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Preface

This project has several parts, of which this book is the third one. The first
part deals with measure and integration theory, while part two concerns basic
function spaces, particularly the theory of distributions. In part four, stochastic
integrals are studied in some details, and in part five, stochastic ordinary differ-
ential equations are discussed, with a clear emphasis on estimates. Each part
was designed independent (as much as possible) of the others, but it makes a
lot of sense to consider all five parts as a sequence.

The reader should be familiar with measure and integration to fully enjoy
this part three, even if only certain pieces are actually needed. Therefore
(at this point), most of the pieces are in place to begin a deep study on the
basis of probability. First an update or translation (with simple examples) of
the wording in measure theory is necessary to discuss probability as presented
in Chapter 1. Next, Chapter 2 develops the continuation of measure theory
necessary to study probability, in particular, conditional probability and infinite
product of probabilities; while Chapter 3 is a beginning of more advanced topics,
including suitable sample spaces used for stochastic processes. Then, Chapter
4 revisits probability is a more abstract way, ending with some examples of
Markov processes. Finally Chapter 5 goes even deeper, including martingales
and ending with brief comments on Hunt and standard processes. Most of the
style is formal (propositions, theorems, remarks), but there are instances where
a more narrative presentation is used, the purpose being to force the student
to pause and fill-in the details. Appendix A has a number of solutions for most
of the exercises, while Appendix B is a detailed account (in a narrative way) of
semi-group theory, which is very useful when dealing with Markov processes.

Practically, there are no specific section of exercises, giving to the instructor
the freedom of choosing problems from various sources (and according to a
particular interest of subjects) and reinforcing the desired orientation. There is
no intention to diminish the difficulty of the material to put students at ease, on
the contrary, all points presented as blunt as possible, even sometimes shorten
some proofs, but with appropriate references. Thus, this book could be used as a
second-semester course in Real Analysis, with a clear orientation to Probability
Measures

This book is written for the instructor rather than for the student in a
sense that the instructor (familiar with the material) has to fill-in some (small)
details and selects exercises to give a personal direction to the course. It should

v



vi Preface

be taken more as Lecture Notes, addressed indirectly (via an instructor) to the
student. In a way, the student seeing this material for the first time may be
overwhelmed, but with time and dedication the reader can check most of the
points indicated in the references to complete some hard details, perhaps the
expression of a guided tour could be used here. Essentially, it is known that a
Proposition in one textbook may be an exercise in another, so that most of the
exercises at this level are hard or simple, depending on the experience of the
student.

In the appendix, all exercises are re-listed by section, but now, most of them
have a (possible) solution. Certainly, this appendix is not for the first
reading, i.e., this part is meant to be read after having struggled (a little)
with the exercises. Sometimes, there are many ways of solving problems, and
depending of what was developed “in the theory”, solving the exercises could
have alternative ways. The instructor will find that some exercises are trivial
while other are not simple. It is clear that what we may call “Exercises” in one
textbook could be called “Propositions” in others. This part three (as part two)
does not have a large number of exercises as in part one does, but the instructor
may find a lot of exercises in some of the references quoted in the text.

The combination of parts I, II, and III is neither a comprehensive course in
measure and integration (but a certain number of generalizations suitable for
probability are included), nor a basic course in probability (but most of language
used in probability is discussed), nor a functional analysis course (but function
spaces and the three essential principles are addressed), nor a course in theory
of distribution (but most of the key component are there). One of the objectives
of these first three books is to show the reader a large open door to probability,
without committing oneself to probability and without ignoring hard parts in
measure and integration theory.

Michigan (USA), Jose-Luis Menaldi, June 2010

Actually, this book-project is unfinished. The reader will see that a revision is
completely necessary, but still, in my opinion, there are some interesting mate-
rial there!

Michigan (USA), Jose-Luis Menaldi, November 2022

[Preliminary] Menaldi November 19, 2022



Introduction

This is a continuation of the previous books, even if only certain material is
essential to the understanding of what follow, e.g., it may be convenient for
the reader to review Chapters 1, 2, 4 and 6 in our first part-book [95]. Note
that measure theory is not really necessary for discrete probability. Moreover,
there are a couple of sections that are repeated in four part-book [97], with
the intention to cover a possible gap between ‘elementary’ and ‘more advanced’
concepts. As it should be clear now, that after part one, the reader may look at
parts two, three and four in any order, but part five should follows part four.

In the second part, we begin by reinforcing some points regarding the the-
ory of integrals, and the reader is recommended to review in in some details
the concept of uniform integrability (which is very important various aspect of
probability theory) and the integral theory as a Daniell functional. Moreover,
at a certain point, Schwartz’ theory of distributions and discuss elements of
the Fourier analysis become useful, and eventually, the reader is referred to our
second part-book [96].

Therefore, in this third part, we assume that the reader is familiar with the
rudiments of metric, Banach and Hilbert spaces, and we declare our interest in
probability. Thus, appealing to all these tools, probabilities are introduced as a
particular case of measures. We are interested in the language used in Probabil-
ity, starting from discrete random variables, passing throughout the concepts of
tightness and weak convergence of probabilities, discussing the law of the large
numbers and the central limit theorem. Characteristic functions is then well
understood as the Fourier transform and a proof of Bochner’s Theorem on exis-
tence of probability measures is given. Next we discuss conditional expectation
and regular conditional probability, which are the building block of advanced
probability arguments. Hence, we are ready to present a short analysis on the
sample spaces, particularly, the Polish (separable complete metrizable) space of
cad-lag (continuous from the right with left-hand limits) functions. Finally, we
conclude with an initial discussion on stochastic processes, to prepare the way
for a more advanced course.

In the next section, a quick overview on stochastic dynamical system models
is used as a motivation regarding most of the material discussed in this book.
Certainly, even if this some a vicious circle, this is addressed to a reader with
some knowledge on probability. In any case, this following section may be useful
when it is read after a couple of chapters.

vii



viii Preface

Motivations and Initials Questions

Besides the natural interest in elementary probability, our intention is partially
instruct the reader with the necessary ‘probability background’ to understand
(comfortable) stochastic dynamical systems, first in a discreta-time setting and
then, perhaps, begin a more delicate study on continuous-time models.

Assuming a rudimentary idea on dynamical system, a short discussion on
discrete-time dynamics is perhaps necessary. Say, at a given time, the state
of a dynamical systems changes according to a fix rule (or dynamical rule or
dynamic). The state represents all the information necessary to evolve in time
following the dynamic, and in the case of a controlled dynamical system, the
dynamic includes a control (the information that is chosen by the controller
before advancing the time). Moreover, this time-state-control model may be
internal or theoretical, and an observation procedure should be discussed. De-
pending on the possible values taken by the time t and the state x (and the
control v) the model is called discrete (a countable set of values) or continuous
(a non-countable set of values).

Our interest is on discrete time and continuous state with full observation,
i.e., due to the arrow of time, we may use the integer numbers to represent time
t = 0,±1,±2, . . . or t = 0, 1, 2, . . . when an initial time t = 0 is convenient. In fi-
nite dimension, the state and the control are elements of a Euclidean space, i.e.,
x in Rd and v in Rm. Therefore, x0, x1, x2, . . . are the states of our discrete-time
dynamical system, xt is the state at time t, and the state xt+1 is determined
(via the one-step dynamical rule) by the state xt and the control vt+1 chosen at
time t+ 1. By adding more dimensions to the Euclidean space, the case where
xt is determined by the previous states xt, xt−1, . . . , x0 and previous controls
(or control policy) vt+1, vt, vt−1, . . . , v1 can be included in the former one-step
dynamic model. However, if xt is the state at time t then all necessary informa-
tion is contained in xt and previous states x0, . . . , xt−1 should not be necessary
to decide the values of the current control vt.

Because the values of the state are composed by measurements (typically
taken at successive points in time spaced at uniform time intervals), determinis-
tic dynamical systems are considered a first degree of model approximation, i.e.,
the average system or the system without any disturbances, noises, unknowns or
errors. This approximation is improved by adding more assumptions to model
(the typical error due to the measurements and the disturbances, noises or un-
known elements), and depending on the focus of interest, several points of view
could be developed. For instance, worse-case scenario (when the bounds on
the possible errors is the focus, which eventually becomes a max-min problem,
sometimes called robust analysis) or a more statistical model (when the states
are treated as a sequence of random variables -time series-). In this last ap-
proach, various questions could be addressed, e.g., forecasting analysis, regres-
sion analysis, etc, all of them used in applied science and engineering (such as
statistics, signal processing, pattern recognition, econometrics, mathematical fi-
nance, weather forecasting, earthquake prediction, electroencephalography, con-
trol engineering, astronomy, communications engineering). In a way, stochastic

[Preliminary] Menaldi November 19, 2022



Preface ix

control problems is a more detailed model that include suitable assumptions
that largely simplify the real model under consideration.

Discrete-Time Stochastic Models

The discrete-time t, the state x (and the control v) have been identified in a
dynamical system. The control represents the parameters that can be chosen (a
decision taken as time pass), but the arrow of time imposes causality, i.e., the
control at the current time t is based on observation of the system up to the
present time t. Because we assume full observation (or complete information), a
decision (or control) at time t should involves only the states up to the present
x(s), for s ≤ t and perhaps, the previous controls v(s), for s < t. Since the
state x(t) summarize all necessary information up to the time t, a feedback
control of the form v = v(t, x) suffices, as a function v : T× X −→ V, where T
is the set of time, X the set of possible state-values and V the set of possible
control-values. Once a feedback control (policy) has been chosen, the state of
the system evolves as a Markov process, which is usually refer to as a controlled
Markov process.

There are several ways to describe a (controlled) Markov process, e.g., the
transition function

P (xt ∈ A |xt−1 = x, vt = v} = πt(A, x, v), for all Borel set A ⊂ X

may be given, and thus, to study the dependency on the feedback control,
or alternatively, an evolution equation could be given (of which the transition
function is its fundamental solution). In the last case, the evolution equation is
what is called the dynamic of the system. For instance, a general model is a s
follows.

Let St, Ct and Dt represent the possible states, the possible controls, and the
possible disturbances (or noises) of the dynamical system at time t = 0, 1, . . ..
Suppose that ρt is a function from St−1 ×Ct ×Dt into St, for each t = 1, 2, . . ..
If the current state xt−1 and the control vt are known, then the state xt at time
t is given by the relation

xt = ρt(xt−1, vt, wt), for t = 1, 2, . . . , (1)

where the disturbances wt should be suitable modeled.

In stochastic model, the disturbances is a sequence of random variables,
while in a worse-case scenario, the disturbances are as bad as possible (within a
priori bounds). The statistics of the sequence of random variables {w1, w2, . . .}
should be prescribed in a way to preserve the structure of the dynamical system.
For instance, an independent (and identically distributed, iid) sequence {wt} of
random variables is a typical situation, but a random disturbance wt which is
independent of the state xt−1 and the control vt (or more general, defined via
πt(·|xt−1, vt), the conditional probabilities) suffices.

[Preliminary] Menaldi November 19, 2022



x Preface

A cost is associated with feedback policy (i.e., a sequence v(·) = {v1(·), . . .}
of functions vt(·) from St−1 into Ct) given by a functional

Jx0,n

(
v(·)

)
= E

{
fn(xn) +

n∑
t=1

ft(xt−1, vt, wt)
}
, n = 1, 2, . . . , (2)

which represents the cost of policy v(·) on the horizon [0, n] with initial state
x0. The problem is to minimize this cost functional and find an optimal control
policy.

All these problems are not studied here, but the interest reader may consult
for instance, the book by Bertsekas [12], among many others. We prefer to
present a short discussion on the dynamic of a system given by an equation of
the form

xt = gt(xt−1, vt) + σt(xt−1, vt)wt, for t = 1, 2, . . . , (3)

where gt and σt are measurable functions defined on Rd × V (for each t in N)
with values in Rd and Rd × Rn, respectively, and N = {0, 1, 2, . . .} and V is a
compact set of some Euclidean space. This equation is a particular case of (1)
with ρt a measurable functions defined on Rd ×V×Rn, and it takes place on a
probability space (Ω,F , P ), where an independent (and identically distributed,
iid) sequence {wt} of random variables with values in Rn is given.

It is clear that once an initial state x0 is given, and the feedback is chosen,
then either equation (1) or (3) determines a sequence {x1, x2, . . .} of random
variables (representing the state of the system). In this context, a measurable
function v(·) defined on Rd × N with values in V represent a feedback control
(policy). In the last model equation (3), the emphasis is on an average dynamic
given by the functions gt and the disturbances represented by σtwt, where now
wt has zero-mean, i.e., E{xt} = E{gt(xt−1, vt)}, for every t.

Moreover, if Ft is the σ-algebra generated by the random variables x0 for
t = 0 and by x0, w1, . . . , wt for t = 1, 2, . . ., then the random variable xt is
Ft-measurable, while the control vt = v(xt−1, t) is Ft−1-measurable. Thus the
sequence of random variables {v1, v2, . . .} is adapted to Ft−1 (i.e, predictable),
while the sequence of random variables {x1, x2, . . .} is adapted to the filtration
{Ft}. There are almost not difficulties in replacing the possible state space Rd
and the possible control space V ⊂ Rm by a locally compact separable metric
space X and a compact metric space V, e.g., see Runggaldier and Stettner [115].

Now, recall the fact that if X and Y are two independent random variable
with values in some Polish space (separable complete metrizable space), e.g., an
Euclidean space, and φ(x, y) is a non-negative Borel measurable function then
the conditional expectation of the numerical random variable φ(X,Y ) given Y
can be calculated as follows

E
{
φ(X,Y ) |Y

}
= ΦY (X), with ΦY (x) = E

{
φ(x, Y )

}
. (4)

Indeed, if φ = 1A1B then (4) is the definition of independence of the two
variables X and Y . By linearity, this equality remains true for any finite combi-
nation, and with an argument of monotone class the conclusion follows. Another

[Preliminary] Menaldi November 19, 2022



Preface xi

way of staying this result is by expressing the conditional probability of (X,Y )
given Y (or marginal distribution) as

P
{
(X,Y ) ∈ A |Y

}
= PX(A), with Px(A) = P

{
(x, Y ) ∈ A}. (5)

for any Borel set A in the Polish space where (X,Y ) takes values.
Based on the previous result, the sequence of random variable generated by

either equation (1) or (3) defines what is called a controlled Markov chain, i.e.,
a Markov chain as soon as a measurable feedback policy is chosen. The tran-
sition probability functions P{xt+1 ∈ A |xt} = πt(A, xt) are the key elements
of a Markov chain {xt : t ∈ N}. In the above construction, with a feedback
policy vt(·), we deduce πt(A, x) = P{ρt(x, vt(x), wt+1) ∈ A}, for any x in Rd
and any Borel set A in Rd. Certainly, there is a huge literature regarding a lot
of interesting questions to solve for this controlled Markov chain, for instance,
the reader may take a look at the books by Bellman [7], Bensoussan [8], Bert-
sekas and Shreve [13], Bremaud [21, 22], Hernández-Lerma and Lasserre [60],
Revuz [110], Yin and Zhang [135], even suitable books at a graduate level, such
as Söderström [124], among many others.

[Preliminary] Menaldi November 19, 2022
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Chapter 1

Elementary Probability

Probability is used as a mathematical model of random events or “controlled”
experiments. The idea begins with a few basic principles which dictate about
how “the laws of chances” should behave. We have an abstract non-empty set Ω,
which represents all possible outcomes of the experiment to be studied. Initially,
an event is an element of 2Ω and an elementary event is a singleton {ω}, a set
of a single outcome ω in Ω. Thus events are handled mathematically by the set
theory, and then (initially!) a probability is an finite additive function defined on
events, normalized to have a finite total probability. These assumptions are well
adapted to practical cases, where Ω is a finite set. However, the mathematical
analysis imposes a certain continuity, and thus, we call a probability a (1) σ-
additive function P defined on a σ-algebra F ⊂ 2Ω satisfying (2) P (Ω) = 1, i.e., a
probability (measure) is a finite measure normalized with the condition (2). For
instance, a justification and discussion of the use of measure theoretic foundation
can be found in the book Pollard [106]. There are several books treating integral,
measure and probability simultaneously that the reader may check, e.g., Athreya
and Lahiri [4] Capinski and Kopp [23], Doob [40], Rosenthal [113], Taylor [132].

Practically, the abstract probability space (Ω,F , P ) is only known through
observations via random variables or observable functions, namely, real-valued
measurable functions defined Ω or more general, X : Ω → E, where (E, E) is
a measurable space. The structure of E determines the model used for the ex-
periment and mathematically the problem, tools and language to implement.
For instance, (1) measurable functions taking values in R or Rd are called ran-
dom variables, while (2) measurable functions taking values in some product
space RI , I some index, are called random (or stochastic) processes. Mainly, we
discuss the case of random variables (i.e., E = Rd) in an abstract probability
space. Similarly, the condition almost everywhere is called almost surely when
dealing with probabilities.

Hence, in general, we forget about (Ω,F , P ) in the sense that the variable
ω is not explicitly written in probability, but from the context, we understand
that most objects are random, i.e., they depends on ω. Typically, we have a
random variable X and we make assumptions (or we analyze) the distribution

1



2 Chapter 1. Elementary Probability

induced by X, i.e., the probability measure

PX(B) = P
(
X−1(B)

)
= P{X−1(B)} = P{ω : X(ω) ∈ B},

defined for every B ∈ E . Usually, we exchange the notation P{·} and P (·).
The integral with respect to a probability measure is called the expectation

and denoted by E{·}. Hence for any nonnegative measurable function f : E → R,
we have

E{f(X)} =

∫
Ω

(f ◦X) dP =

∫
Ω

f
(
X(ω)

)
P (dω) =

∫
E

f(x)PX(dx),

i.e., the composition f ◦ X is P -integrable if and only if f is PX -integrable.
Whenever it makes sense, E{X} = X is called the mean and E

{
(X −X)2

}
the

variance of the random variable X. Note that E
{
(X − X)2

}
= E

{
X2

}
− X

2
.

Moreover, if f(x) = xn, with n an positive integer, then E{Xn} is called the mo-
ment of order n. If E is a topological space and g is a continuous linear functional
on E, then the particular case where f(x) = ei⟨g,x⟩ yields the complex-valued
function

g 7→ ΦX(g) = E
{
ei⟨g,X⟩}, with i =

√
−1,

is called the characteristic function or Fourier transform of either the random
variable X (properly, of the distribution of the random variable X) or the mea-
sure PX . For instance, note that ΦX(0) = 1, and as discussed later, under certain
conditions, the characteristic function ΦX identify the measure PX . Moreover,
for the particular of a real-valued random variables X we have

t 7→ ΦX(t) = E{eitX}, ∀t ∈ R,

and based on the estimate |eih− 1| ≤ |h|, for every real value h, we can use the
dominate convergence Theorem to show that

dnΦX(t)

dt

∣∣∣
t=0

= inE{Xn}, ∀n ≥ 1,

whenever Xn is integrable.
There are several ways to introduce and define the meaning of independence

(which is of great importance in probability). Let (Ei, Ei) be a family measurable
spaces for i in some set of indexes. A family {Xi : i ∈ I} of random variables,
Xi : Ω → Ei, is independent if for any finite family of indexes J ⊂ I we
have P{Xi:i∈J} =

∏
i∈J PXi

, where {Xi : i ∈ J} is the (finite) product random
variable with values in

∏
i∈J Ei. In particular, two random variables X1 : Ω →

E1 and X2 : Ω → E2 are called independent if PZ = PX×PY , where Z = (X,Y )
is the product random variable Z : Ω → E × F.

Let Ki be π-classes generating Ei, for every i ∈ I. In view of uniqueness of
the extension of a measure initially defined on a π-classes, we deduce that a
family {Xi : i ∈ I} is independent if and only if

P
{ ⋂
i∈J

X−1
i (Ai)

}
=

∏
i∈J

P{X−1
i (Ai)} ∀Ai ∈ Ki,
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for any finite family J ⊂ I of subindexes. This means that if Xi ⊂ F is the
σ-algebra generated by Xi then the family {Xi : i ∈ I} is independent if and
only if

P
{ ⋂
i∈J

Fi

}
=

∏
i∈J

P{Fi} ∀Fi ∈ Xi, ∀ finite J ⊂ I.

Hence, the concept of independence can be applied to an arbitrary family of
sub σ-algebras of F . For the particular case where Xi = 1Ai we deduce that
{Ai : i ∈ I} is a family of independent sets if and only if

P
{ ⋂
i∈J

Ai

}
=

∏
i∈J

P{Ai} ∀ finite J ⊂ I,

which is the elementary definition of independence.

1.1 Preliminary Examples

As noted early, probabilities (or measures) on countable spaces makes a great
deal of simplification and called discrete probabilities. On the other hand, we
have diffuse probability and probability with density. Some examples are pre-
sented in what follows.

1.1.1 Discrete Probabilities

This is the ideal situation where the random variable X : Ω → E takes only a
countable possible values, X and its distribution PX are called discrete. There-
fore, the analysis of a discrete probability PX (or equivalently a discrete random
variable X) is the discussion of probabilities in a countable measurable space
(A, 2A), A ⊂ E. In view of the σ-additivity an discrete probability Q on (A, 2A)
is uniquely determined by the sequence {Q(a) : a ∈ A} of nonnegative number
which yields a series satisfying

∑
a∈AQ(a) = 1. Most of the time is a matter of

notation, i.e.,

PX(B) =
∑
b∈B

P
(
X−1(b)

)
=

∞∑
i=1

P
(
ai(X) ∈ B

)
,

where {ai(X) : i ≥ 1} is a enumeration of
{
a ∈ E : P

(
X−1(a)

)
̸= 0

}
, (each

ai = ai(X) is called an atom); and the sum on {b ∈ B} actually means on{
b ∈ B : P

(
X−1(b)

)
̸= 0

}
, since the zero term are ignored. In this case, we

can take
⋃
i≥1{ai} = A ⊂ E. Hence, for every nonnegative measurable function

f : E → R, we have

E{f(X)} =
∑
a∈A

f(a)P
(
X−1(a)

)
=

∞∑
i=1

f(ai)P
(
X−1(ai)

)
,
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4 Chapter 1. Elementary Probability

and composition f ◦X is integrable if the above series is absolutely convergent.
Perhaps the simplest example is the Uniform distribution, where the number
of atoms is a finite set {a1, . . . , an} = A and PX(B) is equal to the number of
elements of B ∈ 2A divided by n, the number of elements in A.

Hence, a random variable X : Ω → R is discrete if and only if there exists
a sequence of atoms {ai : i ≥ 1} = A = X(Ω) =⊂ R such that P

(
X−1(ai)

)
=

pi > 0 and
∑∞
i=1 pi = 1. In this case 2A ⊂ B = B(R), PX(B) =

∑∞
i=1 pi1B(ai),

for every B ∈ B and PX(N) = 0, for every N ∈ B such that N ∩ A = ∅. Typical
examples are the following, with E = R and E = B(R):

(1) Binomial distribution with parameters (n, p), 0 < p < 1: The atoms are
{0, 1, . . . , n} = A and PX({k}) =

(
n
k

)
pk(1 − p)n−k, for every k in A. The

mean is E{X} = np and the variance is np(1− p).

(2) Poisson distribution with parameter λ > 0: The atoms are {0, 1, . . .} = A

(nonnegative integers) and PX({k}) = e−λλk/k! (recall k! = k(k−1) . . . 1),
for every k in A. The mean E{X} and the variance are equal to λ.

(3) Geometric distribution with parameter c, 0 ≤ c < 1: The atoms are
{0, 1, . . .} = A (nonnegative integers) and PX({k}) = (1 − c)ck (with the
convention that 00 = 1), for every k in A. The mean is E{X} = c(1− c)−1

and the variance is c(1 − c)−2. Note that PX({0}) = (1 − c) and that
sometimes, p = 1− c is the parameter and/or the values are shifted, i.e.,
the atoms are {1, 2, . . .}.

For any random variable X, the characteristic function (or the Fourier trans-
form) is defined by

ΦX(t) = E{eitX} =
∑
n

eitnP{X = n}, ∀t ∈ R,

and if X is a random variable with nonnegative integer values then instead
of working with its characteristic function ΦX , we use the so-called (moment)
generating function

GX(t) = E{tX} =

∞∑
n=0

tnP{X = n}, ∀t ∈ [−1, 1],

from which all moments can be obtained, i.e., by calculating the derivatives,
G′
X(1) = E{X}, G′′

X(1) = E{X(X − 1)}, and so on. Assuming analytic ex-
tension, it is clear that GX(eit) = ΦX(t). For the Binomial distribution with
parameter (n, p) we have GX(t) = [1 + p(t − 1)]n, for the Poisson distribu-
tion with parameter λ we get GX(t) = exp[λ(t − 1)], and for the Geometric
distribution with parameter α we obtain GX(t) = (1− α)/(1− αt).

Typically, a probabilistic model of repeatedly tossing a coin (called a trial)
that has probability p of coming up tails (and so, probability 1 − p of coming
up heads), with 0 < p < 1, can be described by a sequence {Xk : k = 0, 1, . . .}
of independent Bernoulli random variables (i.e., Xk takes only the values 0 or
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1 with probability q = 1 − p or p). The random variable Y representing the
number tails (i.e., the Bernoulli random variable takes value 1) appeared within
the first n trials (i.e., Y = X0 + · · · +Xn−1) has a Binomial distribution with
parameter (n, p). Also, the random variable Z indicating that for the first time
that a tail appears (i.e., Z = inf{k : Xk = 1}) has a Geometric distribution with
parameter c = 1 − p. In general, if Yk, k = 1, . . . ,m, are independent random
variables with a Geometric distribution with parameters ck then mink≤m Yk has
also a Geometric distribution with parameter c1 . . . cm.

In term, this Binomial distribution can be approximated by a Poisson distri-
bution with parameter λ when n is very large and p very small so that np approx-
imates λ, in fact, based on the factorial growth rate, namely n! ≈

√
2πn(n/e)n,

Poisson Theorem expresses precisely that if n→ ∞ and p→ 0 such that np→ λ
then

n!

(n− k)!k!
pk(1− p)n−k → e−λ

λk

k!
.

Thus, under the above limiting conditions, Binomial distributions are replaced
by Poisson distributions.

1.1.2 Other Probabilities

The probability distribution PX of a real-valued random variable X : Ω → R is
completely described by the distribution function t 7→ F (t) = FX(t) = P{X ≤
t}, which has the following properties: (1) F is an increasing function continuous
from the right, (2) F (t) → 0 as t → −∞, and (3) F (t) → 1 as t → +∞. In the
case of a discrete probability, the function F is piecewise constant.

A probability measure is called diffuse if there is not atoms, i.e., P{X = x} =
0, for every x. In term of the distribution function, this is equivalently to require
that the function t 7→ FX is continuous, i.e., P{X = x} = FX(x) − FX(x−),
where FX(x−) is the left-hand limit. In general, if X : Ω → Rd with d > 1
then we prefer to work directly with the image measures PX , instead of using
the distribution functions FX .

For a Rd-valued random variable, we say that PX or X has a density (with
respect to the Lebesgue measure) if there exists an integrable function f = fX
such that

PX(B) = P{X ∈ B} =

∫
B

f(x) dx, ∀B ∈ B(Rd),

i.e., PX is absolutely continuous with respect to the Lebesgue measure (denoted
by m or simply dx) and the Radon-Nikodym Theorem provides the density f.
Note that a distribution may be diffuse and yet, without a density.

Perhaps the simplest example is when the density is constant on a setK ⊂ Rd
of finite Lebesgue measure and vanishes on the complement Rd∖K. This is called
the Uniform distribution, and PX(B) = m(B∩K)/m(K). For instance, if d = 1
and K = [a, b] with a < b, then FX(t) = 0 for t ≤ a, FX(t) = 1 for t ≥ b and
FX(t) = (t− a)/(b− a) for t in [a, b].
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6 Chapter 1. Elementary Probability

Some typical examples for a one-dimensional random variableX, with E = R
and E = B(R):
(1) Gaussian (o normal) with parameters m and r > 0, which is also denoted

by N(m, r): X(Ω) = R and

P{X ≤ t} =

∫ t

−∞

1

r
√
2π

exp
(
− |x−m|2

2r2

)
dx, ∀t ∈ R.

The mean is E{X} = m and the variance is r2. A simple change of variable
shows that (X −m)/r is indeed a normal random variable with mean 0
and variance 1. In a d-dimensional version, the mean m is a d-dimensional
vector and the co-variance is a symmetric strictly positive d-dimensional
matrix.

(2) Exponential with parameter α > 0: X(Ω) = [0,+∞) = R+
0 and

P{X ≤ t} =

∫ t

0

α exp(−αx) dx, ∀t ∈ R.

The mean is E{X} = α−1 and the variance is α−2.

(3) Cauchy with parameters m and c > 0: X(Ω) = R and

P{X ≤ t} = π−1c

∫ t

−∞

[
(x−m)2 + c2

]−1
dx, ∀t ≥ 0.

The particularity is that E{(X −m)1X>m} = E{(m−X)1X<m} = +∞,
i.e., this random variable is not integrable, and therefore the mean value
is not defined.

(4) Gamma with parameters c, α > 0: X(Ω) = [0,+∞) = R+
0 and

P{X ≤ t} =
αc

Γ(c)

∫ t

0

xc−1e−αx dx, ∀t ≥ 0,

where

Γ(c) =

∫ ∞

0

xc−1e−x dx, ∀c > 0

is the Gamma function. Note that c = 1 reproduces the exponential
distribution and also that c = n/2 and α = 1/2 is referred to as the χ2-
distribution with n degrees of freedom. If c is an integer then the Gamma
distribution is known as the Erlang distribution in queueing theory. The
mean is E{X} = cα−1 and the variance is c(c+ 1)α−2.

(5) Beta with parameters a, b > 0: X(Ω) = [0, 1] and

P{X ≤ t} =
1

B(a, b)

∫ 1

0

xa−1(1− x)b−1 dx, ∀t ∈ [0, 1],
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1.1. Preliminary Examples 7

where

B(a, b) =

∫ 1

0

xa−1(1− x)b−1 dx, ∀a, b > 0

is the Beta function, which satisfies B(a, b)Γ(a+ b) = Γ(a)Γ(b). The mean
is E{X} = a/(a+b) and the variance is ab(a+b)−2(a+b+1)−1. The obvious
case a = b = 1 is called Uniform distribution on [0, 1], i.e., P{X ≤ t} = t
for any t in [0, 1].

Besides the characteristic function

ΦX(t) = P̂X(t) = E{eitX}, ∀t ∈ R,

we may define the Laplace transform

P̃X(t) = E{e−tX}, ∀t ≥ 0,

when X(Ω) ⊂ R+
0 . Certainly, assuming analytic extension, it is clear that

P̃X(−it) = ΦX(t) and ΦX(−it) = P̃X(t). For instance, we compute the Fourier

and Laplace transforms for the above distributions: (1) P̂X = exp
(
− rt2/2 +

imt
)
for the normal; (2) P̂X = α/(α−it) and P̃X = α/(α+ t) for the exponen-

tial; (3) P̂X = exp
(
−c|t|/2+imt

)
for the Cauchy; (4) P̂X =

(
1−iα−1t

)−c
and

P̃X =
(
1+α−1t

)−c
for the Gamma. (5) The characteristic function of the Beta

function involves the confluent hypergeometric function (a type of exponential
function with rising factorials), namely

F1(a, b, z) =

∞∑
k=0

( k∏
i=0

a− i

b− i

)zk
k!
,

which is an entire function in a, b, z with poles at b = 0,−1,−2, . . . Thus P̂X =
F1(a, b, it) and P̃X = F1(a, b,−t).

Typically, if X0, X1, . . . , Xn, Xn+1, . . . , Xn+m is a finite sequence of inde-
pendent normal random variables with parameter m = 0 and r = 1 then the
random variable Y = X2

1 + · · · + X2
n has a χ2-distribution with n degrees of

freedom. Also, the random variable X0/
√
Y/n has a Student’s t-distribution

with n degrees of freedom, which has the density

ft(x) =
Γ
(
(n+ 1)/2

)
√
nπΓ(n/2)

(
1 + x2/n

)−(n+1)/2

, ∀x ∈ R.

With the sam token, the random variable

(X2
n+1 + · · ·+X2

n+m)/m

(X2
1 + · · ·+X2

n)/n
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8 Chapter 1. Elementary Probability

has a F -distribution with (m,n) degrees of freedom, which has the density

fF (x) =
m

nB(m/2, n/2)

(m
m
x
)m/2−1(

1 +
m

n
x
)−(m+n)/2

, ∀x ≥ 0.

Certainly, the expression of the densities ft and fF of the t-distribution and the
F -distribution can be extended to n = a > 0 and m = b > 0 non necessarily
integers. By checking the densities, it becomes clear that if X is a random vari-
able having a Beta-distribution with parameters a, b then

√
nX/(1−X) with

a = 1/2 and b = n/2 has a Student’s t-distribution with n degrees of freedom,
while

(
nX

)
/
(
(1 −X)m

)
with a = m/2 and b = n/2 has a F -distribution with

(m,n) degrees of freedom.
The exponential distribution is an way the continuous analogue of the geo-

metric distribution, i.e, if X has an exponential distribution with parameter α
then the floor ⌊X⌋ has a geometric distribution with parameter c = e−α, i.e.,
P{⌊X⌋ = 0} = P{X < 1} = 1− e−α. A key property of the exponential distri-
bution is the so-called memory-less property, namely, P{X > s + t, X > s} =
P{X > t}. Similarly, Xi, k = 1, 2, . . . are independent distributed random vari-
able exponentially with parameter αi then (1) the random variable mini≤kXi is
also exponentially distributed with parameter α = α1 + · · ·+ αk; however, the
random variable maxi≤kXi has not an exponential distribution. Now, assuming
that αi = α for every i = 1, 2, . . . , (2) the random variable Yk = X1 + · · ·+Xk

has a Gamma (or Erlang) distribution with parameters c = k and α, and (3)
the random variable Nt = sup{k : Yk ≤ t} with t ≥ 0 has a Poisson distribution
with parameter λ = αt.

1.1.3 Independent Random Variables

First, remark that given a probability space (Ω,F , P ), it may not be possible to
ensure the existence of a sequence of independent variables (having a prescribed
distribution). However, the typical (universal) probability space where these
constructions are possible is the Lebesgue space on the interval [0, 1). A well
known example is to write any ω in Ω = [0, 1) in binary form ω =

∑
k 2

−kωk , a
observe that the sequence of variables {πn(ω) = ωn : n ≥ 1} provide indepen-
dent coin-tossing variables each taking values 0 or 1 with probability 1/2. There-
fore, for any given injective mapping (i, j) 7→ k(i, j) from 1, 2, . . .× 1, 2, . . . into
1, 2, . . ., the expressions ξi =

∑
j 2

k(i,j)ωk(i,j), for i ≥ 1, define an independent
sequence of random variables uniformly distributed, i.e., P (a < ξi < b) = b− a,
for every 0 ≤ a < b ≤ 1.

Exercise 1.1. Let {Fi : i ≥ 1} be a sequence of distributions in R, i.e.,
each Fi is a cad-lag non-decreasing function such that limr→−∞ Fi(r) = 0 and
limr→∞ Fi(r) = 1. Show that there exits a sequence {Xi : i ≥ 1} of indepen-
dent real-valued random variables defined on the universal probability space
(Ω,F , P ), Ω = [0, 1), F the Borel σ-algebra and P the Lebesgue measure, such
that P (Xi ≤ r) = Fi(r), i.e., each Xi has distribution Fi. Hint: First, complete
the above arguments so that it is clear the construction of a sequence {ξi : i ≥ 1}
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of independent random variable uniformly distributed. Next, define the inverse
of each Fi as F

−1
i (s) = inf{r ∈ R : s ≤ Fi(r)}, for every s in [0, 1) and verify

that the sequence {Xi = F−1
i (ξi) : i ≥ 1} has the required properties.

If X and Y are Rd-valued random variables then the (probability) distri-
bution of the new random variable Z = X + Y can be obtained form the
joint distribution PX,Y , i.e., the distribution of the R2d-valued random variable
ω 7→ (X,Y ), i.e.,

P{X + Y ∈ B} =

∫
R2d

1{x+y∈B} PX,Y (dx, dy), ∀B ∈ B(Rd),

but not necessarily in terms the single distributions PX and PY , unless X and
Y are independent. Hence, we define the convolution between two probabilities
µ and ν on Rd as

(µ ⋆ ν)(B) =

∫
Rd

µ(dx)

∫
Rd

1{x+y∈B} ν(dy), ∀B ∈ B(Rd),

to deduce that PX+Y = PX ⋆ PY , if X and Y are independent, which can be
generalized to a finite sum of variables.

We can also define the mean of a X as the d-dimensional value E{X} = X
(i.e., the mean by coordinates) and the variance (or co-variance matrix) as a
d × d positive definite matrix Q = (qij) = E{(X − X)∗(X − X)} with qij =
E{(Xi −Xi)(Xj −Xj)}. It is easy to check that if Xi are independent then Q
is a diagonal matrix. It is cleat that the converse is not valid in general.

For instance, if Xi, i = 1, . . . , n are independent random variables nor-
mally distributed with parameters r2i and mi, then X =

∑n
i=1 aiXi is normally

distributed with parameters m =
∑n
i=1mi and r2 =

∑n
i=1 r

2
i . In general, a

Rd-valued random variable is normally distributed with mean m (in Rd) and
variance RR∗ (an strictly positive matrix, but R may be an d× n matrix) if

P (X ∈ B) =

∫
B

f(X) dx, ∀B ∈ B(Rd),

f(x) = (2π)−d/2[det(RR∗)]−1/2 exp
(
− |(x−m)∗(RR∗)−1(x−m)|2

2

)
,

Thus E{XiXj} =
∑n
k=1 rikrjk and in this case, if the co-variance matrix is

diagonal then Xi are independent.

Theorem 1.1 (Borel-Cantelli). Let {Ai} be a sequence of measurable sets, de-
fine the superior limit set A =

⋂∞
n=1

⋃∞
i=nAi. Then

∑∞
i=1 P (Ai) < ∞ implies

P (A) = 0. Moreover, if {Ai} are also independent and
∑∞
i=1 P (Ai) = ∞ then

P (A) = 1.

Proof. to check the first part, note that A ⊂
⋃∞
i=nAi and in view of the σ-

sub-additivity, we have P (A) ≤
∑∞
i=n P (Ai). Since the series converges, the

remainder satisfies
∑∞
i=n P (Ai) → 0 as n→ ∞, i.e., P (A) = 0.
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10 Chapter 1. Elementary Probability

Now, using the complement, Ac =
⋃∞
n=1

⋂∞
i=nA

c
i and because Ai are inde-

pendent, we obtain

1− P (A) = P (Ac) = lim
n
P
( ∞⋂
i=n

Aci
)
=

= lim
n

lim
m

m∏
i=n

P
( m⋂
i=n

Aci
)
= lim

n
lim
m

m∏
i=n

(
1− P (Ai)

)
.

Since ln(1− t) ≤ −t for every 0 ≤ t < 1, we get

m∑
i=n

ln
(
1− P (Ai)

)
≤ −

m∑
i=n

P (Ai),

i.e.,

m∏
i=n

(
1− P (Ai)

)
≤ exp

(
−

m∑
i=n

P (Ai)
)
,

which yields P (A) = 1.

Usually this theorem is called Borel-Cantelli’s Lemma. As a corollary, we
deduce a simple version of the (0 − 1) zero-one law, i.e., if {An} is a sequence
of independent sets, then for A ⊂

⋃∞
i=nAi we have P (A) = 0 o P (A) = 1.

In general, this point can be better seen as follows. For a sequence {Xn} of
random variables define the sub σ-algebras:

F∞
n = σ(Xk : k ≥ n), Fn = σ(Xk : k ≤ n), F∞ = ∩nσ(Xk : k ≥ n),

where F∞ is called the tail σ-algebra. It is clear that F∞ ⊂ F∞ = σ
(
∪nFn

)
.In

the particular case of independent set of the form An = X−1
n (Bn), with Bn Borel

sets, we note that the limit set A ⊂
⋃∞
i=nAi belongs to the tail σ-algebra F∞.

Theorem 1.2 (Kolmogorov 0−1 Law). Let {Xn} be a sequence of independent
random variables and F∞ be the corresponding tail σ-algebra. Then, for each A
in F∞ we must have P (A) = 0 or P (A) = 1.

Proof. By assumption, F∞
n and Fn−1 are independent, i.e., if A ∈ F∞

n and B ∈
Fn−1 we have P (A ∩ B) = P (A)P (B). Hence, A ∈ F∞ ⊂ F∞

n and B ∈ ∪nFn

yield P (A∩B) = P (A)P (B), and by means of a monotone class argument, the
last equality remains true for every B ∈ σ

(⋃
n Fn

)
. Since F∞ ⊂ σ

(⋃
n Fn

)
we

can take A = B in F∞ to have P (A) = P (A)2, i.e., the desired result.

