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Abstract 

While discriminant function analysis is an inherently Bayesian method, researchers attempting to 

estimate ancestry in human skeletal samples often follow discriminant function analysis with the 

calculation of frequentist-based typicalities for assigning group membership.  Such an approach 

is problematic in that it fails to account for admixture and for variation in why individuals may 

be classified as outliers, or non-members of particular groups.  This paper presents an argument 

and methodology for employing a fully Bayesian approach in discriminant function analysis 

applied to cases of ancestry estimation.  The approach requires adding the calculation, or 

estimation, of predictive distributions as the final step in ancestry-focused discriminant analyses.  

The methods for a fully Bayesian multivariate discriminant analysis are illustrated using 

craniometrics from identified population samples within the Howells published data.  The paper 

also presents ways to visualize predictive distributions calculated in more than three dimensions, 

explains the limitations of typicality measures, and suggests an analytical route for future studies 

of ancestry and admixture based in discriminant function analysis. 
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Discriminant function analysis is often used within forensic anthropology and bioarchaeology to 

estimate the sex of an individual or the ancestral group or groups to which the individual might 

belong based on skeletal morphology (Bidmos and Asala 2003; Bidmos and Dayal 2004; 

Calcagno 1981; Dibennardo and Taylor 1983; Giles and Elliot 1963; Henke 1977; Johnson et al. 

1989; Kajanoja 1966; Konigsberg et al. 2009; Long 1966; Ousley and Jantz 1996; Ousley and 

Jantz 2012; Ousley and Jantz 2013; Ousley et al. 2009; Rightmire 1970; Šlaus and Tomicic 

2005; Snow et al. 1979; Ubelaker et al. 2002; Walker 2008; Zakrzewski 2007).  We use the term 

“group” here to represent a category within a classification.  These categories may be 

synonymous with populations, but generally, the sampling is too incomplete to make an 

equivalence with populations.  At least in its initial step, discriminant function analysis is 

inherently a Bayesian method in that it uses likelihoods to update prior probabilities of group 

membership and thus generate posterior probabilities of group membership.  In the sex 

estimation setting, these posterior probabilities can be interpreted only as posterior probabilities 

that the individual is male or female.  But in the case of ancestry assessment, posterior 

probabilities can also be interpreted as mixing proportions or admixture estimates (Algee‐Hewitt 

2016; Algee‐Hewitt 2017). 

While discriminant function analysis is inherently Bayesian, and researchers use posterior 

probabilities to guide their choice of potential groups, they then go on to calculate typicalities 

(Elliott and Collard 2009; Geller and Stojanowksi 2017; Guyomarc’h and Bruzek 2011; 

Kallenberger and Pilbrow 2012; Urbanová et al. 2014), which are inherently frequentist.  

Typicalities are the probabilities of obtaining a Mahalanobis squared distance as large as, or 

larger than, an observed distance if the case in question was indeed randomly sampled from the 

multivariate normal distribution representing a given population.  While the calculation of 
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typicalities following on the calculation of posterior probabilities may make sense in some 

settings, it can be counter-productive for assessing ancestry when admixture is a very real 

possibility.  In the admixture setting, the posterior probabilities can be interpreted as admixture 

estimates rather than as posterior probabilities of group membership.  Given that the reference 

populations in most discriminant function analyses are selected so that they are not admixed, it is 

quite possible for an individual to have high posterior probabilities of group membership with 

the two or more groups from which their ancestry is derived while at the same time being 

atypical for each of these groups.   

We argue here that rather than abandoning the Bayesian paradigm by calculating 

frequentist typicalities as the final step in estimating ancestry, one should instead employ a fully 

Bayesian analysis.  The full Bayesian analysis calculates not only the posterior probabilities of 

group membership, but also the predictive distributions for the skeletal metrics, which in our 

case are craniometrics from the W.W. Howells’ dataset.  If the skeletal metrics are not well 

characterized by the predictive distributions then the model used is suspect.  Alternatively, if the 

skeletal metrics are well characterized, this lends credence to the model and suggests that the 

individual may be admixed from the groups with high posterior probabilities.  We suggest 

adding the calculation of predictive distributions as the final step in ancestry-focused 

discriminant analyses, especially when the posterior probability of an individual belonging to 

one particular group is not high.  This paper presents and illustrates methods for carrying out a 

fully Bayesian approach in multivariate discriminant analysis, and for visualizing predictive 

distributions calculated in more than three dimensions.  It also details the limitations of typicality 

measures in estimating ancestry under conditions of admixture. 
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Materials and Methods 

Samples. 

