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A counterexample for lightning flash modules over E(e1, e2)

David Benson and Robert R. Bruner

Abstract. We give a counterexample to Theorem 5 in Section 18.2 of
Margolis’ book, “Spectra and the Steenrod Algebra” and make remarks
about the proofs of some later theorems in the book that depend on it.
The counterexample is a module which does not split as a sum of lightning
flash modules and free modules.
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1. Introduction. Let k be a field and E(e1, e2) be a graded exterior algebra
on generators e1 and e2 with degrees satisfying 0 < |e1| < |e2|. Theorem 5
in Section 18.2 of Margolis [2] states that every graded E(e1, e2)-module is a
coproduct of free modules and lightning flashes. In this note, we give a simple
counterexample to this statement.

Statement (c) following Proposition 7 of the same section is true, but not
because of Theorem 5. The proof of Theorem 8 in Section 18.3 depends on this
statement. The proofs of Proposition 9 and Lemma 10 of the same section also
depend on Theorem 5, and are used in Chapter 20. Fortunately, the paper of
Adams and Margolis [1] provides correct proofs of these statements that do
not rely on Theorem 5.

2. The counterexample. In this section, we display a bounded below module
M for E(e1, e2) which is not isomorphic to a coproduct of free modules and
lightning flashes.

First, we note that every module for E(e1, e2) can be written as a direct
sum of a free module and a module on which e1e2 acts as zero. So we may as
well work with modules for E(e1, e2)/(e1e2).
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We use the notation of Section 18.2 of Margolis. Let M(n) be the lightning
flash module L(n, 0, 1) of dimension 2n + 2. Here is a picture of M(n):

degree
zero

↓
y0 y1 y2 · · · yn−1 yn
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The shorter arrows represent the action of e1, and the longer ones e2. Thus,
a presentation of the module is given by e1xi+1 = e2xi = yi (0 ≤ i ≤ n − 1),
e1x0 = 0, e2xn = yn. We arrange that the element x0 in M(n) is in degree
zero, so that xi has degree i(|e2| − |e1|) and yi has degree |xi| + |e2|. Similarly,
L(∞, 0) is the infinite lightning flash obtained by letting this diagram continue
to the right indefinitely.

Our counterexample is the module

M =
∞∏

n=0

M(n).

To see that it is a counterexample, first note that e1M(n) is the linear span of
y0, . . . , yn−1, so e−1

2 e1M(n) is the linear span of all the basis elements except
xn. Here, if U is a linear subspace of a module, we write e−1

2 U for the linear
subspace consisting of the vectors whose image under e2 is in U .

Inductively, we see that for j > 0, (e−1
2 e1)jM(n) is the linear span of the

basis elements y0, . . . , yn, x0, . . . , xn−j . Thus, x0 is in (e−1
2 e1)jM(n) if and only

if j ≤ n.
Taking degree zero parts, we have

((e−1
2 e1)jM)0 =

∞∏

n=j

M(n)0.

Thus, ⋂

j≥0

((e−1
2 e1)jM)0 = 0, (2.1)

and

((e−1
2 e1)jM)0/((e−1

2 e1)j+1M)0

is one dimensional. On the other hand, x0 is in (e−1
2 e1)jL(∞, 0) for all j > 0,

so
⋂

j≥0

((e−1
2 e1)jL(∞, 0))0 �= 0.

Since a finite sum is always a direct summand of the product, it follows that M
has exactly one copy of each M(n) as a summand, and no summand isomorphic
to L(∞, 0). Since e1M0 = 0, no summand of the form L(∞, 1) (the module
with generators x0, x1, . . . and relations e2xi = e1xi+1), L(n, 1, 1) (generators
x0, . . . , xn and relations e2xi = e1xi+1) ,or L(n, 1, 0) (the same as L(n, 1, 1)
with one more relation e2xn = 0) can contribute to M0; and finally (2.1)
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shows that no summand of the form L(n, 0, 0) (the same as L(n, 1, 0) with
one more relation e1x0 = 0) can contribute to M0, since that intersection is
non-zero for such a module. These are the lightning flash modules which are
zero in sufficiently negative degrees. The summands we have identified do not
exhaust M0, and hence M cannot be a direct sum of lightning flash modules.

On the other hand, modules of finite type for E(e1, e2) can be shown to be
direct sums of lightning flashes, by the method of filtrations of the forgetful
functor to graded vector spaces. The proof is similar to but easier than the
functorial filtration proof given in Ringel [3].

Open Access. This article is distributed under the terms of the Creative Com-
mons Attribution 4.0 International License (http://creativecommons.org/licenses/
by/4.0/), which permits unrestricted use, distribution, and reproduction in any
medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes
were made.
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