As a consequence of the 0 − 1 law, since the set {ω : limnXn(ω) exists}
belongs to F∞, for any sequence {Xn} of independent random variables, we
have (1) the sequence Xn converges or diverges almost surely; (2) each random
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1.2. Laws of Large Numbers 11

variable measurable with respect to F∞, is indeed constant almost surely, in
particular

lim sup
n

Xn, lim inf
n

Xn, lim sup
n

1

n

∑
i≤n

Xi, lim inf
n

1

n

∑
i≤n

Xi

are all constant almost surely.

1.2 Laws of Large Numbers

Perhaps a typical example related to independent random variables is the so-
called random walk, which in a simple way, is described as a particle moving on
a one dimensional grid, i.e., along a line by steps, following the rule of taking
each step in a unit of time and arbitrary to the right of the left with a prescribed
probability. Moreover, each step is taken independently of all previous steps.
Depending on where is the emphasis, we may represent the n-step taken with
ξn, which assume only the values ±1 with probability p or q = 1− p, and ξn are
independent random variables. We can get a 2-dimensional graph of the sum
ξ1 + · · · + ξn and study its behavior, e.g., see Chung [25, Ch 8, pp. 240–304],
or continue along a similar view that begins with the simple case of Bernoulli
variables, i.e., random variables X with P{X = 1} = p and P{X = 0} = 1− p
for some 0 < p < 1.

Theorem 1.3 (LLN, Binomial). Let {Xi} be a sequence of independent random
variable Bernoulli distributed with parameter p ∈ (0, 1), i.e., the partial sum
Sn = X1 +X2 + · · ·+Xn is a Binomial distributed with parameter n, p. Then

lim
n
P{|Sn/n− p| > ε} = 0,

for every ε > 0. Moreover, we have

P{|Sn/n− p| > ε} ≤ 2 exp[−nh(p, ε)], ∀n = 1, 2, . . . ,

for some positive constant h(p, ε).

Proof. First note that for any random variable X with finite variance, from
c21{|X−X|≥c} ≤ |X −X|2 we deduce

c P{|X −X| ≥ c} ≤ E{|X −X|2} = Var(X −X), ∀c > 0,

the so-called Chebishev inequality.
Because Sn is a binomial variable, the mean and the variance can be com-

puted, namely, E{Sn/n} = p and Var(Sn/n) = p(1 − p)/n. Hence, Chebishev
inequality yields

P{|Sn/n− p| > ε} ≤ Var(Sn/n)

ε2
=
p(1− p)

nε2
,

[Preliminary] Menaldi November 19, 2022
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and the first part follows.
Now, set q(s) = E{exp(sX1)} = 1−p+pes, and because the random variables

Xi are independent we have E{exp(sSn)} = q(s)n. Hence, choice a in (p, 1) so
that

P{Sn/n > a} = P{exp[s(Sn/n− a)] > 1} ≤
≤ E{exp[s(Sn/n− a)]} = q(s/n)ne−as,

for every s > 0. In the last term, take t = s/n and then the infimum in t > 0 to
obtain

P{Sn/n > a} ≤ exp
[
− n sup

t>0

(
at− ln q(t)

)]
.

Since the function t 7→ at− ln(1− p+ pet) is concave, non positive as t → ∞,
and has an strictly positive derivative in 0, we deduce that it has a finite strictly
positive maximum value in t belonging to (0,∞). Therefore, given ε > 0 with
p+ ε < 1, and denoting h1(p, ε) the maximum value of the above function with
a = p+ ε, we obtain

P{Sn/n > p+ ε} ≤ exp
[
− nh1(p, ε)

]
.

Similarly, we deduce

P{Sn/n < p+ ε} ≤ exp
[
− nh2(p,−ε)

]
.

Setting h(p, ε) = min{h1(p, ε), h2(p,−ε)} we conclude.

We can check that by means of Borel-Cantelli Lemma 1.1 withAn = {|Sn/n−
p| > ε} and the second part of the previous theorem, we can show that Sn/n→ p
almost surely. Also, we obtain the following

Corollary 1.4 (Bernstein polynomials). Let Xx,n be a Binomial random vari-
able with parameters n and x, 0 ≤ x ≤ 1. Next, define Bn(x) = E{f(Xx,n/n)}
for a real valued continuous function f on the interval [0, 1]. Then Bn(x) is a
polynomial od degree n, Bernstein polynomial, and the sequence {Bn}n≥1 con-
verges uniformly to the function f.

This corollary yields a probabilistic argument to show Weierstrass approxi-
mation theorem on any bounded interval.

• Remark 1.5. We can show that for any finite sequence X1, . . . , Xn of inde-
pendent random variables with finite variance, we have

Var(X1 + · · ·+Xn) = Var(X1) + · · ·+Var(Xn),

i.e., we add the variances.

Theorem 1.6 (Strong LLN). Let {Xi} be a sequence of independent identically
distributed random variables in some probability space with mean µ = E{Xi} and
finite variance σ2 = Var(Xi). Then the partial sums Sn = X1 +X2 + · · ·+Xn

satisfies limn Sn/n = µ, almost surely and in the L2 norm.

[Preliminary] Menaldi November 19, 2022
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Proof. First, by considering Yi = Xi − µ in lieu of Xi, we may assume µ = 0
without any lost of generality. Hence E{Sn} = 0 and because the random
variables Xi are independent, we have Var(Sn) = E{(Sn)2} = nσ2, which yields
limn E{(Sn/n)2} = limn σ

2/n = 0.

Take the sub-sequence Zn = (X1 + · · ·+Xn2)/n2 to have

∞∑
n=1

E{Z2
n} =

∞∑
n=1

σ2n−2 <∞,

which implies that
∑∞
n=1 Zn < ∞ almost surely. In particular, if Yn = Zp(n),

with p(n) the integer such that p(n)2 ≤ n < (p(n) + 1)2, then Yn → 0 almost
surely. However

Sn
n

− p(n)2

n
Yn =

1

n

n∑
k=p(n)2+1

Xk

and then

E
{(Sn

n
− p(n)2

n
Yn

)2}
=
n− p(n)2

n2
σ2 <

(p(n) + 1)2 − p(n)2

n2
σ2 =

=
1 + 2p(n)

n2
σ2 ≤ 3σ2n−3/2,

because p(n) ≤
√
n. This implies that

lim
n

(Sn
n

− p(n)2

n
Yn

)
= 0, a.s.,

i.e., the whole sequence Sn/n→ 0 almost surely.

In the above prove, we use the fact that the independent random variables
has a finite variance. However, this is not necessary, a more complicated proof
can be produced without assuming finite variance, e.g., see Pollard [106, Chapter
4, pp. 77–98].

1.3 Convergence of Probabilities

As mentioned early, the observable elements in a model are the distribution
of a random variable, i.e., the probability measure PX on a measurable space
(E, E), with X : Ω → E, and (Ω,F , P ) and abstract probability space. Simple
experiments use E = Rd and more sophisticate models require a (complete
metrizable and separable) Polish space E, and E = B(E) is the Borel σ-algebra.
Thus, a sequence of random variables {Xn : n ≥ 1} can be viewed as a sequence
of probability measures {Pn : n ≥ 1} on (E, E).

[Preliminary] Menaldi November 19, 2022



14 Chapter 1. Elementary Probability

Definition 1.7. A sequence {Pn : n ≥ 1} of probability measures on a metriz-
able space (E,B(E)) converges weakly to a probability measure P, denoted by
Pn ⇀ P , if for every continuous and bounded function f : E → R we have∫

E

f dPn →
∫
E

f dP as n→ ∞.

Thus, a sequence of random variables {Xn : n ≥ 1}, with Xn : Ωn → E and
(Ωn,Fn, Pn) probability spaces, converges in distribution or in law to a random
variable, defined on some probability space (Ω,F , P ) and valued in E, if the
distribution PXn

converges to the distribution PX weakly, i.e., if PXn
⇀ PX .

The reader may consult Jacod and Protter [68, Chapter 18, pp. 151–166]
for an accessible study on weak convergence in E = Rd.

It is clear that weak convergence makes sense also for finite (signed) Borel
measures, non necessarily probability measures. Denote by M+(E) (or M) and
M1(E) the sets of finite (or signed) Borel measures and probability measures,
respectively, endowed with the weak convergence. Note that M is a topological
vector space (i.e., the addition and the scalar multiplication are continuous
operations), and M1 is a closed convex set of M. In particular, if Pn, Qn, P and
Q are probabilities such that Pn ⇀ P and Qn ⇀ Q then Pn+Qn ⇀ P+Q, even
if Pn +Qn and P +Q are not probability measures. However, if the sequences
{Xn : n ≥ 1} and {Yn : n ≥ 1} of random variables weakly converges to X
and Y then we do not necessarily have Xn + Yn weakly convergent to X + Y,
i.e., the space of random variables endowed with the convergence in law is not
a topological vector space.

Let Cb(E) be the Banach spaces of all real-valued continuous and bounded
functions defined on E. Thus we may use the notation Pn ⇀ P iff En{f} →
E{f} and PXn

⇀ PX iff En{f(X)} → E{f(X)}, for every f in Cb(E).

1.3.1 Tightness

On a topological space E, an outer measure µ∗ (i.e., a monotone and sub σ-
additive set function satisfying µ∗(∅) = 0) is called a Borel outer measure if
all Borel sets are µ∗-measurable and a regular Borel outer measure if for every
A ⊂ Ω there exists B ∈ B(E) such that A ⊂ B and µ∗(A) = µ(B) (since E
is a Borel set with µ∗(E) ≥ µ∗(A), this condition regards only the case where
µ∗(A) <∞). Remark that if {An} is a sequence of µ∗-measurable sets with finite
measure µ(An) < ∞, and Bn ⊃ An are Borel sets satisfying µ(Bn) = µ(An),
then for A =

⋃
nAn and B =

⋃
nBn we have B ∖ A ⊂

⋃
n

(
Bn − An

)
, which

implies µ(B ∖ A) = 0. To make the name regular Borel outer measure more
manageable, in many statement we omit the terms regular and/or outer, but
unless explicitly stated, we really mean regular Borel outer measure. Moreover,
in an equivalent way, a Borel measure µ is defined on the Borel σ-algebra B(E)
of a topological space E and its corresponding outer measure

µ∗(A) = sup{µ(B) : A ⊂ B ∈ B(E)}, ∀A ⊂ 2E ,

[Preliminary] Menaldi November 19, 2022



1.3. Convergence of Probabilities 15

a regular Borel outer measure on Ω. Furthermore, any Borel measure on a
Polish space (separable, complete, and metrizable space) is inner regular, i.e.,
the representation

µ(B) = sup{µ(K) : K ⊂ B, K compact}, ∀B ∈ B(E).

holds true.
Hence, the values En{f} and E{f} for any f in Cb(E) are actually deter-

mined by the values for any f in a smaller space, namely, continuous func-
tions with compact support. However, the sequence of probability measures
Pn(A) = 1A(n) satisfies En{f} = f(n) → 0, for every f in Cb(R), with a
compact support, i.e., the limit is not a probability measure.

Since any probability (Borel) measure P on a Polish space E is inner regular,
in particular, for B = E, we deduce (Ulam’s Theorem) that for every ε > 0
there exists a compact set K = Kε such that P{E ∖ K} < ε or equivalently
P (K) ≥ 1− ε, which motivates the following

Definition 1.8 (Tightness). A family of probability Borel measures {Pi : i ∈ I}
on a metrizable space E is tight if for every ε > 0 there exists a compact set
K = Kε such that Pi{E ∖K} < ε, for every i in I.

When we say a probability (measure) on a metrizable (or Polish) space, we
mean a probability Borel measure. Actually, weak convergence and tightness
can be used on a more general topological space satisfying some conditions, e.g.,
locally compact spaces with a countable basis (which are indeed Polish spaces)
and locally compact spaces countable at infinity, among others.

The key relation between tightness and the weak convergence is given by

Theorem 1.9 (Prohorov). Let {Pn : n ≥ 1} be a tight sequence of probabil-
ity measures on a metrizable space E. Then there exists a subsequence weakly
convergent, i.e., there exist {Pnk

: k ≥ 1} and a probability P on E such that
En{f} → E{f}, for every f in Cb(E).

We have several ways to establish this result, depending on which tools are
used. Perhaps a direct source is the book Billingsley [15, Section I.6, pp. 35–41]
or Shiryayev [121, Section III.2, pp. 314–318].

Usually, the result is proved for E = R and extended later to Rd. Next, it
is extended again to R∞, a σ-compact space and finally to a metric space, each
time, by reducing to the precedent case. An alternative, is to use the fact that
M(E), the space of finite signed Borel measures on E is identified with the dual
space C∗(E) of C(E) = Cb(E) for a compact space E. For a direct proof in Rd
see Dudley [41, Theorem 9.3.3, pp. 293–294].

• Remark 1.10. Prohorov Theorem 1.9 is the so-called direct statement, which
is true for even more general topological spaces. The converse of Theorem 1.9
holds if E is a Polish space, i.e., relatively weakly compact family P = {Pi :
i ∈ I} of probabilities measures is tight, where P is called relatively weakly
compact or weakly pre-compact if any sequence in P has a weakly convergent
subsequence.
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16 Chapter 1. Elementary Probability

Note that in view of the previous results, a characterization compact sets of
a Polish space E is a key factor in proving relatively compactness of a family of
probabilities on E.

1.3.2 Approximation

A function f : E → R, where (E,d) is a metric space, is called Lipschitz contin-
uous if there exists a constant L = Lf (called a Lipschitz constant) such that

|f(x)− f(y)| ≤ Ld(x, y) for every x, y in E. Thus, let C0,1
b (E) be the space of

all Lipschitz continuous real functions defined on E. We have

Lemma 1.11. Let E be a metric space. If f is a nonnegative function in
Cb(E) then there exists an increasing sequence {fn} of nonnegative functions
on C0,1

b (E) such that fn(x) → f(x) for every x in E.

Proof. Indeed, if A ∈ B(E) and x ∈ E then the distance from x to A is defined
as d(x,A) = inf{d(x, y) : y ∈ A}. The triangular inequality for the distance d
on E implies

|d(x,A)− d(y,A)| ≤ d(x, y), ∀x, y ∈ E,

Hence, the function x 7→ k(x,A, r,m) = min{r,md(x,A)}, with r,m ≥ 0, is
bounded by r and is Lipschitz continuous with Lipschitz constant L = m, i.e.,
k(·, A, r,m) belongs to C0,1

b (E). If A = Af,r = {y ∈ E : f(y) ≤ r} then
0 ≤ k(x,Af,r, r,m) ≤ f(x), for every x in E. Let {(ri,mi) : i ≥ 1|} be an
enumeration of Q+ ×N, where Q+ are the positive rational numbers and N are
the positive integer numbers. Define

fn(x) = sup{k(x,Af,ri , ri,mi) : 1 ≤ i ≤ n}, ∀x ∈ E

to have an increasing sequence {fn : n ≥ 1} of nonnegative functions in C0,1
b (E)

with 0 ≤ fn(x) ≤ f(x). To check that fn(x) → f(x), with f(x) > 0, let
ε > 0 and r ∈ Q+ such that f(x) − ε < r < f(x). Since f is continuous,
f(y) > r for any y in some neighborhood of x, i.e., d(x,Af,r) > 0. Hence,
k(x,Af,r, r,m) = r for m sufficiently large, i.e., fn(x) > f(x)−ε for n such that
(r,m) ∈ {(ri,mi) : 1 ≤ i ≤ n}.

Now, we can prove

Proposition 1.12. Let {Pn : n ≥ 1} be a sequence of probability measures on
a metric space (E,d). Then Pn ⇀ P weakly if and only if En{f} → E{f}, for
every f in C0,1

b (E).

Proof. We have to show that En{f} → E{f}, for every f in Cb(E). Recalling
that ∥f∥ = sup{|f(x)| : x ∈ E}, let {gk : k ≥ 1} be a sequence approximating
the function g = ∥f∥ − f as in Lemma 1.11. By assumption we obtain

lim inf
n

En{g} ≥ lim inf
n

En{gk} = E{gk}, ∀k,
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and by monotone convergence we deduce lim infn En{g} ≤ E{g}, i.e.,

lim sup
n

En{f} ≤ E{f}, ∀f ∈ Cb(E),

after canceling the term in ∥f∥. Finally, by symmetry, applying the same argu-
ment to −f we complete the proof.

1.3.3 Various Types of Convergence

Besides the convergence in law, there are other types of convergence useful with
random variables, for example:

(1) Almost surely : Xn → X almost surely if there exists a set N in F with
P (N) = 0 such that Xn(ω) → X(ω) for every ω in Ω∖N ;

(2) In probability or stochastic: Xn → X in probability if for any ε > 0 there
exists an index N = N(ε) such that P{|Xn−X| ≥ ε} < ε for any n ≥ N ;

(3) In p-mean or in Lp: Xn → X in p-mean if for every ε > 0 there exists an
index N = N(ε) such that E{|Xn −X|p} < ε for every n ≥ N.

We have the following relations for a sequence of random variables

(a) Almost surely convergence or convergence in Lp implies convergence in
probability, and the converse in false;

(b) Convergence in probability implies convergence in law, and the converse in
false;

(c) Convergence in Lp implies convergence in Lq, for every 1 ≤ q < p, and the
converse in false;

(d) Convergence in probability implies the existence of an almost surely con-
vergence subsequence.

(e) All three types of convergence (1), (2) and (3) are compatible with arith-
metic operations, e.g., if Xn → X and Yn → Y then Xn + Yn → X + Y .
However, for the convergence in law, if Xn → X in law then it does not
necessarily follow that Xn −X → 0 in law.

Regarding the converse of (b) and related to (e), if Xn converge to X = c
(constant) in law then P{Xn ≤ c + ε} → 1 and P{Xn ≤ c − ε} → 0, for
every ε > 0, which yields Xn → c in probability. Actually, the expression of
convergence in law of a sequence of random variables is misleading, what we
really mean is the weak convergence of the corresponding probability measures.
Now, the only remaining point to verify is (b). Thus, if Xn → X in probability
then, for every Lipschitz function f : E → R with Lipschitz constant L = Lf
we have{

ω ∈ Ω : |f(Xn(ω))− f(X(ω))| ≥ ε
}
⊂

{
ω ∈ Ω : |Xn(ω)−X(ω)| ≥ ε

Lf

}
.
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18 Chapter 1. Elementary Probability

Since P{|Xn −X| ≥ δ} → 0 for every δ > 0, we deduce P{|f(Xn) − f(X)| ≥
ε} → 0 for every ε > 0, i.e., f(Xn) → f(X) in probability. Hence, the dominate
convergence yields E{|f(Xn) − f(X)|} → 0, for every f in C0,1

b (E). In view of
Proposition 1.12, we deduce PXn

⇀ PX , namely, Xn converges in law to X.
Actually, we can show directly that, every continuous function g we have

(f) if {Xn : n ≥ 1} converges in probability to X then {g(Xn) : n ≥ 1}
converges in probability to g(X);

(g) if {Xn : n ≥ 1} converges in law to X then {g(Xn) : n ≥ 1} converges in
law to g(X).

First, (f) is proved by contradiction. Indeed, if {g(Xn) : n ≥ 1} does not
converge in probability to g(X) then there exists a ε > 0 and a subsequence
{g(Xnk

) : k ≥ 1} such that P (|g(Xnk
) − g(X)| ≥ ε} ≥ ε. Since Xnk

→ X in
probability there exists a subsequence which converges almost surely, and so,
for this subsequence, the continuity of g yields a contradiction. Next, for the
convergence in law, i.e., (g), we use the fact that composition of continuous
functions is continuous.

• Remark 1.13. A typical application of the Borel-Cantelli Lemma 1.1 show that
following assertion regarding the converse of (a). If a sequence {Xn : n ≥ 1} of
random variables satisfies

∑
n P{|Xn−Xn−1| ≥ εn} <∞ for some convergence

series of positive real values
∑
n εn < ∞ then {Xn : n ≥ 1} converges almost

surely. .

The relation between convergence in law (or weak convergence) and conver-
gence in probability is clarify in the next

Theorem 1.14 (Skorohod). Let {Qn : n ≥ 1} be an sequence of probabilities
on a Polish space (E,B(E)) which weakly converges to Q. Then there exists a
probability space (Ω,F , P ) and random variables X,X1, X2 . . . , with values in
E such that Xn → X almost surely, and PX = Q and PXn

= Qn, for every
n ≥ 1 .

For instance, a proof can be found in Ash [3, Section 7.7, pp. 332–336],
for E = R, or in Da Prato and Zabczyk [30, Theorem 2.4, pp. 33–35], for
a separable Banach space E or in Skorohod [122, Section 1.6, pp. 9–14] for
a Polish space. Note that the space used is Ω = [0, 1), F = B(Ω) and P is
the Lebesgue measure, which is sometime called universal probability space. In
particular, if E = R then we may work with the distributions Fn and F , instead
of the probability measure, to define (initially) X(ω) = min{x : F (x) ≥ ω} and
similarly Xn, and to change (later) Xn(ω) = X(ω) for every ω in the countable
set of discontinuities of X.

Typical applications of Theorem 1.14 are the following:

(1) Let g, g1, g2, . . . be measurable functions (from a Polish space into another
Polish space) such that for every convergent sequence xn → x we have
gn(xn) → g(x). If Xn converges in law to X then gn(Xn) converges in
law to g(X). In particular, if an → a and bn → b in R then anXn + bn
converges in law to aX + b;
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(2) If Xn converges in law to X then E{|X|} ≤ lim infn E{|Xn|};

(3) If Xn converges in law to X and {Xn : n ≥ 1} is uniformly integrable then
X is integrable and E{Xn} → E{X}.

Indeed, by means of Skorohod representation Theorem 1.14, there exists a se-
quences of random variables {Yn : n ≥ 1} (defined in the universal probabil-
ity space) such that Yn → Y almost surely, and E{f(Xn)} = E{f(Yn)} and
E{f(X)} = E{f(Y )}, for every bounded measurable function f. Thus, for ev-
ery continuous and bounded function f we have f(gn(Yn)) → f(g(Y )) almost
surely, which implies

E{f(gn(Xn))} = E{f(gn(Yn))} → E{f(g(Y ))} = E{f(g(X))},

i.e., gn(Xn) converges in law to g(X). To establish (2) and (3), we use the
monotone sequence of bounded continuous functions x 7→ |x| ∧ k, k = 1, 2, . . .
to check that

E{|X|} = lim
k

E{|X| ∧ k} = lim
k

E{|Y | ∧ k}, and

E{|Y | ∧ k} ≤ lim inf
n

E{|Yn| ∧ k} ≤ lim inf
n

E{|Yn|},

this is (2). Moreover, if {Xn : n ≥ 1} is uniformly integrable, (i.e., for every
ε > 0 there exists a = a(ε) such that E{X 1{|X|≥a}} ≤ ε for every n) then by
taking f(x) = |x|1{a≤|x|≤a+k}, a > 0 and k → ∞ we deduce that {Yn : n ≥ 1}
is also uniformly integrable. Hence, by Vitali Theorem we deduce

E{Xn} = E{Yn} → E{Y } = E{X},

namely (3). Note that Xn converges in law to X does not means Xn − X
converges in law to 0, so in (3) we do not necessarily has E{|Xn −X|} → 0.

Exercise 1.2. Consider the Hilbert cube H = [0, 1]∞, i.e., h belongs to H if
and only if h : {1, 2, . . .} → [0, 1] endowed with the product norm dH(g, h) =∑
i 2

−i|g(i) − h(i)|. Verify that dH(hn, h) → 0 if and only if hn(i) → h(i) for
every i. Let (X,d) be a metric space with a countable dense subset {ei : i ≥ 1}
and define the map Φ: X → H by the formula h = Φ(x), h(i) = min{d(x, ei), 1}.
Prove d(xn, x) → 0 if and only if dH(Φ(xn),Φ(x)) → 0. Deduce Urysohn’s
Theorem, namely, any separable metric space is homeomorphic to a subset of
H, i.e., Φ is injective continuous and open. The same map Φ can be used to
convert the Borel measures on X to the Borel measure on H.

The reader interested in functional analysis oriented to probability, may
check the book by Bobrowski [18]. Also take a look at the book by Pollard [106]
for a guided tour to measure theoretic probability and to Gut [56] for a more
statistical point of view.
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Chapter 2

Basic Probability

To introduce the following concepts we do not need to pass first on distribution
theory, but the Fourier transform is nicely treated on the space of tempered dis-
tributions. Instead of separating Probability from measure theory, the objective
is to integrate both concepts into analysis, at least until conditional expectation
is considered.

2.1 Characteristic Functions

As mentioned early, the characteristic function of a random variable X or, prop-
erly expressed of a probability measure µ on Rd (actually, any finite Radon
measure µ suffices), is given by

µ̂(ξ) =

∫
Rd

eix·ξ µ(dx), ∀ξ ∈ Rd.

We remark that based on the fact any finite Radon measure can be uniquely
considered as a tempered distribution, we deduce that characteristic function
uniquely determined the initial finite Radon measure. Actually this fact can be
also proved directly, essentially based on the computation of the characteristic
function of the measure with density e−λ|x|

2

.

Exercise 2.1. Beside the computation of the characteristic function of the
normal distribution in the real line, we should be able to verify the following
calculations:

(1) if x is a Normal random variable with mean a and variance b, i.e., with
(Lebesgue) density (2π)−1/2 exp

(
− (x− a)2/(2b2)

)
then E

{
eitx

}
= exp

(
iat−

b2t2/2
)
,

(2) if x is a Poisson random variable, i.e., P{x = k} = e−λλk/k!, for any
k = 0, 1, . . . , then E

{
eitx

}
= exp

(
λ(eit − 1)

)
,

(3) if x is a random variable with a uniform distribution on (a, b), i.e., with
(Lebesgue) density 1(a,b)/(b− a) then E

{
eitx

}
=

(
eibt − eiat

)
/
(
it(b− a)

)
,

21
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(4) if x is a random variable with a triangular distribution on (−1/a, 1/a), i.e.,
with (Lebesgue) density1(−1/a,1/a)(a−a2|x|) then E

{
eitx

}
= 2(1−cos at)/(a2t2),

(5) if x is a random variable with an exponential distribution, i.e., with (Lebes-
gue) density 1(0,∞)e

−λxλ then E
{
eitx

}
= λ/(λ− it),

(6) if x is a random variable with a bilateral distribution, i.e., with (Lebesgue)
density e−λ|x|λ/2 then E

{
eitx

}
= λ/(λ2 + t2).

(7) if x is a Polya random variable, i.e., with (Lebesgue) density (1−cosx)(πx2)
then E

{
eitx

}
= (1− |t|)+.

(8) if x is a Cauchy random variable, i.e., with (Lebesgue) density 1/
(
π(1+x2)

)
then E

{
eitx

}
= e−|x|.

Essentially, we should calculate (3) to deduce the following expressions by using
linearity and convolution, e.g., see Durrett [42, Section 2.3, pp. 91-98].

On the other hand, it is not hard to check that (a) µ̂ is continuous and (b)
µ̂ is positive definite, i.e., for every natural number k, any ζi in Rd and any
complex number zi, i = 1, . . . , k we have

k∑
i,j=1

µ̂(ζi − ζj)ziz̄j ≥ 0,

where z̄ is the conjugate of a complex number. Moreover, Bochner’s Theorem
(proved in the context of the Fourier transform) states exactly the converse,
i.e., if a complex-valued function Φ defined on Rd satisfies (a) and (b) then
there exists a finite Radon measure µ on Rd such that µ̂ = Φ. Clearly, this is a
complete description of the Fourier transform of finite Radon measures. Instead,
we show a simpler result sufficient for our purpose.

Theorem 2.1 (Lévy Continuity Theorem). Let {νn} be a sequence of probability
measures on Rd with characteristic functions {Φn(ξ)}, i.e.,

Φn(ξ) =

∫
Rd

eix·ξνn(dx).

(1) If νn converges weakly to a probability measure ν then Φn(ξ) → Φ(ξ) for
every ξ in Rd, where Φ(ξ) is the characteristic function of ν;

(2) Conversely, if Φn(ξ) → Φ(ξ) for every ξ in Rd, where Φ is a continuous
function at 0, then Φ is the characteristic function of a probability measure ν,
and moreover, νn converges weakly to ν.

Proof. Indeed, if νn converges weakly to a probability measure ν then

lim
n

∫
Rd

f(x) νn(dx) =

∫
Rd

f(x) ν(dx), ∀f ∈ Cb(Rd).

Since x 7→ eix·ξ is a continuous and bounded function, we deduce that Φn(ξ) →
Φ(ξ), for every ξ in Rd.
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The converse assertion is harder. First, we claim that if µ is a probability
measure on R then

aµ
(
{x ∈ R : a|x| ≥ 2}

)
≤

∫ a

−a

(
1− µ̂(ξ)

)
dξ, ∀a > 0. (2.1)

Indeed, exchanging the order of the integrals we have∫ a

−a

(
1− µ̂(ξ)

)
dξ =

∫
R
µ(dx)

∫ a

−a

(
1− cos(xξ)

)
dξ =

= 2a

∫
R

(
1− sin(ax)

ax

)
µ(dx).

Since (t − sin t) ≥ 0 for any t, 2(t − sin t)/t ≥ 1 for every t ≥ 2 or t ≤ −2, we
deduce(

1− sin(ax)

ax

)
≥ 1{a|x|≥2},

i.e., the desired claim.
Since the function Ψ is continuous, for every ε > 0 there exists a > 0 such

that 2|1−Ψ(ξ)| < ε/d if |ξ| < a. Thus, if Ψ(i)(ξi) = Ψ(0, . . . , 0, ξi, 0, . . . , 0) then

1

a

∫
|ξi|≤a

(
1−Ψ(i)(ξi)

)
dξi ≤ 2 sup

|ξi|≤a
|1−Ψ(i)(ξi)| <

ε

d
.

Now, we show that the sequence {νn} of probability measures on Rd is tight,
see Definition 1.8. To this purpose, considering νn as a probability measure

on only one variable, the i-coordinate, with characteristic function µ̂
(i)
n (ξi) =

Ψn(0, . . . , 0, ξi, 0, . . . , 0), we can use the previous claim (2.1) to obtain

νn({a|xi| ≥ 2}) ≤ 1

a

∫
|ξi|≤a

(
1− µ̂n(ξi)

)
dξi.

In view of the dominate convergence,

lim
n

∫
|ξi|≤a

(
1− µ̂n(ξi)

)
dξi =

∫
|ξi|≤a

(
1−Ψ(i)(ξi)

)
dξi.

Hence, there exists N = N(ε) such that νn({a|xi| ≥ 2}) < ε/d, for every n > N.
On the other hand, the σ-additivity of the measure νn implies that there exists
Mn > 0 such that νn({|xi| ≥ Mn}) < ε/d, for every n = 1, . . . , N. This means
that for r = max{M1, . . . ,MN , 2/a} we have νn({|xi| ≥ r}) < ε/d, for every n,
which yields

νn({|x| ≥ r}) < ε, ∀n = 1, 2, . . . ,

i.e., {νn} is tight.
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Next, applying Prohorov’s Theorem 1.9, there exits a subsequence {νnk
}

and a probability measure ν such that νnk
weakly converges to ν. Therefore,

the characteristic function of ν satisfies ν̂ = Ψ. Because two different prob-
abilities cannot have the same characteristic function, any weak limit of the
initial sequence {νn} must be ν, which implies that the whole sequence weakly
converges to ν.

For instance, the reader may consult Lukacs [90], a book completely dedi-
cated to characteristic functions.

2.2 Central Limit Theorem

This is a very deep and extensive subject, we develop only a simple example,
say, a mathematical glimpse.

Theorem 2.2 (Central Limit). Let {Xi,n : i = 1, . . . , n, n ≥ 1} be a countable
family of identically distributed random variables in some probability space with
mean µ = E{Xi,n} and finite variance σ2 = Var(Xi,n), and such that each
{Xi,n : i = 1, . . . , n} is a sub-family of independent random variables. If

Sn = X1,n +X2,n + · · ·+Xn,n and Yn =
Sn − nµ

σ
√
n

.

then

P
{
a ≤ Sn − nµ

σ
√
n

≤ b
}
→ 1√

2π

∫ b

a

e−x
2/2dx, ∀a < b,

i.e., the distribution of Yn converges to the normal distribution N(0, 1).

Proof. Let ϕi,n and Φn be the characteristic function of Xi,n − µ and Yn, re-
spectively. Since Xi,n are identically distributed we have ϕi,n = ϕ, independent
of (i, n); and because they are independent we obtain

Φn(ξ) =
[
ϕ
( ξ

σ
√
n

)]n
, ∀n, ξ.

Since E{Xi,n − µ} = 0 and E{(Xi,n − µ)2} = σ2 is finite, the function ϕ(ξ) has
two continuous derivatives, i.e.,

ϕ′(ξ) = iE
{
(Xi,n − µ)eiξ(Xi,n−µ)

}
with ϕ′(0) = 0, and

ϕ′′(ξ) = −E
{
(Xi,n − µ)2eiξ(Xi,n−µ)

}
with ϕ′′(0) = σ2.

Thus, we can write

ϕ(ξ) = 1 + 0− σ2ξ2

2
+ ξ2h(ξ),
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where the function h satisfies h(ξ) → 0 as ξ → 0. Hence, using the principal
part of the complex-valued logarithm, we obtain

Φn(ξ) = exp
{
n ln

(
ϕ(

ξ

σ
√
n
)
)}

= exp
{
n ln

(
1− ξ2

2n
+

ξ2

σ2n
h(

ξ

σ
√
n
)
)}
.

Next, as n→ ∞ we deduce

lim
n

Φn(ξ) = e−ξ
2/2,

and Theorem 2.1 implies the desired result.

Exercise 2.2. (1) Consider the dyadic numbers Rn = {i2−n : i = 1, . . . , 4n},
R =

⋃
nRn and prove that

∑4n

i=1 1i2−n≤r = r2n, for every r in R.

(2) Let {Xi,n : i = 1, . . . , 4n, n ≥ 1} be a countable family of identically
distributed random variables with E{Xi,n} = 0 and E{|Xi,n|2} = 1, and such
that for every index n ≥ 1 fixed, {Xi,n : i = 1, . . . , 4n} is a set of independent
random variables. Define

Wn,r = 2−n/2
4n∑
i=1

Xi,n1i2−n≤r, ∀n ≥ 1, r ∈ R,

and revise the arguments in Theorem 2.2 to show that the distribution of the
sequence {Wn,r : n ≥ 1} converges to the normal distribution N(0, r).

(3) If, besides the condition on (2), we assume that {Xi,n : i = 1, . . . , 4n, n ≥ 1}
is a set of independent random variables then, use the technique of Theorem 2.2
to show that the distribution of series

Wr =
∑
n

2−n
4n∑
i=1

Xi,n1i2−n≤r, ∀r ∈ R,

converges to the normal distribution N(0, r).

There are much more to say about the Central Limit Theorem, many varia-
tions and a lot of applications, the reader may check almost any book in prob-
ability to enlarge this point, e.g., Billingsley [16, Section 5.27, pp. 366-382] or
Durrett [42, Chapter 2, pp. 79-172].

2.3 Conditional Expectation

The concept of independent is fundamental for probability theory and in fact
distinguishes it from classical measure theory. Recall

Definition 2.3 (independence). A family A of measurable sets is (mutually)
independent (relative to the probability P ) if their elements are mutually inde-
pendent, i.e., if for any finite number of sets A1, . . . , An in A we have

P (

n⋂
i=1

Ai) =

n∏
i=1

P (Ai). (2.2)
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Now, a family of σ-algebras is (mutually) independent if any finite number
of σ-algebras F1, . . . ,Fn in the family and any sets Ai in Fi we have (2.2).
Similarly, a family of random variables is (mutually) independent if the family
of their generated σ-algebras is (mutually) independent.

Remark that if Ai ⊂ F is a family of σ-algebras on a probability space
(Ω,F , P ) indexed by i ∈ I, we are defining {Ai : i ∈ I} as independent (some-
times called mutually independent) if any finite number of index J ⊂ I and for
any sets Ai in Ai, i ∈ J, we have (2.2).

Exercise 2.3. If (Ω,F , P ) is a probability space and A is a sub σ-algebra
of F then denote by L2

0(A) the closed subspace of L2(Ω,F , P ) containing all
A-measurable functions with zero mean, i.e.,

L2
0(A) =

{
f ∈ L2(Ω,F , P ) : f is A-measurable and E{f} = 0

}
.

Show that two sub σ-algebras A1 and A2 of F are independent if and only if
L2
0(A1) is orthogonal to L

2
0(A2), i.e.,

E{fg} = 0, ∀f ∈ L2
0(A1), g ∈ L2

0(A2).

Prove or disprove an analogue result for a family of σ-algebras {Ai : i ∈ I}.

It is clear that if H and G are two sub σ-algebras of F , which are generated
by the π-systems H0 and G0 (i.e., σ(H0) = H and σ(G0) = G, recall that a π-
system means a collection of subsets closed or stable under finite intersections)
then H and G are independent if and only if H0 and G0 are independent, i.e., if
and only if P (H ∩G) = P (H)P (G) for any H in H0 and G in G0, actually

Exercise 2.4. Let (Ω,F) be a measurable space. Recall that a π-systems F0 is
a subset of F which is stable under finite intersections, i.e., if A and B belongs
to F0 then A ∩ B also belongs to F0. Also, we denote by σ(F0) the minimal
sub σ-algebra of F containing all the elements of F0, i.e. the σ-algThe concept
of independent is fundamental for probability theory and in fact distinguishes
it from classical measure theory.ebra generated by F0. Prove that if H and G
are two sub σ-algebras which are generated by the π-systems H0 and G0, then
H and G are independent if and only if H0 and G0 are independent, i.e., if and
only if P (H ∩G) = P (H)P (G) for any H in H0 and G in G0 (e.g., see the book
by Bauer [6, Section 5.1, pp. 149–154]).

It should be clear that given a probability space (Ω,F , P ), it is not possible to
ensure the existence of (independent) random variables (or stochastic processes)
with a prescribed distribution. However, the typical (universal) probability
space where realization are shown is the Lebesgue space on the interval [0, 1]. A
well known example is to write any ω in Ω = [0, 1] in binary, i.e., ω =

∑
k 2

−kωk.
Then the sequence of variables πn(ω) = ωn for n = 1, 2, . . . are independent
coin-tossing variables each taking the values 0 or 1 with probability 1/2. Thus,
given a mapping i, j 7→ k(i, j) which is injective from {1, 2, . . .} × {1, 2, . . .}
into {1, 2, . . .}, the expression Xi =

∑
j 2

−k(i,j)ωk(i,j) for i = 1, 2, . . . defines
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an independent sequence of random variables, each with the same distribution
as X, X(ω) = ω, i.e., each with the uniform distribution on [0, 1]. In general,
if Si is a Borel space (i.e., a measurable space isomorphic to a Borel subset
of [0, 1], for instance any complete separable metric space), Pi is a probability
measure on the Borel σ-algebra Bi(Si), for i = 1, 2, . . . then there exists a
sequence {ξ1, ξ2, . . .} of independent random variables defined on the universal
Lebesgue probability space [0, 1] such that Pi(B) = P ({ω : ξi(ω) ∈ B}), for
any B in Bi(Si), i = 1, 2, . . . , i.e., the distribution of ξi is exactly Pi, e.g., see
Kallenberg [71, Theorem 3.19, pp. 55–57].

Definition 2.4 (conditional expectation). Let X is an integrable random vari-
able and G be a sub σ-algebra on a probability space (Ω,F , P ). An integrable
random variable Y is called a conditional expectation of X given G if (a) Y
is G-measurable and (b) E{X1G} = E{Y 1G} for every set G in G. The
notation Y = E{X | G} is used, and if Z is another random variable then
E{X |Z} = E{X |σ(Z)}, where σ(Z) is the σ-algebra generated by Z. However,
if A is in F then E{X | A} = E{X1A}/E{1A} becomes a number, which is
referred to as the conditional expectation or evaluation of X given A, provided
that P (A) > 0. Even the evaluation E{X | Z = z} = E{X | Z−1(z)} for any
value z could be used. It is clear that this definition extends to one sided inte-
grable (either the positive or the negative part is integrable) and σ-integrable
(integrable on a each part of a countable partition of the whole space) random
variables.

