

the natural inclusion and r is the regular representation. Let n ≡ 3 mod (4) so that

there is a stable isomorphism F : νX −→ f∗nζ4. The operation Xf,F is detected by

Sq2n+1Sqn+1 + Sqn ∗ Sqn+2 = Sqn+1 ∗ Sqn+1 + Sqn ∗ Sqn+2.

In particular, we obtain Kervaire invariant 1 manifolds in dimensions 14 and
30 from this operation.

Corollary 5. If Sn has the Hopf invariant one framing, n = 3 or 7, then

Xf,F (Sn) has Kervaire invariant 1.

Of course, Xf,F (S3) is not the simplest 14-manifold of Kervaire invariant 1 we
could construct. The product S7 × S7, with the Cayley framing on each factor, is
another. Theorem 8 will allow us to show that they are framed-cobordant.

The corollary follows immediately from the fact that (Sqn+1 ∗ Sqn+1 + Sqn ∗

Sqn+2)(hi) = hi+1 ∗hi+1 +h2
i ∗ 0 = h2

i+1. We will show that f∗[X ] = (Q1)2 +Q0Q2

in the next section.
This is the first operation which Theorem 2 allows us to detect which is not de-

composable into cup-i operations and products with π∗S. The homotopy operation
was used by Milgram ([RJM72]) to show that θ4 exists. The manifold operation
was found by Jones [JJ] in his study of the Kervaire invariant of extended powers.
His proof that it produces a manifold of Kervaire invariant 1 relied on a formula
for the Kervaire invariant of Mf,F (Sn) after a change of framing. I first gave this
elementary proof in the topology seminar at MIT in 1979.

The framed cobordism class [X, f, F ] does not depend upon the particular
choice of framing F in Example 4 by the following observation.

Observation 6. Given a manifold M , a map f : M → X, and two stable

isomorphisms F, F ′ : νM → f∗ξ, the difference

[M, f, F ]− [M, f, F ′] ∈ Ω∗(X ; ξ)

lies in the kernel of the Hurewicz homomorphism.

Proof: The composite

Ωm(X ; ξ) = πm+|ξ|Tξ -
h Hm+|ξ|Tξ -

Φ
−1

HmX

of the Hurewicz homomorphism and the inverse of the Thom isomorphism is given
by [M, f, F ] 7→ f∗[M ], which is independent of F .

In the case at hand, n ≡ 3 mod (4), the homomorphism Φ−1h

Ωfr
2 (BΣ4; nζ4) = Z/2

↓

H2(BΣ4) = Z/2× Z/2

is monic. Hence all framings F yield the same framed cobordism class [X, f, F ].
For the cup-i operations, different choices of framing will usually yield different

operations, since the kernel of the Hurewicz homomorphism is not usually zero.
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However, since they are all detected by Sqn+i in the Adams spectral sequence,
they all have the same image under Φ−1h and hence the differences between them
will all lie in higher filtration than the cup-i operation.

Theorem 2 allows us to detect an operation α∗ if α has nontrivial Hurewicz
image, or equivalently, if f∗[M ] is nonzero. In order to detect all operations, we note
that the Hurewicz homomorphism is the edge homomorphism in the Adams spectral
sequence. Better, when it is nonzero, it is the map ‘is detected by’ from π∗DrS

n to
an ‘Adams-Atiyah-Hirzebruch spectral sequence’ which mixes the cellular filtration
of DrS

n with the Adams filtration of homotopy. (See Milgram [RJM72] for prime
r, and Bruner [RRB] for general r and related spectral sequences). The essential
point is to delay the Adams resolution of a homology class until the filtration to
which it will map in the Adams resolution of S0 under the map ξ ◦ Drx. We
accomplish this by smashing an Adams resolution of S0 with the cellular filtration
and totalizing the resulting bifiltered spectrum. In general, the resulting E2 term
is the target of a bicomplex spectral sequence which collapses in this case because
we can arrange that the attaching maps will all be 0 in homology. Further, since
ξ ◦Drx maps DrS

n into S so that the cellular filtration is mapped to the Adams
filtration ([HRS]), the natural extension of ξ ◦Drx to the bifiltered spectrum maps
the total filtration to the Adams filtration ([RRB]). Together with Theorem 2
these facts imply the following result.