This study uses eight craniometric variables (see Table 1) from 29 local samples measured by 

W.W. Howells (1973; 1989).  We use the term “sample” to refer to a collection of individuals 

from a restricted geographic location.  Howells used the term “population” to refer to such 

samples, but it is clear that these collections of individuals should not be considered as 

populations.  Howells originally had 30 local samples, but two of these, North and South Maori, 

were each comprised of only ten individuals each.  We have combined the Maori samples into a 

single sample of twenty, which is still the smallest local sample among the Howells data.  The 

next larger sample, Chinese from Anyang, has 42 individuals.  The eight craniometric variables 

were converted to Darroch and Mosimann (Darroch and Mosimann 1985; Jungers et al. 1995) 

shape variables on the raw scale.  In other words, each variable was divided by the geometric 

mean of the eight variables for that individual.  This “size correction” was used so that males and 

females could be considered together in all further analyses.  As sex is only known for a portion 

of Howells’ sample, converting the data to shape variables to reduce the effect of sexual 

dimorphism is more conservative then “sex correcting” (Relethford 1994) the data.  We then 

calculated the Mahalanobis squared distance between each of the 29 local samples using the 

pooled within-group covariance matrix.  All calculations were done in the statistics and graphics 

program “R” (R Core Team 2017). 

 

Posterior Probabilities. 

To simplify, we assume that only two samples are under consideration.  We further assume that 

the covariance matrices AΣ  and BΣ are equal so that we can write Σ  for both matrices. Letting 
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Aμ  and Bμ  be the vectors of means for group A and group B and x be the vector of shape 

variables for a case not contained in group A or group B, the Mahalanobis squared distances are 

( ) ( )2 1'A A AD −= − −x μ Σ x μ  and ( ) ( )2 1'B B BD −= − −x μ Σ x μ .  If Ap  is the prior probability that the 

new case is from group A, then the posterior probability that the case is from group A is: 

( )
( )
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2 2
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2
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1 1
exp 1 exp
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If the covariance matrices are not equal, then ( ) ( )2 1'A A A AD −= − −x μ Σ x μ  and 

( ) ( )2 1'B B B BD −= − −x μ Σ x μ  and the posterior probability that the case is from group A is: 
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Typicality 

 The typicality for a new case x against group A is found from the F distribution as: 

 
( )( )

( ) ( )
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,2
~ ,

1 A
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t N t
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D N N t
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t N
−

−

−
  (3) 

where t is the number of traits and NA is the sample size for group A (Krzanowski 2000: p. 213; 

Mason and Young 2002: eqn. 2.14).  Equation (3) gives the probability density function, while 

the “typicality probability” (Campbell 1984; Huberty 1984; McKay and Campbell 1982) is one 

minus the distribution function.  The typicality for group B substitutes the Mahalanobis squared 

distance to group B and the sample size for group B.  The Mahalanobis distances can be 

calculated using the group specific covariance matrices as we have done in equations (1) and (2), 

though some software uses the pooled covariance (Ousley and Jantz 2005; Ousley and Jantz 



 

Pre-print version. Visit http://digitalcommons.wayne.edu/humbiol/ after publication to acquire the final version. 

2013, and see the helpfile at 

http://math.mercyhurst.edu/~sousley/Fordisc/Help/Fordisc3_Help.pdf).  This typicality 

probability is specifically for an independent (i.e., new) case, as opposed to what could be 

considered an outlier probability.  An outlier probability is the typicality probability for a case 

which is known to be from the sample that generated the summary statistics.  The outlier 

probability is obtained from the following probability density function: 

 
( )

( )

2

, 1

1
~ ,

A

A A

t N t

A

D N t
F

N t
− +

− +
  (4) 

as first given in Hotelling (1951: p. 25) .  This F test has also been given as an equivalent 

incomplete Beta distribution test in Algee-Hewitt (2016: eqn. 8), Mason and Young (2002: eqn. 

2.15), and Aitchison and Dunsmore (1975: eqn. 11.20). 

 To complicate matters, Hawkins (1981) gave an F test similar to that obtained from 

equation (4), but which deletes the case in question from calculation of the vector of means and 

the covariance matrix.  For a single group A, Hawkins’ F test is obtained from: 
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This alternative F test is incorporated in the R library MissMech (Jamshidian et al. 2014) as the 

object “Hawkins.”  Konigsberg and others (2009) used equation (5) when equation (3) would 

have been more appropriate.  In this paper we use equation (3) as the appropriate F test for 

calculating a typicality probability value when the case in question is not from any of the 

reference groups.  In Appendix 1 we use simulation to show that equation (3) does indeed 

provide the correct calculation of typicality. 

 

Discriminant Models between the Linear and the Quadratic. 
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The methods so far have described discriminant analysis as being either linear, with equal 

covariance matrices, or as quadratic, with different covariance matrices. Bensmail and Celeux 

(1996) have described an additional six models that have more parameters than the linear model 

but fewer parameters than the quadratic model.  These additional models contain various 

constraints on the eigenvalue decompositions of the covariance matrices.  The covariance 

matrices are written as 'DAD , where λ is the tth root of the determinant of a given covariance 

matrix, D contains the eigenvectors of the covariance matrix, and A is a diagonal matrix with a 

determinant equal to 1.0.  The λ parameter is a volume parameter, the A matrix controls the 

shape of the ellipsoids, and the D matrix controls their orientations.  The parameterization

'DAD is the linear discriminant model where the covariance matrices are equal while 

'

K K K K D A D  is the quadratic discriminant model where each of the K covariance matrices is 

unique. Table 2 contains the notation from Bensmail and Celeux’s (1996) Table 1 for the eight 

models considered here.  Bensmail and Celeux also consider six more models where the traits are 

uncorrelated, but we do not consider these models here as craniometrics typically are correlated.  