In a sense we may say that conditional expectation is basic and fundamental
to probability. A conditional expectation is related to the disintegration of
probability measure, and it is a key concept to study martingales. Note first
that if X ′ = X almost surely then Y is also a conditional expectation of X ′

given G, and second, if Y ′ is another conditional expectation of X given G
then E{(Y − Y ′)1G} = 0 for every G in G, which yields Y = Y ′ almost surely,
because Y −Y ′ is G-measurable. This means that conditional expectation should
be properly considered as a operation on equivalence classes of functions, i.e.,
on the space L1(Ω,F , P ). However, the conditional expectation is regarded as
acting on the space of integrable random variables L1(Ω,F , P ), where a choice
of an element in the equivalence class have been made.

Definition 2.4 should be complemented with the following existence result:

Theorem 2.5. If G is a sub σ-algebra on a given probability space (Ω,F , P )
then there exists a linear operator from L1(Ω,F , P ) into L1(Ω,G, P ) denoted by
E{· | G} representing the conditional expectation, i.e., if X and Y are integrable
random variable satisfying Y = E{X | G} almost surely, then Y is a conditional
expectation of X given G.

Proof. As mentioned early, the conditional expectation E{X | G} given G is
(uniquely determined up to null sets) a G-measurable random variable satisfying∫

A

E{X | G}(ω)P (dω) =
∫
A

X(ω)P (dω), ∀A ∈ G.
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Thus, the expression A 7→ E{1AX} defines a signed measure on the measure
space (Ω,G, P ), which is absolutely continuous with respect to P . Hence, the
Radon-Nikodym theorem ensures the existence and uniqueness (up to null sets)
of conditional expectations, i.e., given X and G there exists a null set N (which
may depends on both X and G) such that ω → E{X | G}(ω) is uniquely defined
for ω in Ω ∖ N. It should be understood that the conditional expectation acts
on integrable random variables, which are identified almost surely, i.e., on the
Banach space L1(Ω,F , P ).

An alternative construction (without referring to the Radon-Nikodym the-
orem) is based on the orthogonal projection on the Hilbert space L2(Ω,F , P ),
i.e., the operation X 7→ E{X |G} is initially defined as the orthogonal projection
on L2(Ω,G, P ), which is considered as a closed subspace of L2(Ω,F , P ). This
mapping preserves the positive cone (i.e., if X ≥ 0 then E{X | G} ≥ 0), and so,
a monotone extension yields a definition on the whole space L1(Ω,F , P ), i.e.,
any nonnegative random variable X is written as the almost surely pointwise
increasing limit X = limnXn of a (almost surely monotone) sequence {Xn}
and the conditional expectation is defined by E{X | G} = limn E{Xn | G} as an
almost surely pointwise increasing limit.

Actually, it is very instructive to discuss the details on following points.

Exercise 2.5. Establish the existence for the conditional expectation on a given
probability space (Ω,F , P ) for an integrable random variable X with respect to
a sub σ-algebra G by two ways. Firstly (a) by means of the Radon-Nikodym
theorem, i.e., on the measurable space (Ω,G) consider the probability measures
ν(G) = E{X1G} and µ(G) = E{1G} satisfying ν ≪ µ. Secondly (b) by means
of the orthogonal projection π from the Lebesgue space L2(Ω,F , P ) into the
closed subspace L2(Ω,G, P ), i.e., π satisfies (X − π(X), Y ) = 0, for any Y in
L2(Ω,G, P ), where (·, ·) denotes the scalar product.

Exercise 2.6. Let G1, . . . , Gn be a measurable disjoint sets in probability space
(Ω,F , P ) with P (Gi) > 0. If G is the σ-algebra generated by {A1, . . . , An}
then show that E{X | G} =

∑n
i=1 pi(X)1Gi , where pi(X) = E{X1Ai}/P (Ai).

Finally, discuss the validity of the expression E{X | G} =
∑∞
i=1(X, gi)gi, where

(·, ·) denotes the scalar product in L2(Ω,F , P ), and now G is the σ-algebra
generated by a sequence of random variables {gi, i ≥ 1}, which is assumed to
be an orthonormal system. Perhaps, one should consider first the case when gi
assumes only a finite number of values or even fi = 1Ai/

√
P (Ai) or when {gi}

have disjoint supports.

Exercise 2.7. Let X,Y be real random variables on a complete probability
space. If Z is a random variable with values in some Polish space E then prove
that the relation X = E{Y | Z} is characterized by the condition E{Y φ(Z)} =
E{Xφ(Z)}, for all φ : E −→ R which is bounded and continuous. Moreover, if E
is locally compact, then the class of continuous function with compact support
is sufficient to characterized the conditional expectation. Furthermore, any class
of Borel functions that approximate any continuous and bounded function in
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the pointwise and bounded topology is sufficient. In particular simple functions,
i.e., E{Y 1a<Z≤b} = E{X1a<Z≤b}, for every b > a in R.

There are a couple of properties that are inherited from the integral:

(a) X ≤ Y a.s. implies E{X | G} ≤ E{Y | G} a.s.

(b) E{Y | G} = Y a.s. if Y is G-measurable, in particular if Y is a constant
function.

(c) If Y is bounded and G-measurable, then E{XY | G} = Y E{X | G} a.s.

(d) E{X + Y | G} = E{X | G}+ E{Y | G} a.s.

(e) If A ∈ G and if X = Y a.s. on A, then E{X | G} = E{Y | G} a.s. on A.

(f) If A ∈ G1 ∩ G2 and A ∩ G1 = A ∩ G2 (i.e., if any subset of A is in G1 if and
only if the subset is in G2), then E{X | G1} = E{X | G2} a.s. on A.

(g) If G1 ⊂ G2, then E{E{X | G1} | G2} = E{E{X | G2} | G1} = E{X | G1} a.s.

(h) If X is independent of G, then E{X | G} = E{X} a.s.

(i) If X is a fixed integrable random variable and {Gi : i ∈ I} denotes all
possible sub σ-algebra on a probability space (Ω,F , P ) then the family {Yi : i ∈
I} of random variables of the form Yi = E{X | Gi} is uniformly integrable.

(j) Jensen’s inequality for conditional expectations, i.e., if ϕ is a convex real-
valued function, and X is an integrable random variable such that ϕ(X) is also
integrable then ϕ

(
E{X | G}

)
≤ E{ϕ(X) | G} a.s.

Most of the above listed properties are immediate obtained from the def-
inition and construction of the conditional expectation, in particular, from
the inequality (a) follows that −|X| ≤ X ≤ |X| yields |Y | ≤ E{|X| : G}
with Y = E{X | G}, which can be used to deduce (i). Indeed, the defini-
tion of conditional expectation implies that E{|Y |1|Y |>k} ≤ E{|X|1|Y |>k} and
kP{|Y | > k} ≤ E{|Y |} ≤ E{|X|}, i.e., for k large, the probability P{|Y | > k}
is small and therefore E{|X|1|Y |>k} is small, which yields E{|Y |1|Y |>k} small.
Similarly, expressing a convex function ϕ as the supremum of all linear functions
it majorizes, the property (j) is obtained. Also, from the monotonicity yields

Theorem 2.6 (Fatou Type). Let G be a sub σ-algebras on the probability space
(Ω,F , P ) and let {Xn : n = 1, 2, . . .} be a sequence of nonnegative extended
real valued random variables. Under these assumptions lim infn→∞ E{Xn |G} ≤
E{lim infn→∞Xn | G}, a.s. Moreover, if the sequence {Xn} is uniformly inte-
grable then lim supn→∞ E{Xn | G} ≥ E{lim supn→∞Xn | G}, a.s.

This means that, essentially, the conditional expectation behaves like ‘an
integral’. It is clear that in particular the dominated convergence is valid, i.e., if
the sequence {Xn} converges almost surely to limit X and E{supn |Xn|} < ∞
then limn→∞ E{Xn | G} = E{X | G}, almost surely. However, a more subtle key
point is the following:
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Theorem 2.7. If {. . . ,G−2,G−1,G0,G1,G2, . . .} is a monotone increasing se-
quence (i.e., Gk ⊂ Gk+1, for every n) of sub σ-algebras on the probability space
(Ω,F , P ) and G±∞ = limk→±∞ Gk, (i.e., G+∞ is the sup σ-algebra, namely,
generated by {Gn,Gn+1,Gn+2, . . .} for some fixed n, and G∞ is the inf σ-algebra,
namely, the intersection

⋂
k Gk) then E{X | Gk} → E{X | G} almost surely and

in L1(Ω,F , P ) as k → ∞, for every X in L1(Ω,F , P ).

Proof. First, remark that if X belong to L2 then the sequence {Xk}, with
Xk = E{X | Gk} satisfies ∥Xk∥L2 ≤ ∥Xk+1∥L2 ≤ ∥X∥L2 and a L2-convergence
could be studied. Nevertheless, in view of Vitali’s Theorem and the fact that
the sequence {Xk} is uniformly integrable, we must prove only the almost surely
pointwise convergence of the sequence {Xk} to deduce that it also converges in
the L1-norm. To this purpose, consider the case k ≥ 1, i.e., k → +∞, and
choose positive integers i < j < m < n and real numbers a < b and define
κ(m; b) = inf{k ≥ m : Xk ≥ b}, with κ = ∞ if Xk < b for every k, and

[i, j;m; r] =
{

min
i≤k≤j

Xk ≤ a, κ(m; b) = r
}
,

[i, j;m,n] =
{

min
i≤k≤j

Xk ≤ a, max
m≤k≤n

Xk ≥ b
}
,

[a; b] =
{
lim inf
n→+∞

Xk ≤ a, lim sup
n→+∞

Xk ≥ b
}
,

(2.3)

where the set [i, j,m; r] is Gr-measurable and [i, j;m,n] =
∑n
r=1[i, j;m; r]. Since

Xr ≥ b on each [i, j,m; r], we can write

∫
[i,j;m,n]

XdP =

n∑
r=1

∫
[i,j;m;r]

XdP ≥

≥
n∑
r=1

∫
[i,j;m;r]

XdPbdP = bP
(
[i, j;m,n]

)
.

(2.4)

In the above relations, the inequality “≤ a” or “≥ b” used in the definition (2.3)
could be changed into a strict inequality, e.g., κ′(m; b) = inf{k ≥ m : Xk > b},
and

[i, j;m; r) =
{

min
i≤k≤j

Xk ≤ a, κ′(m; b) = r
}
,

(i, j;m,n] =
{

min
i≤k≤j

Xk < a, max
m≤k≤n

Xk ≥ b
}
,

[a; b) =
{
lim inf
n→+∞

Xk ≤ a, lim sup
n→+∞

Xk > b
}
.

Hence, as j → ∞, i → ∞, n → ∞, and m → ∞ into the estimate (2.4), we
truly deduce∫

[a;b]

XdP ≥ bP
(
[a; b]

)
,
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and by symmetry (i.e., replacing x, a, b with −x,−b,−a)∫
[a;b]

XdP ≤ aP
(
[a; b]

)
,

which means that P
(
[a; b]

)
= 0, for every a < b. Since the set where the limit

limk→+∞Xk does not exist as a finite value is actually equal to the count-
able union of all subset [a; b] with a < b and rational, we deduce that the
sequence {Xk} converges (as k → +∞) almost surely to some random variable
limk→+∞Xk, which certainly can be taken to be G(+∞) measurable.

Proceed similarly to study the case k → −∞, choose negative integers −n <
−m and real numbers a < b to define

[−n,−m] =
{
lim inf
n→−∞

Xk ≤ a, max
−n≤k≤−m

Xk ≥ b
}
,

[a; b] =
{
lim inf
n→−∞

Xk ≤ a, lim sup
n→−∞

Xk ≥ b
}
,

and eventually to deduce that the sequence {Xk} converges (as k → −∞) almost
surely to some random variable limk→−∞Xk, which certainly can be taken to
be G(−∞) measurable.

Finally, if A is a Gn-measurable set then

E{X1A} = E
{
E{X1A | Gk}

}
= E

{
1AE{X | Gk}

}
,

for every k ≥ n, i.e., E{X1A} = E{1A(limk→+∞Xk)}. This equality remains
true for any bounded G+∞-measurable set A, by means of a monotone class
argument, which proves that the random variable limk→+∞Xk is indeed a con-
ditional expectation of X given G(+∞).

Similarly, if A is a G−∞-measurable set then A is also Gk-measurable for
every k, and therefore,

E{X1A} = E
{
E{X1A | Gk}

}
= E

{
1AE{X | Gk}

}
.

This yields E{X1A} = E{1A(limk→−∞Xk)}, which proves that the random
variable limk→−∞Xk is indeed a conditional expectation of X given G(−∞).

For instance, the reader may find interesting checking Doob [39, Part 2,
Sections 1.5–7, pp. 393–397] and Schilling [117, Theorem 23.15, pp. 266–268]
for more comments.

Exercise 2.8. On a probability space (Ω,F , P ), let X be a real-valued random
variable independent of a sub σ-algebra G of F , and f be a bounded Borel
measurable function in R2. Define f1(y) = E{f(X, y)}. Prove that f1 is Borel
measurable and f1(Y ) = E{f(X,Y ) | G} almost surely.

Sometimes, if X is a integrable random variable and {Xi : i ∈ I} is a family
of random variables, then E{X |Xi, i ∈ I} denotes the conditional expectation
with respect to the σ-algebra G = σ{Xi : i ∈ I}, generated by the family
{Xi : i ∈ I}.
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It is rather relevant to insist that the conditional expectation is an operator
defined and valued on classes of equivalence of random variables, i.e., an operator
on Lebesgue spaces, from Lp(Ω,F , P ) into Lp(Ω,G, P ), for any 1 ≤ p ≤ ∞. It
can be extended to functions such that the positive (or negative) part belongs
to the above Lebesgue spaces.

Remark the notation for random variables: X or Xn or X(n) or X(ω) or
X(n, ω), and sometimes with lowercase letters, such as x, or xn or x(n) or x(ω)
or x(n, ω), which is usually understood from the context. Now, we can discuss
the concept of conditional independence (for two events or σ-algebras or random
variables) given another σ-algebra or random variable).

Definition 2.8 (conditional independence). Let (Ω,F , P ) be a probability
space and C be sub σ-algebras of F . We say that two measurable sets A and B
are (conditional) independent given C if

E{1A1B | C} = E{1A | C}E{1B | C}, a.s. (2.5)

holds. Moreover, two sub σ-algebras H and G are (conditional) independent
given C (relative to the probability P ) if (2.5) is satisfied for any sets A ∈ H,
B ∈ G. Particularly, if the sub σ-algebras are generated by a family of random
variables, i.e., H = σ(X(i) : t ∈ I), G = σ(Y (j) : j ∈ J) and C = σ(Z(k) : k ∈
K), then (2.5) is equivalent to

E
{∏

i

hi(X(i))
∏
j

gj(Y (j))
∏
k

ck(Z(k))
}
=

= E
{
E{

∏
i

hi(X(i)) | C}E{
∏
j

gj(Y (j)) | C}
∏
k

ck(Z(k))
}
,

where all products are extended to any finite family of subindexes and any
real-valued bounded measurable functions hi, gj and ck.

Certainly this concept extends to a family of measurable sets, a family of
either sub σ-algebras or random variables, where mutually or pairwise (condi-
tional independent given C) are not the same.

Recall that E{
∏
i hi(X(i)) | C} and E{

∏
j gj(Y (j)) | C} are defined (almost

surely) as C measurable integrable (also, bounded because hi and gj are so)
functions satisfying

E
{∏

k

ck(Z(k))
∏
i

hi(X(i))
}
= E

{∏
k

ck(Z(k))E{
∏
i

hi(X(i)) | C}
}
,

and

E
{∏

k

ck(Z(k))
∏
j

gj(Y (j))
}
= E

{∏
k

ck(Z(k))E{
∏
j

gj(Y (j)) | C}
}
.

for any functions hi, gi and ck as above.
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The definition of conditional independence applies to two random variables
and a σ-algebra, i.e., a random variable X is (conditional) independent of
another random variable Y given a sub σ-algebra C in the probability space
(Ω,F , P ) if for any bounded and measurable functions f and g we have

E{f(X) g(Y ) | C} = E{f(X) | C}E{g(Y ) | C}, a.s.

This means that the concept of two measurable sets A and B being (conditional)
independent given (another measurable set) C (relative to the probability P ) is
properly defined by means of 1A and 1B as random variables and C = {Ω, C,Ω∖
C, ∅}, the σ-algebra generated by C (or equivalently 1C). Indeed, if we use the
equality P (A ∩ B ∩ C)P (C) = P (A ∩ C)P (B ∩ C) then we need to add the
complement equality P (A∩B∖C) (1−P (C)) = P (A∖C)P (B∖C), to deduce
the validity of condition (2.5). In particular, when C = Ω the conditional
independence coincides with the independence concept of Definition 2.3 and
each of the previous equalities is trivially satisfied.

In analogy with elementary conditional probability, where P (A |C) = P (A∩
C)/P (C), we define the conditional expectation of a random variable X relative
to a set C (with positive probability), instead of a σ-algebra C, by means of

E{X |C} =
E{X1C}
P (C)

,

i.e., expectation with respect to the conditional probability P (· |C). Thus as-
suming this notation, two measurable sets A and B are conditional independent
given another set C if E{1A1B |C} = E{1A |C}E{1B |C}, i.e., P (A∩B |C) =
P (A |C)P (B |C) or equivalently P (A ∩ B ∩ C)P (C) = P (A ∩ C)P (B ∩ C).
Similarly, two σ-algebras A and B (or two random variables X and Y , where
A and B are the generated by X and y) are conditional independent given a
set C if the previous condition holds for any A in A and B in B. However, we
cannot use the condition E{1A1B |C} = E{1A |C}E{1B |C}, for any C in C,
as definition of conditional independent given a σ-algebra C, since this would
include C = Ω and then A and B would be independent, not just conditional
independent. Thus, we need to recall that conditioning with respect to a set C
yields a number, an evaluation operator. While, conditioning with respect to
a σ-algebra (or a random variable) is an operator (with values into the sets of
random variables) defined almost surely.

As mentioned early, conditional expectation can be derived from the orthog-
onal projection, i.e., if G is a sub σ-algebra in (Ω,F , P ), x is an element in the
Lebesgue space L2(Ω,F , P ), and L2(G) denotes the subspace of L2(Ω,F , P )
composed by all G-measurable functions (actually, equivalent classes) then Y =
E{X | G} if and only if X = Y +Z where Y belongs to L2(G) and Z is orthogonal
to L2(G), namely

Y ∈ L2(G) and E{(Y −X)g} = 0, ∀g ∈ L2(G).

Clearly, if X belongs only to L1(G) then, by density, the above condition be-
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comes

Y ∈ L1(G) and E{(Y −X)g} = 0, ∀g ∈ L∞(G),

where L∞(G) is the space of bounded G-measurable functions (actually, equiv-
alent classes). Note that a simple argument of monotone class shows that if
G and H are two sub σ-algebras and X is an element in L1(Ω,F , P ), then
Y = E{X | G ∨ H} if and only if

Y ∈ L1(G ∨ H) and E{(Y −X)1G1H} = 0, ∀G ∈ G, H ∈ H,

where G ∨ H denotes the σ-algebra generated by G and H.

Exercise 2.9. Prove that two σ-algebras G and H are independent in a proba-
bility space (Ω,F , P ) if and only if the subspace L2(G) and L2(H) are orthogonal
on the constant functions, i.e., X in L2(G), Y in L2(H), and E{X} = E{Y } = 0
imply E{XY } = 0, this is a rewording of Exercise 2.3. Next, deduce that G and
H are independent if and only if E{XY } = E{X}E{Y } for every X in L2(G)
and Y in L2(H).

Based on the previous Exercise, we may introduce the concept of indepen-
dence given a set, a function or an σ-algebra, e.g., we may say that two σ-
algebras G and H are independent given another σ-algebra C if X in L2(G), Y
in L2(H), and E{XZ} = E{Y Z} = 0 for every Z in L2(C) imply E{XY } = 0.
This should agree with the concept of conditional independence.

Exercise 2.10. Show that a family of σ-algebras {Gi : i ∈ I} is independent
(sometimes called mutually independent) if and only if for any finite subset J of
indexes I, and for any random variables Xi in L

∞(Gi) we have E{
∏
i∈J Xi} =∏

i∈J E{Xi}, e.g., see Malliavin [92, Section IV.3, pp. 190–198].

Sometimes, we need to extend the notion of conditional expectation to ran-
dom variables X which are only σ-integrable with respect to a given sub σ-
algebra G, i.e., X is a measurable functions on Ω such X is integrable on Gn,
for any n, where {Gn} is some increasing sequence of G-measurable set satisfy-
ing Ω =

⋃
nGn. In this case, and assuming X ≥ 0, we define Y = E{X | G}

as the monotone limit of E{X1Gn
| G}. Certainly, the random variable Y is the

unique G-measurable function satisfying E{X1G} = E{Y 1G}, for any G in G
with E{|X|1G} <∞, e.g., see He et al. [59, Section I.4, pp. 10–13].

On the other hand, we may consider random variables X defined on a prob-
ability space (Ω,F , P ) with values in some Banach space B with norm ∥ · ∥

B

(not just Rd) with its Borel σ-algebra B and if G is a sub σ-algebra of F then
G measurable random variable Y with values in (B,B) is called a conditional
expectation of X given G if for every element f in the dual space B′ of B we
have ⟨f,X⟩ = E{⟨f, Y ⟩ | G}. The uniqueness (almost surely) of follows from the
definition, however, the existence of the conditional expectation Y = E{X | G}
needs some discussion. Indeed, ifX is an integrable function (i.e., the real-valued
random variable ⟨f, Y ⟩ is integrable for every f in B′) and B is separable and

[Preliminary] Menaldi November 19, 2022



2.4. Regular Conditional Probability 35

reflexive Banach (i.e., the double dual space B′′ = B) then given dense subspace
B′

0 of B′, we can construct a maps G : Ω × B′
0 → R such that (a) for every

ω in Ω the function f 7→ G(ω, f) is linear, (b) for every f in B′
0 the function

ω 7→ G(ω, f) is G-measurable, (c) for any ω outside of a negligible set and for ev-
ery f in B′

0 we have G(·, f) = E{⟨f, Y ⟩ | G} and |G(·, f)| ≤ E{∥Y ∥
B
| G} ∥G∥

B′ .
Then, G(ω, ·) can be uniquely extended to an element in the double dual space
B′′ for each omega, and because B is reflexive, G = Y with the desired proper-
ties.

The reader may benefice from a look at the viewpoint in Schilling [117,
Chapters 22–24, pp. 248–312].

2.4 Regular Conditional Probability

As before, let G be a sub σ-algebra of F and consider the conditional expectation
of E{f | G} for the special case where the random variable f is the indicator
function 1A(·) of a set A in F . We will refer to the conditional expectations as
the conditional probability and denote it by P{A | G}. On the other hand, we
may begin with the conditional probability, i.e., A 7→ E{1A | G} = P{A | G} a
linear operator with values in [0, 1] defined almost surely such that

P{A ∩B} = E
{
P{A | G}1B

}
, ∀A ∈ F , B ∈ G,

then we define E{f | G} for simple functions f and we pass to the limit for any
integrable f, by using the fact that the operator f 7→ E{f | G} is a contraction
in L1(Ω,F , P ).

In any way, the conditional probability has some elementary properties in-
herited from the properties of the conditional expectation. For instance, if A
and B are two disjoint sets in F then

P{A ∪B | G} = P{A | G}+ P{B | G} a.s.

However, P{A | G} can be altered on a set of measure zero for each A in F ,
we cannot conclude that P{A | G} (which is a random variable for each fixed
A) is a countably (or finitely) additive probability measure on A in F for each
ω outside of a null set. Technically, we have a function P{A | G}(ω) of two
variables A and ω, which is defined A 7→ P{A | G}(·) as a function of A taking
values in a “class-of-equivalence” space in ω and now we want to consider this
function as ω 7→ P{· | G}(ω) taking values in the space of probability measures,
for each ω or even for almost every ω. For this to work, we need first to define the
function P{A | G}(ω) in a “dense” countable set of (A,ω) and then to extend its
definition in a suitable way. A countably generated sub σ-algebra G is a suitable
choice to handle the variable A, but some topology is required in the base space
Ω to deal with ω. In short, this means that we look for a member from the
above equivalence class of functions in such a way that additivity property (in
particular order preserving and positivity) is preserved, e.g., see Taylor [132,
pp. 210–226].
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Let G be a set in F such that both G and Ω∖G have positive probability.
In elementary probability, we define the conditional probability of a set A (in
F) given G by the formula P (A |G) := P{A∩G}/P{G}. On the other hand, if
1A(·) denotes the indicator (or characteristic) function of the set A, and σ(G) =
{Ω, ∅, G,Ω ∖ G} the σ-algebra generated by the set G, then P{A |σ(G)} =
E{1A |σ(G)} and

P{A |σ(G)}(ω) =
{
P{A ∩G}/P{G} if ω ∈ G,
P{A∖G}/P{Ω∖G} if ω ∈ Ω∖G,

so that both concepts are reconcilable. However, we should recall that the con-
ditional probability given a set C is an evaluation, while given a σ-algebra is
an operator (with values into the set of probability measures) defined almost
surely. Simple considerations on the random variable g(ω) = P (A |G)1G(ω) +
P (A |Ω∖G)1Ω∖G(ω) establishes that g is σ[G]-measurable and uniquely deter-
mined (almost surely) by the condition∫

A

g(ω)P (dω) = P (A ∩G), ∀A ∈ σ[G].

It is remarkable to note that the above expression makes perfectly sense when G
is negligible and gives the precise generalization quoted in the previous section.
Moreover, this is better seen if the σ-algebra G is finitely-generated, i.e., G =
σ{G1, . . . , Gn}, where P{A | G)} can be explicitly defined and the σ-additive
condition is easily checked.

Given any event A, when P (B) > 0 and B ∈ G, we have

P{A |B} =
1

P (B)

∫
B

P{A | G}(ω)P (dω).

Moreover we recall that two events A and B are said conditionally independent
with respect to (or given) the sub σ-algebra L if

P (A ∩B | L) = P (A | L)P (B | L). (2.6)

Analogously, H and G are called independent given (or with respect to) L, a
sub σ-algebra of F , (relative to the probability P ) if (2.6) is true for any sets
A ∈ H, B ∈ G, see Definition 2.8.

It is interesting to note that given two random variables X and Y with a
joint probability density function fX,Y (x, y), the functions

fX(y) =

∫
fX,Y (x, y)dy, fY (y) =

∫
fX,Y (x, y)dx,

are the probability density for X and Y, and the elementary conditional proba-
bility density function fX|Y of X given Y is defined by

fX|Y (x, y) =


fX,Y (x, y)

fY (y)
if fY (y) ̸= 0,

0 otherwise.
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Then for any Borel measurable function h such that

E{|h(X)|} =

∫
|h(x)| fX(x)dx <∞,

we can define the function

g(y) =

∫
h(x)fX|Y (x, y)dx

which provides a version of the conditional expectation of h(X) given σ(Y ), i.e.,
g(Y ) = E{h(X) | Y }. Moreover, the function

ω 7→
∫
A

fX|Y (x, Y (ω))dx

is a regular version of the conditional probability of X given Y or given σ(Y ),
usually denoted by P{X ∈ A | Y }.

Another way of looking at the same problem is to discuss conditional distri-
butions of a given random variable X and a sub σ-algebra G of F .

Exercise 2.11. Let G be a finitely-generated σ-algebra, i.e., G = σ(F1, . . . , Fn).
First, show that G can be expressed as σ(G1, . . . , Gm), where the setsG1, . . . , Gm
are disjoint and minimal in the sense that any proper subset of {G1, . . . , Gm}
does not generate G. Actually, {G1, . . . , Gm} is a partition and the set Gi are
called atoms of G, which has exactly 2m elements. Second, gives an explicit ex-
pression of P{A | G)}(ω) in term of the family of sets G1, . . . , Gm. Third, if X is
a simple random variable (i.e., having a finite number of values, say x1, . . . , xm
with P{X = xi} > 0 and

∑
i P{X = xi} = 1) then show that σ(X) (i.e.,

the minimal σ-algebra for which X is measurable) is finitely-generated, calcu-
late P{A | X = xi}, for i = 1, . . . ,m and consider the function x 7→ P (x,A)
defined as P (x,A) = P{A | X = xi} if x = xi for some i = 1, . . . ,m, and
P (x,A) = P (A) otherwise. Fourth, show that the expression P (X,A) is a regu-
lar conditional probability of A given X, i.e., for any A measurable set we have
P{A |X} = P (X,A) almost surely.

Definition 2.9 (conditional probability). A transition kernel Q(ω,A) on a
probability space (Ω,F , P ) is a mapping from Ω×F into [0, 1] such that (a) for
each A in F the function ω 7→ Q(ω,A) is a F-measurable function and (b) for
each ω in Ω the function A 7→ Q(ω,A) is a probability measure on (Ω,F). A
regular probability measure given a sub σ-algebra G of F is a transition kernel
denoted by (ω,A) 7→ P{A | G}(ω) such that for any A in F the random variable
ω 7→ P{A | G}(ω) is a conditional expectation of 1A, i.e., E{1A | G} = P{A | G},
almost surely, which means that

P (A ∩B) =

∫
B

P{A | G}(ω)P (dω), ∀B ∈ G,

and ω 7→ P{A | G}(ω) is G-measurable. If the σ-algebra G is generated by a
random variable Z then E{1A |Z} = E{1A |σ(Z)}. In particular, if Z = 1G the
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characteristic function of some measurable set G then σ(1G) = {∅,Ω} = σ(G)
and P{A |1G} = P{A |σ(G). However, P{A |G} = E{1A |G} = P (A∩G)/P (G)
is a number that represents the evaluation of the conditional probability of A
given G, provided P (G) > 0.

Note that in the above definition, a kernel transition Q may be defined
almost surely in the sense that there is a set N of probability zero such that the
mapping Q(ω,A) is defined for any ω in Ω ∖N and any A in F satisfying the
measurability in ω and the σ-additivity in A. In general the mapping (ω,A) 7→
E{1A|G}(ω) satisfies the measurability in ω but, the σ-additivity is only satisfied
almost surely, i.e., for each sequence {An} of disjoint measurable sets with
A =

∑
nAn there exists a set N of probability zero such that E{1A | G}(ω) =∑

n E{1An
|G}(ω), for every ω in Ω∖N . Now, we can prove the following result:

Theorem 2.10 (regular). Let G be sub σ-algebra on the probability space
(Ω,F , P ), where Ω is a complete separable metric (Polish) space and F = B(Ω)
is its Borel σ-algebra. Then there exists a regular conditional probability P{·|G},
i.e., (a) for each A in F the function ω 7→ P{A | G}(ω) is G-measurable, (b) for
every A ∈ F and B ∈ G we have

P (A ∩B) =

∫
B

P{A | G}(ω)P (dω),

and (c) for each ω in Ω the function A 7→ P{A | G}(ω) is a probability measure
on Ω and P{B | G}(ω) = 1B(ω), for any ω in Ω and B in G0, where G0 is any
finite-generated sub σ-algebra of G.

Proof. Because Ω is a Polish (complete separable metrizable) space its Borel
σ-algebra F is separable, e.g., its is generated by the countable set A0 of all
open balls with rational radii and centers in a countable dense set. Certainly,
this countable set A0 generates an algebra A, which is expressed a an increasing
sequence of finite-generated algebras, and so, A is countable.

Also, any probability measure is regular in a Polish space, i.e., for every
A in A there exists a an increasing sequence of compact sets {Ai} such that⋃
iAi = A and the monotone convergence implies that P{Ai | G} → E{A | G}

almost surely. These compact sets {Ai} and the algebra A generate a countable
algebra denoted by Ā. Hence, for a given finite-generated sub σ-algebra G0 of
G, we can choose a negligible set N such that the G-measurable function ω 7→
P{F | G} = E{1F | G} satisfies, for every ω in Ω∖N, the following conditions:

1.- for every A in Ā we have P{A | G}(ω) ≥ 0,

2.- we have P{B | G}(ω) = 1B(ω) for every B in G0,

3.- the function A 7→ P{A | G}(ω) is finitely additive on the algebra Ā,
4.- for every A in A and the specify sequence {Ai} chosen above we have
P{Ai | G}(ω) → P{A | G}(ω).

Indeed, the above conditions are countable restriction on ω.
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This conditions imply that

P{A | G}(ω) = sup
{
P{K | G}(ω) : K ⊂ A,K ∈ Ā, K is compact

}
,

and this yields the σ-additivity of P{· | G}(ω) on A. Indeed, by contradiction, if
not, there exists δ > 0 and a decreasing sequence {Ai} in A such that

⋂
iAi = ∅

and P{Ai | G}(ω) > δ. Then for each i there exists a compact set Ki in Ā with
Ki ⊂ Ai and P{Ai ∖Ki | G}(ω)| < δ3−i. Therefore, for each n we have

P{K1 ∩ · · · ∩Kn | G}(ω) ≥ P{Cn | G}(ω)−
n∑
i=1

δ3−i ≥ δ

2
,

which implies that K1 ∩ · · · ∩Kn is not empty, i.e., the sequence {Ki ∩K1} of
compact subsets of K1 has the finite intersection property. Since K1 is compact,
we must have

⋂
iKi ̸= ∅, which contradict the fact that

⋂
iAi = ∅.

Finally, because P{· | G}(ω) is σ-additivity on A, for every ω in Ω∖N, it can
be uniquely extended to a measure on F = σ(A). To complete the arguments,
we redefine P{A | G}(ω) = 1A(ω) for any ω in N.

The reader is referred to Morimoto [100, Sec 2.3, pp. 61–64] for some more
detailed and self-contained arguments on probing the previous theorem about
regular conditional probability in Polish spaces. Also, note that the condition
P{B | G}(ω) = 1B(ω), for any ω in Ω and B in G0, any finite-generated sub
σ-algebra of G is not really necessary, it suffices to impose only P{Ω | G}(ω) = 1
and P{∅ | G}(ω) = 0 on the condition 2 of the construction given on the above
proof to obtain a regular conditional probability.

• Remark 2.11 (conditional distribution). This result can be re-stated as follows:
Let (Ω,F , P ) be a probability space, G ⊂ F be a sub σ-algebra, and X be a
random variable with values in some Polish space E endowed with its Borel
σ-algebra E). Then, we can choose a regular conditional probability PX{A | G}
i.e., (a) for each A in E the function ω 7→ P{X−1(A) | G}(ω) is G-measurable,
(b) for every A ∈ E and B ∈ G we have

P (X−1(A) ∩B) =

∫
B

P{X−1(A) | G}(ω)P (dω),

and (c) for each ω in Ω the function A 7→ P{X−1(A) | G}(ω) is a probability
measure on Ω and P{B | G}(ω) = 1B(ω), for any ω in Ω and B in G0, where G0

is any finite-generated sub σ-algebra of G.
• Remark 2.12. It is clear that the concept of conditional expectation or regu-
lar conditional probability can be applied to σ-finite measures, instead of just
probability measures.

• Remark 2.13 (regular conditional distribution). Let (Ω,F , P ) be a probability
space as in Theorem 2.10, and let X be a given a random variable with values in
some Polish space (E, E). Then the regular conditional probability (in this case,
also called regular conditional distribution given X) exists for G = X−1(F), the
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σ-algebra generated by X. Thus, for any A in F , the function ω 7→ P{A | G} =
P{A | X} is a real-valued measurable with respect to X−1(F) and therefore
there exists a (real valued) Borel measurable function x 7→ P (x,A) on (E, E)
(which depends on X) such that P{A | X}(ω) = P (X(ω), A) almost surely.
This is called the transition probability function P (x,A) given X, and usually
denoted by P{A | X = x}. Note the two defining properties: (a) for each A
in F , the function x 7→ P (x,A) is measurable from (E, E) into [0, 1], and (b)
for any x in E, the function A 7→ P (x,A) is a probability measure on (Ω,F).
Clearly, if PX denotes the probability distribution of X then for any A in F the
function x 7→ P{A |X = x} is uniquely determinate outside of a PX -negligible
set. Moreover, condition (b) in Theorem 2.10 can be rewritten as

P
{
A ∩ {X ∈ C}

}
=

∫
{X∈C}

P{A |X} dP, ∀A ∈ F , C ∈ E ,

and in particular, for C = {x}, we have

P{A |X = x} =
P
{
A ∩ {X = x}

}
P{X = x}

,

for any x in E with P{X = x} > 0 and any A in F . For instance, the reader
may take a look at Taira [131, Chapter 2], among other books, to read a more
detailed account on this point.

• Remark 2.14. Related to the previous discussion on regular conditional dis-
tribution, of particular interest is the case of two E-valued random variables X
and Y, for which we consider the joint distribution PXY on the product Polish
space E2. Independently of the initial probability space, the image (E2, E2, PXY )
is a probability space satisfying the assumptions of Theorem 2.10. Thus, we
may consider the conditional probability distribution given the sub σ-algebra
Ex generated by the projection (x, y) 7→ x of for the first coordinate, i.e.,
PXY {A | Ex} = P{(X,Y ) ∈ A | X}, with A in E2. Thus, we obtain the condi-
tional probability distribution of Y given X, namely PY |X(B) = P{Y ∈ B |X},
after choosing A = E × B. Hence, there exists a transition function P (x,B) of
Y given X, which depends on X and Y and is denoted by P{Y ∈ B |X = x},
i.e., P{Y ∈ B |X}(ω) = P (X(ω), B), for any B in E , see Exercise 2.11.

It is now clear that an essential point is the use of the following two prop-
erties: (1) the σ-algebra E is generated by a countable algebra and (2) any
(E, E)-valued random variable x on any probability space (Ω,F , P ) admits a
regular conditional distribution relative to a sub σ-algebra G of F . This disinte-
gration property (2) can be re-stated as: for any positive and finite measure m
on the product space (E×B, E×B) there exist a measurable kernel k(dx, b) such
that m(dx, db) = k(dx, b)mB(db), where mB(db) := m(E,db) is the B-marginal
distribution of m. Any Polish space possess these properties.
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Chapter 3

Canonical Sample Spaces

Let S∞ be the set of non-decreasing divergent sequences with values in [0,∞],
i.e., {sk : k ≥ 1}, 0 ≤ sk ≤ sk+1, for every k ≥ 1, sk → ∞, and the value sk = ∞
is allowed. This is a locally compact Polish (complete, separable and metrizable)
space, with the product topology, and the sum is defined (and continuous) but
the subtraction is not always possible, similar to the interval [0,∞]. For a
given locally compact Polish space E not containing the symbol ∂, denote by
ES = ([0,∞] × E) ∪ {∂} the one-point compactification of the locally compact
Polish space [0,∞[×E, and let S∂(E) ⊂ E

∞
S be the space of functions ω from

N = {1, 2, . . .} into ES with the property that s 7→ ωk(s, e) belongs to S∞
and ωk(∞, e) = ∂, for every e in E. Similarly, if S∞ is replaced by the space

S̃∞ ⊂ [0,∞]∞ of all divergent sequences with values in [0,∞] then the Polish

S̃∂(E) is also defined. Each element ω in S̃∂(E) can be regarded as either the
jumps or the value at discontinuity points of a function without discontinuities
of the second class from [0,∞[ into E, since they can have only a countable

number of discontinuities. Moreover, the product spaces C([0,∞[;E)× S̃∂(E),

or C([0,∞[;E) × S̃∂(E
2), or C([0,∞[;E) × S̃∂(E

2), or D([0,∞[;E) × S̃∂(E),
can be used to represent function without discontinuities of the second class, for
instant, C([0,∞];E)× S̃∂(E) ∼ D([0,∞];E), i.e., a function ω′ in D([0,∞];E)
can be regarded

=============== ** TO BE CHECKED ** =============

First, on a measurable space (Ω,F), we recall that a E-valued (E ⊂ Rd, some
d ≥ 1) random variable x is a measurable on (Ω,F). Thus a E-valued “general”
random (or stochastic) process is a family X = {xt : t ∈ T} of random variables.
The sample paths of a random process are the functions ω 7→ {xt(ω) : t ∈ T},
i.e., the graphs of a function t 7→ x(t, ω) for ω in Ω. Thus the paths are elements
in the Cartesian product space ET . As we may expect, the case of a continuous
parameter set T (e.g., an interval) presents measurability problems. Without
giving full details, we have to work with the product Borel σ-algebra BT (E),
i.e., the smallest σ-algebra on ET such that the projections form ET into E
are Borel measurable. Actually, we can show that a set A belongs to BT (E) if
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42 Chapter 3. Canonical Sample Spaces

and only if there exists a countable subset of indices, T0 ⊂ T, and Borel sets
Bt ∈ B(E), for every t ∈ T0 such that A = {X ∈ ET : xt ∈ Bt, ∀t ∈ T0}, i.e.,
only countable many constraints are allowed. By contrast, we say that BT (E)
is too small for the big space ET , e.g., a simpleton (a set with only one point)
is a closed set in the product topology ET , but it is not BT (E)-measurable.