Theorem 7. Given x ∈ πnS0 detected by x̄ ∈ Exts,n+s
A (Z2, Z2), there exists

an ExtA(Z2, Z2) - linear map from the Adams-Atiyah-Hirzebruch spectral sequence

to the Adams spectral sequence,

Ẽ2 = ExtA(Z2, Z2)⊗H∗BΣr ⇒ π∗D
rs
r Sn

↓ ↓

E2 = ExtA(Z2, Z2) ⇒ π∗S

which

1. converges to the map ξ ◦Drx which sends α to α∗(x), and

2. sends QI ∈ H∗BΣr to σn(QI)(x̄).

Theorem 8. The operation Mf,F is detected in the Adams spectral sequence

by the operation Σq aqσn(q) if f∗(αM ) ∈ π∗DrS
n is detected by Σq aq ⊗ q in the

Adams-Atiyah-Hirzebruch spectral sequence.

Example 9. Let K be the Klein bottle, and let f = ip : K −→ S1 ↪→ BΣ2 be

the usual fibering p, followed by the inclusion i of the 1-skeleton. Let n ≡ 3 mod 4,
and let F : νK −→ f∗nζ2 be a stable isomorphism which restricts to the η framing

of S1 = p−1(pt). The operation Kf,F is detected by h1Sqn+1 in the Adams spectral

sequence.

Since K̃ = S1 × S1 with Σ2 action (θ1, θ2) 7→ (θ1 + π,−θ2), we get Kf,F (N) =
S1 × S1 ×Σ2

N ×N .
The fact that [K, f, F ] is detected by η on the 1-cell of BΣ2 means that the

restriction of F to S1 = p−1(pt) must be the η framing of S1.
Note that the differential d2Sqn+1x = h0x

2, for n odd, implies that, in general,
Sqn+1x by itself does not detect a homotopy class. For example, if x = h3 then
Sq8h3 = h4 does not survive, but Theorem 8 implies that h1h4 does. Thus, we
obtain a manifold representing η4.
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Corollary 10. If S7 has the Cayley number framing, then Kf,F (S7) = S1 ×

S1 ×Σ2
(S7)2, with its natural framing, is detected by h1h4 in the Adams spectral

sequence.

Another class to which this operation applies is c1 in the 19-stem, which we
obtained earlier as Sq11(c0). Since Sq20(c1) = h1e1, we find that h2

1e1 is represented
by S1 × S1 ×Σ2

(S3 ×Σ2
N2)2, where N represents c0.

Our last example involves Σ4 again. Let T n be the n-torus and let

W = T 4/(θ0, θ1, θ2, θ3) ∼ (θ0 + π, θ2, θ1,−θ3)
p ↓

Y = T 3/(θ0, θ1, θ2) ∼ (θ0 + π, θ2, θ1)

be the obvious S1 bundle. The manifold Y = BG, where G is the semidirect
product Z2

oZ in which the generator of Z exchanges the two factors of Z2. There
is an obvious homomorphism from G to D8 = Z2

2 o Z2, the 2-Sylow subgroup of
Σ4, and the map j : Y −→ BΣ4 induced by it and inclusion of the 2-Sylow satisfies
j∗[Y ] = Q2Q1ι ∈ H3BΣ4.

If f = jp : W −→ Y −→ BΣ4, then, when n ≡ 7 mod 8, there is a framing
F : νW −→ f∗nζ4, which restricts to the η framing of S1 = p−1(pt).

Example 11. Wf,F is detected by h1Sq2n+2Sqn+1 when n ≡ 7 mod 8.

Since Sq16Sq8(h3) = h5, the operation takes σ to η5. Thus, we obtain a
manifold representing η5.

Corollary 12. If S7 has the Cayley number framing, then Wf,F (S7), with

its natural framing, is detected by h1h5 in the Adams spectral sequence.

3. Proofs

Note that σn does not preserve composition. We define a related homomor-
phism

ρn : H∗QSn −→ P [A(n)]

by letting

ρn(QI) = SqI

on generators, and extending similarly. This function preserves all three operations.
The relation between ρn and σn is simple.

Lemma 13. σn = ρnΦn, where Φn : H∗BΣr → H∗DrS
n is the Thom isomor-

phism of the bundle nζr.