For ease of reference we number the models from one to eight.  The second model is one where 

the covariance matrices are proportional.  Manly and Rayner (1987) and Flury et al. (1994) have 

referred to this as the “proportional matrices” model.  The fourth model has equal correlation 

matrices.  Manly and Rayner (1987) referred to this as the “equal correlations” model while 

Flury et al. (1994) referred to this as the “common principal components” model, or the CPC 

model for short.  Models three and five through seven do not have names in the literature. 

The models in Table 2 can be fit using MclustDA in the library mclust (Scrucca et al. 

2016) within R.  This is specifically done using the model “EDDA.”  The acronym stands for 

“eigenvalue decomposition discriminant analysis,” the name given by Bensmail and Celeux 
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(1996).  Table 2 lists the three-letter model names given in mclust for each of the eight models; 

each model is named according to whether the Volume, Shape and Orientation covariance 

matrices are variable (“V”) or equal (“E”).  While Bensmail and Celeux used cross-validation 

with parsimony to choose among tied models, mclust picks the model with the highest Bayesian 

Information Criterion (BIC).  The BIC is two times the log-likelihood for a given model minus 

the product of the number of parameters in the model and the log of the total sample size.  Table 

2 lists the number of parameters for the covariance matrices by individual volume, shape and 

orientation components, and for the total where G is the number of groups.  All models also 

contain G t  parameters for the vector of means within each group. 

 

Predictive Distributions. 

If ( )p g A= x is the posterior probability that a given case belongs to group A and 

( )1 p g A− = x is the posterior probability that the case belongs to group B, then the predictive 

distribution for the measurements is proportional to: 

 ( ) ( ) ( )( ) ( ), 1 , ,A A B Bp g A MVN p g A MVN=  + − = x μ Σ x μ Σ   (6) 

 where A B= =Σ Σ Σ  if the covariance matrices for the two groups are equal.  Equation (6) can be 

converted to a proper probability density function by integrating across the t traits and dividing 

equation (6) by the integral.  Alternatively, and more simply, the probability density function can 

be approximated by simulating out of the two multivariate normal distributions in the 

proportions given by the posterior probabilities.  Note that equation (6) is a simplification of 

what is known as the “posterior predictive check” (Gelman et al. 2014; Kruschke 2015).  A 

complete posterior predictive check accounts for uncertainty in the measurements once the 
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parameters are known as well uncertainty in the parameters themselves.  We ignore the 

uncertainty in the parameters in order to simplify the problem.  If the case in question can 

reasonably be considered to have been formed by admixture from groups A and B, then the 

measurements for the individual should fall within the predictive distribution.  It is not 

immediately clear how to measure the extent to which a t-dimensional point falls within a 

mixture of two or more t-dimensional multivariate normal distributions.  There are a number of 

options available in the literature for examining the centrality of a point within a multivariate 

distribution (Nolan 1999; Small 1990; Zuo and Serfling 2000), but their effectiveness for the 

problem at hand has yet to be evaluated.  We use Tukey’s (1975) half-space depth to examine the 

centrality of a given cranium within the predictive distribution because this commonly used 

nonparametric method can be easily visualized in low dimensions. 

 

Tukey’s Half-Space Depth. 

Tukey’s half-space depth is easiest to understand in one and two dimensions, and there are 

graphical methods specifically intended for the bivariate case.  Tukey’s (1975:529) definition for 

the one dimensional case with the ordered variate y is: 

depth of 
i n

y  = the lesser of i or 1n i+ −  = result of counting in from the nearest 

end.  

For example, if 51n =  then the depth for the leftmost (smallest) value is 1 while the depth for 

the rightmost (largest value) is also 1.  The depth for the second value is 2 as is the depth for the 

50th value.  The depth for the third and 49th values is 3, and so on.  The 26th point has a depth of 

26 from both the leftmost and rightmost value and is the median for the 51 numbers. 
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One of the bivariate methods based on Tukey’s half-space depth is known as a “bagplot” 

(Rousseeuw et al. 1999) or “sunburst” plot (Liu et al. 1999) and is a bivariate generalization of 

the familiar box and whiskers plot.  The other method, a depth contour plot (Ruts and Rousseeuw 

1996), is the one we will use here to illustrate the concept of half-space depth for two 

dimensional problems.  Later we will use the “bagplot” as it does provide a view similar to the 

box and whiskers plot.  Depth contours can be drawn in the R package “depth” (Genest et al. 

2017) which also estimates the depth of multidimensional points as well as the “depth median.”  