Thus (E,B)-valued general random (or stochastic) process X is a (ET ,BT )-
valued random variable. When a probability measure P is given on (Ω,F), we
say that P

X,I
(B) = P

(
X−1(B × ET∖I)

)
is the family of finite-distribution of

X, for any B in BI(E) and for I a finite subset of indices of T, i.e., P
X,I

is the
X image of P on EI . The family of finite-distribution carries all the “practical”
statistic properties of X, but all properties of X are identifies by the X image
of P on ET , i.e., the measure PX−1 on BT (E).

To make this manageable, we desire to replace the product space ET with
some better space, which are referred to as canonical sample spaces, and a E-
valued random (or stochastic) process with sample path in a topological space
S ⊂ ET is regarded as a random variable with values in the canonical space S.
A natural question (which is reserved for a more advance course) is realizations
of random processes, i.e., the construction of a probability space (Ω,F , P ) and a
process X when the finite-dimensional distributions are given. In what follows,
we discuss some common candidates for sample spaces with E = R and T =
[0,∞), other cases (E ⊂ Rd and T an interval of R) are treated analogously.

The main purpose of this chapter is to go behind the classic setting of real val-
ued continuous functions on T = [0,∞[ with the locally uniformly convergence,
and give a quick discussion on the space of right-continuous functions having
left-hand limits (cad-lag) with the so-called Skorokhod Topology. The interested
reader may take a look at more advance books, e.g., Billingsley [15, Chapters 2
and 3], Jacod and Shiryaev [69, Chapter VI], Liptser and Shiryayev [88, Chapter
VI], and Pollard [105, Chapter VI ], among others.

3.1 Continuous and cad-lag Functions

A large category of sample spaces are the so-called Polish spaces, i.e., complete
separable metrizable spaces S ⊂ R[0,∞). The fact that ‘metrizable’ is mostly
used instead of ‘metric’ is related to the marginal interest in the metric itself
(which could be very complicated to treat), since a good characterization of
closed sets is given by the understanding of the convergence of sequences (the
space is assumed to be separable), and also a clear understanding of totally
bounded sets is necessary to deal with compact subsets, where the metric is not
really involved, mainly the topology on the space is to be understood.

A convenient and requested property is that the product σ-algebra B[0,∞)(R)
(i.e, the σ-algebra generated by cylindrical sets) coincides with the Borel σ-
algebra of S. Therefore, the discussion of probability measures on S is treatable
and, in particular, a good characterizations of compact sets is necessary.

The most typical canonical space is C([0,∞[), the space of real-valued contin-
uous functions on [0,∞), which becomes a Polish space with the locally uniform
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convergence. The reader can verify that a subset K of C([0,∞[) is pre-compact
if and only if for every ε > 0 there exists δ > 0 such that |ω(t)| ≤ 1/ε and
|ω(t)−ω(s)| ≤ ε, for every s, t in [0, 1/ε] and |t−s| < δ, for every ω in K. Recall
that C([0,∞[) is also a separable Fréchet space. Certainly, random variable
with values in C([0,∞[) are called random processes with continuous path.

On the other side of the spectrum, a large sample space is the the Schwartz
space of tempered distributions S ′([0,∞[), which is a Polish space,1this is a
separable complete locally convex topological vector space, where bounded sets
are pre-compacts. Usually, random variable with values in S ′([0,∞[) are call
generalized random processes. A negative aspect is a partial (instead of a com-
plete) order in the time (index) variable, i.e., instead of looking at a random
process as a family Xt of random variables indexed by the time t in [0,∞[, a
generalized random process is a family Xφ of random variables indexed by the
time φ in S([0,∞[). This means that the random variable t 7→ X(t) is now
regarded as an element in S ′([0,∞[), defined by

Xφ =

∫ ∞

0

Xtφ(t)dt, ∀φ ∈ S([0,∞[),

which assumes local integrability in t with a slow growth at ∞.
Another sample space is L2(]0,∞[,dα), where α is an increasing function.

This space is useful when studying stochastic integrals. There is also the space
L2(Rn) to study processes with finite second moment, and all the theory of
spectrum via the Fourier transform.

However, we want to consider the sample space D([0,∞[) of all cad-lag
functions from [0,∞[ into R, i.e., continuous functions from the right having
limits from the left, for every ω in D(]0,∞[) we have

ω(t) = ω(t+) = lim
s→t, s>t

ω(s) ∀t ≥ 0, and ω(t−) = lim
s→t, s<t

ω(s)

exits and is finite for every t > 0, and sometimes, we complete the defini-
tion by adding ω(0−) = 0. We may endow D([0,∞[) with the locally uniform
convergence to obtain a Fréchet space, which is not separable and contains
C([0,∞[) as a closed subspace. Indeed, the uncountable family {ωr : r > 0}
with ωr(t) = 1t<r are at mutual distance ∥ωr − ωs∥∞ = 1 for r ̸= s.

In analysis, functions having one-sided limits (but not necessarily cad-lag)
have been called regulated functions (e.g., see Dieudonne [37, Section VII.6, pp.
145-146]).

Lemma 3.1. Let (E,d
E
) be a complete metric space. A function φ : [a, b] → E

has one-sided limits (i.e., φ(t+) exists and is finite for every t in [a, b[, and
φ(t−) exists and is finite for every t in ]a, b]) if and only if φ is a uniform limit
of a sequence {φn : n ≥ 1} of step functions (i.e., for each φn there exists a
partition a = x0 < x1 < · · · < xk = b such that φn is constant on the open
interval ]xi−1, xi[, for i = 1, . . . , k).

1Note that the full space of distributions D′([0,∞[) is not a Polish space, because it not
metrizable.
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Proof. To show the necessity, the existence of lateral limits for φ implies that for
every ε > 0 and t in [a, b] there exists an open interval U(t, ε) =]x(t, ε), y(t, , ε)[
containing t such that d

E

(
φ(s), φ(r)

)
< ε if both times s, r belong to either

]x(t, ε), t[∩[a, b] or ]t, y(t, ε)[∩[a, b]. Because [a, b] is compact, there exist a finite
number of open intervals U(ti, ε) covering [a, b] and so we can relabel the times
a, b, ti, x(ti, ε), y(ti, ε) as a strictly increasing finite sequence a = x0 < x1 <
· · · < xk = b such that for every s, r in ]xi−1, xi[ we have d

E

(
φ(s), φ(r)

)
< ε.

Thus, choose x∗i in ]xi−1, xi[ and define the step function φε(t) = φ(x∗i ) for
every t in ]xi−1, xi[ and φε(xi) = φ(xi), to deduce that d

E

(
φε(t), φ(t)

)
< ε, for

every t in [a, b].
To check the converse, if φ is the uniform limit of a sequence φn of step

function, then for every ε > 0 there exists n such that d
E

(
φn(t), φ(t)

)
< ε,

for every t in [a, b]. Now, for every t there is an open interval ]c, d[ containing
t and such that d

E

(
φn(s), φn(r)

)
< ε, whenever both s, r belong to either

]c, t[∩[a, b] or ]t, d[∩[a, b]. This implies for the same s, r that d
E

(
φ(s), φ(r)

)
< 2ε

and because E is complete, the lateral limit exists at any t.

• Remark 3.2. The proof in previous Lemma 3.1 allows us to affirm that if
φn → φ uniformly then the cad-lag version φn(t+) converges to the cad-lag
version φ(t+) uniformly.

We may insists in working on a non-separable complete metrizable space,
but measurability problems appear, the Borel σ-algebra does not agree with the
σ-algebra B generated by all cylindrical sets{

ω ∈ D([0,∞[) : ω(ti) ∈ Bi, i = 1, . . . , n
}
,

for any n, and Borel subsets Bi of R, e.g., see Pollard [105, Chapter V, pp.
89–121]. As seen in a more advanced course of Probability, we prefer a topology
that makes D([0,∞[) a Polish space, i.e., a complete separable metrizable space.
This is known as the Skorokhod topology.

If your interest is Markov processes with continuous paths (e.g., diffusion
processes) then you may skip the sequel, what was developed early is sufficient
to handle most situations. Processes are realized in the space of the continuous
functions C([0,∞[), which is a separable complete and metrizable space and
also, a vector topological space. Completeness and separability are two very
important properties when dealing with probability measures defined on the
Borel σ-algebra. Indeed, suitable characterizations of compact sets depend on
completing the space and the cylindrical and Borel σ-algebras are actually the
same one, under the separability condition.

To study Markov process with possible discontinuities of the first kind (e.g.,
diffusion processes with jumps), we are forced to consider the space D([0,∞[),
which is also separable complete and metrizable space, but not a topological
vector space, i.e., the addition is not necessarily a continuous operation. This
is not a serious handicap from the probabilistic viewpoint.

In most of the cases, the question of having a convergent sequence of pro-
cesses is transformed into a convergent of probability measures on some Polish
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space. Thus, characterizations of compact sets in Polish space is a key point to
establish the compactness of a sequence of probability measures. Several very
well tools are available (and well known) when dealing with the Polish space of
the continuous functions C([0,∞[). However, we need to develop a little more
the tools for the Polish space cad-lag functions D([0,∞[).

3.2 Modulus of Continuity

In what follows in this Chapter, we discuss briefly (only with partial proofs) the
canonical space D([0,∞[)). For a complete study with full proofs the reader is
refer to, e.g., Billingsley [15, Chapter 3, pp. 109–153], for a comprehensive study
on the Skorokhod space D([0, 1]), and to Jacod and Shiryaev [69, Sections VI.1
and VI.2, pp. 288–310] or Ethier and Kurtz [47, Section 3.5, pp. 116–154]. for
the case D([0,∞[;Rd). Also the reader may check the book Bass [5, Chapters
34, pp. 259–268], Gikhman and Skorokhod [53, Chapter 4, pp. 144–173], among
others.

All arguments below apply to cad-lag functions with values in some Polish
space E, i.e., in D([0,∞[;E) instead of just D([0,∞[). Moreover, the time t = 0
plays an special role (any ω is virtually continuous at 0), and for t = ∞, it is
convenient to consider D([0,∞[) =

⋃
n>0D([0, n]), as long as no special role is

played by the times t = n. Also, there are small differences when discussing the
spaces D([0,∞[), D(]−∞,+∞[) and D([0, T ]), just a matter of a good role for
the finite end-points.

As mentioned early, it is interesting to remark that D([0,∞),Rd) is not
a topological vector space, i.e., in the Skorokhod topology, the convergences
αn → α and βn → β does not necessarily imply that αn + βn converges to
α+β, unless α (or β) belongs to C([0,∞),Rd).Moreover, if {αn} are continuous
functions then the limit (in the Skorokhod topology) function α, is also continue.
Moreover, the topology in D([0,∞),Rd) is strictly stronger that the product
topology in D([0,∞),Rd1)×D([0,∞),Rd2), d = d1 + d2.

Recall that a function ω is said to have a discontinuity of the first kind at
t if ω(t−) and ω(t+) exists but differ and ω(t) is between them. Any element
in D([0,∞[) is continuous or at most has a discontinuity of the first kind. Any
cad-lag function ω defined on [0, T ] can be (canonically) extended to a cad-lag
function in [0,+∞[ by means of the expression ω(t) = ω(t∧T ), i.e., ω(t) = ω(T )
for t > T. Sometimes and mainly for a notation preference, we may add the
condition either ω(0−) = 0 or ω(0−) = ω(0).

For a continuous function, the modulus of continuity is defined by

wc(ω, r, T ) = sup
0≤s<t≤T, |t−s|<r

|ω(t)− ω(s)|, (3.1)

with the key property that ω belongs to C([0,∞[) if and only if wc(ω, h, T ) → 0
as h→ 0, for every fixed T > 0. In general, the expression

osc(ω, I) = sup
s,t∈I

|ω(t)− ω(s)| (3.2)
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defines the oscillation of ω on the interval I of R, and

wc(ω, h, T ) = sup
0≤t≤T−h

osc(ω, [t, t+ h])

is an alternative definition for the modulus of continuity.
Note that a piecewise continuous function (i.e., for every T > 0 there exists

a finite partition 0 = t1 < t2 < · · · < tn = T such that ω can be extended
to a continuous function on each closed subinterval [ti−1, ti], i = 1, . . . , n) may
have at most discontinuities of the first kind, however, a function having at
most discontinuities of the first kind is not necessarily a piecewise continuous
function. Certainly, a cad-lag function may be only discontinuous at a countable
set, but this set of discontinuity may be dense in [0,∞[. For instance, let {rk :
k ≥ 1} be an enumeration of the positive rational numbers and define ωn(t) =∑n
k=1 ak1{t≥rk} and ω(t) =

∑∞
k=1 ak1{t≥rk}, where {ak : k ≥ 1} is a numerical

sequence such that
∑∞
k=1 |ak| < ∞. It is clear that the cad-lag function ωn

satisfies ωn(rk) − ωn(rk−) = ak, for every n ≥ k. Because supt≥0 |ωn(t) −
ω(t)| ≤

∑
k>n |ak| → 0, the limit function ω is also a cad-lag (purely jumping

bounded variation) function, which is discontinuous at every rational number
and is continuous at each irrational number. However, we have

Lemma 3.3. If ω belongs to D([0,∞[) then for every ε > 0 there exists a
finite sequence of times 0 = t0 < ti < · · · < tn−1 < 1/ε ≤ tn such that
osc(ω, [ti−1, ti[) ≤ ε, for every i = 1, . . . , n. In other words, this means that any
function in D([0,∞[) can be approximated by right-continuous step functions,
namely, if ωε(t) = ω(ti) for every t in [ti−1, ti) then |ω(t)−ωε(t)| ≤ ε for every
t in [0, 1/ε].

Proof. Indeed, first we take ω in D([0,∞[) and some ε > 0. For any T > 0,
consider a ε-decomposition of the form 0 = t0 < t1 < · · · < tn−1 < T ≤ tn
such that osc(ω, [ti−1, ti[) ≤ ε, for every i = 1, . . . , n. Since ω(0) = ω(0+)
there exists T > 0 sufficiently small so that such a decomposition (with n=1)
is possible. Now, define T ∗ the supremum of all those T, where a finite ε-
decomposition [0, T ) =

⋃
i[ti−1, ti) is possible. If T ∗ is finite, then because

ω(T ∗−) exists, we can decomposes [0, T ∗) and since ω(T ∗) = ω(T ∗+), we would
be able to decompose some interval [0, T ) ⊃ [0, T ∗], which is a contradiction.
Hence T ∗ = ∞, i.e, finite ε-decompositions are always possible.

Another way of re-phasing the previous Lemma 3.3 is given by the following
concept. Let Na,b

T (ω) be the number of up-crossing (of ω) of the interval [a, b]

within the time interval [0, T ], i.e., Na,b
T (ω) is the infimum of all k ≥ 0 such that

there exist 0 ≤ t1 < t2 < . . . < t2k−1 < t2k satisfying x(t2i−1) < a < b < x(t2i)
for any i = 1, 2, . . . k. We can verify that a function ω has has one-sided limits
(or equivalent, has at most discontinuities of the first kind) at within the interval

[0, T ] if and only if Na,b
T (ω) < +∞, for each a < b.

Clearly, we can review the previous argument for functions ω having at
most discontinuities of the first kind, by replacing osc(ω, [ti−1, ti[) ≤ ε with
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osc(ω, ]ti−1, ti[) ≤ ε. In particular, any cad-lag function can have only a finite
number of jumps greater than ε > 0 within a bounded interval [0, T ].

Therefore, we can define a cad-lag modulus of continuity as follows

w(ω, r, T ) = inf
{ti}

max
i

sup
t,s∈[ti−1,ti[

|ω(t)− ω(s)|, (3.3)

where {ti} ranges over all partitions of the form 0 = t0 < t1 < · · · < tn−1 <
T ≤ tn, with ti − ti−1 ≥ r > 0, i = 1, . . . , n and T > r > 0. This means that
w(ω, r, T ) = inf{ti} maxi osc(ω, [ti, ti+1[), and certainly, we should use ]ti, ti+1]
instead of [ti, ti+1[ to work with continuous functions from the left having limits
from the right. If the interest is on functions having finite lateral limits, but
either continuous from the right or from the left, we should use the expression

w′(ω, r, T ) = sup
{
|ω(t′)− ω(s)| ∧ |ω(s)− ω(t)| :

: t, s, t′ ∈ [0, T ], t < s < t′ < t+ r
}
, (3.4)

where ∧ means the minimum between two real numbers. Note that for a cad-
lag jump function of the form 1[0,a[(t) or 1[0,a](t) we have w′(1[0,a[, r, T ) =
w′(1[0,a], r, T ) = 0, w(1[0,a[, r, T ) = 0 and w(1[0,a], r, T ) = 1, if r < a and
a < T−r. A relation among the three moduli of continuity wc(ω, r, T ) w(ω, r, T )
and w′(ω, r, T ) is given below.

Lemma 3.4. For every function ω defined on [0,∞[, and with the notation
(3.1), (3.2), (3.3) and (3.4), we have w′(ω, r, T ) ≤ w(ω, r, T ). Moreover, if ω is
a cad-lag function then

wc(ω, r, T ) ≤ 2max
{
w′(ω, r, T ), osc(ω, [0, r[), osc(ω, [T − r, T [)

}
+

+ sup
r≤t≤T

|ω(t) − ω(t−)| (3.5)

and

wc(ω, r, T ) ≤ 2w(ω, r, T ) + sup
r≤t≤T

|ω(t)− ω(t−)|, (3.6)

for every 0 < r < T.

Proof. First, if ε > w(ω, r, T ) then there exist a partition {ti} on [0, T ] such
that osc(ω, [ti, ti+1[) < ε, which implies that w′(ω, r, T ) ≤ ε. This shows that
w′(ω, r, T ) ≤ w(ω, r, T ), for every function ω defined on [0,∞[. By the way,
note that if only osc(ω, ]ti, ti+1[) < ε and the value ω(ti) is between ω(ti−) and
ω(ti+), then we also have w′(ω, r, T ) ≤ ε.

To check estimate (3.5) or

wc(ω, r, T ) ≤ 2max
{
w′(ω, r, T ), osc(ω, [0, r[), osc(ω, (T − r, T ])

}
+

+ sup
r≤t≤T−r

|ω(t)− ω(t−)|,
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for a given interval [a, b[ with 0 ≤ a < b ≤ T and b− a ≤ r define t∗ = t∗([a, b[)
as the supremum of all τ in [a, b[ such that

|ω(a)− ω(t)| ≤ max
{
w′(ω, r, T ), osc(ω, [0, r[), osc(ω, [T − r, T [)

}
,

for every t in [a, τ [.
If t∗([a, b[) = b for every interval [a, b[ then (3.5) holds true. Otherwise, for

some interval [a, b[ with r ≤ a < b ≤ T − r and b− a ≤ r we have t∗ = t∗([a, b[)
in [a, b[, which yields

|ω(t∗−)− ω(a)| ≤ max
{
w′(ω, r, T ), osc(ω, [0, r[), osc(ω, [T − r, T [)

}
.

Now, since

|ω(a)− ω(t∗)| ∧ |ω(t∗)− ω(b)| ≤ w′(ω, r, T )

and

|ω(a)− ω(t∗)| ≥ w′(ω, r, T ) + ε

we must have

|ω(t∗)− ω(b)| ≤ w′(ω, r, T ).

Hence

|ω(b)− ω(a)| ≤ |ω(t∗)− ω(b)|+ |ω(t∗)− ω(t∗−)|+ |ω(t∗−)− ω(a)| ≤
≤ max

{
2w′(ω, r, T ), osc(ω, [0, r[), osc(ω, [T − r, T [)

}
+

+ sup
r≤t≤T

|ω(t)− ω(t−)|,

which proves (3.5) and (3.6).

Along these same lines, consider the following argument:

For a cad-lag function ω there is only a finite number of jumps greater than r > 0
within the interval [0, T ]. Hence, there exits a partition 0 = t0 < t1 < · · · < tn
with tn → ∞ with the properties (a) tk− tk−1 ≤ r for very k and (b) if a time t
has a jump |ω(t)− ω(t−)| > r then t = tk for some k. Thus any jump which is
not included in this partition must have size less or equal than r. Thus, based
on estimate (3.6), define

ωr(t) =

∞∑
k=0

ω(tk)1{tk≤t<tk+1}, t ≥ 0,

to deduce

|ω(t)− ωr(tk)| ≤ 2w(ω, r, T ) + r, ∀t ∈ [tk, tk+1[, ∀k,
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i.e., sup0≤t≤T |ω − ωr| ≤ 2w(ω, r, T ) + r, for every r, T > 0. Actually, we can
improve this point by using the following remark.

For any interval [a, a + r[ there exists at most one single time τ with a
jump larger than 2w′(ω, 2r, T ), with T ≥ a + 3r. Indeed, if |ω(τ) − ω(τ−)| ≥
2w′(ω, 2r, T ) then for any t in [a, a+ r[ we have either

|ω(t)− ω(τ−)| = min
{
|ω(t)− ω)τ−)|, |ω(τ)− ω)τ−)|

}
≤ w′(ω, r, T ),

for every t in [a, τ ] or

|ω(t)− ω(τ)| ≤ w′(ω, r, T ), ∀t ∈]τ, a+ r[.

This implies that for any s in [a, a+ r[ we have either |ω(s)− ω(s−)| ≤ |ω(s)−
ω(τ)|+ |ω(s−)− ω(τ)| or |ω(s)− ω(s−)| ≤ |ω(s)− ω(τ−)|+ |ω(s−)− ω(τ−)|,
so that in both cases we deduce |ω(s)− ω(s−)| ≤ 2w′(ω, r, T ) ≤ 2w′(ω, 2r, T ).

Hence, considering the partition k2−n with k = 0, 1, . . . , we obtain at most
one τk in [k2−n, (k + 1)2−n[ such that |ω(τk)− ω(τk−)| ≥ 2w′(ω, 2r, T ). There-
fore, the piecewise linear function λn defined by the equations λn(0) = 0 and
λn(k2

−n) = τk−1, for k ≥ 1 is a continuous strictly increasing function from
[0,∞[ onto itself with the property t−2−n ≤ λn(t) ≤ t, i.e., supt≥0 |λn(t)− t| ≤
2−n. Thus, in the precedent construction we can use this dyadic partition with
ωn(t) = ω(λn(k2

−n)) if t belongs to [k2−n, (k + 1)2−n[, for some k = 0, 1, . . . ,
to deduce that∣∣ω(λn(t))− ωn(k2

−n)
∣∣ ≤ 2w′(ω, 2−n, T ) + 2w′(ω, 2−n2, T ),

for every t in [k2−n, (k + 1)2−n[ and T ≥ (k + 1)2−n, i.e.,

sup
0≤t≤T

∣∣ω(λn(t))− ωn(t)
∣∣ ≤ 4w′(ω, 2−n2, T + 2−n2), (3.7)

for any n = 1, 2, . . . and for every T > 0. This approximation is used to show
the separability of the space D([0,∞[), with a suitable metric.

On the other hand, we have

Lemma 3.5. The elements ω in D([0,∞[) are locally bounded functions, i.e.,
for every T > 0 there exists C = C(T ) such that |ω(t)| ≤ C, for every t in
[0, T ]. Moreover a function ω has finite lateral limits and is either continuous
from the right or from the left if and only if w′(ω, r, T ) → 0 as r → 0, for every
fixed T > 0. Furthermore, ω belongs to D([0,∞[) if and only if w(ω, r, T ) → 0
as r → 0, for every fixed T > 0.

Proof. If ω belongs to D([0,∞[) then there exists a partition {ti} on [0, T ] such
that ω is continuous on [ti−1, ti[ and ω(ti−) exits for every i = 1, . . . , n. Thus
maxi sup[ti−1,ti] |ω(t)| is finite. This is to say that the range of a cad-lag function
is a pre-compact set in R.

For any ω in D([0,∞[) and ε > 0 define τ0 = 0 and τi+1 = inf{t > τi : |ω(t)−
ω(τi)| > ε/2}. The arguments in Lemma 3.3 shows that for every T > 0 there
exists n such that τn−1 ≤ T < τn. By construction we have osc(ω, [τi−1, τi[)) ≤ ε
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and thus w(ω, r, T ) ≤ ε if r ≤ infi≤n(τi− τi−1). This proves that w(ω, r, T ) → 0
as r → 0, for every fixed T > 0.

To prove the converse, take a function ω satisfying w′(ω, r, T ) → 0 as r → 0,
for every fixed T > 0. If one of the lateral limits at t > 0 is infinite or does
not exist then there exist a constant a > 0 and a sequence tn → t with either
tn > tn+1 > t (or tn < tn+1 < t) for every n such that |ω(tn) − ω(tm)| > a.
Thus osc(ω, ]t, t + r[) > a (or osc(ω, ]t − r, t[) > a), i.e., w′(ω, r, T ) > a for
every T > t + r (or r < t < T ). Hence, both lateral limits must exits at every
point. However, if the value ω(t) is neither ω(t−) nor ω(t+) then w′(ω, r, T ) ≤
|ω(t−) − ω(t)| ∧ |ω(t) − ω(t+)| > 0. Moreover, we complete the argument by
observing that if ω(t) ̸= ω(t+) then osc(ω, [t, t+ r) ≤ |ω(t)− ω(t+)| > 0.

Below are some related arguments concerning the oscillation. Beginning
with osc(ω, I) ≤ osc(ω, J), for every sets I ⊂ J, we can rewrite (3.3) as

w(ω, r, T ) = inf
{
max
i

sup
t,s∈[ti−1,ti[

|ω(t)− ω(s)| :

: t0 = 0, tn−1 < T ≤ tn, r ≤ ti − ti−1 ≤ 2r, ∀i
}
, (3.8)

where T > r > 0. If ω were defined only on [0, T ] then either we may use
ω̃(t) = ω(T ∧ t) instead of ω or only impose ti − ti−1 ≤ 2r for i = n.

By means of the inequality

a ∧ b ≤
√
ab ≤

√
a ∧ b

√
a ∨ b

we can show that the expression

w′′(ω, r, T ) = sup
{√

|ω(t′)− ω(s)||ω(s)− ω(t)| :
: t, s, t′ ∈ [0, T ], t < s < t′ < t+ r

}
, (3.9)

is equivalently to (3.4) in the sense that

w′′(ω, h, T ) ≤ 2
√
w′(ω, h, T ) sup

0≤t≤T

√
|ω(t)|

and w′(ω, h, T ) ≤ w′′(ω, h, T ).

3.3 Skorokhod Topology

For any function having at most discontinuities of the first kind, denote by
δω(t) = δ(ω, t) the jump of ω at time t, i.e., δ(ω, t) = ω(t+) − ω(t−) for any
t > 0. A cad-lag functions ω may has jumps, say times t > 0 where δ(ω, t) ̸= 0
with size |ω(t)− ω(t−)| > 0.

Suppose that a sequence {ωn} converges to ω in the locally uniform topology,
i.e., dc(ωn, ω) → 0, where

dc(ω, ω
′) =

∞∑
n=1

2−n(1 ∧ ∥ω − ω′∥[0,n]), ∥ω∥I = sup
t∈I

|ω(t)∥. (3.10)
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If ω is continuous at a time t0 then ωn may be discontinuous at t0 but the
size of the jumps of ωn should vanish, i.e., δ(ωn, t0) → 0. A typical example
is the approximation of a continuous function by a sequence of step functions.
However, if ω has a jump at time t0 then all, except for a finite number of
n, ωn should have a jump at the same time t0 and δ(ωn, t0) → δ(ω, t0). For
instance, if ωn = 1[0,tn[ for 0 < tn ≤ t0 and tn → t0 then for ω = 1[0,t0[ we
have ωn(t) → ω(t) for every t, but dc(ωn, ω) = 1, for every n. This suggests the
following

Definition 3.6. A change of time is a continuous strictly increasing function
λ : [0,∞[→ [0,∞[ satisfying λ(0) = 0 and λ(t) → ∞ as t → ∞, and Λ denotes
the set of all change of time. A sequence {ωn} of elements inD([0,∞[) converges
to ω in the Skorokhod topology if there exists a sequence {λn} in Λ such that
∥λn − I∥[0,∞[ → 0 and ∥ωn ◦ λn − ω∥[0,T ] → 0, for every T > 0, where I(t) = t,
for every t ≥ 0, is the identity mapping, ∥ · ∥I is the sup-norm on the interval I
and ωn ◦ λn is the composition of the functions ωn and λn.

We gain more insight on this convergence with

Proposition 3.7. Let {ωn} be a sequence in D([0,∞[). If ωn converges to ω
locally uniform, i.e., dc(ωn, ω) → 0, then ωn → ω in the Skorokhod topology.
Moreover, if ω is continuous and ωn → ω in the Skorokhod topology then ωn →
ω in the locally uniform topology.

Proof. It is clear that by taking λn(t) = t, i.e., λn = 1, we deduce the first
assertion. Now, suppose that ωn → ω in the Skorokhod topology and that ω
is continuous. Thus, there exists a sequence {λn} of change of times such that
λn → 1 and ωn ◦ λn → ω. By means of the inequalities

|ωn(t)− ω(t)| ≤ |ωn ◦ λn ◦ λ−1
n (t)− ω ◦ λ−1

n (t)|+ |ω ◦ λ−1
n (t)− ω(t)|,

∥ωn ◦ λn ◦ λ−1
n − ω ◦ λ−1

n ∥[0,T ] = ∥ωn ◦ λn − ω∥[0,λn(T )],

and, with wc is the modulus of continuity (3.1),

∥ω ◦ λ−1
n − ω∥[0,T ] ≤ wc

(
ω, ∥λn − I∥[0,T ], T ∨ λn(T )

)
we prove the second statement.

A couple of examples may help. For numerical sequences {an}, {bn}, {xn}
and {yn} with an < bn, xn → x ̸= 0, yn → y ̸= 0, and x ̸= y, define ωn =
xn1[an,∞] + yn1[bn,∞[. We can check that {ωn} converges to some limit ω in
D([0,∞[) if and only if either (1) an → ∞ and bn → ∞, with ω = 0, or (2)
an → a and bn → ∞, with ω = x1[a,∞[, or (3) an → a, bn → b and a < b,
with ω = x1[a] + y1[b,∞[. Note that if a = b then ωn(an) = xn → x and
ωn(bn) = yn → y so that ωn(an)− ωn(bn) → (x− y) ̸= 0 but an − bn → 0.

These examples show that we may have ωn → ω and ω′
n → ω′, but ωn + ω′

n

does not converges to ω+ω′ in the Skorokhod topology. Thus D([0,∞[) is a vec-
tor space, but it is not a topological vector space with the Skorokhod topology.
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Moreover, this same construction applies to functions with values in a Pol-
ish space, in particular, cad-lag functions with values in Rd, i.e., D([0,∞[;Rd).
Again the previous examples show that the Skorokhod topology in D([0,∞[;Rd)
is stronger that the product Skorokhod topology

(
D([0,∞[)

)d
= D([0,∞[;Rd).

Nevertheless, based on Proposition 3.7, we can shows that if ωn → ω, ω′
n → ω′

in the Skorokhod topology and ω is continuous then ωn + ω′
n → ω + ω′.

The function

d1(ω, ω
′) = inf

λ∈Λ

{
sup
t≥0

(
1 ∧ |λ(t)− t|

)
+

+

∞∑
n=1

2−n sup
t≥0

(
1 ∧ |ω(n ∧ λ(t))− ω′(n ∧ t)|

)}
is a metric in D([0,∞[) yielding the Skorokhod topology, but it fails to be
complete. The problem is with the λ, actually, the distance d1 may be regarded
as acting on the couple (λ, ω), namely,

d1
(
(λ, ω), (λ′, ω′)

)
= sup

t≥0

(
1 ∧ |λ(t)− λ′(t)|

)
+

+

∞∑
n=1

2−n sup
t≥0

(
1 ∧ |ω(n ∧ λ(t))− ω′(n ∧ λ′(t)|

)
,

and then taking distance from (λ, ω) to (I, ω′), but there is no condition in this
metric to force λ to remains in λ. A possibility could be

d̃1(ω, ω
′) = inf

λ∈Λ

{
sup
t≥0

(
1 ∧ |λ(t)− t|

)
+ sup

t≥0

(
1 ∧ |λ−1(t)− t|

)
+

+

∞∑
n=1

2−n sup
t≥0

(
1 ∧ |ω(n ∧ λ(t))− ω′(n ∧ t)|

)}
,

or as normally done, we localize the sup-norm with the function kn(t) = 1 for
0 ≤ t ≤ n, kn(t) = n + 1 − t for n < t < n + 1 and kn(t) = 0 for t ≤ n+ 1, to
define

[|λ|]s = sup
t>s≥0

∣∣ ln (λ(t)− λ(s)

t− s

)∣∣,
ds(ω, ω

′, n, λ) = [|λ|]s + sup
t≥0

∣∣kn(λ(t))ω(λ(t))− kn(t)ω
′(t)

∣∣,
ds(ω, ω

′) =
∞∑
n=1

2−n inf
λ∈Λ

{
1 ∧ ds(ω, ω

′, n, λ)
}
,

(3.11)

which is a complete metric yielding the Skorokhod topology, i.e., D([0,∞[) is a
complete metric (metrizable, because the specific metric is seldom used) space.
This metric (3.11) has been introduced by Prokhorov, and it takes some doing
to show that ds is indeed a metric, and even more to show that ds is complete.
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Actually, a simple but important point is the construction a sequence {λn} in
Λ to verify that ds(ωn, ω) → 0 implies ωn → ω in the Skorokhod topology, see
Definition 3.6.

Consider the coordinate mappings Xt : D([0,∞[) → R defined by Xt(ω) =
ω(t), and denote by D0

t (respectively, by D, the cylindrical σ-algebra) the σ-
algebra in D([0,∞[) generated by the family of functions {Xs : 0 ≤ s ≤ t}
(respectively, {Xs : s ≥ 0}). Next define Dt =

⋂
s>tD0

s and Dt− the σ-algebra
generated by {Ds : s < t}. The family {Dt : t ≥ 0} is called a filtration. Then,
without proof, we can state

Theorem 3.8. The Skorokhod topology, as given by Definition 3.6, makes
D([0,∞[), the space of cad-lag functions, a complete separable metrizable space,
i.e., a Polish space. Moreover, a subset K of D([0,∞[) is pre-compact if and
only if it is bounded and equi-cad-lag, i.e., if and only if for every ε > 0 there
exists δ > 0 such that |ω(t)| ≤ 1/ε and w(ω, r, [0.1/ε]) ≤ ε, for every 0 < r < δ
and any ω in K, where w is the modulus (3.3). Furthermore, Dt− is generated by
all real-valued continuous functions on D([0,∞) which are Dt−-measurable, and
the Borel σ-algebra of D([0,∞) coincides with D, the cylindrical σ-algebra.

• Remark 3.9. Suppose that ωn → ω in the Skorokhod topology. For a given
t ≥ 0, consider the sequence {tn : n ≥ 1}, where tn = λn(t) and λn are the
change of time in Definition 3.6. This sequence has the following properties:
(a) tn → 0, ωn(tn) → ω(t) and ωn(tn−) → ω(t−); (b) if ω(t) ̸= ω(t−) then any
other sequence {t′n : n ≥ 1} satisfying (a) coincides with {tn : n ≥ 1} for all n
large enough; (c) if ω(t) = ω(t−) then for any sequence {t′n : n ≥ 1} satisfying
t′n → t we have ωn(t

′
n) → ω(t) and ωn(t

′
n−) → ω(t−); (d) for any other sequence

{sn : n ≥ 1} such that sn → t we deduce that

sn < tn, ∀n imply ωn(sn) → ω(t−),

sn ≤ tn, ∀n imply ωn(sn−) → ω(t−),

sn ≥ tn, ∀n imply ωn(sn) → ω(t),

sn > tn, ∀n imply ωn(sn−) → ω(t).

Moreover, if δ is the jump operator δω(t) = ω(t) − ω(t−) the define ω′
n(s) =

ωn(s)−δωn(tn)1{tn≤s} and ω′(s) = ω(s)−δω(t)1{tn≤s} and use the inequalities∣∣ω′
n

(
λn(s)

)
− ω′(s)

∣∣ ≤ ∣∣ωn(λn(s))− ω(s)
∣∣+ ∣∣δωn(tn)− δω(s)

∣∣,∣∣ωn(λn(s))− ω(s)
∣∣ ≤ ∣∣ωn(λn(s))− ω

(
λn(s)

)∣∣+ ∣∣ω(λn(s))− ω(s)
∣∣

to deduce (1) ω′
n → ω′ in the Skorokhod topology and (2) osc(ω′

n, [t−r, t+r]) →
0 as r → 0, where osc is given by (3.2). Furthermore, we have

lim sup
n

sup
a≤t≤b

|δωn(t)| ≤ sup
a≤t≤b

|δω(t)|, ∀b ≥ a ≥ 0.

Indeed, if L denote the value of the limit in the left-hand side then there exist
a subsequence {nk : k ≥ 1} and sequences {tk : k ≥ 1} and {t′k : k ≥ 1} in
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[a, b] (if b > a otherwise t = a = b) such that tk < t ≤ t′k, t
′
k − tk → 0 and

ωnk
(t′k)−ωnk

(tk) → L. Thus define the sequences {τk : k ≥ 1} and {τ ′k : k ≥ 1}
by tk = λnk

(τk) and t′k = λnk
(τ ′k) satisfying τk < λnk

(t) ≤ τ ′k, τ
′
k → t and

τk → t to obtain the inequality∣∣ωnk
(t′k)− ωnk

(tk)
∣∣ ≤ ∣∣ωnk

(
λnk

(τ ′k)
)
− ω(τ ′k)

∣∣+
+
∣∣ωnk

(
λnk

(τk)
)
− ω(τk)

∣∣+ ∣∣ω(τ ′k)− ω(τk)
∣∣,

Since the first two terms in the right-hand side vanish as k → ∞, the previous
claim is proved.

3.4 Skorokhod Topology for BV functions

This section is not standard, only a number of comments are presented and,
certainly, it can be skipped, and for instance, the reader may take a look at the
books Jacod and Shiryaev [69, Sections VI.1 and VI.2, pp. 288–310], Ethier and
Kurtz [47, Section 3.5, pp. 116–154],

The dual of the (vector) locally convex topological space C([0,∞[) can
be identified as the space of Radon measures on [0,∞[, which has a one-to-
one relation with the space of cad-lag functions having locally bounded varia-
tion V ([0,∞[). Thus, we want to discuss a little how this relate to the Sko-
rokhod Topology. There are other possible good topologies for D([0,∞[), e.g,
Jakubowski [70].

Consider the semi-space V +([0,∞[) of cad-lag monotone increasing functions
vanishing at the origin, i.e.,

V +([0,∞[) =
{
α ∈ D([0,∞[) : α(0) = 0, α(t) ≤ α(s), ∀0 ≤ t ≤ s

}
.

Recall that for any given countable subset Q of [0,∞[ and a locally uniformly
bounded sequence of monotone increasing functions we can extract a conver-
gence subsequence, i.e., by means of Cantor diagonal procedure and the com-
pactness of any bounded closed set of real number, if (1) {αn : n ≥ 1} is
a sequence in V +([0,∞[), and (2) for every T > 0 there exists a constant
CT > 0 such that αn(T ) ≤ CT , for every n ≥ 0, then there exists a subsequence
{αnk

: k ≥ 1} such that αn(q) → α̃(q), for every q in Q (implying that α̃ is
monotone increasing as a function defined on Q). Hence, if Q is a (countable)
dense set in [0,∞[ then define α(t) = infq∈Q, q>t α̃(q) to deduce that α belongs
to V +([0,∞[) and αn(t) → α(t), for every t in [0,∞[ such that α(t) = α(t−).

The above argument can be applied to difference of monotone increasing
functions, i.e., to functions with locally bounded variation. Moreover, if β is a
cad-lag function with locally bounded variation then we can define its discon-
tinuous part and its continuous part as

βd(t) =
∑
s≤t

(
β(t)− β(t−)

)
, βc(t) = β(t)− βd(t), ∀t > 0,
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where the series over s ≤ t is absolutely convergence (certainly, under the con-
vention that we discard only zero terms and if no term meets the condition s ≤ t
then the sum is empty and equal to 0, moreover, the order in which terms are
added is of no importance). For a general cad-lag function, only a finite number
of jumps larger than ε > 0 may occur within a bounded interval [0, T ], i.e., for
every ε > 0 the set {t ∈ [0, 1/ε] : |ω(t) − ω(t−)| ≥ ε} is finite, but the above
series cannot be defined for ω, since it is not necessarily absolutely convergence.