Proof: We must show that Φn(QI) = Qd(I,n). This is immediate from the
cellular structure of DrS

n and BΣ+
r = DrS

0 since

Qi(x) = θ∗(ei−deg(x) ⊗ x⊗ x)

and

Φn(ei ⊗ x⊗ x) = ei ⊗ Φn(x) ⊗ Φn(x)

and Φn([1]) = ιn.



EXTENDED POWERS OF MANIFOLDS AND THE ADAMS SPECTRAL SEQUENCE 9

Proof of Theorem 2: First, recall the relation between [M, f, F ] and the corre-
sponding homotopy class α. The Thom-Pontrjagin construction associates to M a
stable homotopy class αM ∈ πm+|νM |TνM . The stable map F : νM → nζr induces
TF : TνM → T (nζr) = DrS

n and α is the composite

α = TF∗(αM ) ∈ πrn+mT (nζr) = πrn+mDrS
n.

Consider the homotopy operation α∗ constructed from [M, f, F ]. By [HRS,
IV.5.4], it induces, in the Adams spectral sequence, the Steenrod operation deter-
mined by ijqh(α) ∈ H∗(BΣm

r , BΣm−1
r )

α ∈ πrn+mDm
r Sn h

−→ Hrn+mDm
r Sn

↓ q
Hrn+m(Dm

r Sn, Dm−1
r Sn)

↓ j

ijqh(α) ∈ Hm(BΣm
r , BΣm−1

r )
i
←− Hm(BΣm

r , BΣm−1
r )⊗HnrS

n(r)

where h is the Hurewicz homomorphism, q is induced by the quotient map, j is
induced by the natural equivalence

Dm
r Sn/Dm−1

r Sn −→ BΣm
r /BΣm−1

r ∧ Sn(r)

and i is the Kunneth isomorphism i(x⊗ ιrn) = x.
In the following commutative diagram, the maps Φ are Thom isomorphisms.

πmTνM
TF∗
−→ πrn+mDm

r Sn

h ↓ h ↓

HmTνM
TF∗
−→ Hrn+mDm

r Sn q
−→ Hrn+m(Dm

r Sn, Dm−1
r Sn)

Φ ↑ Φ ↑ Φ ↑

HmM
f∗
−→ HmBΣm

r

q
−→ Hrn+m(BΣm

r , BΣm−1
r )

Since α = TF∗(αM ) and h(αM ) = Φ[M ] and ijΦ(x) = x, a simple dia-
gram chase shows that ijqh(α) = qf∗[M ]. Finally, to show that this operation
is σnf∗[M ] = ρnΦf∗[M ] it is sufficient to check it on generators Qi ∈ HiBΣ2, since
ρn preserves sums, products, and composites. For Qi it is true by the definition of
the Steenrod operation Sqn+i [HRS, IV.2.4 and IV.5.4].

Proof of Example 4: We wish to show that f : X → BΣ4 satisfies f∗[X ] =
(Q1ι)2 + ι2Q2ι ∈ H2BΣ4 and f∗(nζ4) = νX . Since ι2Q2ι is the image of Q2ι under
the natural inclusion Σ2 → Σ4, and since RP 2 ↪→ RP∞ = BΣ2 sends [RP 2] to Q2ι,
the composite f1 : RP 2 ↪→ RP∞ = BΣ2 → BΣ4 will satisfy f1∗[RP 2] = ι2Q2ι.
Similarly, since S1 = RP 1 ↪→ RP∞ = BΣ2 sends [S1] to Q1ι, we can realize Q1ιQ1ι
as the image of [S1 × S1] under an appropriate f2 : S1 × S1 = RP 1 × RP 1 ↪→
BΣ2 ×BΣ2 → BΣ4.

Bundles over surfaces are entirely determined by their Stiefel-Whitney classes,
so we will calculate w1 and w2. Let H∗BΣ2 = P [x], H∗RP 2 = P [x]/(x3), H∗BΣ2×

BΣ2 = P [x1, x2], and H∗S1 × S1 = E[x1, x2]. Then we have

H1X = Z3
2 generated by x, x1, and x2

and H2X = Z2 generated by x2 = x1x2.
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The tangent bundle of S1 × S1 is trivial, so

w(τX) = w(τRP 2 ) = (1 + x)3 = 1 + x + x2.