Figure 1 shows a small example of simulation from a bivariate mixture model.  The axes are 

labelled BNL (basion-nasion length) and AUB (biauricular breadth) as this is a small example of 

a larger analysis we will present in the results section.  The simulation for Figure 1 contains only 

50 points.  The outer convex hull has a Tukey half-space depth of one.  As with the one-

dimensional problem, the half-space depth is the minimum number of points to either side of a 

line struck through the point in question, where the point on the line is counted in the total.  Each 

point at the vertices of the outer convex hull has a half-space depth of one with 49 points to the 

other side of the line, one point on the line, and no points to the other side of the line.  The inner 

convex hull shown in Figure 1 has a Tukey half-space depth of five, as can be determined by 

counting the asterisked points on and above the heavy line struck through the point marking a 

vertex on the inner hull.  The deepest point in Figure 1, marked with a circle, has a depth of 22 

and the dashed line struck through this point has 21 points to the right plus the 22nd point on the 

line. 

Figure 2 shows an outer convex hull for the Tukey half-space depth of two for the same 

set of points as in Figure 1.  The inner hull here is the 22-depth hull.  Figure 2 also demonstrates 

that vertices on convex hulls deeper than the one-deep contour need not contain observed points.  
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Such vertices can be constructed by the intersection of two lines each struck through two 

observed points.  The dashed lines in Figure 2 show one such intersection that defines the 2-

depth hull.  The heavy line through that vertex shows the two points (marked with asterisks) 

above the heavy line.  The 22-depth hull contains one observed point and is the deepest convex 

hull for these 50 points.  This median region summarized by a single point is the center of 

gravity for the vertices of the deepest hull.  Figure 3 shows in greater detail how the 22-depth 

(median) hull, filled with light gray, is constructed.  The intersections of the lighter-weight lines 

are the vertices for the 22-depth hull.  Note the 22 points below the heavy dashed line struck 

through one vertex of this hull. 

Bagplots are created by finding the median (and therefore deepest) region and then 

drawing the deepest hull that contains 50% of the points.  This particular hull constitutes the 

“bag,” and is analogous to the quartiles that form the box of a box and whiskers plot.  The 

“fence” of a bagplot is not drawn, but consists of a three-fold expansion of the bag relative to the 

median.  The “loop” is drawn and consists of a convex hull containing the least deep points that 

are still within the fence.  Outliers are then any points lying outside the loop.  “Whiskers” can be 

drawn from the bag to each point between the bag and the loop.  A “sunburst” plot is identical to 

a bagplot with whiskers but without the loop drawn.  The bagplots we present later in this paper 

were drawn in R using the package “aplpack” (Wolf and Bielefeld 2014). 

Pairwise comparisons of the eight craniometrics used here result in 28 unique bagplots, 

too many to visually inspect.  As a better alternative, Tukey’s half-space depth can be 

generalized to three and higher dimensions by multiplying the n t  matrix of points by 1t  unit 

vectors and finding the smallest half-space depth along the variously produced lines.  Unlike the 

bivariate and trivariate cases which have exact solutions, the higher dimensional problems can 



 

Pre-print version. Visit http://digitalcommons.wayne.edu/humbiol/ after publication to acquire the final version. 

only be solved approximately by taking a large number of random direction vectors.  It is then 

possible to compare the depth of a given cranium in the cloud of points to the depth of the 

median in that cloud.  If these depths are similar, then the cranium has “centrality” in the cloud 

of points representing the predictive distribution.  We can also plot the multidimensional median 

from the predictive distribution against the actual cranium (defined by eight measurements) to 

assess similarity. 

 

Results 

Our initial analysis of the 29 local population samples from the Howells data produced 406 

unique Mahalanobis D-squared distances based on the pooled within-group covariance matrix 

and the 29 vectors of means.  Rather than present this sizeable matrix, we instead present a plot 

of the first two principal coordinates of the distance matrix, accounting for 54.8% of the 

variation, in Figure 4, and a plot of the first three principal coordinates, accounting for 71.8%, in 

Figure 5.  The largest Mahalanobis squared distance is between Easter Islanders and the Buriat.  

We consequently focus on these two groups for more detailed distance analyses.  

 

Analysis of Buriat and Easter Islanders under the Assumption of Homoscedasticity. 

We begin with the simplifying assumption that the within-group covariance matrices for the 

Buriat and Easter Islanders are equal, which as we will see in the next section, is not supportable.  

We start with this assumption in order to clarify the use of the terms “internal outlier” and 

“external outlier” (Huberty and Olejnik 2006: p. 405-406).  To form an internal outlier we take 

the simple average of the Buriat and Easter Islander centroids.  This produces an individual who, 

beginning from equal prior probabilities of group membership, will have equal posterior 
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probabilities of group membership.  For an external outlier, we choose individual number 703 

from the Howells data.  This individual is a Zulu with a posterior probability of group 

membership from the Buriat of 0.32 and of group membership from the Easter Islanders of 0.68 

(after having started with equal priors).  Figure 6 shows a two-dimensional principal coordinates 

plot of the Buriat and Easter Islanders, of their average, and of the Zulu individual.  To clarify 

the distributions, the Buriat and Easter Islanders are shown with their respective convex hull 

“peels” (Green 2006).  This Figure clearly shows that the average of the two centroids is an 

internal outlier as it “is located ‘in-between’ two groups” (Huberty and Olejnik 2006:405) while 

the Zulu individual is an external outlier as the individual is “located ‘outside’ the groups” 

(Huberty and Olejnik 2006:406).  