An increasing counting function is an element α in V +([0,∞[) with all jumps
of size 0 (i.e., no jump, meaning continuity) or 1, i.e., for every t > 0, if α(t)−
α(t−) > 0 then α(t) − α(t−) = 1. On V +([0,∞[) the Skorokhod convergence
becomes

Theorem 3.10. Let α and {αn : n ≥ 1} be in V +([0,∞[)). Then αn → α in
the Skorokhod topology if and only if for some dense subset Q of [0,∞[ we have
(1) αn(q) → α(q), for every q in Q and (2)∑

0<s≤q

|αn(s)− αn(s−)|2 →
∑

0<s≤q

|α(s)− α(s−)|2, ∀q ∈ Q,

and in this case, we may take Q = {t > 0 : α(t) = α(t−)}, i.e., all points
of continuity of α. Moreover, the precedent condition (2) can be replaced by
either (3) there exists a strictly convex function h : [0,∞) → [0,∞) such that
h(0) = h′(0) = 0 and∑

0<s≤q

∣∣h(αn(s)− αn(s−)
)
− h

(
α(s)− α(s−)

)∣∣ → 0, ∀q ∈ Q,

or (4) for every t ≥ 0 there exists a sequence {tn : n ≥ 1} satisfying tn → t with
tn ≤ t if t belongs to Q and

(
αn(tn)−αn(tn−)

)
→

(
α(t)−α(t−)

)
. Furthermore,

only the previous condition (1) is required to obtain Skorokhod convergence in the
following cases: (a) either αn and α are counting functions or α is continuous;
(b) there exists a sequence {βn : n ≥ 1} in V +([0,∞[)) relatively compact in the
Skorokhod topology such that βn − αn belongs to V +([0,∞[)), for every n ≥ 1.

Proof. Only some ideas are given. Since the Skorokhod topology is metrizable,
a sequence ωn converges to ω if and only if from any subsequence we can ex-
tract another subsequence convergent to ω. Thus, by means of Cantor diagonal
procedure, we may assume (without any loss of generality) that condition (1)
is satisfied also for q in some larger Q0 ⊃ Q, provided Q0 ∖Q is countable, i.e.,
we may assume that 0 and n belongs to Q, see the metric (3.10), and that Q
contains all times of continuity of α (and αn if necessary).

First we establish that the convergence on Q, i.e., condition (1) implies

lim sup
n

(
sup
t≤T

∣∣αn(t)− α(t−)
∣∣) ≤ 2

(
sup
t≤T

∣∣α(t)− α(t−)
∣∣), (3.12)

and

lim sup
n

[
sup
q<t≤T

(
αn(t)− αn(t−)

)]
≤

[
sup
q<t≤T

(
α(t)− α(t−)

)]
, (3.13)
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for every q in Q and T > q. For instance, to establish (3.13) we proceed as
follows. First, denote by a the limit in the left-hand term of (3.13) and find a
subsequence {nk : k ≥ 1} and a sequence {tk : k ≥ 1} in (q, T ] such that tk → t∗

and δαnk
(sk) → a, where δ is the jump operator, i.e., δα(t) = α(t) − α(t−).

Since α is cad-lag, the convergence (1) implies that for any ε > 0 there exits
q ≤ q′ < q′′ in Q satisfying q′ ≤ t∗ < q′′ if t∗ = q and q′ < t∗ < q′′ if t∗ > q, and
such that α(q′′)− α(q′) ≤ ε+ 1{q<t∗}δα(t

∗). Because sk belongs to (q′, q′′] (for
k sufficiently large) and α is increasing, the convergence on Q, i.e., condition
(1), yields

a = lim
k
δαnk

(sk) ≤ lim
k

(
αnk

(q′′)− αnk
(q′)

)
= α(q′′)− α(q′) ≤

≤ ε+ 1{q<t∗}δα(t
∗) ≤ ε+ sup

q<t≤T

(
δα(t)

)
,

which proves estimate (3.13).
Now, if α is continuous then condition (1) implies condition (2). Indeed, the

previous estimate shows that αn → α locally uniformly. Hence sups≤t
(
αn(t)−

αn(t−)
)
→ 0, for every t > 0, and then∑

s≤t

∣∣αn(s)− αn(s−)
∣∣2 ≤ αn(t) sup

s≤t

(
αn(s)− αn(s−)

)
so does.

On the other hand, if αn and α are counting functions then we have

α(t) =
∑
s≤t

(
αn(s)− αn(s−)

)
=

∑
s≤t

∣∣αn(s)− αn(s−)
∣∣2

and similarly for αn. This shows that condition (1) implies condition (2).
The longest part is to show that if αn(q) → α(q), for every q in Q then

conditions (3) and (4) are equivalent. For instance, we separate the small jumps,
namely, for a given ε > 0 define si by induction as s0 = 0, and si = inf{t >
si−1 : α(t)− α(t−) > ε}, e.g., if α is continuous then s1 = ∞. For each si find
a sequence {ti,n : n ≥ 1} satisfying condition (4) for t = si to define

α′(t) = α(t)−
∑
si≤t

δα(si), α′
n(t) = αn(t)−

∑
si≤t

δαn(si,n),

where δ is the jump operator. First, it is clear that α′
n(q) → α′(q) for every q in

Q, and by means of estimate (3.13), we deduce that lim supn sups≤t |δαn(s)| ≤ ε.
Thus ∑

s≤t

∣∣h(δαn(s))− h(δα(s))
∣∣ ≤ ∑

si≤t

∣∣h(δαn(si,n))− h(δα(si))
∣∣+

+
∑
s≤t

(
|h(δα′

n(s))|+ |h(δα′(s))|
)
.
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Taking limit as n→ ∞, the first sum is finite and so it vanishes, while from

|h(δα′
n(s))| ≤ g

(
sup
s≤t

δα′
n(s)|

)
|δα′

n(s)|,
∑
s≤t

|δα′
n(s)| ≤ αn(t),

with h(x) = |x| g(x), g(x) → 0 as x → 0 (recall that h(0) = h′(0) = 0) and
similar inequalities with α′ instead of α′

n, we obtain

lim sup
n

∑
s≤t

(
|h(δα′

n(s))|+ |h(δα′(s))|
)
≤ g(ε) lim sup

n

(
|αn(t)|+ |α(t)|

)
.

Hence, condition (3) is satisfied.

Another delicate point is to establish that conditions (1) and (4) imply that
the sequence {αn : n ≥ 1} is relatively compact in the Skorokhod topology. All
these properties and, because condition (1) yields α as the only possible limit,
we conclude proving the “if” part of the main assertion.

Finally, suppose that αn → α in the Skorokhod topology. By means of
Remark 3.9 we obtain condition (4), which implies that condition (2) is satisfied.

• Remark 3.11. Note that if∑
0<s≤q

∣∣|αn(s)− αn(s−)| − |α(s)− α(s−)|
∣∣ → 0, ∀q ∈ Q,

then |αn(s)−αn(s−)| ≤ C for every n, any s ≤ T, and some constant C = CT .
Hence ∑

0<s≤q

∣∣|αn(s)− αn(s−)|2 − |α(s)− α(s−)|2
∣∣ ≤

≤ 2CT
∑

0<s≤q

∣∣|αn(s)− αn(s−)| − |α(s)− α(s−)|
∣∣, ∀q ≤ T,

yields condition (2).

Now, to consider the space of functions with local bounded variation and
cad-lag, note that for an element ω in D([0,∞[) we can define the variation as

var(ω, [0, t]) = sup
{ n∑
i=1

|ω(ti)− ω(ti−1| : 0 = t0 < t1 < · · · < tn = t
}
,

and the positive and negative variation var+(ω, [0, t]) and var−(ω, [0, t]) by re-
placing the absolute value |·| with the positive and negative parts, [ · ]+ and [ · ]−,
respectively. Moreover, because the function ω is cad-lag, we may only consider
partitions of the form ti = t ∧ 2−ni, for i = 0, 1, . . . , 4n. If var(ω, [0, t]) < ∞
then var(ω, [0, t]) = var+(ω, [0, t]) + var−(ω, [0, t]) and ω(t) = var+(ω, [0, t]) −
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var−(ω, [0, t]). This means that a cad-lag function having locally bounded vari-
ation can be regarded as the increasing functions, t 7→ var+(ω, [0, t]) and t 7→
var−(ω, [0, t]). It is also clear that∑

s≤t

∣∣ω(t)− ω(t−)
∣∣2 ≤ 2

(
sup
s≤t

∣∣ω(t)∣∣) var(ω, [0, t]), ∀t > 0.

Therefore, if V ([0,∞[) denote the subspace of D([0,∞[) of all cad-lag functions
having locally bounded variation vanishing at 0, then V ([0,∞[) = V +([0,∞[)⊖
V +([0,∞[) and we can apply Theorem 3.10 to deduce (for instance) that for any
ω and {ωn : n ≥ 1} in V ([0,∞[) we have: ωn → ω in the Skorokhod topology if
and only if the exists a dense set Q of (0,∞) such that (1)′ ωn(q) → ω(q) and
var(ωn, [0, q]) → var(ω, [0, q]), for every q in Q, and (2)′∑

0<s≤q

∣∣|ωn(s)− ωn(s−)|2 − |ω(s)− ω(s−)|2
∣∣ → 0, ∀q ∈ Q,

and in this case, we may take Q = {t > 0 : ω(t) = ω(t−)}, i.e., all points
of continuity of ω or equivalently, of t 7→ var(ω, [0, t]). Note that by means of
Remark 3.11, the conditions (1)′ and (2)′ are satisfied if var(ωn−ω, [0, q]) → 0,
for every q in Q (and so for every q not necessarily in Q).

On the other hand, we may define the r-quadratic variation as

var2(ω, [0, t], r) = sup
{ n∑
i=1

|ω(ti)− ω(ti−1|2 :

: t0 = 0, 0 < ti − ti−1 ≤ r, tn = t
}
,

which may be bounded for functions which are not of bounded variation. How-
ever, with the cad-lag modulus (3.1), we have

var2(ω, [0, t], r) ≤ wc(ω, r, t) var(ω, [0, t]), ∀t, r.

Therefore, defining the decreasing limit

var2(ω, [0, t]) = lim
r→0

var2(ω, [0, t], r),

we have∑
0<s≤t

|ω(s)− ω(s−)|2 ≤ var2(ω, [0, t]), ∀t,

so that var2(ω, [0, t]) = 0 if ω is continuous or has locally bounded variation.
If a cad-lag purely jumps function ω has the following characterizing property

ω(t) = ω(0) + lim
ε→0

∑
s≤t

(
δω(s)

)
1{|δω(s)|≥ε}, ∀t > 0,
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where the series is convergent (not necessarily absolutely convergent). It is clear
that for a (cad-lag) purely jumps function ω we have

var2(ω, [0, t]) =
∑
s≤t

∣∣δω(s)∣∣2, ∀t > 0.

For instance, consider a decreasing sequence of positive numbers {ai : i ≥ 1}
such that

∑
i a

2
i < ∞ and

∑
i a
p
i = ∞, for every p < 2, and an increasing

sequence of times {si : i ≥ 1} such that si → 1. We may define a purely jumps
function by

ω(t) =
∑
si≤t

(−1)iai,∀t ≥ 0.

It is clear that the only jumps are δω(t) = ai for every t = si, with i ≥ 1, while
ω(t) and t 7→ var2(ω, [0, t]) are a finite sum of jumps for t < 1, and

ω(1−) =
∑
i

(−1)iai = ω(t), ∀t ≥ 1,

var2(ω, [0, t]) =
∑

0<s≤t

|ω(s)− ω(s−)|2 =
∑
i

a2i , ∀t ≥ 1.

The increasing process t 7→ var2(ω, [0, t]) has jumps δvar2(ω, [0, t]) = |δω(t)|2
for every t ≥ 0, the function ω has infinite variation on [0, 1] and

ω(t) =
∑
s2k≤t

a2k −
∑

s2k−1≤t

a2k−1, ∀t < 1,

where the sums have only a finite number of terms, but certainly, we would have
∞−∞ for t ≥ 1.

Let {ωn : n ≥ 1} be a sequence of cad-lag functions converging in the Sko-
rokhod topology to ω. We separate the small jumps as in the proof of property
(3) in Theorem 3.10, i.e., for a given ε > 0 define si by induction as s0 = 0, and
si = inf{t > si−1 : |ω(t)−ω(t−)| > ε}, e.g., if ω is continuous then s1 = ∞. For
each si find a sequence {ti,n : n ≥ 1} satisfying condition (4) for t = si to define

ω′(t) = ω(t)−
∑
si≤t

δω(si), ω′
n(t) = ωn(t)−

∑
si≤t

δωn(si,n),

with the properties (see Remark 3.9) that ω′
n → ω′ in the Skorokhod topology

and lim supn sups≤t |δωn(s)| ≤ ε. Remarking that δωn(s) = δω′
n(s) for s ̸= si,n

and δω(s) = δω′(s) for s ̸= si we can write∑
s≤t

∣∣h(δωn(s))− h(δω(s))
∣∣ ≤ ∑

si≤t

∣∣h(δωn(si,n))− h(δω(si))
∣∣+

+
∑
s≤t

(
|h(δω′

n(s))| + |h(δω′(s))|
)
,
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Taking limit as n→ ∞, the first sum is finite and so it vanishes as long as h is
continuous, while for h(x) = |x|3,

|δω′
n(s)|3 ≤

(
sup
s≤t

|δω′
n(s)|

)
|δω′

n(s)|2,
∑
s≤t

|δω′
n(s)|2 ≤ var2(ωn, [0, t]),

implies

lim sup
n

∑
s≤t

(
|δω′

n(s)|3 + |δω′(s)|3
)
≤

≤ ε sup
n

(
var2(ωn, [0, t]) + var2(ω, [0, t]|

)
,

which shows that

lim
n

∑
s≤t

∣∣|δωn(s)|3 − |δω(s)|3
∣∣ = 0, ∀t > 0,

and so |δωn(s)| → |δω(s)|, uniformly in s belonging to [0, T ], for every T > 0.
On the other hand, the continuous (but not absolutely continuous near 0)

function t 7→
√
t satisfies

n∑
i=1

∣∣√ti −√
ti−1

∣∣2 ≤
n∑
i=1

|ti − ti−1| = T,

for every partition 0 = t0 < t1 < t2 < · · · < tn = T, which proves that
var2(

√
·, [0, t]) ≤ t, for every t > 0.

Perhaps, we may expect to deduce that ωn → ω in the Skorokhod topol-
ogy if the exists a dense set Q of (0,∞) such that (1)′′ ωn(q) → ω(q) and
var2(ωn, [0, q]) → var2(ω, [0, q]), and (2)′′∑

0<s≤q

∣∣|ωn(s)− ωn(s−)|2 − |ω(s)− ω(s−)|2
∣∣ → 0,

for every q in Q.

3.5 Integer Measures

The term integer measure refers to a measure with integer values, or equiva-
lently, a series of Dirac measures. However, the same name integer measure is
used to refer to a random variable whose values are integer measures. More-
over, if a time variable is singled-out then this is loosely referred to (until some
topological property is assigned to the paths) as a process whose values are in-
teger measures. Furthermore, all these instruments are used to study the jumps
of cad-lag processes, i.e., random variables with values in the canonical space
D([0,∞[) or equivalently, real-valued process whose paths are cad-lag almost
surely.
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In our discussion, the time-variable is singled-out so that (deterministic)
integer measures are Borel σ-finite measures defined on B(E× [0,∞[), the Borel
σ-algebra of the abstract space E × [0,∞[. Actually, to simplify arguments
without sacrificing too much generality, the base space E is assumed locally
compact, moreover, E = Rm∗ , where Rm∗ = Rm ∖ {0}.

Therefore, a (deterministic) integer measure ν is a Radom measure on Rm∗ ×
[0,∞[ which takes only integer values and satisfies some extra properties due to
the special time-variable, i.e., besides ν being a measure on the Borel σ-algebra
B(Rm∗ × [0,∞[) the following properties are assumed: (a) ν(Rm∗ × {0}) = 0; (b)
ν(Rm∗ × {t}) is either 0 or 1, for any t in ]0,∞[; (c) ν(K×]0, t]) is a positive
integer number, for any Borel set K of Rm∗ separated from the origin (i.e., with
a positive distance to {0}) and any t in ]0,∞[. All this means that ν is indeed
a series of Dirac measures of the following form

ν(B×]a, b]) =
∑
k

1zk∈B1sk∈]a,b], ∀B ∈ B(Rm∗ ), a, b ∈ [0,∞[, (3.14)

where {(zk, sk) : k} is a sequence (possible finite) of points in Rm∗ ×]0,∞[ such
that all times {sk : k} are distinct. What should be remarked that there is not
a particular order in the (strictly positive) real-valued sequence {sk}, i.e., the
index k is anyone of the several enumeration, but condition (c) requires that
(d) for every ε > 0 there is only a finite number of {(zk, sk) : k ≥ 1} satisfying
ε ≤ |zk| and sk ≤ 1/ε. Thus, if desired the sequence can be completed to an
infinite sequence by adding either sk = sk0 or sk = ∞, and zk = 0 for any k > k0.
A sequence (possible finite) {(zk, sk) : k ≥ 1} of points in Rm∗ ×]0,∞[ satisfying
the property (d) and such that {sk : k} are distinct when finite (allowing sk = ∞
as a technically) is called a point-sequence. The quantity (zk, sk) represents the
k-jump of size zk at time sk, and if (z, s) 7→ f(z, s) is a non-negative Borel
measurable function on Rm∗ ×]0,∞[ then the integral∫

Rm
∗ ×]0,∞[

f(z, s) ν(dz,ds) =
∑
k

f(zk, sk),

and this gives rise to a cad-lag purely jump Rm-valued function

αε : t 7→
∑
sk≤t

zk1|zk|≥ε =

∫
{(z,s):|z|≥ε, 0<s≤t}

z ν(dz,ds), (3.15)

for any ε > 0, of which in general, the limit as ε vanishes may not exits or
perhaps exits as a singular integral.

At this point it may be useful to recall some properties of cad-lag functions,
for instance, the space D([0,∞[;Rm) of all Rm-valued cad-lag functions, which
becomes a Polish (metrizable, separable and complete) with a suitable topology.
A key property of a cad-lag function ω is that for every ε > 0 there exists a
partition 0 = t0 < t1 < · · · < tn = 1/ε such that the oscillation of s 7→
ω(s) on each subinterval [ti−1, ti[ is small, precisely, sup{|ω(s) − ω(s′)| : s, s′ ∈
[ti−1, ti[} < ε for every i = 1, . . . , n. Thus, if ωε is the piecewise constant
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jump function define by ωε(s) = ω(ti) − ω(ti−) for any ti < s < ti+1 then the
oscillation of the function ω−ωε is smaller than ε within any closed subinterval
[ti−1, ti]. Therefore, the limiting function ω0(s) = limε→0 ωε(s) exists, uniformly
on any bounded time interval [0, T ], and ω − ω0 = ωc is a continuous function,
each cad-lag function ω can be written as the sum of a continuous function
ωc and a cad-lag purely jump function ω0. In a symmetric way, the cag-lad
functions are discussed.

Back to integer measure (it may be convenient for the reader to check Kallen-
berg [72, Introduction, pp. 1–13] for a full description and implications), if our
interest is on the jump a given cad-lag function α (or equivalently, a cad-lag
purely jump function α is given, not necessarily piecewise constant, since the
Cantor-type function is an extreme example) then an integer measure ν can be
defined by counting the jumps, i.e., ν(B×]a, b]) is equal to the number of jumps
in the time-interval ]a, b] with size in B, for any Borel set in Rm∗ separated from
the origin. Note that property (c) or equivalently (d) is satisfied due to the cad-
lag assumption on α. Thus an integer measure is constructed and associated to
a cad-lag function, and in this case, the integer measure ν corresponding to the
jumps of a cad-lag function α satisfies

ν
(
{(z, s) : |z| ≥ ε, s ≤ t}

)
<∞, ∀ε > 0.

Usually, as ε → 0, the jumps of size |z| > 1/ε are called large jumps, while the
jumps of size |z| < ε are referred to as small jumps. Any cad-lag function has
a finite number of jumps of size larger than ε > 0 within any bounded time-
interval ]a, b], which implies that there is only a countable number of jumps on
[0,∞[, but this does not means that the jumps-times are discrete (i.e., separated,
one from each other), actually, there could be accumulation of small jumps as
ε vanishes.

For any cad-lag function α with a corresponding integer measure να the
quantities α(t) and να(Rm∗ ×]0, t]) are related, and if

α(t) = α(0) + lim
ε→0

∫
{(z,s):|z|≥ε, 0<s≤t}

z να(dz,ds).

then α is called a cad-lag purely jump function. If a cad-lag function has
bounded variation on any bounded time-interval then the series of jumps

∑
k zk

is absolutely convergent and the limit of αε in (3.15) exists as ε vanishes. How-
ever, if the integer measure ν is initially given and the limit as ε → 0 of the
piecewise constant function αε in (3.15) exists as a singular integral, i.e.,

α0(t) = lim
ε→0

∑
k

zk1|zk|≥ε1sk≤t, ∀t ∈ [0,∞[, (3.16)

either uniformly in every bounded time interval [0, T ] or in the topology of the
(canonical) Polish space D([0,∞[;Rm), then the cad-lag purely jump function
α0 can be defined. Certainly, this limit may not exist, and it could be regarded
as an extra property imposed on the integer measure.
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Because the time plays a important role, recall that the Lebesgue-Stieltjes
(LS) and Riemann-Stieltjes (RS) integrals. If s 7→ α is a cad-lag non-decreasing
function then dα(s) represents a Borel measure on [0,∞[, finite on every bounded
time-interval. Any Borel function bounded on any time-interval is LS-integrable
but not necessarily RS-integrable. However, any cag-lad function is both, RS-
and LS-integrable and both integral values agree. Moreover, if f is a cad-lag
function and f− : s 7→ f(s−) denotes its cag-lad counterpart, then∫

]0,t]

f(s)dα(s) =

∫
]0,t]

f−(s)dα(s) +
∑

0<s≤t

[f(s)− f(s−)][α(s)− α(s−)],

where the integral on the left is considered in the LS-sense, while the integral
on the right can be interpreted in either sense. Each cad-lag non-decreasing
function α can be decomposed into its continuous-part αc and its jump-part α0.
The integer measure is associated with the jump-part α0, while the Lebesgue-
Stieltjes measure on [0,∞[ corresponding to dαc can be regarded as a measure
on {0}×]0,∞[ associated with the continuous-part αc. By means of signed
measures, the same can be done with cad-lag functions with a continuous-part
having bounded variation on every time-interval. Note that the jump-part may
have unbounded variation, the cad-lag regularity allows the construction of the
associated integer measure.

It should be clear that if ν is an integer measure with its corresponding
point-sequence {(zk, sk) : k ≥ 1} then a function f on Rm∗ ×]0, t] is ν-integrable
if and only if the series

∑
k |f(zk, sk)|1sk≤t <∞ and in this case∫

Rm
∗ ×]0,t]

f(z, s) ν(dz,ds) =
∑
k

f(zk, sk)1sk≤t, ∀t > 0.

Thus is |f |p is integrable for some p > 0 then |f |q is integrable for every q ≥ p.

Perhaps the simplest case of purely jumps functions are piecewise constant
functions, which normalized to be cad-lag take the form t 7→

∑
k zk1sk≤t, where

the jumps satisfy |zk| → ∞ and 0 < sk → ∞ as k → ∞. In this case, the time-
jumps can be ordered as 0 < s1 < s2 < · · · < sk < · · · , and if ṡk = sk − sk−1

represents the time between two consecutive jumps then
∑
k ṡk = ∞. The

corresponding integer measure ν is finite on any set of the form Rm∗ ×]0, t], for
every t in [0,∞[. Next order of difficulty are the purely jumps functions hav-
ing bounded variation on any bounded time-interval, where the corresponding
integer measures integrate the function (z, s) 7→ |z|1s≤t for any t > 0. More
general, an interesting situation is the case when the cad-lag function α has fi-
nite (or bounded) p-variation (with p ≥ 1, and particularly when p = 2) on any
bounded time-interval, i.e.,

∑n
i=1 |α(ti)− α(ti−1)|p ≤ C(α, t), for any partition

0 = t0 < t1 < · · · < tn = t, where now, the corresponding integer measures
integrate the function (z, s) 7→ |z|p1s≤t for any t > 0.

The following example may help to clarify some difficulties, consider the
point-function given by zk = (−1)k+1/k and sk = 2 − 1/k or equivalently the
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integer measure on R∗×]0,∞] define by

ν
(
K×]a, b]

)
=

∞∑
k=1

1(−1)k+1/k∈K1a<2−1/k≤b,

so that ν(R∗×]0, 1]) = 0, ν(R∗×]2, b]) = 0, for every b ≥ 2. In this case,

α(t) = lim
ε→0

∑
kε≤1

(−1)k+1

k
12−1/k≤t =

∞∑
k=1

(−1)k+1

k
12−1/k≤t

is the associated cad-lag purely jump function. Certainly, α(t) = 0 if 0 ≤ t < 1,
α(t) = 1 for 1 ≤ t < 3/2, α(t) = 1/2 for 3/2 ≤ t < 5/3, α(t) = 1 − 1/2 + 1/3
for 2− 1/3 ≤ t < 2− 1/4, and so on, and α(t) =

∑
k(−1)k+1/k for t ≥ 2. This

cad-lag purely jump function α has infinite variation on [a, b] if a < 2 < b, but
it has p-variation bounded if p > 1. Note that∫

R×]0,t]

|z| ν(dz,dt) =
∑
k

1

k
= ∞, ∀t ≥ 2,

but α(t) = lim
ε→0

∫
{|z|≥ε}×]0,t]

z ν(dz,ds), ∀t ≥ 0.

Hence, the expression dα is not a measure on [0,∞[, but if α− : s 7→ α(s−)
denote its cag-lad counterpart then∫

]0,t]

α−(s) dα(s) =
∑

0<s≤t

α(s−)[α(s)− α(s−)], ∀t > 0

as a singular Riemann-Stieltjes integral, which suggests∫
]0,t]

[α(s)− α(s−)] dα(s) =
∑

0<s≤t

[α(s)− α(s−)]2, ∀t > 0,

as a definition, since the series is absolutely convergent. In other words, if a
cad-lag purely jump process α is given and its integer measure να integrates the
function z 7→ |z|2 then it make sense to define∫

]0,t]

[α(s)− α(s−)] · dα(s) =
∫
Rm

∗

|z|2να(dz,ds) =
∑

0<s≤t

[α(s)− α(s−)]2,

as an integral in a reasonable sense, which is the quadratic variation of the
function α on the time-interval ]0, t]. Certainly, more sophisticated examples
can be produced with analogous arguments.

If h is a Borel measurable function from Rn∗×]0,+∞[ into Rm∗ then any point-
function {(zk, sk) : k} or integer measure ν in Rm∗ ×]0,∞[ is transformed into
another point-function {(h(zk, sk), sk) : k} or integer measure νh(B×]a, b]) =
ν({(z, s) : h(z, s) ∈ B, a < s ≤ b}), where the key properties (a),. . . ,(d) are
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preserved. However there some difficulties to change the time scale, and an
adaptation is necessary.

Until now, integer measures and point-sequences have a one-to-one relation
and both are loosely interpreted as a series of Dirac measures. Due to the
condition (b) imposed on integer measures (i.e., ν(Rm∗ × {s}) is either 0 or 1)
a finite sum of integer measures is not necessarily another integer measure. On
the other hand, for a point-function {(zk, sk) : k}, the condition that {sk : k}
should be a sequence (possible finite) of positive distinct numbers sounds odd
on a second analysis.

Definition 3.12. A point-sequence on Rm × [0,∞] is a sequence {(zk, sk) : k}
of points in Rm × [0,∞] such that for any ε > 0 there is only a finite number
of indexes k satisfying |zk| ≥ ε and 1/ε ≤ sk < ∞. An integer measure ν
on Rm∗ × [0,∞[ is a Borel measure such that ν({(z, s) : |z| ≥ ε, s ≤ t}) is a
nonnegative integer, for any ε > 0. If ν(Rm∗ × {t}) is either 0 or 1, for every
t > 0, then the integer measure is called simple, and if ν(Rm∗ ×]0, t]) < ∞, for
every t > 0, then the integer measure is called bounded. In general, ν is of
bounded variation on any bounded time-interval if the function z 7→ 1∧ |z| is ν-
integrable and ν is an integer measure of Lévy-type if the function z 7→ 1∧|z|2 is
ν-integrable. Sometimes, it may be necessary to add a normalizing condition at
time t = 0, namely, either sk > 0 or ν(Rm∗ ×{0}) = 0, in this case, ν is considered
a measure on Rm∗ ×]0,∞[. Regarding a point-sequence, it is clear that the points
in {0}× [0,∞[ or Rm×{∞} does not intervene and can be eliminated from the
sequence, in this case, the remaining points form a sequence that may be finite
or empty. Thus, allowing points in either Rm∗ ×]0,∞] or Rm×]0,∞[, the indexes
of the sequence {(zk, sk) : k} can be assumed infinite. It may be convenient
to regard this sequence as a point-function, i.e., a function from ]0,∞[ into
Rm vanishing except in a countable (possible finite) set, i.e., mapping a time s
into zk if s = sk and into 0 otherwise. Using the space Rm∗ ×]0,∞] instead of
Rm×]0,∞] for the integer measure helps to avoid the temptation of assigning a
non-zero value to the origin.

With this definition, there is a one-to-to correspondence between point-
functions and integer measures, and a finite sum of integer measures is again an
integer measure. However, only a simple integer measure is associated with the
jumps of a cad-lag function; and a cad-lag function can be associated to a integer
measure only if the cad-lag purely jumps function (3.16) can be defined. Note
that because ν takes integer values, if the function z 7→ 1 ∧ |z|p is ν-integrable
then so is z 7→ 1 ∧ |z|q, for every q ≥ p. Because there is only a finite number
of indexes k such that |zk| ≥ 1 and τk ≤ T , the function z 7→ |z|p1|z|≥1 is
ν-integrable for every p ≥ 0. Note that point-sequences and point-functions are
alternative viewpoints of countable sets, i.e., either as a sequence {(zk, sk) : k}
indexed by the natural numbers {k = 1, 2, . . .} or as a countable (possible finite)
set of times S ⊂ [0,∞] (or just S ⊂]0,∞[) used as index in {zs : s ∈ S} ⊂ Rm∗ .

[Preliminary] Menaldi November 19, 2022



66 Chapter 3. Canonical Sample Spaces

Therefore, the series expression

ν(B×]a, b]) =
∑
s∈S

1zs∈B1a<s≤b, ∀B ∈ B(Rm∗ ), a, b ∈ [0,∞[,

defines the integer measure ν. Clearly, for a given cad-lag function α, the
set of time-jumps is S = {s ∈]0,∞[: α(s) − α(s−) ̸= 0} and the jump-set is
zs = α(s)− α(s−).

Hence, to change the time use a Borel measurable function τ from Rm∗ ×]0,∞]
into ]0,∞] such that for every ε > 0 there is only a finite number of indexes
k satisfying |zk| ≥ ε and τ(zk, sk) ≤ 1/ε. Therefore, an integer measure ν is
transformed as follows:

ντ
(
B×]a, b]

)
= ν

(
{(z, s) : z ∈ B, a < τ(z, s) ≤ b}

)
,

for every B in B(Rm∗ ) and 0 ≤ a < b < ∞, while a point-function {(zk, sk) : k}
becomes another point-function {(zk, τ(zk, sk)) : k}. Note that the index k could
be any positive integer, and that nonsense empty (or constantly infinite-valued)
point-function or the null integer measure is allowed, as well as the transforma-
tion τ(z, s) = ∞, which produces ντ = 0. This means that the possibility of
canceling a jumps (zk, sk) is accomplished by mapping it to (zk,∞). Certainly,
both transformations can be combined to have ϑk(z, s) = (hk(z, s), τk(z, s)) un-
der the condition that for every ε > 0 there is only a finite number of indexes k
satisfying |hk(zk, sk)| ≥ ε and τ(zk, sk) ≤ 1/ε.

The special role of the time variable force a limitation on the previous trans-
formation (zk, sk) 7→ (zk, τ(zk, sk)), due essentially to the arrow of time, i.e., the
change in the distributions of the jumps produced by stretching or shrinking the
time-scale should preserve the order of jumps. Therefore, usually a monotonic
assumption is required, i.e., if si ≤ sj then the new jumps τ(si) ≤ τ(sj), i.e., the
relative order of jumps is preserved in time. Thus, eliminating a jump with the
choice of τk = ∞ forces the elimination of all successive jumps which is clearly
not a desired action, a solution is to set zk = 0 and so, the point-function take
values in Rm×[0,∞[ but the integer measure is restricted to Rm∗ ×[0,∞[. In this
sense, a proper jumps occurs only when the size zk ̸= 0 and the time τk is finite.
The stretching or shrinking of the time-scale under the monotonic assumption
makes a clear sense whenever the jumps are ordered s1 < s2 < · · · < sk < · · · ,
as is the case of a bounded integer measure.

3.6 Sequences of Probability

From the previous sections, the space of continuous functions C([0,∞[) with
the locally uniform convergence and the space of cad-lag functions D([0,∞[)
with the Skorokhod topology as in Definition 3.6 and metric (3.11) are both
Polish spaces, i.e., complete separable metrizable spaces, and therefore, their
Borel σ-algebras coincide with their cylindrical σ-algebras.

Recall that a sequence {Pn} of probabilities on a Polish space Ω is tight if
for every ε > 0 there exists a compact set K ⊂ Ω such that Pn(Ω∖K) < ε, for
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every n, see Definition 1.8. Moreover, Prohorov Theorem 1.9 states that any
tight subset is pre-compact.

To recall that T in the expression for the modulus of continuity (3.1) and the
cad-lag modulus of continuity (3.8) refers to the interval [0, T ], we use the nota-
tion wc(ω, δ, [0, 1/ε]) and w(ω, δ, [0, 1/ε]) instead of wc(ω, δ, 1/ε) and w(ω, δ, 1/ε)
to have

Theorem 3.13. Let {Pn} be a sequence of probability measures on C([0,∞[)
(respectively, on D([0,∞[)) with its Borel σ-algebra. If for every ε > 0 there
exist δ > 0 such that (1) Pn{ω : supt∈[0,1/ε] |ω(t)| ≥ 1/δ} < ε and (2) Pn{ω :
wc(ω, δ, [0, 1/ε]) ≥ ε} < ε (respectively, Pn{ω : w(ω, δ, [0, 1/ε]) ≥ ε} < ε), then
there exists a weakly convergence subsequence.

Proof. The arguments are rather simple, namely, based on Prohorov Theo-
rem 1.9, for every given ε > 0 we have to construct a compact set Kε satisfying
Pn(Kε) ≥ 1− ε, for every n.

Indeed, for every ε > 0, T > 0 and k > 0 there exists R = R(ε, T ) and
r = rk(ε, T ) such that

Pn
{

sup
t∈[0,T ]

|ω(t)| ≥ R
}
< ε2−T−1,

Pn
{
w(ω, rk, [0, T ])| ≥ 1/k

}
< ε2−T−k−1.

Thus, if

Kε,T =
{
ω : sup

t∈[0,T ]

|ω(t)| < R, w(ω, rk, [0, T ])| < 1/k, ∀k ≥ 1
}

then

1− Pn(Kε,T ) ≤ Pn
{

sup
t∈[0,T ]

|ω(t)| ≥ R
}
+

+

∞∑
k=1

Pn
{
w(ω, rk, [0, T ])| ≥ 1/k

}
≤ ε2−T .

Hence we deduce that the compact setKε =
⋂∞
T=1Kε,T satisfies Pn(Kε) ≥ 1−ε,

for every n.

For a family {Pi : i ∈ I} of probability measures on the canonical sample
space D([0,∞[), consider the following conditions:

(a) for every ε > 0 there exist δ > 0 such that

Pn{ω : |ω(0)| > 1/δ} < ε, ∀i ∈ I;

(b1) for every ε > 0 and 0 ≤ t < s < t′ ≤ 1/ε there exist δ > 0 such that

Pn{ω : |ω(t′)− ω(s)| ∧ |ω(s)− ω(t)| > ε} δ < (t′ − t)1+δε−1/δ, ∀i ∈ I;
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(b2) for every ε > 0 and 0 ≤ s < t ≤ 1/ε there exist δ > 0 such that

Pn{ω : |ω(t)− ω(s)| > ε} δ < t1+δε−1/δ, ∀i ∈ I;

(b) for every ε > 0 and 0 ≤ t < s ≤ 1/ε there exist δ > 0 such that

Pn{ω : |ω(t)− ω(s)| > ε} δ < (s− t)1+δε−1/δ, ∀i ∈ I.

Essentially with the technique of Theorem 3.13, we can show that (a), (b1)
and (b2) imply that the family is tight. Note the extra condition (b2) (the
oscillation at 0) need to replace the cad-lag modulus of continuity (3.8) with
either w′ given by (3.4) or w′′ as in (3.9). The condition (b) is particular to
(but used otherwise) probability measures in the space C([0,∞[), and we say
that {Pi : i ∈ I} is C-tight if (a) and (b) are satisfied. In this case, any limit
point (in the weak convergence of measures topology) is a probability measure
with support in the (closed) subspace C([0,∞[) of D([0,∞). It is also clear that
in condition (a) we may use any fixed time T instead of the origin 0.

Most of the times, the condition (b1) and (b2) are deduced from the following
estimate: there are p, q > 0 such that for every T > 0 we can find CT > 0
satisfying

En
{∣∣ω(s)− ω(t)

∣∣p ∣∣Dt} ≤ CT (s− t)
1
2+q, ∀0 ≤ t < s ≤ T, ∀n,

where Dt is the σ-algebra defined in the previous section, and En{· | Dt} denotes
the conditional expectation with respect to Pn. While

En
{∣∣ω(s)− ω(t)

∣∣p} ≤ CT (s− t)1+q, ∀0 ≤ t < s ≤ T, ∀n

is used to obtain condition (b). There are other ways of proving tightness of
a family of probability, or criterium of compactness, but details are left for a
more advance course.

As mentioned early, the reader is referred, for instance, to the books Billings-
ley [15, Chapter 3, pp. 109–153], Jacod and Shiryaev [69, Sections VI.1 and
VI.2, pp. 288–310], Ethier and Kurtz [47, Section 3.5, pp. 116–154], Gikhman
and Skorokhod [53, Chapter 4, pp. 144–173], and Pollard [105, Chapter V, pp.
89–121], among others.

3.7 Convergence of Processes

Since the concept of stochastic processes lead to the study of probability mea-
sures on a separable and complete metric space (also called Polish space), we
continue the discussion initiated in Chapter 1 Section 1.3, where a processes is
regarded as either a family of random variables and/or a probability (i.e., its
distribution) on a Polish space.

A good discussion on this subject can be founded in Billingsley [15, Chapters
1,2 and 3, pp. 1–215], Ethier and Kurtz [47, Chapter 3, pp. 95–154] or Ikeda
and Watanabe [62, Chapter 1, pp. 1–44]. We are going to state some of the
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key elements, besides what was discussed in Chapter 1, Section 1.3, where the
probability was regarded independently of the process itself. Actually, a key
point is to focus in the sample space Ω and to use several probabilities as the
distributions of processes under consideration.

First consider P(Ω) the family of probability measures on (Ω,B), where
B = B(Ω) is the Borel σ-algebra on the Polish space Ω. This is also referred to
as the family of Borel probability measures on Ω. The Prohorov metric on P(Ω)
is defined by

d(P,Q) = inf{ε > 0 : P (A) ≤ Q(Aε) + ε, ∀A closed in Ω},

where Aε = {ω ∈ Ω : infω′∈A dΩ(ω, ω
′) < ε}, and dΩ(·, ·) is the metric on Ω.

Thus P(Ω) endowed with the above metric becomes a Polish space.
Denote by Cb(Ω) the space of real-valued continuous function on the Polish

space (Ω, dΩ) with the natural norm ∥f∥ = supω |f(ω)|. A sequence {Pn : n =
1, 2, . . . } in P(Ω) is said to converge weakly to P if

lim
n→∞

∫
f(ω)Pn(dω) =

∫
f(ω)P (dω), ∀f ∈ Cb(Ω).

Actually, even in a metric space Ω, and if the integral of f with respect to the
probability Pn or P is written as Pn(f) or P (f) then, the above convergence is
equivalent to any of the following conditions:

(1) Pn(f) → P (f), for every bounded Lipschitz function f ;
(2) lim supn Pn(f) ≤ P (f), for every upper semi-continuous function bounded

from above;
(3) lim supn Pn(f) ≥ P (f), for every lower semi-continuous function bounded

from below;
(4) lim supn Pn(f) ≤ P (f), for every function of the form f = 1C , with C a

closed set;
(5) lim supn Pn(f) ≥ P (f), for every function of the form f = 1O, with O an

open set;
(6) lim supn Pn(f) = P (f), for every function of the form f = 1B , with B a

Borel set with boundary ∂B having zero P -probability.