Thus 4τX is trivial and νX = nτX for any n ≡ 3 mod 4.
It is easy to see that f∗

1 ζ4 = 2 + ζ2, so that w(f∗
1 ζ4) = 1 + x.

Define f2 to be

f2 : S1 × S1 ↪→ BΣ2 ×BΣ2
Br
→ BΣ4

where the first map is the inclusion of the product of the 1-skeleta and r is the
regular representation. Then r∗ζ4 is the sum of the four linear representations, so
that w(f∗

2 ζ4) = (1 + x1)(1 + x2)(1 + x1 + x2) = 1 + x1x2. Since w1(ζ4) is dual to
ι2Q1ι and w2(ζ4) is dual to Q1ιQ1ι, we conclude that f2∗[S

1 × S1] = Q1ιQ1ι.
Therefore, w(f∗ζ4) = 1 + x + x2 = w(τX) and hence f∗nζ4 = νX for n ≡

3 mod (4). Finally, f∗[X ] = f1∗[RP 2] + f2∗[S
1 × S1] = ι2Q2ι + Q1ιQ1ι.

Remarks:

1. If we had replaced the regular representation by the block sum Σ2×Σ2 → Σ4

in the definition of f2, we would have produced an f : X → BΣ4 whose
fundamental class maps correctly, but for which no multiple of ζ4 would pull
back to νX .

2. Jones [JJ] described the construction in terms of the dihedral group D8 ↪→
Σ4 instead of Σ4. It is easy to see that either construction produces the same
operation Xf,F . The calculations based on D8 are a bit messier because the
extended power based upon the group D8 is the composite D2D2, so that
it carries the 2-fold composite operations before imposition of the Adem
relations. (The natural map D2D2 → D4 amounts to imposition of the
Adem relations.)

Proof of Theorems 7 and 8: Theorem 7 is the generalization of [HRS, IV.6] to
all extended powers. ([HRS, IV.6] used an ad hoc construction of the spectral se-
quence, and was restricted to prime r. [RRB] allows us to remove this restriction.)

The spectral sequence Ẽr is the spectral sequence of [RRB] defined by smashing
the skeletal filtration of DrS

n with an Adams resolution of S0 and totalizing. Then

Ẽ1 = Tot(W⊗C) where C is the cellular chains of DrS
n and H(W) = Ext(Z2, Z2).

The bicomplex spectral sequence for Ẽ2 = H(Tot(W ⊗ C)) is

H(W)⊗H(C) = ExtA(Z2, Z2)⊗H∗DrS
n

= ExtA(Z2, Z2)⊗H∗BΣrs
r ⇒ Ẽ2

where we use the Thom isomorphism to replace H∗DrS
n by H∗BΣrs

r . If we choose
a skeletal filtration for which the differential in C is trivial then the bicomplex
spectral sequence collapses.

In [HRS, IV.5 and IV.7] it is shown that ξ ◦Drx maps the skeletal filtration
of DrS

n to the Adams filtration of S0. By [RRB, Cor. 7] we have an induced
map of spectral sequences. By [HRS, IV.5] and Theorem 2, the class q is mapped
to σn(q)(x). By [RRB, Prop. 2], the map is ExtA(Z2, Z2) linear, completing the
proof of Theorem 7. Theorem 8 is an immediate consequence.
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Proof of Example 9: For r = 2 and n ≡ 3 mod 4, the class h1 ⊗ Q1 survives
the spectral sequence of Theorem 7 to generate π2n+2D2S

n = Z/2. The result-
ing homotopy operation is therefore detected by h1Sqn+1. We wish to construct
the geometric version of this operation. Thus we need a surface M and a map
f : M → BΣ2 such that α = f∗αM ∈ π2n+2D2S

n is detected by h1 ⊗ Q1. Since
α maps to η on the 1-cell, we take M = K, the Klein bottle, and let f be the
fibering K → S1 followed by S1 = RP 1 ↪→ BΣ2. The key point is that the natural
map D2S

n = T (nζ2) −→ T (nζ2 ⊕ λ) sends the class Q1 to the Thom class, so that
h1 ⊗Q1 maps to η on the bottom class.

Proof of Example 11: Similar to Example 9.
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