 

Analysis of Buriat and Easter Islanders by Eigenvalue Decomposition Discriminant 

Analysis (EDDA). 

The discriminant model that yielded the highest BIC from MclustDA within the package mclust 

was model 6 (see Table 2).  This model has equal distributional shapes for the Buriat and Easter 

Islanders but different orientations and volumes.  Table 3 lists the λ parameters, the diagonal of 

the A matrix, the D matrices for both groups, and the vectors of means for both groups.  From 

these parameters the covariance matrices can be calculated and equation (2) can be used to find 

the posterior probabilities of group membership for each of the 195 individuals.  We made these 

calculations under equal priors for group-membership.  This resulted in 100% correct 

classification.  As an example of an external outlier, we will use the Zulu individual from the 

previous analysis.  Under the current model with equal priors, this individual has a posterior 

probability of group-membership with the Buriat of 0.676 and a posterior probability of group-
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membership with the Easter Islanders of 40.6761 0.32− = .  The typicality probabilities of this 

individual with both groups are far less than 0.0001. 

The internal outlier, or more exactly an individual with equal posterior probabilities of 

group-membership with the Buriat and Easter Islanders, is now not a simple average of the two 

group centroids.  Instead, we must solve the equation below for m: 

 
( )

2 2

1

0.5ln 0.5 0.5ln 0.5 ,

A B

A A B B

m m

D D

=  + − 

− − =− −

x μ μ

Σ Σ
  (7) 

where m is the admixture rate from the Buriat, A and B refer respectively to the Buriat and Easter 

Islanders, and the Mahalanobis squared distances are for the vector x against the two groups.  

Solving for m gives an admixture rate from the Buriat of 0.442 and from Easter Islanders of 

1 0.558m− = .  Given that we solved for equal posterior probabilities, this hypothetical individual 

(or “synthetic skull”) has equal posterior probabilities of being from both groups.  This 

individual’s typicality probabilities against both groups are, like the Zulu individual, far below 

0.0001. 

While equation (7) gives the admixture rates for a synthesized  internal outlier with equal 

posterior probabilities of group-membership from the Buriat and Easter Islanders, we need to 

solve a different equation to find a “synthetic skull” that yields posterior probabilities equal to 

those from the Zulu skull but that remains an internal outlier.  Solving the following equation: 

 

( )

( )
( ) ( )

2

2 2

1

exp 0.5ln 0.5
0.6762 0,

exp 0.5ln 0.5 exp 0.5ln 0.5

A B

A A

A A B B

m m

D

D D

=  + − 

− −
− =

− − + − −

x μ μ

Σ

Σ Σ

  (8) 

for m gives admixture proportions of 0.444 from the Buriat and 60.4441- 0.55= from Easter 

Islanders.  These admixture proportions yield a synthetic skull with the same posterior 
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probabilities as for the Zulu skull (0.676 and 0.324 from the Buriat and Easter Islanders, 

respectively) and will be used to form predictive distributions.  

 

Predictive Distributions. 

Figure 7 shows the basion-nasion length and biauricular breadth “bagplot” for 10,000 

simulations with mixing proportions of 0.444 and 0.556 from the Buriat and Easter Islanders, 

respectively.  These mixing proportions give the posterior probabilities of group-membership for 

the Zulu individual (0.676 and 0.324 from the Buriat and Easter Islanders, respectively) 

mentioned above.  Note that the Zulu cranium is an outlier falling beyond the loop of the 

bagplot.  If we consider all of the bagplots generated using the 28 unique pairs of variables, the 

Zulu cranium falls within the bag hull only seven times, falls outside the bag but within the loop 

20 times, and falls outside the loop the one time shown in Figure 7.  That the Zulu cranium is not 

centrally located can be found by assessing the multivariate depth for this individual.  The 

cranium has an estimated eight-dimensional depth of 0, indicating that it falls entirely outside of 

the cloud of points.  Figure 8 compares the estimated depth median measurements with the actual 

measurements of the Zulu cranium.  The median has an estimated depth of 3,616 out of 10,000 

simulated crania.  Note that the median and the actual cranium are quite dissimilar. 

Figure 9 shows the same bagplot as in Figure 7, but this time with mixing proportions of 

0.442 from the Buriat and 0.558 from Easter Islanders, and a “synthetic skull” formed using 

these mixing proportions as admixture proportions.  These are the mixing proportions calculated 

from equation (8), the equation for an internal outlier with equal posterior probabilities of group-

membership.  Note that the plotted “synthetic skull” is well within the bag and is very close to 

the depth median.  In fact, for all 28 bagplots it is within the bag and is also close to the “center” 
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(depth median).  The “synthetic skull” has an estimated eight-dimensional depth of 3,777 out of 

the 10,000 simulated cranium.  This is deeper than the estimated median depth of 3,481, a 

consequence of the fact that Tukey depths can only be estimated and not solved for numerically 

beyond three dimensions.  Figure 10 shows the similarity between the median depth and this 

particular synthesized case. 