Moreover, it is sufficient to take only functions f which are uniformly continuous.
Furthermore, if we know that the limit measure is a probability then it is enough
to satisfy the convergence for uniformly continuous functions with a bounded
support, even more, if the space Ω is locally compact, then it suffices to use
continuous functions with a compact support. The important point here is
that the convergence in the Prohorov metric is equivalent to the above weak
convergence.

A classic result, so-called Skorokhod representation, gives some relation with
the almost surely convergence.

Theorem 3.14 (Skorokhod). Let {Pn : n = 1, 2, . . . } be a sequence of proba-
bility measures on a Polish space Ω which converge weakly to P. Then in some
common probability space there exist random variables Xn : n = 1, 2, . . . and X
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with values in Ω with distributions Pn : n = 1, 2, . . . and P, respectively, such
that limn→∞Xn = X almost surely.

In the above the condition Polish space can be replaced by metric space,
provided the support of the probability measure P is separable.

One of the typical applications of this representation is the fact that the
weak convergence is preserved by Borel mapping which is almost continuous
with respect to the limiting measure, i.e., suppose that X is a Borel measurable
function form Ω into itself, where (Ω, dΩ) is a separable and complete metric
space, and {Pn : n = 1, 2, . . . } is a sequence of probability measures on Ω
which converges weakly to P ; if {Qn : n = 1, 2, . . . } and Q are the image
measures through the mappingX of {Pn : n = 1, 2, . . . } and P then the sequence
{Qn : n = 1, 2, . . . } converges weakly to the measure Q, provided X is P -almost
surely continuous.

Another point is the characterization of pre-compacts or relatively compact
sets (i.e., with a compact closure) set in P(Ω) with the weak convergence i.e.,
endowed with the Prohorov metric.

Theorem 3.15 (Prohorov). A sequence of probability measures {Pn : n =
1, 2, . . . } on a Polish space Ω has a weakly convergent subsequence if and only
if the sequence is tight i.e, for any ε, δ > 0 there exist ω1, . . . , ωn in Ω such that

Pn(

n⋃
i=1

{ω : dΩ(ωi, ω) ≤ δ}) ≥ 1− ε

for all n = 1, 2, . . . .

Usually, a family of probability measures {Pα} on Ω is said to be tight if for
any ε > 0 there exists a compact set K ⊂ Ω such that Pα(K) ≥ 1 − ε for any
index α. Since a set is pre-compact in Ω if and only if it is totally bounded this
is equivalent to the above condition.

In view of the above characterization of the weak convergence of measures, it
is important to understand the structure of compact sets in the particular spaces
C([0,∞), E) and D([0,∞), E), where (E, dE) is a Polish space, in particular
E = Rd. Classic results applies to say that pre-compact sets are equivalent to
totally bounded and equi-continuous sets. Thus a family {ωα} of functions in
C([0,∞), E) is relatively compact if and only if

(a) for any δ > 0 and rational r ≥ 0, there exist x1, . . . , xn in E such that for
any index α we have

ωα(r) ∈
n⋃
i=1

{x : dE(xi, x) ≤ δ}

(b) for each T > 0 and for any ε > 0 there exists δ > 0 such that for any index
α, and any t, s in [0, T ] we have dE(ωα(t), ωα(s)) < δ.

The fact that in (a) we require the condition to be satisfied only for rational
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is convenient for later. Now, for the space D([0,∞), E) we need to use the
modulus of continuity w(ω, δ, T ) defined by

w(ω, δ, T ) := inf
{ti}

sup
i

sup{dE(ω(t), ω(s)) : ti−1 ≤ s < t < ti}

where {ti} ranges over all partitions of the form 0 = t0 < t1 < · · · < tn = T,
with ti − ti−1 ≥ δ and n ≥ 1. A shorter version of the modulus of continuity is
given by the expression

w(ω, δ, T ) := sup
0≤t<T−δ

sup
t≤s≤t′≤t+δ

{dE(ω(t′), ω(s)) ∧ dE(ω(s), ω(t))},

where ∧ means the minimum between numbers. Therefore, we replace (b) by
the condition

(b1) for each T > 0 and for any ε > 0 there exists δ > 0 such that for any index
α we have w(ωα, δ, T ) < ε.

It is cleat that if E = Rd then (a) reduces to

(a1) for any rational r ≥ 0, there N > 0 such that for any index α we have
|ωα(r)| ≤ N.

Theorem 3.16 (tight). Let X1, X2, . . . be a sequence of random variables with
values in D([0,∞), E), with E a Polish space and P1, P2, . . . be its associated
probability law on D([0,∞), E). Then the sequence P1, P2, . . . is tight (hence
relatively compact) in D([0,∞), E) if an only if the following two conditions
hold:

(a’) for any ε, δ > 0 and rational r ≥ 0, there exist x1, . . . , xk in E such that
for any index n we have

Pn(Xn(r) ∈
k⋃
i=1

{x : dE(xi, x) ≤ δ}) ≥ 1− ε,

(b’) for each T > 0 and for any ε > 0 there exists δ > 0 such that for any index
n we have

Pn(w(Xn, δ, T ) ≥ ε) < ε.

Moreover, if the sequence is tight, then it is weakly convergent if and only its
finite-dimensional distributions converge.

It is clear that some obvious modifications should be done for a sequence
of random variables in the space C([0,∞), E), i.e., re-defining w(ω, δ, T ) as
sup{dE(ω(t), ω(s)) : |t− s| < δ, s, t ∈ [0, T ]}. In the space C([0,∞),Rd), condi-
tion (b’) simply becomes:

(b’) for each T > 0 and for any ε > 0 there exists δ > 0 such that

Pn
(

sup
s,t∈[0,T ], |t−s|<δ

|Xn(t)−Xn(s)| ≥ ε
)
< ε, (3.17)
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for any index n.

Naturally, the above result is useful to study cad-lag processes. It may
be convenient to use Aldous’ criterion in D([0,∞),Rd), e.g., see Ethier and
Kurtz [47, p. 137, Theorem 8.6, Chapter 3] or Liptser and Shiryayev [88, Section
6.3, pp. 515–519]. This is to replace condition (a’) and (b’) of the previous
theorem with the following statement:

(a*) for any ε > 0 there exists M > 0 such that for any index n we have

Pn(|Xn(0)| ≥M) < ε, (3.18)

(b*) for each T > 0 and for any ε > 0 there exists δ > 0 such that for any index
n we have

sup
0<s≤δ

Pn(|Xn(τn + s)−Xn(τn)| ≥ ε) < ε, (3.19)

for any stopping time (relative to Xn) τn satisfying 0 ≤ τn ≤ T. The key facts
here are that the sup is outside of the integral and that s is a (deterministic)
number, so that τn+s becomes an optional time with respect to processXn(·−s).
Moreover, (b*) is equivalent to the following condition:

(b”) for each T > 0 and for any ε > 0 there exists δ > 0 such that for any index
n we have

Pn(|Xn(θn)−Xn(τn)| ≥ ε) < ε, (3.20)

for any stopping times (relative to Xn) θn and τn satisfying 0 ≤ θn ≤ τn ≤ T
and τn ≤ θ + δ.

If (Pn, Xn) is a sequence of homogeneous strong Markov processes in the
canonical space D([0,∞),Rd) with transition probability measure Pn(x, t,dy),
and a sequence of stopping times τn, then the equality, with some r > 0,

E
{
E{|Xn(τn + s)−Xn(τn)|r |X(τn)}

}
=

=

∫
Rd

E
{
|y −X(τn)|rPn(X(τn), s,dy)

}
shows that Aldous’ criterion conditions (b*) (3.19) is satisfied if

lim
s→0

sup
n

∫
Rd

|y − x|rPn(x, s,dy) =

= lim
s→0

sup
n

E
{
|Xn(s)−Xn(0)|r |Xn(0) = x

}
= 0

which is a simple condition to verify. Moreover, the expression |y − x|r above
could be replaced by γ(|y − x|) with a strictly increasing continuous function
γ(·) satisfying γ(0) = 0. For instance, the reader may check the book Bass [5,
Chapter 34, pp 259–268].
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The convergence of finite-dimensional distributions of a sequence {Xn : n ≥
1} of Rd-valued stochastic processes, means that for any finite number of times
t1, . . . , tk we have

lim
n

E{h(Xn(t1), . . . , Xn(tk))} = E{h(X(t1), . . . , X(tk))},

for any continuous and bounded real-valued function h on Rk. On the contrary
to the convergence in D([0,∞),Rd), no convergence condition on the paths is
involved in this concept.

To control the modulus of continuity of a processX(t), the following estimate
is very useful. For any α, β > 0 there exists a constant C0 = C0(α, β) such that

|f(t′)− f(s′)|α ≤ C0 |t′ − s′|β
∫ T

0

dt

∫ T

0

|f(t)− f(s)|α

|t− s|2+β
ds, (3.21)

for any continuous function f on [0, T ] and any t′, s′ in [0, T ], see Da Prato
and Zabczyk [31, Theorem B.1.5, pp. 311–316] or Stroock and Varadhan [129,
Theorem 2.1.3, pp. 47–49]. Therefore, if for some constants p, q, C > 0 a
process X(t, ω) satisfies

E
{
|X(t)−X(s)|p

}
≤ C|t− s|1+q, ∀t, s ∈ [0, T ], (3.22)

then by taken p = α and β = r with 0 < r < q we deduce that there is another
constant C0 = C0(p, q, C, r) such that

E
{

sup
t,s∈[0,T ], |t−s|<δ

{|X(t)−X(s)|p}
}
≤ C0 δ

r, ∀δ > 0. (3.23)

Essentially, an estimate in L∞ of the modulus of continuity is obtained based
on an estimate in Lp. This is of particular interest for stochastic processes with
continuous paths.

For cad-lag processes, a bound of the type: for every 0 ≤ t ≤ s ≤ t+ δ ≤ T,
and some positive constants C, p and q,

E
{[
|X(t+ δ)−X(s)| ∧ |X(s)−X(t)|

]p} ≤ Cδ1+q, ∀δ > 0, (3.24)

yields the estimate

E
{

sup
0≤t≤T−δ

sup
t≤s≤s+δ

{|X(t+ δ)−X(s)| ∧ |X(s)−X(t)|}p
}
≤ C0 δ

r,

(3.25)

for every δ > 0, any 0 < r < q and another constant C0 = C0(p, q, C, r). The
reader may consult the books Billingsley [15, Chapter 3, pp. 109–153] or Ethier
and Kurtz [47, Chapter 3, pp. 95–154] for a complete discussion.

Sometime we have to use the space B(Ω) of all bounded and Borel measur-
able functions from the Polish space Ω into Rn. The weak topology we need
is the so-called boundedly and pointwise convergence i.e., a sequence of func-
tions {fn : n = 1, 2, . . . } in B(Ω) converge boundedly and pointwise to f if
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supn,ω |fn(x)| < ∞ and fn(x) −→ f(ω) for every ω ∈ Ω. The (sequentially)
closure of a set M in this topology is referred to as the bp-closure of M . A
typical application of the Monotone Class Theorem shows that the bp-closure
of Cb(Ω) is the whole space B(Ω) i.e., it is bp-dense. Moreover, since Ω is sep-
arable, there exists a sequence {fn : n = 1, 2, . . . } of nonnegative continuous
and bounded functions that span a bp-dense set in B(Ω). Note that this is not
to say that any function in B(Ω) is a boundedly and pointwise limit of a se-
quence of function in Cb(Ω). Due to the probability measure, we prefer to use
the Lebesgue space L∞(Ω,F , P ) instead of B(Ω), when ever is possible. The
reader may consult the books Doob [38, Chapters VIII,. . . ,X, pp. 123–177],
Jacod and Shiryaev [69, Chapter VI, pp. 288–347], among other, for a complete
discussion of convergence of measures and processes.

3.8 Existence of Probabilities

At this point, the reader may revise the some of the basic subjects treated in
the book Malliavin [92]. In particular, a revision on measure theory, e.g., as in
Kallenberg [71, Chapters 1 and 2, pp. 1–44], may be necessary.

Perhaps the Gaussian probability in Rn is the best well now situation, i.e.,
the probability space (Rn,Bn, Pn), where Bn is the Borel σ-algebra in Rn and
Pn is the probability measure given by

Pn(A) = (2π)−n/2
∫
A

exp
(
− 1

2

n∑
i=1

|xi|2
)
dx, ∀A ∈ Bn,

standard normal distribution or Gaussian with mean 0 and variance 1. However,
the extension of this probability to the space R∞ of all sequences of real numbers
(with the product topology) is not so trivial. If Xn denotes the projection from
R∞ into Rn, i.e., Xn(x) = (x1, . . . , xn) the first n coordinates of x, then it
is not immediate to establish the existence of a probability P defined on the
Borel σ-algebra B∞ such that P (A) = Pn(Xn(A)) for any A in B∞. In general,
the two points of interest here are the σ-algebra generated by the cylindrical
sets {X−1

n (A) : A ∈ Bn, n ≥ 1} and the σ-additivity of P . Therefore, on the
probability space (R∞,B∞, P ), we may look at {Xn : n ≥ 1} as a sequence of
Gaussian random variables which generates the σ-algebra B∞. It is well know
that the Hermit polynomials provide an orthonormal basis for the Hilbert space
L2(R1,B1, P1), however some tedious notation and details are needed to deduce
an orthonormal basis for L2(R∞,B∞, P ).

Now, our interest turns into the existence of probability measures, first in
Rn, next in separable Hilbert spaces and finally in Polish spaces, particularly in
the space of tempered distributions. Thus, the discussion about the existence
of a particular stochastic process with values in Rn becomes a discussion on the
existence of probability measures on relatively large spaces, such as the Schwartz
space of tempered distributions, where the Fourier transform can be used.

One way of constructing a probability measure is by prescribing its charac-
teristic function (or its Fourier transform). In finite dimensional spaces we have
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the classical Bochner’s Theorem stated as follow:

Theorem 3.17. If Ψ : Rn → C is the characteristic function of a probability
measure (space) (Rn,B(Rn), P ), i.e.,

Ψ(ξ) =

∫
Rn

exp
(
i(ξ, x)

)
P (dx) = E

{
exp

(
i(ξ, ·)

)}
,

with i =
√
−1, then (a) Ψ(0) = 1, (b) Ψ is continuous and (c) Ψ is positive

definite, i.e., for every natural number k, any ξi in Rn and any complex number
zi, i = 1, . . . , k we have

k∑
i,j=1

Ψ(ξi − ξj)ziz̄j ≥ 0,

where (·, ·) denotes the scalar product in Rn and z̄ is the conjugate of a complex
number. Conversely, an arbitrary function Ψ : Rn → C satisfying the above
properties (a), (b) and (c) is the characteristic function of a probability measure
P on Rn.

This is also known as Bochner-Khintchin’s Theorem, for instance, a complete
proof can be find in Gnedenko [54, Section 39, pp. 289–293] or Jacob [67, Vol
1, Theorem 3.5.7, pp. 108–109].

Next, the (Schwartz) space of rapidly decreasing and smooth functions S(R)
and its dual space of tempered distributions S ′(R) is identified (via Hermite
functions, i.e., given a sequence in s we form a function in S(R) by using the
terms as coefficients in the expansion along the orthonormal basis {ξn(x) : n ≥
1}, with

ξn+1(x) =
e−x

2/2

π1/4
√
n!
pn(

√
2x), n = 1, 2, . . . ,

where pn is the Hermite polynomial of order n) with the Fréchet space of rapidly
decreasing sequences

s =
{
a = {ak}∞k=0 : lim

k
kmak = 0, ∀m = 1, 2, . . .

}
.

This space is decomposed as s =
⋂∞
m=0 sm with sm defined for every integer m

as the space of all sequences a = {ak}∞k=0 satisfying

∥a∥m =
[ ∞∑
k=0

(1 + k2)m|ak|2
]1/2

<∞.

Its dual space is decomposed as s′ =
⋃∞
m=0 s

′
m, with s′m = s−m and the natural

paring between elements in s′ and s (also between s′m and sm), namely,

⟨a′, a⟩ =
∞∑
k=0

a′kak, ∀a′ ∈ s′, a ∈ s.
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Based on Bochner’s result for finite dimensional spaces and Kolmogorov’s
extension, a probability measure with a prescribed characteristic function can
be constructed in the space R∞, the space of all sequences of real numbers. It
takes some more effort (e.g., see Holden et al. [61, Appendix A, pp. 193–197]) to
check that the probability measure is concentrated on the dual space s′. Indeed,
use the continuity and the condition Ψ(0) = 1 to deduce that for any ε > 0 there
exist m > 0 and δ > 0 such that ∥a∥m < δ implies |Ψ(a)− 1| < ε, which yields∫

R∞
cos(⟨a′, a⟩)P (da′) ≥ 1− ε− 2δ−2∥a∥2m, ∀a ∈ s. (3.26)

Now, for every sequence b = {bk}, with bk > 0 consider the (Gaussian) proba-
bility measure µn,σ on Rn+1 defined by

µn,σ =

n∏
k=0

(2πσbk)
−1/2 exp

[
− a2k

2σbk

]
dak,

for any σ > 0. Recall that∫
Rn+1

cos(⟨a′, a⟩)µn,σ(da) = exp
[
− σ

2

n∑
k=0

bk(a
′
k)

2
]
,

∫
Rn+1

∥a∥2m µn,σ(da) = σ

n∑
k=0

(1 + k2)mbk,

and integrate (3.26) with respect to µn,σ on Rn+1 to get∫
R∞

exp
[
− σ

2

n∑
k=0

bk(a
′
k)

2
]
P (da′) ≥ 1− ε− 2δ−2σ

n∑
k=0

(1 + k2)mbk.

Now, take bk = (1+k2)−m−1 to have
∑n
k=0(1+k

2)mbk = C <∞, which imply,
by means of the monotone convergence,∫

R∞
exp

[
− σ

2
∥a′∥2−m−1

]
P (da′) ≥ 1− ε− 2δ−2σC.

Finally, let σ vanish to get P (s′m+1) ≥ 1− ε, which proves that P (s′) = 1.
At this point, we can state the following version of a Bochner-Minlos the-

orem: On the space of test functions S(R) we give a functional Ψ which is
positive definite, continuous and satisfies Ψ(0) = 1, then there exists a (unique)
probability measure P on the space of tempered distributions S ′(R) having Ψ
as its characteristic function, i.e.,

Ψ(φ) =

∫
S′(R)

exp
(
i⟨ω, φ⟩

)
P (dω) = E

{
exp

(
i⟨·, φ⟩

)}
,

where ⟨·, ·⟩ denote the paring between S ′(R) and S(R), i.e., the L2(R) inner
product.
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Certainly, this extends to multi-dimensional case, i.e., S(Rd) and vector-
valued functions S(Rd;Rn). Thus, we can state the following very useful result
regarding the construction of a Lévy martingale measures:

Theorem 3.18 (Lévy noise). Let S ′(R;Rd) be the space of tempered distribu-
tions in R with values in Rd. Suppose that σ is a (real-valued) square d × d
matrix and that π is a Radon measure in Rd satisfying∫

Rd

(
|y|2 ∧ |y|

)
π(dy) <∞, π({0}) = 0. (3.27)

Then, there exists a unique probability measure P on (Ω,B), with Ω = S ′(R;Rd)
and B = B(Ω) such that

E
{
exp

[
i⟨·, φ⟩

]}
= exp

(
− 1

2

∫
R
|σφ(t)|2dt

)
×

× exp
(∫

R
dt

∫
Rd

[
ei(φ(t),y) − 1− i(φ(t), y)

]
π(dy)

)
, (3.28)

where E{·} denotes the expectation with respect to P and | · | and (·, ·) are the
Euclidean norm and scalar product, respectively. In particular, E

{
⟨·, φ⟩

}
= 0,

and if also∫
Rm

|y|2 π(dy) <∞, (3.29)

then

E
{∣∣⟨·, φ⟩∣∣2} =

∫
R

∣∣σφ(t)∣∣2dt+ ∫
R
dt

∫
Rd

∣∣(φ(t), y)∣∣2π(dy), (3.30)

for any test function φ.

Note that by replacing φ with λφ, taking derivatives with respect to λ and
setting λ = 0 we deduce the isometry condition (3.30), which yields an analogous
equality for the scalar product E

{
⟨·, φ⟩ ⟨·, ψ⟩

}
, with φ and ψ in S(R;Rd). Clearly,

from the calculation point of view, the Fourier transform for h in S(Rd)

ĥ(ξ) = (2π)−d/2
∫
Rd

h(x)e−i(x,ξ)dx,

and its inverse

h(x) = (2π)−d/2
∫
Rd

ĥ(ξ)ei(x,ξ)dξ,

are useful to estimate

E{
{
h(⟨·, φ1⟩, . . . , ⟨·, φd⟩)

}
=

= (2π)−d/2
∫
Rd

ĥ(ξ)Ψ(ξ1φ1 + . . .+ ξdφd)dξ, (3.31)
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where Ψ is the characteristic function, i.e., the right-hand-side in (3.28).
Also, from the finite-dimensional case, we know that the functions

exp
(
− |x|2/2

)
, exp

(
ei(x·b) − 1

)
, exp

(
− i(x · b)

)
,

for b fixed, are characteristic functions of the Gaussian, the Poisson and the
Dirac distributions. Therefore, any matrix a = (aij) of the form

aij = exp
{
− |ζi − ζj |2/2 + ei(ςi−ςj)−1

}
is a positive definite matrix. Thus, by approximating the integrals (by partial
sums) in right-hand-side (called Ψ) of (3.28), we show that Ψ is indeed positive
define.

Hence, we have constructed a d-dimensional smoothed (1-parameter) Lévy
noise associated with (σ, π). Indeed, the canonical action-projection process,
which is the natural paring

X(φ) = X(φ, ω) = ⟨ω, φ⟩, ∀φ ∈ S(R;Rd),

can be regarded as a family of R-valued random variables X(φ) on the proba-
bility space (Ω,B(Ω), P ), with Ω = S ′(R;Rd) and P as above. Clearly, this
is viewed as a generalized process and the actual Lévy noise is defined by
Ẋ(φ) = −⟨ω, φ̇⟩.

Considering the space L2(P ) and the vector-valued space L2
σ,π(R;Rd) with

the inner product defined by

⟨φ,ψ⟩σ,π =

∫
R

(
σφ(t), σψ(t)

)
dt+

∫
R
dt

∫
Rd

(φ(t), y) (ψ(t), y)π(dy),

we can view φ 7→ X(φ, ·) as an isometry from L2
σ,π(R;Rd) into L2(P ), initially

defined on the test space S(R;Rd) and uniquely extended everywhere. Thus,
the expression ⟨ω, φ⟩ makes sense almost surely (passing to the limit) for φ in
L2
σ,π(R;Rd). Now, for a given test function φ we denote by φi,t the test function

with only one non-zero component, namely, the i-component which is given by
the expression 1(0,t], i.e., φi,t = (0, . . . ,1(0,t], . . . , 0). Thus, a d-dimensional
Lévy (martingale) process ℓi(t) := X(φi,t) for i = 1, 2, . . . , d (with diffusion
matrix σ∗σ/2 and Levy measure π) is almost sure defined. Indeed, because the
scalar product is preserved, the stochastic process ℓ has orthogonal increments.
Moreover, the linearity in φ and the product (or integral and exponential) form
of the characteristic function (3.28) show that the random variable ⟨·, φ⟩ is
independent of ⟨·, ψ⟩ as long as φ and ψ have disjoint support. Thus, the
stochastic process (ℓ(t) : t ≥ 0) is stationary with independent increments. The
existence of a cad-lag version follows from the estimate

E
{
|ℓi(s+ r)− ℓi(t)|2|ℓi(t)− ℓi(s)|2

}
=

= E
{(
ℓi(s + r − t)

)2}E
{(
ℓi(t − s)

)2} ≤ Cr2,
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for any i, 0 ≤ s ≤ t ≤ s+r ≤ T, any T > 0 and some positive constant C = CT .
On the other hand, we can impose less restrictive assumptions on the Radon

measure π, i.e., to separate the small jumps from the large jumps so that only
assumption∫

Rd

(
|y|2 ∧ 1

)
π(dy) <∞, π({0}) = 0. (3.32)

is needed. For instance, the Cauchy process in Rd, where σ = 0 and the Radon
measure π has the form∫

Rd

φ(y)π(dy) = lim
ε→0

∫
|y|≥ε

φ(y)|y|−d−1dy,

π does not integrate the function φ(y) = |y|, and

exp
(∫

R
dt

∫
Rd

[
ei(φ(t),y) − 1− i(φ(t), y)1|y|≤1

]
|y|−d−1dy

)
=

= exp
(∫

R
dt

∫
Rd

2
[
cos(φ(t), y)− 1

]
|y|−d−1dy

)
,

replaces the second exponential in (3.28). Sometimes, we require a stronger (at
the origin) integrability assumption on the Radon measure π, namely,∫

Rm

(
|y| ∧ 1

)
π(dy) <∞, π({0}) = 0.

and the second exponential in (3.28) takes the form

exp
(∫

R
dt

∫
Rd

[
ei(φ(t),y) − 1

]
π(dy)

)
,

for instance, the case of the Γ-process in Rd, d = 1 with parameters c, α > 0,
where σ = 0 and the measure π is given by∫

R
φ(y)π(dy) = lim

ε→0
c

∫ ∞

ε

φ(y)y−1e−αydy,

π does not have a finite mass, and

exp
(
c

∫
R
dt

∫ ∞

0

[
eiφ(t)y − 1

]
y−1e−αydy

)
replaces the second exponential in (3.28).

The theory of martingales (see Section 5.4 later on) shows that the Lévy
(martingale) process ℓ can be written as a continuous part (its Wiener process)
and a purely discontinuous part (its Poisson jumps part). Alternatively, we can
split the Rd space into Rn × Rm, namely, ω = (ωn↰, ω↱m) where ωn↰ and ω↱m

are tempered distributions in R with values in Rn and Rm, respectively. Thus
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if φ(t) = (φn↰(t), φ↱m(t)), where φn↰(t) and φ↱m(t) denote test functions in R
with values in Rn and Rm, respectively, then ⟨ω, φ⟩ = ⟨ωn↰, φn↰⟩ + ⟨ω↱m, φ↱m⟩.
Hence, we have a (n+m)-dimensional smoothed (1-parameter) Wiener-Poisson
(Lévy) noise, i.e.,

Xn↰(φ, ω) := ⟨ωn↰, φn↰⟩, X↱m(φ, ω) := ⟨ω↱m, φ↱m⟩,

the action-projection on Rn and Rm, respectively. Clearly, Xn↰ provides a
Wiener process independent of the Poisson martingale measure obtained from
X↱m.

Therefore, by considering the vector-valued space L2
σ,π(R;Rn+m) where we

have separate the first n components from the last m components, we can con-
struct (almost sure defined) a n-dimensional Wiener process wi(t) := X(φi,t)
for i = 1, 2, . . . , n (with diffusion matrix σ∗σ/2) and a m-dimensional Poisson
martingale measure qi(t) := X(φi,t) for i = n+ 1, n+ 2, . . . , n+m (with Levy
measure π, so that its jumps ∆qi form a Poisson point process). Indeed, the
stochastic process

Xt = x+
(
w1(t), . . . , wn(t), q1(t), . . . , qm(t)

)
, ∀ t ≥ 0, x ∈ Rn+m (3.33)

(also denoted by Xx
t ) has orthogonal increments, which implies that (Xt : t ≥ 0)

is stationary with independent increments, i.e., a Lévy process in law. To take
a cad-lag version (which results continuous in the first n components) under
assumption (3.29), we may use the estimates

E
{
|wi(t)− wi(s)|4

}
= E

{(
wi(t− s)

)4} ≤ C|t− s|2,
E
{
|qj(s+ r)− qj(t)|2|qj(t)− qj(s)|2

}
=

= E
{(
qj(s+ r − t)

)2}E
{(
qj(t− s)

)2} ≤ Cr2,

for any i, j, 0 ≤ s ≤ t ≤ s + r ≤ T, any T > 0 and some positive constant
C = CT . However, (for the Poisson point process) if only condition (3.32) holds
then we can obtain suitable estimates using the equality (3.31). We have then
described a way of constructing these processes.

Actually, the only properties used in Lévy’s Theorem 3.18 is the fact that
the complex-valued characteristic function Ψ is continuous (at zero suffices),
positive definite and Ψ(0) = 1. Indeed, this generalizes to separable Hilbert
spaces, e.g., see the book Da Prato and Zabczyk [30, Theorem 2.13, pp. 49–52],
by adding an extra condition on Ψ. Recall that on a separable Hilbert space H,
a mapping S : H → H is called a nuclear (or trace class) operator if for any (or
some) orthonormal basis {ei : i ≥ 1} in H the series

∑
i |(Sei, ei)| is convergent.

On the other hand, σ : H → H is called a Hilbert-Schmidt operator if for any
(or some) orthonormal basis {ei : i ≥ 1} in H the series

∑
i(σei, σei) is finite.

Theorem 3.19 (Sazonov). A complex-valued function Ψ on a separable Hilbert
space H is the characteristic function of a probability measure P on (H,B(H))
if and only if (a) Ψ is continuous, (b) is positive definite, (c) Ψ(0) = 1 and
satisfies the following condition:
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(d) for every ε > 0 there exists a nonnegative nuclear (or trace class) operator
Sε such that each h in H with (Sεh, h) ≤ 1 yields 1−ℜ{Ψ(h)} ≤ ε.

Let σi : H0 → H0 (i = 1, 2) be two (symmetric) Hilbert-Schmidt operators
on a separable Hilbert space H0 with inner product (·, ·)0 and norm | · |0. Now,
on the Hilbert space H = L2(R, H2

0 ), H
2
0 = H0×H0, consider the characteristic

function

Ψ(h1, h2) = exp
(
− 1

2

∫
R
|σ1h1(t)|20dt

)
×

× exp
(∫

R
dt

∫
H0

[
ei(σ2h2(t),σ2u)0 − 1− i(σ2h2(t), σ2u)0

]
π(du)

)
, (3.34)

where π is a measure on B(H0) such that∫
H0

(
|σ2u|20 ∧ |σ2u|0

)
π(du) <∞, π({0}) = 0. (3.35)

Under these assumptions the function Ψ is continuous on H, positive definite,
Ψ(0) = 1 and the condition (d) of Theorem 3.19 is satisfied for a given ε > 0
with a trace class operator Sε : H → H of the form

Sε((bk, bℓ)ej) =

{
(σ∗

1σ1bk, σ
∗
2σ2bℓ)ej if j ≤ n,

0 otherwise,

for any k, ℓ = 1, . . . , and for some n = n(ε), where {ej : j ≥ 1} is an orthonormal
basis in Lebesgue space L2(R) and σ∗

i is the adjoint of σi, i = 1, 2, while {bk :
k ≥ 1} and {(bk, bℓ) : k, ℓ ≥ 1} are orthonormal basis in the spaces H0 and H2

0 ,
this means that,(

Sεh, (bk, bℓ)ej
)
H

=

∫
R

[
(σ1h1(s), σ1bk)0 + (σ2h2(s), σ2bℓ)0

]
ej(s)ds,

for every h = (h1, h2), with hi in H0, for any k, ℓ = 1, . . . , and j = 1, . . . , n
(otherwise, the left-hand term vanishes), where (·, ·)H denotes the inner product
in H.

Therefore Ψ is the characteristic function of a probability measure P on the
Hilbert space H, i.e.,

E
{
ei(h,·)H

}
= Ψ(h1, h2), ∀h = (h1, h2) ∈ H,

where (·, ·)H denotes the inner product in H = L2(R, H2
0 ). Hence a cad-lag ver-

sion of a Lévy process on R or [0,∞) with parameters (σ1, σ2, π) and values in
H0 is obtained as previously discussed in Rn × Rm. Thus, the Lévy measure
π(σ∗

2σ2)
−1 is defined on the Hilbert space image H2 = σ∗

2σ2(H0) and the proba-
bility P can be considered on canonical sample space Ω = D([0,∞), H1×H2) or
Ω = D([0,∞), H1) ×D([0,∞), H2), with H1 = σ∗

1σ1(H0), where the canonical
process X(ω) = ω(t) has Ψ as its characteristic function. Clearly, a drift can

[Preliminary] Menaldi November 19, 2022



82 Chapter 3. Canonical Sample Spaces

be added and the parameters (σ1, σ2, π) can be time-dependent with suitable
assumptions.

The above arguments extend to the case of a countably Hilbertian space
(of which a typical example is the space S(Rd) of rapidly decreasing smooth
functions with its dual S ′(Rd) of tempered distributions), where the role the
Hilbert-Schmidt operators σi is better understood.

A countably Hilbertian space K is a separable Fréchet (i.e., complete locally
convex topological) space where the topology is given by an increasing sequence
{∥ · ∥n : n ≥ 0} of compatible (i.e., any Cauchy sequence in two norms and
convergent to zero in one norm results convergent to zero also in the other
norm) Hilbertian norms. Moreover, a space K is called nuclear if for any n ≥ 0
there existsm > n such that the canonical injection fromKm intoKn is Hilbert-
Schmidt, where Kn denote the completion of K with the Hilbertian norm ∥ ·∥n.
Thus Kn is a sequence of decreasing Hilbert spaces and K = ∩nKn. Next, if
we identify K0 with its dual space K ′

0 (by Riezs’ representation theorem) and
we denote the dual space K ′

n by K−n (with its dual Hilbertian norm ∥ · ∥−n,
n ≥ 1) then K−n is a sequence of increasing Hilbert spaces, the dual space K ′

is sequentially complete and K ′ = ∪nK−n.

Theorem 3.20 (Minlos). A complex-valued function Ψ on a countably Hilber-
tian nuclear space K is the characteristic function of a probability measure P
on the dual space (K ′,B(K ′)) if and only if Ψ is continuous at 0 in K, positive
definite and Ψ(0) = 1.

Note that if K is a countably Hilbertian nuclear space then so is S(Rd,K)
(for instance, regarding S(Rd,K) as the tensor product S(Rd,K) = S(Rd) ⊗
K) and K = S(Rd;Rm) with K ′ = S ′(Rd;Rm) is a typical example. Also
C([0,∞), X) is a Fréchet space if X is so. However, D([0,∞), X) is a Polish
(not a topological vector) space X is so. If (·, ·) is continuous inner product in
a countably Hilbertian nuclear space K (i.e., the inner product is continuous in
Kn for some n) and H is the Hilbert space completion of K with respect to (·, ·)
then H is called rigged Hilbert space in K, and we have the triplet K ⊂ H ⊂ K ′.
Certainly, any Kn can be used as H, but this is not necessary in general.

On the other hand, a set A in D([0,∞),K ′) (resp. C([0,∞),K ′)) is rela-
tively compact if and only if one of the following conditions is satisfied:

(1) For any k inK the set {⟨ω(·), k⟩ : ω ∈ A} is relatively compact inD([0,∞),R)
(resp. C([0,∞),R)).
(2) For every T > 0 there exists n such that AT the restriction of A to
D([0, T ],R) (resp. C([0, T ],R)) is relatively compact in D([0, T ],K−n) (resp.
C([0, T ],K−n)).

Clearly, any k in K defines a measurable map πk from D([0,∞),K ′) (resp.
C([0,∞),K ′)) into D([0,∞),R) (resp. C([0,∞),R)), πk(t, ω) = ⟨ω, k⟩. Then a
sequence {µi : i ≥ 1} is tight in D([0,∞),K ′) (resp. C([0,∞),K ′)) if and only
if for every k in K the sequence {µiπ−1

k : i ≥ 1} is tight as a Borel probability
measure in D([0,∞),R) (resp. C([0,∞),R)). Moreover, if for every T > 0 there
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is n with the property that for every ε > 0 there exists M > 0 such that

µi
(
{ω ∈ D([0, T ],K ′) : sup

0≤t≤T
|ω(t)|−n ≤M}

)
≥ 1− ε,

for every i ≥ 1, then the sequence {µi : i ≥ 1} regarded as Borel probability
measure in D([0, T ],K−m) is tight, withm ≥ n such that the canonical injection
from Km into Kn (and so from K−n into K−m) is Hilbert-Schmidt.

Hence if K ⊂ Hi ⊂ K ′, i = 1, 2 are two rigged Hilbert spaces then there is
a probability measure P on S ′(Rn;H1 ×H2) with characteristic function

E
{
exp

(
i[(φ1, ·)1 + (φ1, ·)2]

)}
= exp

(
− 1

2

∫
Rn

|φ1(t)|21dt
)
×

× exp
(∫

R
dt

∫
H2

[
ei(φ2(t),u)2 − 1− i(φ2(t), u)2

]
π(du)

)
, (3.36)

where π is a Radon measure on H2 satisfying∫
H2

(
|u|22 ∧ |u|2

)
π(du) <∞, π({0}) = 0, (3.37)

and (·, ·)i, | · |i denote the inner product and the norm in Hi, i = 1, 2. By com-
parison with (3.34) and (3.35) we see that the nuclear (or trace class) operators
σ1, σ2 are really part of the Hilbert space where the Lévy process takes val-
ues. Moreover, the parameter t may be in Rd and a Lévy noise is realized as a
generalized process.

For instance, the reader is referred to the book by Kallianpur and Xiong [74,
Chapters 1 and 2, pp, 1–83] for details on most of the preceding definitions.

If the probability to be constructed is not space-homogeneous (i.e., it is non-
stationary) then the canonical process (Xx

t : t ≥ 0) does not define a Markov
process under P. Thus, if for each x in Rd we have a d×d square matrix σ(x) and
a Radon measure π(x, dy) in Rd as before, then for every function ψ in L2(R,Rd),
we can construct (assuming some condition on the x-dependency of σ and π)
a probability measure Q(ψ, ·) on Ω = S ′(R;Rd) such that its characteristic
function satisfies∫

Ω

ei⟨ω,φ⟩Q(ψ,dω) = exp
(
− 1

2

∫
R
|σ(ψ(t))φ(t)|2dt+

+

∫
R
dt

∫
Rd

[
ei(φ(t),y) − 1− i(φ(t), y)

]
π(ψ(t),dy)

)
, (3.38)

Next, the expected Markov process is the Rd-valued canonical process

Xx(t, ω) = (Xx
i (t, ω) : i = 1, . . . , d), Xx

i (t, ω) := xi + ⟨ωi,1(0,t]⟩

under the probability P x, which is defined as the conditional probability

P x{· |Xx} = Q(Xx, ·).
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Certainly, a drift and a killing terms can be added, and much more details
are needed to complete this procedure. This involves the so called pseudo-
differential operators, see the treatise by Jacob [67].

Related to the re-construction of probability is the following result (e.g., see
Stroock and Varadhan [129, Theorem 1.3.5, pp. 34-36]). Let X be the canonical
process in the canonical space either C([0,∞), E) or D([0,∞), E), where E is a
Polish space. Assume {τn : n ≥ 0} is a nondecreasing sequence of stopping times
relative to the filtration {F(t) : t ≥ 0}, where F(t) and F(∞) are the σ-algebras
generated by {X(s) : 0 ≤ s ≤ t} and {X(t) : t ≥ 0}, respectively. Now, for each
n ≥ 0 let Pn be a probability measure defined on F(τn). If limn Pn{τn ≤ t} = 0
for every t ≥ 0, and the probability Pn+1 coincides with Pn on F(τn) for any n,
then there exists a probability measure P on F(∞), which coincides with Pn on
F(τn) for every n ≥ 0. Moreover, the same conclusion is true if F(t) is replaced
by F(t+).

The reader interested in a guided tour to measure theoretic probability
may take a look at the recent book by Pollard [106], and perhaps, later at
Bichteler [14, Appendix A, pp. 363–469].
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Chapter 4

Working on Probability
Spaces

The purpose of this chapter is to supply the readers (who have taken a solid
course in measure and integration theory but have little background in proba-
bility theory) with a crash introduction to stochastic processes. The focus is the
neighborhood of Markov processes in continuous time. The first reading may be
a little hard, since only references to proofs are given. The last section is only to
complement the subject, some of the exercises are not so simple exercises, basi-
cally the reader should consult the references for the proofs if exercises are under
consideration. Let us mention that a comprehensive introduction to probability,
assuming measure theory, can be found in Stromberg [125] and in Stroock [126],
among others. For instance, even without assuming measure theory, an intro-
duction to probability can be found in Taylor [132], while an analysis oriented
course on diffusion processes is given in Krylov [83]. Also Harlamov [58] and M.
Iosifescu et al. [63] may be of a considerable help. An extensive classic study of
the general theory of processes can be found in Dellacherie and Meyer [36], Gih-
man and Skorohod [52], Rao [109] and Sharpe [119]. For a complete discussion
for foundation of probability, the reader may check the treatises De Finetti [35]
and Loève[89], among many others. In a way, the material of this chapter could
be regarded as the central point of a first course in stochastic processes.

4.1 Random Variables

Let (Ω,F) be a measurable space i.e., F is a σ-algebra of subsets in Ω. A random
variable is a measurable mapping on (Ω,F), e.g. a real random variable x is
a measurable function from (Ω,F) into (R,B), where B = B(R) is the Borel
σ-algebra of R. Most of the information that we are interested in of a random
variable x is contained in the σ-algebra generated by x i.e., x−1(B) = {F ∈ F :
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86 Chapter 4. Working on Probability Spaces

x(F ) ∈ B}. Thus if x is a characteristic (or indicator) function

x(ω) =

{
1 if ω ∈ F,
0 if ω ∈ Ω∖ F,

for some F in F , then x−1(B) = {Ω, ∅, F,Ω ∖ F}. If (Ω,F) and (Ω′,F ′) are
two measurable spaces, ξ : Ω → Ω′ and x : Ω → R are two random variables,
then x is σ(ξ)-measurable, i.e., x−1(B) ⊂ ξ−1(F ′), if and only if there exists a
measurable map η : Ω′ → R such that x(ω) = η(ξ(ω)) for any ω in Ω. This is
proved by means of a monotone class argument. Moreover, this remains true if
R is replaced by a Polish space, i.e., a complete separable metric space.

A stochastic process is a collection of random variables indexed by some
set e.g., a real valued stochastic process X = {Xt : t ∈ T} is a family of
measurable functions Xt : Ω → R, with t ∈ T. Sometimes, the same process
is denoted by X = {X(t) : t ∈ T}. Certainly, we can replace R with Rd in
the previous discussion with almost not conceptual changes. Usually, when the
random variables are indexed by a discrete set (countable set of isolated and
totally ordered points) i.e. {. . . ,−1, 0, 1, . . . } or {1, 2, . . . }, we speak of a random
sequence or a time series. In this context, we can view a time series as a random
variable with values in R∞, the set of real valued sequences {(x1, x2, . . . ) : xi ∈
R, ∀i}. Here, we endowed R∞ with the product topology and its associated
Borel σ-algebra (e.g., Shiryayev [121]). A similar argument can be applied in
general, but the discussion is more delicate. Thus, it is preferable to reserve the
term process for uncountable index set T.

When the index set T is uncountable with a natural σ-algebra on it (for
instance T is an interval), we restrict our attention to measurable stochastic
process X i.e., we assume that the function X : Ω × T → R is measurable.
Moreover, if the index set T has a given topology and the stochastic process takes
values in a topological space i.e., Rd, then the following notions are necessary

Definition 4.1 (separable). A d-dimensional stochastic process {Xt : t ∈ T},
T ⊂ [0,+∞) is separable if there exists a countable dense set of indexes I ⊂ T
(called separant) such that for any t in T and any ω in Ω there exists a sequence
{tn : n = 1, 2, . . . } of elements in I which is convergent to t and such that
X(tn, ω) converges to X(t, ω).

For instance, the reader may want to take a look at the book by Meyer [99,
Chapter IV] to realize the complexity of this notion of separability.

Unless otherwise stated, when referring to a stochastic process {Xt : t ∈ T}
in a measurable space (Ω,F), when T is a topological space, we mean a measur-
able and separable stochastic process, as understood from the context. Thus we
denote by L0(Ω× T,Rd) the set of measurable stochastic processes with values
in Rd. Naturally, we can identify Xt(ω) with a measurable function in t, for
each fixed ω, so that L0(Ω× T,Rd) = L0(Ω,L0(T,Rd)) with the corresponding
product σ-algebra. Thus we may look at a d-dimensional stochastic process as
a random variable with values in L0(T,Rd). On the other hand, we may need
to consider processes continuous in probability (see versions of processes) which
are not expressible in terms of random variables.
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Definition 4.2. A d-dimensional stochastic process {Xt : t ∈ T}, T ⊂ [0,+∞)
is continuous if for any ω ∈ Ω the function t 7→ Xt(ω) is continuous.

Note that in the previous definition, the continuity is used as a global con-
dition. Thus, if we denote by C0(T,Rd) the set of continuous functions, we
may regard a d-dimensional stochastic process as a random variable with values
in C0(T,Rd), provided a σ-algebra is defined on it. Similarly, we may define
right (left) continuous and increasing (decreasing, locally bounded variation)
processes.

When an order is given on the index set T , most of the information of a
stochastic process X is contained in the history σ-algebra, i.e., the family Ft or
F(t) defined as the minimal sub σ-algebra of F that makes the random variables
{Xs : s ≤ t} measurable. This is an increasing family of σ-algebra i.e., Fs ⊂ Ft
if s ≤ t, which is called the natural filtration associated with the stochastic
process. Most of the time, the index set T = [0,+∞). In this case, for a given
measurable and separable process {Xt : t ≥ 0} we associate a natural filtration
{Ft : t ≥ 0} as before. Certainly, X is adapted to the natural filtration i.e.,
the random variable Xt is Ft-measurable for all t ≥ 0. Also, X is progressively
measurable with respect to the natural filtration i.e., the restriction of X to the
set Ω× [0, t] is measurable with respect to the product σ-algebra Ft ×B([0, t]),
for any t ≥ 0. Here, and in what follows, B(T ) denotes the σ-algebra of Borel
subsets of T, T ⊂ Rd.

If the filtration is given a priori (independently of the stochastic process),
then we will refer to as a stochastic process being adapted or progressively mea-
surable with respect to the given filtration if the above conditions are satisfied.
Moreover, we will see later that it is convenient to normalize the filtration to
standard (or usual) conditions. As a caution, technical, we refers adapted as
“adapted and measurable”. However, note that sometimes it may be conve-
nient to consider the notion of measurable independently of adapted, in this
case, we may have a measurable process Y such that the mapping ω 7→ Y (t, ω)
is F(t)-measurable, but Y is not progressively measurable.

This is essentially how far the analysis can go on measurable spaces. As soon
as a probability measure space (Ω,F , P ) is given, any random variable is iden-
tified with its equivalence class. The same applies to processes when considered
as random variables on function spaces, e.g., RT or C(T,R). In general, we may
say that a measurable function from the sample space (Ω,F) into another mea-
surable space (E, E) is a random variable, and it is called a stochastic process
if the value spaces has the form (ET , ET ), for some set of indexes T (usually a
subset of R). Moreover, when a probability measure P is given on the measur-
able space (Ω,F) then random variables and stochastic processes are identified
with their corresponding P -equivalence classes. For a given E-valued random
variable x, the probability measure defined by Px(B) = P{x−1(B)}, B in E , is
called the distribution of x. However, for a given E-valued stochastic process
X the family of probability on En, n ≥ 1, defined by PX(B1 × · · · × Bn) =
P{X(t1, ω) ∈ B1, . . . , X(tn, ω) ∈ Bn}, B1, . . . , Bn in E , t1, . . . , tn in T, is called
the finite-dimensional distributions of X.
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As long as the index set T is countable, no more detail is needed, how-
ever, for an uncountable index set T, e.g., T = [0,∞), we need to use the
notion of version and realization of a stochastic process. Indeed, for a given
(stochastic) process {Xt : t ∈ T} on a probability space (Ω,F , P ) we say that
{Yt : t ∈ T} is a version (or a modification) of the process {Xt : t ∈ T} if
P ({ω : Xt(ω) = Yt(ω)}) = 1, for any t in T. However, given a set of a priori
properties that a process should satisfy (e.g., its finite-dimensional distributions,
an assumption of continuity or measurability on its paths, or some other condi-
tion) then realization is a process, a probability space and any other items (such
as a filtration) used to verify all required properties. Sometimes, we will refer
to processes (not necessary defined on the same probability space) having the
same finite-dimensional distribution or what is essentially the same (provided
some regularity on the paths is assumed) having the same law in ET or C(T,E),
as discussed later.

Only the case where the value set E is a complete separable metric space
(Polish space), e.g., E ⊂ Rd, endowed with the Borel σ-algebra B(E), and
the set of index T is a totally ordered complete separable metric space, e.g.,
T = [0,∞), will be discussed herein. When the set of index T is uncountable,
we impose some property (e.g., separability or continuity) on processes so that
the value space ET is replaced by better a space, e.g., EI , I countable and dense
in T , or C(T,E) as discussed later.

Sometimes when dealing with extended real-valued random variables on a
probability space (Ω,F , P ) we may need a definition of convergence in measure
for random variables which may take values ±∞ with strictly positive proba-
bility. In this context we say that a sequence {xn : n = 1, 2, . . . } of random
variables converges in measure to another random variable x if the sequence
arctan(xn) converges in measure to arctan(x) in the usual sense, equivalently, if

lim
n→∞

E{| arctan(xn)− arctan(x)|} = 0,

where E{·} denote the mathematical expectation, i.e., the integral with respect
to the probability measure P . The metric d(x, y) = E{| arctan(x)− arctan(y)|}
on the space S of extended real-valued random variables make S a complete
metric space, after the identification of two random variables whenever they are
equal almost surely. Thus a measurable process {Xt : t ≥ 0} in the previous
sense is (essentially) a Borel measurable mapping t 7→ Xt from [0,+∞) into S,
we refer to Doob [39, pp. 407–410] for more details.

A typical generalization is to consider random variables with values in a Pol-
ish space (i.e, a complete and separable metric space), which is the analogous of
stochastic processes if the Polish space is a function space. Stochastic processes
are meant to model phenomenon which evolves in time in a random way. It is
usually admitted that most often statistical experiments or physical considera-
tions can only give information about the so-called finite-dimensional distribu-
tions of a process (note that two processes may have the same finite-dimensional
distributions but having not the same probability space of reference). Therefore
the choice of the Polish space becomes relevant for mathematical considerations.
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For instance, consider the real-valued processes Xt(ω) = 1 for every t in [0, 1],
and Yt(ω) = 1 only when t ̸= ω and Yt(ω) = 0 otherwise. It is clear that X is a
continuous process while Y is (Borel) measurable but it is not separable. More-
over, if the probability measures (in which they are considered) have not atoms
(each single event {ω}) has zero probability) then these two processes have the
same finite-dimensional distributions and from the phenomenological viewpoint
they should be considered the same process. Mathematically, we prefers to take
X.

Hence, in modeling a time-evolution random phenomenon, we are allowed to
choose a realization of the process most suitable for our mathematical purpose.
Questions like is this process continuous? really means does there exist some
process with the given finite-dimensional distributions whose paths are (almost
sure) continuous? or what is the same is there a continuous realization of
the process?. This means that we can select the probability space (Ω,F , P )
and the map X among those satisfying the prescribed properties on the finite-
dimensional distributions of the process. It will be clear by the end of this
chapter, that there is a canonical way to performing this procedure of selecting
a suitable realization such that the sample space Ω is a suitable Polish space
and X is the identity as a random variable or the coordinates mappings if viewed
as a stochastic process.

In what follows, we are going to denote indistinctly the notation P ({·}),
P (·) or P{·} for the probability measure, where the dot · represents a condition
defining a set of events.

4.2 Typical Distributions

Let (Ω,F , P ) be a probability space i.e., P is a measure on (Ω,F) such that
P (Ω) = 1, called a probability measure. A measurable set (or a set in F) is
called an event. When a probability measure is involved, the previous concept of
random variables becomes equivalence classes of random variables. For instance
we may use the Lebesgue Banach spaces Lp = Lp(Ω,F , P ), for any 1 ≤ p ≤ ∞.
However, the study of stochastic processes is more delicate, since the family of
random variable may not be countable.

As mentioned early, the distribution (or law) of a given random variable x is
the probability measure Px induced by x on B i.e., if x is a real random variable
then its distribution is given by

Px(B) = P ({ω : x(ω) ∈ B}), ∀B ∈ B(R).

Perhaps the three most important one-dimensional laws on R are the Gaussian
(or normal) distribution, with parameters m and r > 0 [N(m, r)], which has
support on R and is given by

Pg(B) =

∫
B

(2πr2)−1/2 exp(− |x−m|2
2r2 )dx,
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the Poisson distribution, with parameter λ > 0, which has support on N and is
given by

Pp(B) = exp(−λ)
∞∑
n=0

λn

n!
1(n∈B),

and the exponential distribution, with parameter α > 0, which has support on
R+

0 = [0,+∞) and is given by

Pe(B) =

∫
B∩R+

0

α exp(−αx)dx.

Thus the mean and the variance are as follows∫
R
xPg(dx) = m,

∫
R
(x−m)2Pg(dx) = r2,∫

R
xPp(dx) = λ,

∫
R
(x− λ)2Pp(dx) = λ,∫

R
xPe(dx) = α−1,

∫
R
[x− α−1]2Pe(dx) = α−2.

The characteristic function (or Fourier transform) of a distribution (or proba-
bility law) P on R is the complex-value function

P̂ (ξ) =

∫
R
eixξP (dx), ∀ξ ∈ R,

with i =
√
−1, and if the distribution P is on R+

0 then its Laplace transform is
also defined

P̃ (ζ) =

∫
R+

0

e−xζP (dx), ∀ζ ∈ R+
0 .

For the previous distributions we have

P̂g(ξ) = exp
(
− 1

2
rξ2 + imξ

)
,

P̂p(ξ) = exp
(
λ(eiξ − 1)

)
, P̃p(ζ) = exp

(
λ(e−ζ − 1)

)
,

P̂e(ξ) =
λ

λ− iξ
, P̃e(ζ) =

λ

λ+ ζ
.

There are others noted laws, such as the Cauchy distribution µ with parameters
m and c > 0 and the Γ-distribution ν with parameters c > 0 and α > 0 given
by

µ(B) = π−1c

∫
B

[
(x−m)2 + c2

]−1
dx, ∀B ∈ B(R),

ν(B) =
αc

Γ(c)

∫
B∩R+

0

xc−1e−αxdx, ∀B ∈ B(R+
0 ),
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with

µ̂(ξ) = exp(−c|ξ|+ imξ),

ν̂(ξ) = (1− iα−1ξ)−c, ν̃(ζ) = (1 + α−1ζ)−c.

The Cauchy distribution µ does not have a mean value (i.e, µ does not integrate
the function |x|) and the Γ-distribution has mean value equal to c/α. The ex-
ponential distribution is a particular case of the Γ-distribution, c = 1, and the
Γ-distribution with c = n/2 and α = 1/2 is referred to as the χ2-distribution
with n degrees of freedom. All these distributions are infinitely divisible, e.g.,
see Sato [116, Section 1.2, pp. 7-14].

Actually, for brevity we say a family A of measurable sets is mutually inde-
pendent relative to the probability P , instead of saying a family A composed by
measurable sets which are mutually independent relative to the probability P .
However, in all what follows, we refer to mutually independent by saying only in-
dependent, i.e., we say a family of independent sets and a family of independent
variables (or σ-algebras).

If Ai ⊂ F is a family on a probability space (Ω,F , P ) indexed by i ∈ I,
we define {Ai : i ∈ I} as independent if for any finite number of index J ⊂ I
and for any sets Ai in Ai, i ∈ J, we have (2.2). It is clear that if H and G are
two sub σ-algebras of F , which are generated by the π-systems H0 and G0 (i.e.,
σ(H0) = H and σ(G0) = G (recall that a π-system means a collection of subsets
closed or stable under finite intersections) then H and G are independent if and
only if H0 and G0 are independent, i.e., if and only if P (H ∩ G) = P (H)P (G)
for any H in H0 and G in G0, see Exercise 2.4.

Note that given a family A of three (or more) measurable sets, we may
say that A is pairwise independent if any two subsets A1 and A2 of A are
independent, i.e., P (A1 ∩ A2) = P (A1)P (A2). Clearly, this is distinct from the
concept of mutually independent just defined. The same remark can be used for
two or more families of either sub σ-algebras or random variables. On the other
hand, two families A1 and A2 of measurable sets are (mutually or equivalently
pairwise) independent P (A1 ∩ A2) = P (A1)P (A2) for any A1 in A1 and A2

in A2. Similarly, this definition can be extended to three or more families of
measurable sets, where we need to distinguish between mutually and pairwise
independent.

Note that if A and B are independent, i.e., P (A ∩ B) = P (A)P (B), then a
simple calculation shows that A′ = Ω ∖ A and B are also independent. As a
consequence, if Fi denotes the σ-algebra generated by Fi, i.e., Fi = {Ai,Ω ∖
Ai, ∅,Ω}, then a family of measurable sets (events) {Ai : i ∈ I} is independent
if and only if the family of σ-algebras {Fi : i ∈ I} is independent.

Thus, a sequence of independent random variables {xi : i ∈ I} is independent
if and only if

P
( ⋂
j∈J

{ω : xj(ω) ∈ Aj}
)
=

∏
j∈J

P
(
{ω : xj(ω) ∈ Aj}

)
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for any measurable sets Aj and any finite subset J of I. In term of the charac-
teristic functions, this is equivalent to

E
{
exp[i

∑
j∈J

αjxj ]
}
=

∏
j∈J

E
{
exp[iαjxj ]

}
,

for any constants αj and any finite subset J of I, where i =
√
−1. There is

a very close connection between the concepts of independence and Cartesian
product. If x and y are two real valued random variables, we may look at (x, y)
as a two-dimensional real valued random variable, then a direct comparison with
the definition of independence shows that the fact that x and y are independent
may be very simply expressed by the equation

P(x,y) = Px × Py,

i.e., the joint distribution of x, y is equal to the Cartesian product of the single
distributions of x and y.

• Remark 4.3. If x is a Normal distributed random variable with parameters m
and r > 0 then it characteristic function is given by

P{exp(iξx)} = exp(−1

2
r2ξ2 + imξ).

Hence, if xi, i = 1, . . . , k are independent Normal distributed random variables
with parametersmi and ri > 0 then any linear combination x = c1x1+· · ·+ckxk,
with ci real numbers, is indeed a Normal distributed random variables with
parameters m = m1 + · · · + mk and r =

√
r21 + · · ·+ r2k. Similarly, if x is a

Poisson distributed random variable with parameter λ > 0 then it characteristic
function is given by

P{exp(iξx)} = exp
(
λ(eiξ − 1)

)
.

Thus, if xi, i = 1, . . . , k are independent Poisson distributed random variables
with parameters λi then the sum x = x1 + · · · + xk is indeed a Poisson dis-
tributed random variables with parameter λ = λ1 + · · · + λk. However, if xi,
i = 1, . . . , k are independent exponentially distributed random variables with
the same parameter λ, i.e., with characteristic function

E{exp(iξx1)} =
λ

λ− iξ
=

(
1− iλ−1ξ

)−1
,

then the sum x = x1 + · · · + xk has a Gamma distribution with parameters λ
and k, i.e.,

E{exp(iξx)} =
(
1− iλ−1ξ

)−k
or P{x ∈ dt} =

λktk−1e−λt

(k − 1)!
dt.

On the other hand, the process of counting an independent identically expo-
nentially distributed sequence {xi} of random variables with parameter λ, i.e.,
n(t) =

∑
i 1xi≤t, produces a family of random variables, indexed by t ≥ 0,

identically Poisson distributed with parameter tλ.
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• Remark 4.4. Certainly, there many other useful distributions, e.g., (1) the
deterministic or delta or Dirac distribution, which is concentrated at one point
say x = x0, i.e., P{x = x0} = 1 and P{exp(iξ·x)} = exp(iξ·x0), (2) the uniform
or Lebesgue distribution, which is uniformly distributed on a region with finite
volume, e.g., a random variable uniformly distributed over an interval [a, b] has
distribution P{α < x ≤ β} = (min{b, β} − max{a, α})/(b − a), for every real
numbers α ≤ β, and (3) the compound Poisson distribution, which is frequently
used and can be described as follows: if n is a Poisson distributed random
variable with parameter λ > 0 which is independent of a sequence of independent
identically distributed random variables {xi} with F as its common distribution
satisfying F (0) = 0, then the random sum x(ω) = x1(ω) + · · · + xn(ω)(ω),
complemented with the condition x(ω) = 0 if n(ω) = 0, has a compound Poisson
distribution with parameters λ and F . Note that the condition that F (0) = 0
ensures that x = 0 only when n = 0. If F is a distribution in Rm∗ = Rm∖{0} then
the k-convolution F ∗k is the distribution of the independent sum x1 + · · ·+ xk,
and therefore, the compound Poisson distribution of a random variable x in Rm∗
is given by

P{x ∈ B} = Pcp(B) = exp(−λ)
∞∑
k=0

λk

k!
F ∗k(B),

with its characteristic function

P{exp(iξ · x)} = P̂cp(ξ) = exp
(
λ(eF̂ (ξ) − 1)

)
,

where F̂ is the characteristic function of the distribution F . It is interesting
to remark that the two parameters λ and F can be combined to produce finite
measure π, with λ = π(Rm∗ ) and F = π/λ, i.e., a compound Poisson random
variable x with parameter π has characteristic function

P{exp(iξ · x)} = exp
(∫

Rm
∗

(eix·ξ − 1)π(dx)
)
,

which reduces to the (simple) Poisson distribution if F is a deterministic, e.g., if
the finite-measure π is given by π(B) = λδ1(B) = λ11∈B , with B a Borel subset
of [0,∞). It is also clear that a compound Poisson random variable xmay or may
not have first moment (or mean), but if it does, the expression y = x − E{x}
produces what is called a centered or compensated Poisson distribution with
parameter π and characteristic function

P{exp(iξ · y)} = exp
(∫

Rm
∗

(
eix·ξ − 1− ix · ξ

)
π(dx)

)
,

where the finite measure π must integrate the function x 7→ |x| and the random
variable y has zero mean. At this point, let us mention that a distribution is
infinitely divisible if and only if it is a limit of a sequence of compound Poisson
distributions, e.g., see Prabhu [107, Chapter 4, pp.43–68].
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The construction of examples of independent sequences of random variables
involve some conditions (infinitely divisible) on the probability space (Ω,F , P ),
for instance if the σ-algebra F = {∅, F,Ω ∖ F,Ω}, with P (F ) > 0, then any
two independent sets A and B must be such that A = ∅ or B = ∅. There are
many (classic) properties related to an independent sequence or series of random
variables, commonly known as the (weak and strong) law of large numbers and
the central limit theorem, e.g., the reader is referred to the classic probability
books Doob [38], Feller [48] and Gnedenko [54], while an analytic view can be
found in Dudley [41], Folland [49, Chapter 10], Halmos [57]), Stromberg [125]
and Stroock [126].

• Remark 4.5 (conditional independence). In elementary probability theory we
define the conditional probability of a event A (i.e., a measurable set) given an-
other event C with P (C) > 0 as P (A |C) = P (A∩C)/P (C). Amore sophisticate
concept is the following: Given a measurable set C with 0 < P (C) < 1, a family
A of measurable sets is (mutually) conditional independent given C (relative to
the probability P ) if their elements are mutually conditional independent given
C, i.e., if for any finite number of sets A1, . . . , An in A we have

P
( n⋂
i=1

Ai |C
)
=

n∏
i=1

P
(
Ai |C

)
. (4.1)

Now, a family of σ-algebras is (mutually) conditional independent given C,
if for any finite number of σ-algebras F1, . . . ,Fn in the family and any sets
Ai in Fi we have (4.1). Similarly, a family of random variables is (mutually)
conditional independent given C, if the family of their generated σ-algebras is
(mutually) conditional independent given C. Moreover, if (4.1) holds for every
C with 0 < P (C) < 1 in a σ-algebra C then the sets A1, . . . , An are mutually
conditional independent given C, and similarly, if this holds for every set Ai in
Fi then the family of σ-algebras is (mutually) conditional independent given
(the σ-algebra) C.

Note that if we allow C = Ω then we foldback to the case of complete
independence Definition 2.3. It is also clear that condition (4.1) can be rewritten
as

P
( n−1⋂
j=1

Aij |Ain , C
)
=

n−1∏
j=1

P
(
Ain |C

)
,

for any permutation {i1, . . . , in} of {1, . . . , n}, provided P (Ain ∩ C) > 0.
As in the case of complete independence, if Fi denotes the σ-algebra gener-

ated by Fi, i.e., Fi = {Ai,Ω ∖ Ai, ∅,Ω}, then a family of events {Ai : i ∈ I} is
conditional independent given C if and only if the family of σ-algebras {Fi : i ∈
I} is conditional independent given C. However, if (4.1) condition holds for C
then it does not necessarily hold for Ω∖C, i.e., conditional independence with
respect to an event C is not necessarily the same as conditional independence
with respect to the σ-algebra generated by C, namely, C = {∅,Ω, C,Ω∖C}, see
later Definition 2.8 on conditional independence.
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Clearly, the conditional probability P (· |C) is itself a probability and thus,
conditional independence given a set C is just independence under the condi-
tional probability. Moreover, condition (4.1) can be rewritten in a less intuitive
way as

P
( n⋂
i=1

Ai ∩ C
)
[P (C)]n−1 =

n∏
i=1

P
(
Ai ∩ C

)
,

which becomes P (A1 ∩ A2 ∩ C)P (C) = P (A1 ∩ C)P (A2 ∩ C) when n = 2. In
particular, the space Ω = A1 is conditional independent of any event A = A2

given any event C with P (C) > 0. Also, if three events A, B and C are pairwise
independent with P (C) > 0 then A and B are conditional independent given C,
if and only if they are mutually independent according to Definition 2.3. Cer-
tainly, if P (C) = 0 the above equality could be used instead of condition (4.1),
but it is trivially satisfied and the definition is meaningless. Some comments on
this concept are given later, with the use of conditional expectation.

Going back to the three examples of distributions in R, we can extend
them to Rd as follows. Consider n independent identically distributed ran-
dom variables (ξ1, . . . , ξn), a linear transformation q from Rn into Rd, and
then for a given m ∈ Rd, we look at the distribution of the random variable
y = m + Q(ξ1, . . . , ξn). Identifying the linear transformation Q with a canon-
ical matrix, still denoted by Q, we deduce that if the common distribution of
(x1, . . . , xn) is Gaussian, then

Py(B) =

∫
B

pn(x)dx, ∀B ∈ B(Rd),

where

pn(x) = [2π det(QQ∗)]−d/2 exp
(
− [(x−m)∗(QQ∗)−1(x−m)]2

2

)
, (4.2)

and the ∗ means the transpose (of a matrix), det(·) is the determinant, and
we have assumed that QQ∗ is invertible. This is a Gaussian d-dimensional
distribution. Similarly, d-dimensional Poisson (or exponential) distribution can
be described.

Sums of independent random variables are studied with the purpose of gen-
eralizing and elaborating the law of the large numbers. Let {xi : i ≥ 1} be a
sequence of independent random variables on a probability space (Ω,F , P ), and
let {sn : n ≥ 1} be the sequence of partial sum, sn = x1 + · · · + xn. The first
point is the Kolmogorov’s zero-one law, namely, the series sn converges almost
surely or diverges almost surely (i.e., cannot converges for some ω and diverges
for others ω). Next, if the two series of real numbers

∑
i E{xi} (mean) and∑

i V{xi} (variance, V{x} = E
{[
x − E{x}

]2}
) converge then the series

∑
i xi

converges almost surely. Another result, known as the three series theorem, af-
firms that

∑
i xi converges almost surely if and only if the following three series

of real numbers
∑
i E{x′i},

∑
iV{x′i} and

∑
i P{xi ̸= x′i} are convergent, where
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x′i = xi if −1 ≤ xi ≤ 1 and x′i = 0 otherwise. There are several variants of these
theorems, e.g., the strong law of the large number, namely, if V{xi} is bounded
then

[
sn − E{sn}

]
/n converges to 0 almost surely, or if xi are integrable iden-

tically distributed then sn/n converges to E{x1} almost surely. Further in this
analysis is the central limit theorems and law of the iterated logarithm, where
we define the sequence of random variables tn =

[
sn − E{sn}

]
/
√
V{sn} and

give conditions under which the probability distributions of tn converges to the
Gauss or normal distribution N(0, 1). For instance, if the limit

1

V{sn}

n∑
i=1

E
{
|xi − E{xi}|2, |xi − E{xi}| ≥ ε

√
V{sn}

}
→ 0

holds true for every ε > 0, then the probability distributions of tn converges to
the Gauss or normal N(0, 1), i.e.,

lim
n
P (a < tn < b) = (2π)−1/2

∫ b

a

e−x
2/2dx, ∀b > a,

however we have

lim sup
n

tn = +∞ and lim inf
n

tn = −∞

almost surely. This is used in the Gauss’ theory of errors, namely, for every
n ≥ 1 let ξ1,n, . . . , ξn,k(n) be independent random variables and define σn =∑k(n)
i=1 ξi,k(n). If εn := supi,ω |ξi,k(ω)| → 0, E{σn} → m and V{sn} → v then

the probability distribution of σn converges to the Gauss or normal distribution
N(m, v). On the other hand, if the variables xi,k take only two values, i.e.,
assuming P{ξi,k = 1} = pi,k and P{ξi,k = 0} = 1− pi,k, and if p̄n := maxk pi,k

and
∑k(n)
i=1 pi,k(n) → λ then the probability distribution of σn converges to the

Poisson distribution with parameter λ, this last result is know as Poisson’s law
of rare events. Proofs of the above theorems can be found in several text books
in probability, e.g, Breiman [20, Chapter 9, pp. 185–190] or Itô [64, Chapter 4,
pp. 165–211].

It should be clear that given a probability space (Ω,F , P ), it is not possible to
ensure the existence of (independent) random variables (or stochastic processes)
with a prescribed distribution. However, the typical (universal) probability
space where realization are shown is the Lebesgue space on the interval [0, 1]. A
well known example is to write any ω in Ω = [0, 1] in binary, i.e., ω =

∑
k 2

−kωk.
Then the sequence of variables πn(ω) = ωn for n = 1, 2, . . . are independent
coin-tossing variables each taking the values 0 or 1 with probability 1/2. Thus,
given a mapping i, j 7→ k(i, j) which is injective from {1, 2, . . .} × {1, 2, . . .}
into {1, 2, . . .}, the expression Xi =

∑
j 2

−k(i,j)ωk(i,j) for i = 1, 2, . . . defines
an independent sequence of random variables, each with the same distribution
as X, X(ω) = ω, i.e., each with the uniform distribution on [0, 1]. In general,
if Si is a Borel space (i.e., a measurable space isomorphic to a Borel subset
of [0, 1], for instance any complete separable metric space), Pi is a probability
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measure on the Borel σ-algebra Bi(Si), for i = 1, 2, . . . then there exists a
sequence {ξ1, ξ2, . . .} of independent random variables defined on the universal
Lebesgue probability space [0, 1] such that Pi(B) = P ({ω : ξi(ω) ∈ B}), for
any B in Bi(Si), i = 1, 2, . . . , i.e., the distribution of ξi is exactly Pi, e.g., see
Kallenberg [71, Theorem 3.19, pp. 55–57].

Let ξ be a random (vector) variable having a given (joint) density distribu-
tion pξ. Sometimes we are interested in computing

E{g(ξ)} =

∫
g(x)pξ(x)dx,

for some real-valued function g. In many situation, it is not analytically possible
either to compute the above (multiple) integral exactly or even to numerically
approximate it within a given accuracy. Another way to approximating E{g(ξ)}
is by means of the co-called Monte Carlo simulation method. This goes as fol-
lows: start by generating a random (vector) variable ξ1 having the (joint) den-
sity g, and then compute η1 := g(ξ1). Now generate a second random (vector)
variable ξ2, independent of the first, and compute η2 := g(ξ2). Keep on doing
this, for a fix number of times n, to generate the independent and identically
distributed random (vector) variables ηi := g(ξi), i = 1, . . . , n. As mentioned
later, the strong law of large number applies and we find

lim
n

η1 + · · ·+ ηn

n
= E{ηi} = E{g(ξ)}.

Clearly, the remaining problem is how to generate, or simulate random (vector)
variables having a specific (joint) distribution. The first step in doing this is to
be able to generate random variables from a uniform distribution on (0, 1), i.e.,
a random variable u with valued in the interval (0, 1) such that P{u ≤ λ} = λ
for every λ in [0, 1]. One way of doing this would be to take 10 identical slips of
paper, numbered 0, 1, . . . , 9, place them in a hat and then successively select n
slips, with replacement, from the hat. The sequence of digits obtained (with a
decimal point in from) can be regarded as the value of a uniform (0, 1) random
variable rounded off to the nearest 10−n. This constitutes the so-called random
number tables. Nowadays, digital computers simulate pseudo random numbers
instead of the truly random numbers. Most of the random number generators
start with an initial value ξ0, called the seed, and then recursively compute
values by specifying positive integers a and b and m, and then letting xn+1 be
the remainder of axn + b divided by m, i.e., xn+1 := (axn + b) mod (m). The
quantity un := xn/m is taken as an approximation to a uniform (0, 1) random
variable. All other distributions are generated from uniform (0, 1) random vari-
ables u. Indeed, the inverse transformation method is based on the fact that
for any right-continuous distribution F, the random variable ξ := F−1(u) has
distribution F. Note the definition of F−1(λ) := inf{s ∈ (0, 1) : F (s) = λ}, so
that t < F (λ) if and only if F−1(λ) < F (t).

The rejection method simulate a random variable η having density f on the
basis of a random variable ξ having density g, it uses a two-step iteration as
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follows: for two distributions f and g satisfying f(x) ≤ cg(x) for every x and
some constant c :

Step 1: simulate ξ having density g and simulate a random number u.

Step 2: if u ≤ f(ξ)/[cg(ξ)] set η = ξ, otherwise return to Step 1.

This generates a random variable ξ having density f.
For a continuously differentiable distribution F, the hazard rate function of

F is defined by

λ(t) :=
F ′(t)

F (t)
, ∀t ≥ 0.

The hazard rate method simulates a random variable ξ having λ(t) as its hazard
rate function, provided λ is a given nonnegative bounded function satisfying∫ ∞

0

λ(t)dt = ∞.

This is defined as follows:

Step 1: select r ≥ λ(t) for every t ≥ 0 and simulate independent random
variables ui, ηi, i = 1, . . . , where ui are (0, 1) uniform and ηi are exponential
with rate r.

Step 2: stopping at τ := min
{
n : unr ≤ λ(

∑
i≤n ηi)

}
define ξ :=

∑
i≤τ ηi.

It is proven that ξ has hazard rate function λ(t). For instance, we refer to
Ross [114], among others.

4.3 Filtrations and Optional Times

Let (Ω,F) be a measurable space and T be an partially order index set, with a
first element called 0. Generally, the index set is the positive integers or a real
interval, i.e. [0, T ], 0 < T ≤ +∞. Suppose we are given an increasing family
of sub σ-algebras {F(t) : t ∈ T}, i.e. s ≤ t implies F(s) ⊂ F(t). Sometimes
the notation Ft = F(t) is used. Define F+(t) = ∩s>tF(s) for t in T to get
another filtration with F(t) ⊂ F+(t) for any t in T. The filtration is said to be
right continuous if F(·) = F+(·) and it is also denoted by F(t+). In particular,
{F+(t) : t ∈ T} is right continuous.

When a probability measure P is given on (Ω,F), the hypothesis that F(0)
contains the null sets implies that the restriction of a given measure on each
σ-algebra F(t) is complete, but the converse may be false. In most of the cases,
we may assume that F(0) contains the null sets, at a cost of enlarging each
σ-algebra to the σ-algebra generated by F(t) and the null sets. If the index set
is a real interval [0, T ], or [0,∞), then it is possible without loss of generality to
replace F(·) by the right continuous filtration F+(·). If the index set does not
have a last element, i.e. [0,+∞), then we add a last element denoted by +∞ (or
∞) with F(+∞) equal to the sub σ-algebra generated by all the F(t), t ≥ 0.
Thus we will refer to a filtration satisfying the usual conditions or a standard
filtration when the filtration is completed and right continuous.
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Definition 4.6 (filtration). In a (complete) probability space (Ω,F , P ), a fam-
ily of sub σ-algebras {F(t) : t ∈ T} is called a filtration if s ≤ t implies
F(s) ⊂ F(t), F(0) contains all sets of probability zero, and F(t) = ∩s>tF(s)
i.e., unless explicitly stated we assume the usual conditions are satisfied. A
family of random variables {X(t) : t ∈ T} is said adapted to the filtration if
X(t) is F(t)-measurable for any t in T.

Given a stochastic process and a filtration we can talk about a stochastic
process being adapted to a filtration, being progressively measurable, and so
on. Several operations can be performed with processes and filtrations. For a
family {Xγ(·) : γ ∈ Γ} of processes adapted to a common filtration F(·) we may
define the process essential infimum and essential supremum. For instance

X(t) = ess sup
γ∈Γ

Xγ(t),

which can be taken adapted to the same common filtration F(·). Similarly, the
sample integral can be defined for a progressively measurable (see definition
later on) integrable process {X(t),F(t) : t ≥ 0}. The resulting process

Y (t) =

∫ t

0

X(s, ω)ds

can be taken progressively measurable with respect to the same filtration F(·).
The problems of defining what is meant by a random time τ corresponding to

the arrival time of an event whose arrival is determined by the preceding events
and of defining the class F(τ) of preceding events are solved by the following
definition.

Definition 4.7. An optional time (stopping or Markov time) τ with respect to
a filtration F(·) is a function from Ω into [0,+∞] satisfying

{ω : τ(ω) ≤ t} ∈ F(t) ∀t ≥ 0.

If an optional time τ is given, then F(τ), respectively F(τ−), is the σ-algebra
of subsets A in F(+∞) (or in F) for which

A ∩ {τ ≤ t} ∈ F(t), respectively A ∩ {τ < t} ∈ F(t),

for every t ≥ 0.

Sometime, optional times are defined as nonnegative random variables sat-
isfying {ω : τ(ω) < t} ∈ F(t) for every t > 0, e.g., see Karatzas and Shreve [75,
Section 1.2, pp. 6-11]. Since {τ ≤ t} = ∪n≥1{τ < t − 1/n} and F(t − 1/n) ⊂
F(t), we see that stopping time is stronger than optional time. Conversely,
under the right-continuity condition, i.e., F(t) = F(t+), for every t ≥ 0, the
equality {τ ≤ t} = ∩n≥1{τ < t + 1/n} shows that any optional time is also a
stopping time. Thus, unless specially mentioned, we do not differentiate between
optional and stopping times.
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Most of the time we use the σ-algebra F(τ), however, when dealing with
jump processes we may need F(τ−). Note that we have ∩ε>0F(τ + ε) :=
F(τ+) = F+(τ) for any optimal time τ. If τ1 and τ2 are two optional times
with τ1 ≤ τ2, the stochastic interval [[τ1, τ2]], is defined by

[[τ1, τ2]] = {(t, ω) ∈ R+ × Ω : τ1 ≤ t ≤ τ2}.

Similarly, we define the open stochastic interval ]]τ1, τ2[[ and the half-open ones
[[τ1, τ2[[, and ]]τ1, τ2]]. Several properties are satisfied by optional times, we will
list some of them (see Exercise 4.7).

(a) If τ is optional, then τ is F(τ)-measurable.

(b) If τ is optional and if τ1 is a random variable for which τ1 ≥ τ and τ1 is
F(τ) measurable, then τ1 is optional.

(c) If τ1 and τ2 are optional, then τ1 ∨ τ2 (max) and τ1 ∧ τ2 (min) are optional.

(d) If τ1 and τ2 are optional and τ1 ≤ τ2, then F(τ1) ⊂ F(τ2); if τ1 < τ2, then
F(τ1+) ⊂ F(τ2).

(e) If τ1 and τ2 are optional, then F(τ1) ∩ F(τ2) = F(τ1 ∧ τ2). In particular,
{τ1 ≤ t} ∈ F(τ1 ∧ t).
(f) If τ1 and τ2 are optional, then the sets {τ1 < τ2}, {τ1 ≤ τ2} and {τ1 = τ2}
are in F(τ1 ∧ τ2).
(g) If τ1 and τ2 are optional and if A ∈ F(τ1), then A ∩ {τ1 ≤ τ2} ∈ F(τ1 ∧ τ2).
(h) Let τ1 be optional and finite valued, and let τ2 be random variable with
values in [0,+∞]. The optionality of τ1 + τ2 implies optionality of τ2 relative
to F(τ1 + ·). Moreover, the converse is true if F(·) is right continuous i.e., if
τ2 is optional for Fτ1(·) := F(τ1 + ·), then τ1 + τ2 is optional for F(·) and
F(τ1 + τ2) = Fτ1(τ2).
(i) Let {τn : n = 1, 2, . . . } be a sequence of optional times. Then supn τn is
optional, and inf τn, lim infn τn, lim supn τn are optional for F+(·). If limn τn =
τ = infn τn, then F+(τ) = ∩nF+(τn). If the sequence is decreasing [resp.,
increasing] and τn(ω) = τ(ω) for n ≥ n(ω), then τ is optional and F(τ) =
∩nF(τn) [resp., F(τ) is equal to the smaller σ-algebra containing ∪nF(τn)].