 

Discussion 

This paper has shown that the simple procedure of following calculations of posterior 

probabilities in discriminant function analyses with calculations of typicalities has potential 

problems.  The use of typicalities to decide on ancestral group assignment can fail on two fronts.  

First, typicality values may not meet the first assumption of what Aitchison and Dunsmore 

(1975) refer to in their chapter 11 as “diagnosis.”  In discussing the statistical basis for 

differential diagnoses of diseases, their (Aitchison and Dunsmore 1975:215) first assumption is 

that “Each case belongs to one and only one of a finite set  1,...,T r=  of possible types.”  In 

admixture analyses, including the calculation of typicalities, this exclusivity does not necessarily 

hold, so that the ultimate goal of assigning a case to a single group is unrealistic.  Second, the 

calculation of typicalities does not differentiate between “internal outliers” and “external 

outliers” (Huberty and Olejnik 2006: p. 405-406).  Given that admixture analyses are typically 

carried out on descendant individuals in comparison to two or more ancestral populations with 

little to no admixture, it is quite possible to have admixed individuals who are “internal outliers” 

and are consequently not well represented by any of the non-admixed ancestral populations.  It is 

in this context that the calculation of predictive distributions is particularly useful.  The method 

maintains the Bayesian approach first used in calculating posterior probabilities of group-
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membership and allows us to treat these parameters as estimates of admixture rather than as 

probabilities of exclusive membership in a group. 

For future analyses we suggest the following analytical route.  First, posterior 

probabilities of group membership and typicalities should be calculated.  In some analyses this 

may lead to unambiguous results.  For example, if a case is found to have a high posterior 

probability of group membership for one group and is also shown to be “typical” for that group, 

then it is reasonable to deduce that the case in question derives from the given group.  But in 

more ambiguous cases, and especially if the analysis began with a linear discriminant function, 

then the first few principal coordinates of the distance matrix or the R matrix should be plotted 

(as in our Figure 8).  Alternatively, the position of groups and the case in question can be plotted 

on the first few canonical variates.  If the posterior probabilities of group membership are high 

for some number of groups and the individual represents someone with admixture from those 

given groups, then the individual should show “centrality” for those groups in the plot of 

principal coordinates or canonical variates.  This graphical approach can be found in Corruccini 

et al.’s (1982) Figure 10, Hallgrímsson et al.’s (2004) Figure 2, Koehl and Long’s (2018) Figure 

3, Stull et al.’s (2014) Figures 2, 3, and 6, and Wijsman and Neves’ (1986) Figure 2. 

When the analysis has been based on a non-linear discriminant function then plotting an 

ordination of the distances is not a possibility.  In this setting when the posterior probabilities and 

typicalities do not unambiguously assign an individual to one group, we recommend using 

simulation to build the predictive distributions for the measurements.  This simulation should be 

done using the mixing proportions that recreate the posterior probabilities of the observed case.  

Bagplots can then be used to see if the individual is an “internal outlier” who falls within the bag 

of the bagplot.  For a full multivariate analysis the Tukey depth of the actual individual within 
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the cloud of simulated points can be used to determine whether the individual is an internal 

outlier or an external outlier.  If the individual is an internal outlier, then it is reasonable to 

deduce that said individual is the result of admixture between the groups with high posterior 

probabilities of group membership. 
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Table 1. Measurements in the Current Study 

Abbreviation Measurement 

GOL Glabello-occipital length 

NOL Nasio-occipital length 

BNL Basion-nasion length 

BBH Basion-bregma height 

XCB Maximum cranial breadth 

XFB Maximum frontal breadth 

ZYB Bizygomatic breadth 

AUB Biauricular breadth 
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Table 2. Discriminant Models Ranging between, and Including, the Linear and the 

Quadratic 

No. Model Common 

Names 

V S O # V # S # O Total Covariance 

Parmeters 

1 λDAD' Linear E E E 1 t-1 t(t-1)/2 t(t+1)/2 

2 λKDAD' Proportional V E E G t-1 t(t-1)/2 t(t+1)/2 + G - 1 

3 λDAKD' NA E V E 1 G(t-1) t(t-1)/2 (t2+t(2G-1))/2-G+1 

4 λKDAKD' CPC V V E G G(t-1) t(t-1)/2 (t2+t(2G-1))/2 

5 λDKADK' NA E E V 1 t-1 Gt(t-1)/2 (Gt2+t(2-G))/2 

6 λKDKADK' NA V E V G t-1 Gt(t-1)/2 (Gt2+t(2-G))/2+G-1 

7 λDKAKDK' NA E V V 1 G(t-1) Gt(t-1)/2 Gt(t+1)/2-G+1 

8 λKDKAKDK' Quadratic V V V G G(t-1) Gt(t-1)/2 Gt(t+1)/2 

The column “Model” uses the notation from Bensmail and Celeux (1996).  “V,” “S,” and “O” 

refer to volume, shape, and orientation. “E” and “V” within those columns refer to equal or 

variable. The columns “# V,” “# S,” and “# O” list the number of parameters given t traits and G 

groups and the last column gives the total number of covariance matrix parameters. 
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Table 3. Multivariate Parameters for Analysis of the Buriat and Easter Islanders by EDDA 

Means 

 
GOL NOL BNL BBH XCB XFB ZYB AUB 

Buriat 1.27269 1.25932 0.71496 0.93529 1.09189 0.89405 1.00321 0.95579 

Easter 

Isl. 

1.37107 1.34149 0.79326 1.03613 0.96844 0.80416 0.96527 0.88192 

 

Buriat covariance parameters 

 

41.985711 10 −=    

Diagonal of A (Buriat and Easter Islander) = 

 12.857152 7.253005 5.264252 2.325695 1.905311 1.039380 0.206931 0.002137   

 

D = 

0.512589 -0.328968 0.119033 -0.253622 0.008962 0.009092 0.697538 0.252622

0.519989 -0.331487 0.051839 -0.162720 -0.059483 -0.051821 -0.708742 0.286397

0.214975 0.216393 0.029701 0.810998 -0.021315 0.121611 0.059027 0.479200

0.129719 0.670416 -0.420684 -0.428215 -0.191824 0.068255 0.007004 0.363136

-0.426095 -0.391868 -0.095417 -0.044236 -0.608702 0.432423 0.018496 0.309793

-0.294750 -0.328171 -0.573918 0.015549 0.498697 -0.284998 0.024691 0.381144

-0.234374 0.122073 0.494855 -0.241060 0.531469 0.471389 -0.078774 0.341031

-0.283650 0.097235 0.471082 -0.088336 -0.239698 -0.698114 0.020848 0.367578

 
 
 
 
 
 
 
 
 
 
 
  

  

 

Easter Island covariance parameters 
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41.484856 10 −=    

 

D = 

-0.582997 -0.020503 0.353972 -0.043896 0.174563 -0.002355 0.661410 -0.254026

-0.531404 -0.077456 0.283155 -0.008830 0.068099 -0.149454 -0.736747 -0.248165

-0.200891 0.156354 -0.300402 0.068107 -0.714024 0.376426 0.016088 -0.434201

-0.128398 0.205731 -0.649463 0.332282 0.544229 -0.076827 -0.006617 -0.326870

0.305133 -0.596073 0.242838 0.530289 0.094055 0.284558 -0.002022 -0.348698

0.157556 -0.470403 -0.251839 -0.677655 0.041990 -0.213552 0.038215 -0.427118

0.324827 0.503041 0.322524 -0.304138 0.309569 0.462425 -0.106168 -0.352100

0.312152 0.311730 0.236787 0.223658 -0.228980 -0.699746 0.081866 -0.387965

 
 
 
 
 
 
 
 
 
 
 
  
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Appendix 1. 

 Given the potential confusion between equations (3) through (5), we use simulation to 

demonstrate that equation (3) is the correct F test when a case is a new one not contained in the 

reference sample.  The simulation uses the following distributions: 

 
( )

( ) ( )

~ ,

~ 1, 1 ,

MVN

W N N− −

x μ Σ

V Σ
  (9) 

where the x vector is one realization of the simulation, MVN is a multivariate normal distribution 

with a vector of means and covariance matrix equal to μand Σ , respectively, and W is a Wishart 

distribution with degrees of freedom equal to 1N −  and a covariance matrix equal to .Σ The 

simulated Mahalanobis squared-distance is then ( ) ( )2 1'D −= − −x μ V x μ .  One million simulated 

D2 values were then plotted as a Kaplan-Meier (Kaplan and Meier 1958) survivorship function.  

For comparison, the “inverse” of equation (3) was found by plotting ( )1 1,...,9999 10000−  

against ( )( ) ( ) ( )( )( )21,...,9999 10000 , , 1G t N t t N N N t −  − −  , where  , ,G t N t −  is the 

value in the F distribution with t  and N t−  degrees of freedom that gives a lower tail area of  .  

For comparison, we also plotted the 
2  distribution with t degrees of freedom as the distribution 

of Mahalanobis squared-distances is asymptotically distributed as a 
2 . 

We use the above described simulation in the case of both large and small sample sizes.  

We use the Buriat data, with a sample size of 109, as the large sample.  Only the Norse, Tolai, 

and Peruvians (N = 110 each) and Egyptians (N = 111) have larger sample sizes within the 

Howells dataset.  We use the Maori data as an example of small sample size (N = 20).  Figures 

A.1 and A.2 show the results of 1,000,000 simulations represented as Kaplan-Meier survivorship 

curves for the Buriat and Maori samples, respectively.  Within each of these figures, the Kaplan-
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Meier survivorship curve is compared to the F distributions from equation (3) and the 
2  

distribution with eight degrees of freedom.  Both Figures show that equation (3) provides the 

appropriate F-test for typicality with a new case.  A comparison between Figures A.1 and A.2 

also demonstrates the asymptotic behavior of the 
2  distribution. The 

2  distribution provides a 

better fit with the larger sample (N = 109) in Figure A.1 than with the smaller sample (N = 20) in 

Figure A.2. 
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Appendix 2. Labeling for Figure 5 

Population Symbol Population Symbol 

Ainu A Maori P 

Andaman B Mokapu Q 

Anyang C Moriori R 

Arikara D N. Japan S 

Atayal E Norse T 

Australia F Peru U 

Berg G Phillipines V 

Buriat H S. Japan W 

Bushman I Santa Cruz Isl. X 

Dogon J Tasmania Y 

Easter Isl. K Teita Z 

Egypt L Tolai 1 

Eskimo M Zalavar 2 

Guam N Zulu 3 

Hainan    O 
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Figure 1. 
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Figure 2. 
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Figure 3. 
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Figure 4. 
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Figure 5. 
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Figure 6. 
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Figure 7. 
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Figure 8. 
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Figure 9. 
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Figure 10. 
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Figure A.1. 
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Figure A.2. 
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Figure Captions 

Figure 1. Example of a bivariate “depth contour” (Ruts and Rousseeuw 1996) plot with 50 

points showing the 1-depth and 5-depth contours.  The five points marked with asterisks lying on 

or above the heavy line define the depth at that particular vertex of the 5-depth contour.  The 

circled point is the deepest point with a depth of 22.  This depth is found by counting up the 21 

points to the lower right of the dashed line plus the circle point lying on this line. 

 

Figure 2. Continuation of the example from Figure 1.  The dashed intersecting lines show one of 

the vertices of the 2-depth contour.  A heavy line is struck through this vertex and the two 

asterisked points lay above the line.  This shows that the line drawn through the constructed 

point on the 2-depth contour does indeed separate two points from the remaining 48 points below 

the heavy line.  Also shown is the 22-depth contour with its center of gravity marked by a “plus” 

symbol. 

 

Figure 3. Continuation of Figure 2.  The light lines show the boundaries of the deepest (22-

depth) contour.  The heavy dashed line shows the depth of 22 with 22 points below and to the 

right of the dashed line.  The gray polygon is the 22-depth contour with its center of gavity 

marked by a “plus” symbol.  This is the bivariate generalization of the univariate median. 

 

Figure 4. Two-dimensional principal coordinates plot of the Howells 29 local population 

samples.  Note how the Buriat and Easter Islanders have the greatest overall distance in two-

dimensions.  
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Figure 5. Three-dimensional principal coordinates plot of the Howells 29 local population 

samples.  “H” marks the Buriat and “K” the Easter Islanders.  The key for all of the labels is 

provided in Appendix 2. 

 

Figure 6. Two-dimensional principal coordinates plot of the Easter Islander and Buriat data 

(shown as convex hull “peels”), the average of the two centroids (labelled “internal outlier”), and 

individual number 703 (a Zulu) from the Howells craniometric data (labelled “external outlier”). 

 

Figure 7. Bagplot of 10,000 simulated values from the predictive distribution given admixture 

proportions of 0.444from the Buriat and 0.556 from Easter Islanders.  These are the admixture 

proportions that give the same posterior probabilities as those for a Zulu cranium (Howells 

individual number 703).  The legend in the upper right corner gives the symbols and colored 

regions from “deepest” to “shallowest.”  The actual cranium (shown as a filled black point) is 

slightly below the BNL median, well below the AUB median, and outside of the bagplot’s 

“loop.”  The white point is the internal outlier “synthetic skull” with the given mixing 

proportions. 

 

Figure 8. Plot of the estimated depth median with mixing proportions of 0.444 from the Buriat 

and 0.556 from Easter Islanders and the measurements from the Zulu cranium. 

 

Figure 9. Bagplot of 10,000 simulated values from the predictive distribution given admixture 

proportions of 0.442 from the Buriat and 0.558 from Easter Islanders.  These are the admixture 

proportions that result in a cranium with equal posterior probabilities for group-membership with 
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the Buriat and Easter Islanders.  The legend in the upper right corner gives the symbols and 

colored regions from “deepest” to “shallowest.”  The “synthetic skull” (shown as a filled white 

point) is well within the bag and is near the center or depth median. 

 

Figure 10. Plot of the estimated depth median with mixing proportions of 0.442 from the Buriat 

and 0.558 from Easter Islanders.  These are the admixture proportions that result in a cranium 

with equal posterior probabilities for group-membership with the Buriat and Easter Islanders.  

The other line is the “synthetic skull” formed with the given admixture proportions. 

 

Figure A.1. Comparison of 1,000,000 simulations from the Buriat parameters (represented as a 

Kaplan-Meier survivorship curve) to the F distribution from equation (3) and a 
2  distribution 

with eight degrees of freedom. 

 

Figure A.2. Comparison of 1,000,000 simulations from the Maori parameters (represented as a 

Kaplan-Meier survivorship curve) to the F distribution from equation (3) and a 
2  distribution 

with eight degrees of freedom. 
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