There are many relations between optional times, progressively measurable
stochastic processes and filtration, we only mention the following result (see
Doob [39, pp. 419–423])

Theorem 4.8 (exit times). Let B be a Borel subset of [0, T ]× Rd and {X(t) :
t ∈ [0, T ]} be a d-dimensional progressively measurable stochastic process with
respect to a filtration F(·) satisfying the usual conditions on a probability space
(Ω,F), Then the hitting, entry and exit times are optional times with respect to
F(·), i.e., for the hitting time

τ(ω) = inf{t > 0 : (t,X(t, ω)) ∈ B},

where we take τ(ω) = +∞ if the set in question is empty. Similarly, the entry
time is define with t > 0 replaced by t ≥ 0 and the exit time is the entry time of
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complement of B, with the convention of being equal to T if the set in question
is empty.

Note that the last hitting time of a Borel set B, which is defined by

τ̂(ω) = sup{t > 0 : (t,X(t, ω)) ∈ B},

is not in general an optional time. However, if τc denotes the hitting time of B by
the process (t+ c,X(t+ c, ω)) then {τ̂ > c} = {τc < +∞} so that measurability
properties for the last hitting time can be considered. For instance, the reader
may begin by taking a look at Revuz and Yor [111, Section I.4, pp. 41–48].

4.4 Versions of Processes

To fully understand the previous sections in a more specific context, the reader
should acquire some basic background on the very essential about probability,
perhaps the beginning of books such as Jacod and Protter [68] or Williams [133],
among many others, is a good example. This is not really necessary for what
follows, but it is highly recommended.

On a probability space (Ω,F , P ), sometimes we may denote by X(t, ω) a
stochastic process Xt(ω). Usually, equivalent classes are not used for stochastic
process, but the definition of separability and continuity of a stochastic process
have a natural extension in the presence of a probability measure, as almost
sure (a.s.) properties, i.e., if the conditions are satisfied only for ω ∈ Ω ∖ N ,
where N is a null set, P (N) = 0. This is extremely important since we are
actually working with a particular element of the equivalence class. Moreover,
the concept of version is used, which is not exactly the same as equivalence
class, unless some extra property (on the path) is imposed, e.g., separability or
continuity. Actually, the member of the equivalence class used is ignored, but a
good version is always needed. We are going to work mainly with d-dimensional
valued stochastic process with index sets equal to continuous times intervals
e.g., a measurable and separable function X : Ω× [0,+∞] → Rd.

It is then clear when two processes X and Y should be considered equivalent
(or simply equal, X = Y ), if

P ({ω : Xt(ω) = Yt(ω), ∀t ∈ T}) = 1.

This is often referred as X being indistinguishable from Y , or that X = Y up
to an evanescent set. So that any property valid for X is also valid for Y. When
the index set is uncountable, this notion differs from the assertion X or Y is a
version (or a modification) of the given process, where it is only required that

P ({ω : Xt(ω) = Yt(ω)}) = 1, ∀t ∈ T, (4.3)

which implies that both processes X and Y have the same family of finite-
dimensional distributions. For instance, sample path properties such as (pro-
gressive) measurability and continuity depend on the version of the process in
question.
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Furthermore, the integrand of a stochastic integral is thought as an equiv-
alence class with respect to a product measure in (0,∞) × Ω of the form
µ = dα(t, ω)P (dω), where α(t, ω) is an integrable nondecreasing process. In
this case, two processes may belong to the same µ-equivalence class without
being a version of each other. Conversely, two processes, which are versions of
each other, may not belong to the same µ-equivalence class. However, any two
indistinguishable processes must belong to the same µ-equivalence class. More-
over, a measure µ in the product space (0,∞)×Ω vanishes on every evanescent
set if and only if it has the product form µ = dα(t, ω)P (dω) for some integrable
nondecreasing process α. This is discussed in some detail later, in Chapter 4.

The finite-dimensional distributions are not sufficient to determine the sam-
ple paths of a process, and so, the idea of separability is to use a countable
set of time to determine the properties of a process. The following result (see
Doob [38, Theorem 2.4, pp. 60], Billingsley [16, Section 7.38, pp. 551-563] or
Neveu [102, Proposition III.4.3, pp. 84-85]) is necessary to be able to assume
that we are always working with a separable version of a process.

Theorem 4.9 (separability). Any d-dimensional stochastic process has a ver-
sion which is separable i.e., if X is the given stochastic process indexed by some
real interval T , then there exists a R̄d-valued stochastic process Y satisfying (4.3)
and the condition of separability in Definition 4.1, which may be re-phrased as
follows: there exist a countable dense subset I of T and a null measurable set
N, P (N) = 0, such that for every open subset O of T and any closed subset C
of Rd the set {ω ∈ Ω : Y (t, ω) ∈ C, ∀t ∈ O ∖ I} is a subset of N.

By means of the above theorem, we will always assume that we have taken
a (the qualifier a.s. is generally omitted) separable version of a (measurable)
stochastic process provided we accept processes with values in R̄d = [−∞,+∞]d.
Moreover, if we insist in calling stochastic process X a family of random vari-
ables {Xt} indexed by t in T then we have to deal with the separability concept.
Actually, the set {ω : Xt(ω) = Yt(ω), ∀t ∈ T} used to define equivalent or
indistinguishable processes may not be measurable when X or Y is not a mea-
surable process. Even working only with measurable processes does not solve
completely our analysis, e.g., a simple operation as supt∈T Xt for a family of
uniformly bounded random variables {Xt} may not yields a measurable random
variable. The separability notion solves all these problems.

Furthermore, this generalizes to processes with values in a separable locally
compact metric space (see Gikhman and Skorokhod [53, Section IV.2]), in par-
ticular, the above separable version Y may be chosen with values in Rd ∪ {∞},
the one-point compactification of Rd, and with P{Y (t) = ∞} = 0 for every t,
but not necessarily P{Y (t) = ∞ ∀t ∈ T} = 0. Thus in most cases, when we refer
to a stochastic process X in a given probability space (Ω,F , P ), actually we are
referring to a measurable and separable version Y of X. Note that in general,
the initial process X is not necessarily separable or even measurable. By using
the separable version of a process, we see that most of the measurable operations
usually done with a function will make a proper sense. The construction of the
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separant set used (in the proof of the above theorem) may be quite complicate,
e.g., see Neveu [102, Section III.4, pp. 81–88].

A process X which is continuous in probability i.e., for all t ∈ T and ε > 0
we have

lim
s→t

P ({ω ∈ Ω : |X(s, ω)−X(t, ω)| ≥ ε}) = 0.

is called stochastically continuous. Similarly, we define left or right stochastically
continuous. Actually, if the interval T is compact, then the process is uniformly
stochastically continuous. In most of the cases, a stochastic process X will
be (right or left) continuous in probability (see below) and then any dense
set in T will be separant. Note that the concept of stochastic continuity (or
continuity in probability) is not a sample path property, it does not depend
on the particular version of the process involved. On the contrary, most of
the smoothness properties such as separability, measurability or continuity are
conditions on the sample paths and depend on the version of the process used
to test the property.

It is known (e.g., see Da Prato and Zabczyk [30, p. 72–75], Gikhman and
Skorokhod [53, Section IV.3]) that

Theorem 4.10 (measurability). Any (right or left) stochastically continuous
d-dimensional stochastic process has a version which is measurable. Moreover,
if the stochastic process is adapted then there is a version which is progressively
measurable.

Sometimes we can take (a.s.) continuous modification of a given process on
a bounded interval [0, T ]

Theorem 4.11 (continuity). Let {Xt : t ∈ [0, T ]} be a d-dimensional stochastic
process in a probability space (Ω,F , P ) such that

E|Xt −Xs|α ≤ C|t− s|1+β , ∀s, t ∈ [0, T ], (4.4)

for some positive constants α, β and C. Then there exists a continuous version
Y = {Yt : t ∈ [0, T ]} of X, which is locally Hölder continuous with exponent
γ, for any γ ∈ (0, β/α) i.e., there exist a null set N, with P (N) = 0, an (a.s.)
positive random variable h(ω) and a constant K > 0 such that for all ω ∈ Ω∖N,
s, t ∈ [0, T ] we have

|Yt(ω)− Ys(ω)| ≤ K|t− s|γ if 0 < |t− s| < h(ω). 2

The previous result is essentially based on the following arguments, e.g.,
Karatzas and Shreve [75, pp. 53–55]). Estimate (4.4) and the dyadic construc-
tion {X(k2−n) : k = 0, 1, . . . , 2n, n = 1, 2, . . .} yields

P{ max
1≤k≤2n

|X(k2−n)−X((k − 1)2−n)| ≥ 2−γ} ≤

≤
2n∑
k=1

P{|X(k2−n)−X((k − 1)2−n)| ≥ 2−γ} ≤ C2−n(β−αγ),
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for any γ > 0 such that β > αγ. Hence, the Borel-Cantelli lemma shows that
there exists a measurable set Ω∗ of probability 1 such that for any ω in Ω∗ there
is an index n∗(ω) with the property

max
1≤k≤2n

|X(k2−n, ω)−X((k − 1)2−n, ω)| < 2−γ , ∀n ≥ n∗(ω).

This proves that for t of the form k2−n we have a uniformly continuous process
which gives the desired modification. Certainly, if the process X itself is separa-
ble, then we get do not need a modification, we obtain an equivalent continuous
process.

An interesting point in this result, is the fact that the condition (4.4) on
the given process X can be verified by means of the so-called two-dimensional
distribution of the process (see below). Moreover, the integrability of the process
is irrelevant, i.e., (4.4) can be replaced by

lim
δ→0

P
{

sup
|t−s|<δ

|X(t)−X(s)| > ε
}
= 0, ∀ε > 0.

This condition is stronger that

lim
δ→0

sup
t
P
{
sup
|s|<δ

|X(t)−X(t+ s)| > ε
}
= 0, ∀ε > 0,

which only yields almost surely continuity at every time t. In any case, if the
process X is separable then the same X is continuous, otherwise, we construct
a version Y which is continuous.

Recall that a real function on an interval [0, T ) (respectively [0,∞) or [0, T ])
has only discontinuities of the first kind if (a) it is bounded on any compact
subinterval of [0, T ) (respectively [0,∞) or [0, T ]), (b) left-hand limits exist on
(0, T ) (respectively (0,∞) or (0, T ]) and (c) right-hand limits exist on [0, T )
(respectively [0,∞) or [0, T )). After a normalization of the function, this is
actually equivalent to a right continuous functions having left-hand limits, these
functions are called cad-lag.

It is interesting to note that continuity of a (separable) process X can be
localized, X is called continuous (or a.s. continuous) at a time t if the set Nt
of ω such that s 7→ X(s, ω) is not continuous at s = t has probability zero
(i.e., Nt is measurable, which is always true if X is separable, and P (Nt) = 0).
Thus, a (separable) process X may be continuous at any time (i.e., P (Nt) = 0
for every t in T ) but not necessarily continuous (i.e., with continuous paths,
namely P (∪tNt) = 0). Remark that a cad-lag process X may be continuous
at any (deterministic) time (i.e., P (Nt) = 0 for every t in T ) without having
continuous paths, as we will se later, a typical example is a Poisson process.

Analogously to the previous theorem, a condition for the case of a modifica-
tion with only discontinuities of the first kind can be given (e.g., see Gikhman
and Skorokhod [53, Section IV.4], Wong [134, Proposition 4.3, p. 59] and its
references)
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Theorem 4.12 (cad-lag). Let {Xt : t ∈ [0, T ]} be a d-dimensional stochastic
process in a probability space (Ω,F , P ) such that

E{|Xt+h −Xs|α|Xs −Xt|α} ≤ Ch1+β , ∀ 0 ≤ t ≤ s ≤ t+ h ≤ T, (4.5)

for some positive constants α, β and C. Then there exists a cad-lag version
Y = {Yt : t ∈ [0, T ]} of X.

Similarly, for processes of locally bounded variation we may replace the
expression | · | in (4.4) by the variation to get a corresponding condition. In
general, by looking at a process as a random variable in RT we can use a complete
separable metric space D ⊂ RT to obtain results analogous to the above, i.e., if
(4.4) holds for the metric d(Xt, Xs) instead of the Euclidean distance |Xt−Xs|,
then the conclusions of Theorem 4.11 are valid with d(Yt, Ys) in lieu of |Yt−Ys|,
e.g., see Durrett [43, p. 5, Theorem 1.6].

The statistics of a stochastic process are characterized by its finite-dimension-
al distributions, i.e., by the family of probability measures

Ps(B) = P ({(X(s1, ω), . . . , X(sn, ω)) ∈ B}), ∀B ∈ B(Rn),

with s = (s1, . . . , sn), n = 1, 2, . . . , for a real valued process {X(t, ω) : t ∈ T}.
This family of finite-dimensional distributions essentially determines a stochastic
processes (i.e., modulo all possible version of a process), but not the process
itself. The above results allow the verification of the (path) continuity properties
of a given stochastic process in term of its two-dimensional distribution.

A typical (sample) path of a stochastic process is the function X(·, ω) for
each fixed ω, and so, a stochastic process (with prescribed finite-dimensional
distributions) can always be constructed in the product space RT , endowed
with the σ-algebra BT (R) generated by the algebra of cylindrical sets, which
may be smaller than the Borel σ-algebra B(RT ). Thus we can view a stochastic
process X as probability measure PX on (RT ,BT (R)), but in general the σ-
algebra BT (R) is not appropriated, it is too small comparatively with the big
space RT of all functions.

If we can find a proper subset Ω ⊂ RT containing almost every paths of X,
i.e., such that P ∗

X(Ω) = 1 (where P ∗
X is the exterior probability measure defined

for any subset of RT ), then the stochastic process X becomes a probability
measure P on (Ω,B), where Ω ⊂ RT and B = Ω

⋂
BT (R) is the restriction of

BT (R) to Ω with P = P ∗
X , i.e., P (Ω∩B) = PX(B). It turn out that B contains

only sets that can be described by a countable number of restrictions on R, in
particular a singleton (a one point set, which is closed for the product topology)
may not be measurable. Usually, B is enlarged with all subsets of negligible
(or null) sets with respect to P, and we can use the completion B∗ of B as the
measurable sets. Moreover, if Ω is an appropriate separable topological space by
itself (e.g., continuous functions) so that the process have some regularity (e.g.,
continuous paths), then the Borel σ-algebra B(Ω), generated by the open sets in
Ω coincides with the previous B. Note that another way to describe B is to see
that B is the σ-algebra generated by sets (so-called cylinders in Ω) of the form
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{ω ∈ Ω : (ω(s1), . . . , ω(sn)) ∈ B} for any B ∈ B(Rn), with s = (s1, . . . , sn),
n = 1, 2, . . . .

Note that the arguments in Theorems 4.10, 4.11 or 4.12 are such that if we
begin with a separable process, then we find that the measurable, continuous or
cad-lag version Y is actually indistinguishable from the initial process X, i.e.,
P ({ω : Xt(ω) = Yt(ω), ∀t ∈ T}) = 1.

Definition 4.13 (process). Given an index set T (usually T ⊂ R), a measurable
space (E, E) (usually E ⊂ Rd) and a probability space (Ω,F , P ), an E-valued
general stochastic process is a measurable function X from (Ω,F) into (ET , ET ),
i.e. a family of E-valued random variables {Xt : t ∈ T}. Moreover, if E is a
Hausdorff topological space, E is its Borel σ-algebra and there exits a topological
sub-space B of the product space ET (which is called sample space and endowed
with its Borel σ-algebra B) such that the restriction to B of the function ω 7→
X(·, ω) (to emphasized, now denoted by X̄) is a B-valued random variable,
then X̄ (or X) is called an E-valued stochastic process with paths in B. Usually
B does not belong to the product σ-algebra BT (E) (generated by all Borel
cylindrical sets), and X̄ (considered with values in ET ⊃ B) is a version of the
general process X. Actually X̄ is identified with its P -equivalence class, and
for each t in T, the canonical (coordinate, evaluation or projection) mapping
X̄ 7→ X̄t from B into E is defined. The probability measure on B induced by X̄
(denoted by PX) is called the law of the process. Furthermore, if the index set
T = [0,∞) then the minimal filtration satisfying the usual conditions (complete
and right-continuous) (FX(t) : t ≥ 0) such that the E-valued random variables
{X̄s : 0 ≤ s ≤ t} are measurable is called the canonical filtration associated
with the given process. On the other hand, given a family of finite-dimensional
distributions on ET of some (general) stochastic process X, a realization of
a stochastic process X with paths in B and the prescribed finite-dimensional
distributions is the probability space (Ω,F , P ) and the stochastic process X̄ as
above.

Clearly, the passage from general stochastic processes (i.e., a family of ran-
dom variablesX) to stochastic processes is very subtle (however very significant,
since X becomes a random variable in some topological space). Technically, if
we take the trivial choice B = ET then to label X a stochastic process, we need
to know that X is also measurable for Borel σ-algebra B(ET ), which may be
larger than BT (E), and so not a priori satisfied. Note that we abandon the
trivial choice B = ET because in several arguments, we need that the Borel
σ-algebra B of the topological space B (the sample space, where all paths are)
coincides with the cylindrical Borel σ-algebra in B, i.e., a B-valued function Y
is B(B)-measurable if and only if for each t, the E-valued function Y (t) is B(E)-
measurable. Usually, the definition of the (topological) sample space B involves
some topology on the index set T. Also, if the index set T ⊂ Rn, n ≥ 2 then the
name random field is preferable. The notion of general stochastic processes is as
general as possible, however the concept of stochastic processes imposes some
path regularity. Depending on the interest and the objective of the study under-
taken, there are other possible approaches, for instance, when E = Rd we may
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consider (right- or left-)continuous processes, in probability or in mean-square,
where processes are treated as continuous functions from T into L0(Ω,F , P ),
the complete metric space of Rd-valued random variables endowed with the con-
vergence in probability (called stochastically continuous processes), or into the
Hilbert space L2(Ω,F , P ) of square-integrable random variables (usually called
second-order processes). This type of analysis is rarely used here, the interested
reader may check the book Gikhman and Skorokhod [53], among others.

Starting from a general stochastic process X, usually, a two-step procedure
is applied: first a good version X̄ is chosen and then a good sample space B is
found. For instance, given a R-valued general stochastic process X with index
set T = [0,∞), we can apply Theorem 4.9 to get a separable version of X̄ (with
extended values, i.e., in [−∞,+∞]T ). Thus if I is a denumerable separant
subset of indexes then we may consider X̄ as taking valued in [−∞,+∞]I (or
the one-point compactification RI ∪ {∞}), which is not exactly a subset of RT ,
but it is essentially the space of all (extended) real-valued sequences. This point
of view is not considered in this book. Alternatively, if we know that the initial
general stochastic process X is right-(or left-)continuous in probability (so when
X is also separable any dense set in T is a separant set) then we may apply
Theorem 4.10 to get a measurable version. Still, this point of view is rarely used
in this book. Finally, the two-step procedure is as follows: first, we assume that
Theorems 4.11 or 4.12 is applicable to X, so that a continuous or at least cad-lag
version X̄ can be found (i.e., first X̄(t, ω) = X(t, ω) is defined for every ω but
only for t in a countable dense subset of [0,∞) and then X̄(t, ω) is extended for
every t in [0,∞) but only for ω outside of a negligible set). Second, we take as
B the space of continuous or cad-lag functions, with a suitable topology and we
forget about the initial general stochastic process X, because X (technically its
version X̄) is considered now as a random variable with values in a complete
separable metric space B endowed with its Borel σ-algebra B. So, essentially, a
version (or modification) of a process is allowed only once, and then all stochastic
processes (with the same path regularity) indistinguishable of this good version
are considered equals. In general we use the following result, e.g., Kallenberg [71,
Lemma 3.24, pp. 58]): Let T be a set of index, and {Xt : t ∈ T} and {Yt : t ∈ T}
be family of random variables (perhaps defined on distinct probability spaces)
taking values in some separable metric space E such that Xt and Yt have the
same finite-dimensional distribution. If the paths t 7→ Yt lie in some Borel
subset B of BT (E) (σ-algebra generated by cylindrical Borel sets) then there
exists a family of random variables {X̃t : t ∈ T} with paths in B such that
P (Xt = X̃t) = 0 for every t in T, i.e., X̃ is a version of X.

Note that the initial probability space is irrelevant in the above context,
we can always reduce to a canonical space of functions. Moreover, by taking
the image measure through the map X if necessary, we can always reduce to
the canonical process, i.e., the probability space becomes (B,B, PX) and the
process is the random variable ω 7→ Xt(ω) = ω(t) from B into itself. So that
the law of a process carried all necessary information. If two or more processes
are involved, then we have to deal with more that one probability measure on
the sample space (B,B). Thus only one process can be reduced to the canonical
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process and the others can be viewed as probability measures or as measurable
functions from B into itself. In most of the cases, the sample space B is a
Polish (complete separable metric) space (better than ET ) where the motions
of versions and equivalence classes coincide.

Clearly, most of the properties required for a stochastic process are stated
relative to the probability PX on the (Polish) sample space. However, for in-
stance, when we state some property relative to the sample path of a process
(such as integrability in one of the variables), the difficulty is the fact we refer
either to the map t 7→ X(t, ω) for a fixed ω or to the map ω 7→ X(t, ω) for any
fixed t. Thus, sometime we are forced to comeback to the initial setting of gen-
eral stochastic process as a family of E-valued random variables. Alternatively,
we may define processes as functions from the base space T × Ω into E, this
is, we consider X as a function of two-variables X = X(t, ω), and immediately
we restrict the attention to (joint) measurable functions, i.e., the so-called mea-
surable processes. This approach yields delicate measurability problems when
dealing with stochastic integration, as carefully discussed in Bichteler [14].

The following type of processes may be useful

Definition 4.14 (Gaussian). A real valued process {X(t) : t ∈ T} is a Gaus-
sian process if for any finite sub-family (t1, . . . , tn) of indexes in T, the ran-
dom variable (X(t1), . . . , X(tn)) has a Gaussian n-dimensional distribution. Its
mean is m(t) := E{X(t)} and its covariance is defined by Γ(s, t) := E{[X(s)−
m(s)][X(t)−m(t)]}, for any s, t in T. The process is called centered if E{X(t)} =
0 for any t in T.

An important property of the Gaussian processes is the fact that its covari-
ance function is always semi-definite positive, i.e., for any (t1, . . . , tn), any n,
the matrix {Γ(ti, tj)} is semi-definite positive. Moreover, any symmetric semi-
definite positive function is the covariance of a centered Gaussian process, see
Revuz and Yor [111, p. 36, Chapter 1].

Another important class of processes is the following

Definition 4.15 (stationary). A E-valued process {X(t) : t ≥ 0} is called
stationary if for every t1, . . . , tn and t we have

P ({X(t1 + t) ∈ A1, . . . , X(tn + t) ∈ An} =

= P ({X(t1) ∈ A1, . . . , X(tn) ∈ An}),

for any Borel sets A1, . . . , An in E, i.e., its finite-dimensional distribution is
invariant by a time translation.

These processes play a central role in the study of ergodicity or stability, e.g.,
see the books Khasminskii [80] and Skorokhod [123].

4.5 Continuous Markov Chains

Let {X(t) : t ∈ T}, T ⊂ R be an E-valued stochastic process, i.e. a (complete)
probability measure P on (ET ,BT (E)). If the cardinality of the state space E
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is finite, we say that the stochastic process takes finitely many values, labeled
1, . . . , n. This means that the probability law P on (ET ,BT (E)) is concentrated
in n points. Even in this situation, when the index set T is uncountable, the
σ-algebra BT (E) is rather small, a set of a single point is not measurable). A
typical path takes the form of a function t 7→ X(t, ω) and cannot be a continuous
function in t. As discussed later, it turn out that cad-lag functions are a good
choice. The characteristics of the stochastic processes {X(t) : t ∈ T} are the
functions t 7→ xi(t) := P{X(t) = i}, for any i = 1, . . . , n, with the property∑n
i=1 xi = 1. We are interested in the case where the index set T is usually an

interval of R.
Now, we turn our attention where the stochastic process describes some

evolution process, e.g., a dynamical system. If we assume that the dimension
of X is sufficiently large to include all relevant information and that the index
t represents the time, then the knowledge of X(t), referred to as the state of
the system at time t, should summarize all information up to the present time
t. This translated mathematically to

P{X(t) = j |X(r), r ≤ s} = P{X(t) = j |X(s)}, (4.6)

almost surely, for every t > s, j = 1, . . . , n. At this point, the reader may
consult the classic book Doob [38, Section VI.1, pp. 235–255] for more details.
Thus, the evolution of the system is characterized by the transition function
pij(s, t) = P{X(t) = j | X(s) = i}, i.e., a transition from the state j at time
s to the state i at a later time t. Since the stochastic process is assumed to
be cad-lag, it seems natural to suppose that the functions pij(s, t) satisfies for
every i, j = 1, . . . , n conditions

n∑
j=1

pij(s, t) = 1, ∀t > s, lim
(t−s)→0

pij(s, t) = δij , ∀t > s,

pij(s, t) =

n∑
k=1

pik(s, r)pkj(r, t), ∀t > r > s.

(4.7)

The first condition expresses the fact that X(t) takes values in {1, . . . , n}, the
second condition is a natural regularity requirement, and the last conditions are
known as the Chapman-Kolmogorov identities. Moreover, if pij(s, t) is smooth
in s, t so that we can differentiate either in s or in t the last condition, and
then let r − s or t− r approaches 0 we deduce a system of ordinary differential
equations, either the backward equation

∂spij(s, t) =

n∑
k=1

ρ+ik(s) pkj(s, t), ∀t > s, i, j,

ρ+ij(s) = lim
r→s

∂spij(s, r) ∀s, i, j,
(4.8)
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or the forward equation

∂tpij(s, t) =

n∑
k=1

pik(s, t) ρ
−
kj(t), ∀t > s, i, j,

ρ−ij(t) = lim
r→t

∂tpij(r, t) ∀t, i, j,
(4.9)

The quantities ρ+ij(s) and ρ−ij(s) are the characteristic of the process, referred

to as infinitesimal rate. The initial condition of (4.7) suggests that ρ−ij(s) =

−ρ+ij(t) := ρij(t), if s = t. Since
∑n
j=1 pij(s, t) = 1 we deduce

ρ(t, i, j) ≥ 0, ∀i ̸= j, ρ(t, i, i) = −
∑
j ̸=i

ρ(t, i, j). (4.10)

Using matrix notation, R(·) = {ρij}, P (s, t) = {pij(s, t)} we have

∂sP (s, t) = −R(s)P (s, t), ∀s < t,

∂tP (s, t) = P (s, t)R(t), ∀t > s,

lim
t−s→0

P (s, t) = I, ∀t > s.

(4.11)

Conversely, given the integrable functions ρij(t), i, j = 1, . . . , n, t ≥ 0 satis-
fying (4.10), we may solve the system of (non-homogeneous and linear) ordinary
differential equations (4.8), (4.9) or (4.11) to obtain the transition (matrix) func-
tion P (s, t) = {pij(s, t)} as the fundamental solution (or Green function). For
instance, the reader may consult the books by Chung [26], Yin and Zhang [136,
Chapters 2 and 3, pp. 15–50].

Since P (s, t) is continuous in t > s ≥ 0 and satisfies the conditions in (4.7),
if we give an initial distribution, we can find a cad-lag realization of the corre-
sponding Markov chain, i.e., a stochastic process {X(t) : t ≥ 0} with cad-lag
paths such that P{X(t) = j |X(s) = i} = pij(s, t), for any i, j = 1, . . . , n and
t ≥ 0. In particular, if the rates ρij(t) are independent of t, i.e., R = {ρij},
then the transition matrix P (s, t) = exp[(t− s)R]. In this case, a realization of
the Markov chain can be obtained directly from the rate matrix R = {ρij} as
follows. First, let Yn, n = 0, 1, . . . be a sequence of E-valued random variables
with E = {1, . . . , n} and satisfying P (Yn = j | Yn−1 = i) = ρij/λ, if i ̸= j with
λ = − infi ρii, i > 0, and Y0 initially given. Next, let τ1, τ2, . . . be a sequence
of independent identically distributed exponentially random variables with pa-
rameter λ i.e., P (τi > t) = exp(−λt), which is independent of (Y0, Y1, . . . ). If
we define X(t) = Yn for t in the stochastic interval [[Tn, Tn+1[[, where T0 = 0
and Tn = τ1 + τ2 + · · ·+ τn, then X(t) gives a realization of the Markov chain
with the above infinitesimal rates.

A typical setting includes T = [0,∞) and a denumerable state space E
(with the discrete topology). This type of processes are very useful in modeling
dynamical systems, referred to either as queueing systems or as point processes
very well known in the literature, e.g., Bremaud [22], Kemeny and Snell [79],
Kleinrock [81], Nelson [101].
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This study is simplified if the time is discrete, i.e., the Markov chain Xn,
n = 0, 1, . . . , with values in subset E of Rd is defined by recurrence by

P{Xn+1 ∈ · |Xn} = P (Xn, ·), n ≥ 1,

where the stochastic kernel P (x,A) satisfies:

(a) P (x, ·) is a probability measure on B(E) for any x in E

(b) P (·, A) is measurable in E for any A in B(E).

The finite-dimensional distributions (as discussed later) of a Markov chain is
given by

P{X0 ∈ A0, X1 ∈ A1, . . . Xn ∈ An} =

=

∫
A0

ν(dx0)

∫
A1

P (x0,dx1) · · ·
∫
An

P (xn−1,dxn), (4.12)

for any A0, A1, . . . , An in B(E), and where ν(·) is the initial distribution. Thus,
given the stochastic kernel we can use Kolmogorov’s construction theorem (see
Theorem 4.20 below) to obtain a Markov chain Xn for n = 0, 1, . . . satisfying
the above equation (4.12). Moreover, we have

P{Xn |X0 = x} = Pn(x, ·),

where Pn(x,A) denote the n kernel convolutions, defined by induction by

Pn(x,A) :=

∫
E

Pn−1(x,dy)P (y,A). (4.13)

The reader may consult the book by Chung [26] and Shields [120], among others,
for a more precise discussion.

Before going further, let us mention a couple of classic simple processes which
can be viewed as Markov chains with denumerable states, e.g., see Feller [48,
Vol I, Sections XVII.2–5, pp. 400–411]. All processes below {X(t) : t ≥ 0} take
values in N = {0, 1, . . .}, with an homogeneous transition given by p(j, t−s, n) =
P{X(t) = j | X(r), 0 ≤ r < s, X(s) = n}, for every t > s ≥ 0 and j, n in
N. Thus, these processes are completely determined by the knowledge of the
characteristics p(t, n) := P{X(t) = n}, for every t ≥ 0 and n in N, and a
description on the change of values.

The first example is the Poisson process where there are only changes from
n to n+ 1 (at a random time) with a fix rate λ > 0, i.e.,

∂tp(t, n) = −λ
[
p(t, n)− p(t, n− 1)

]
,

∂tp(t, 0) = −λp(t, 0),
(4.14)

for every t ≥ 0 and n in N. Solving this system we obtain

p(t, n) = e−λt
(λt)n

n!
, t ≥ 0, n ∈ N,
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which is the Poisson distribution.
The second example is a pure birth process where the only variation relative

to the Poisson process is the fact that the rate is variable, i.e., the rate is λn > 0
when X(t) = n. This means that (4.14) becomes

∂tp(t, n) = −λnp(t, n) + λn−1p(t, n− 1),

∂tp(t, 0) = −λp(t, 0),
(4.15)

for every t ≥ 0 and n in N. Certainly, this system can be solved explicitly, but
the expression is rather complicate in general. If X represents the size of a pop-
ulation then the quantity λn is called the average rate of growth. An interesting
point is the fact that {p(t, n) : n ∈ N} is indeed a probability distribution, i.e.,

∞∑
n=1

p(t, n) = 1

if and only if the coefficients λn increase sufficiently fast, i.e., if and only if the
series

∑
n λ

−1
n diverges.

The last example is the birth-and-death process, where the variation is the
fact that either a change from n to n + 1 (birth) with a rate λn or from n to
n − 1, if n ≥ 1 (death) with a rate µn may occur. Again, the system (4.14) is
modifies as follows

∂tp(t, n) = −(λn + µn)p(t, n) + λn−1p(t, n− 1) + µn+1p(t, n+ 1),

∂tp(t, 0) = −λp(t, 0) + µ1p(t, 1),
(4.16)

for every t ≥ 0 and n in N. As in the case of a pure birth process, some
conditions are needed on the rates {λ0, λ1, . . .} and {µ1, µ2, . . .} to ensure that
the birth-and-death process does not get trap in 0 or ∞ and the characteristics
{p(t, n) : n ∈ N} is a probability distribution.

4.6 Markov Processes

There is an important class of processes known as Markov process which are
used to model dynamical systems under disturbances. They are based on the
principle that the future is independent of the past when we know the present.
Similar to the state variable model for deterministic dynamical systems. Essen-
tially, it is a matter of what is called state so that any dynamical process can
be view a Markov process with a larger state. However, the price of the Markov
character is the lack of differentiability in time of the process as we will see later.
It is convenient to assume that state-space is a complete metric space (i.e. a
Polish space) and that the index set T has a natural order e.g., T is a subset of
R. In most of our cases T = [0,∞) and E is a either closed or open subset of
Rd.

A stochastic process X on a (complete) probability space (Ω,F , P ) and
values in a Polish space E satisfies the Markov property if for any n = 1, 2 . . . ,
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any bounded measurable (actually continuous suffices, because E is a complete
metric space) functions f1, . . . , fn, g1, . . . , gn, h, and times s1 ≤ · · · ≤ sn ≤ t ≤
t1 ≤ · · · ≤ tn we have

E
{
h(Xt)

( n∏
i=1

f(Xsi)
)( n∏

i=1

g(Xti)
)}

=

= E
{
h(Xt)E{

n∏
i=1

f(Xsi) |Xt)}
n∏
i=1

g(Xti)
}
, (4.17)

where E{
∏n
i=1 f(Xsi) |Xt} is Xt-measurable functions satisfying

E
{
h(Xt)

n∏
i=1

f(Xsi)
}
= E

{
h(Xt)E{

n∏
i=1

f(Xsi) |Xt)}
}
,

i.e., it is the conditional expectations with respect to the σ-algebra generated
by the random variable Xt. This is briefly expressed by saying that the future is
independent of the past given the present. Clearly, this condition involves only
the finite-dimensional distributions of the process, and (4.17) is equivalent to
(e.g., see Blumental and Getoor [17, Thm 1.3, pp. 12-14]) either

P (Xt ∈ B |Xs1 , . . . , Xsn , Xs) = P (Xt ∈ B |Xs), a.s.

for every t > s ≥ sn > · · · > s1, B in B(E), or

E{f(Xt) |Xs1 , . . . , Xsn , Xs} = E{f(Xt) |Xs}, a.s.,

for every t > s ≥ sn > · · · > s1, and for any arbitrary bounded and continuous
(actually, with compact support when E is locally compact) function f from E
into R.

Definition 4.16 (history). Given a stochastic process X on a (complete) prob-
ability space (Ω,F , P ) we can define the history (or internal history or strict
history) of the process as the increasing family of σ-algebras {H(t) : t ∈ T},
where each H(t) is generated by the random variables {X(s) : s ≤ t} and the
null sets. Similarly, the innovation {H⊥(t) : t ∈ T} is the decreasing family of
σ-algebras, where each H⊥(t) is generated by all sets in some H(s) for s > t
which are independent of H(t).

The internal history {H(t) : t ∈ T} of a process X is also denoted by
{FX(t) : t ∈ T} (or {FX(t) : t ∈ T} or with H replacing F) and contains
(or records) all events linked to the process X, up to (and including) the time
t, i.e., past and present. From the system-science point of view, the history
{FX(t) : t ∈ T} is best thought as an increasing information pattern. On the
other hand the innovation {H⊥(t) : t ∈ T} records all events linked to the
process X, after time t and are unrelated to (independent of) the past.

Based on the observation of a stochastic process up to the present time
we can know whether a causal phenomenon has (or has not) already taken
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place. If causally is understood in this way, a random variable τ with values in
[0,∞] can be interpreted as a random time of occurrence of some phenomenon
depending causally upon the process X when the event {ω : τ(ω) ≤ t} is
FX(t)-measurable, which correspond to the notion of optional or stopping times
previously mentioned.

Most of the processes that we are going to discuss will be cad-lag, and the
history {H(t) : t ∈ T} will be right-continuous and therefore be equal to the
canonical filtration (associated with the given process), after being augmented
with all zero-measure sets. By construction H(t) is independent of H⊥(t) for
any t ∈ T, H(t) represents the past and present information at time t and H⊥(t)
is the future new information to come.

Thus, another process Y is said to be adapted to X if Y (t) is measurable
with respect to H(t) for any t ∈ T. Similarly, the process Y is non-anticipative
with respect to X if the random variable Y (t) is independent of H⊥(t) for any
t ∈ T. It is clear that if Y is adapted to X then Y is non-anticipative with
respect to X, but the converse does not hold in general.

Actually, we do not need a process X to define the innovation, if we start
from a filtration {F(t) : t ∈ T} we can define its innovation or independent
complement {F⊥(t) : t ∈ T}, and then we can say that a process X is either
adapted or non-anticipative with respect to the filtration {F(t) : t ∈ T}.

At this point, the Markov property (4.17) can be re-phrased as

P (Xt ∈ B | Hs) = P (Xt ∈ B |Xs), a.s. ∀t > s, B ∈ B(E),

where Ht = H(t) = HX(t). The Markov property identifies only how the finite-
dimensional distributions of the process interact themselves or evolve in time.

Definition 4.17 (Markov). A Markov process with states in E ⊂ Rd is a (com-
plete) probability measure P on (Ω,F), together with a measurable mapping X
(P -equivalence class) from (Ω,F) into (ET ,BT (E)) and an increasing family of
completed σ-algebras (Ft : t ∈ T ) on (Ω,F) satisfying the Markov property

P (Xt ∈ B | Fs) = P (Xt ∈ B |Xs), a.s. ∀t > s, B ∈ B(E).

If the family of σ-algebras (Ft : t ∈ T ) is not mentioned, then it is assumed that
(Ft : t ∈ T ) is the history (H(t) : t ∈ T ) of the process X. Moreover, if (Ft : t ∈
T ) is a filtration satisfying the usual conditions and the paths of (Xt : t ∈ T )
are cad-lag, except in a set of P -probability zero, then (P,Xt : t ∈ T ) is called
a cad-lag Markov process.

As mentioned early, we are concerned with E-valued Markov processes where
E ⊂ Rd, and because cad-lag is usually assumed, the sample space Ω will be a
Polish (separable, complete and metric) space as discussed later. However, the
above definition is meaningful when E is a Polish, and even when E is only a
Lusin space (homeomorphic to a Borel subset of a compact metric space).

Remark that assuming that in (Ω.F .P ) regular conditional probabilities are
used (their existence is implicitly assumed), and referring to the Markov prop-
erty as stated in Definition 4.17, the equality is true except on a set of proba-
bility zero which may depend on t, s. Therefore, the path of the process should
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have some regularity to completely identify the process in term of its finite-
dimensional distributions.

To avoid deep difficulties, only cad-lag Markov processes are considered,
where the Markov property is satisfied with a complete and right-continuous
increasing family of σ-algebras and the path of the process may have only dis-
continuities of first kind, which are normalized to be cad-lag. Note that the
larger the σ-algebras of the filtration (Ft : t ∈ T ) are, the more significant is
the assertion that (P,Xt,Ft : t ∈ T ) has the Markov property. This means that
the process (Xt : t ∈ T ) is necessary adapted to (Ft : t ∈ T ) and the filtration
(Ft : t ∈ T ) is non-anticipative i.e., Ft is independent of H⊥(t) for any t in T.
In short, the Markov property can be re-phased as follows: for every time t the
σ-algebra Ft is independent of σ(Xs : s ≥ t) given Xt.

In most of the literature, the word standard Markov processes refer to cad-
lag Markov processes which are also quasi-left-continuous and satisfy the strong
Markov property (as discussed later). It will become clear that the strong
Markov property is highly desired, however, some applications involving de-
terministic impulses yield cad-lag Markov processes which are not quasi-left-
continuous.

Usually, when talking about a Markov process we do not refer to a single
process, we really mean a family of processes satisfying the Markov property
and some given initial distribution. The following concept of transition function
is then relevant if we can explicitly write

P{Xt ∈ A |Xs = x} = P (s, x, t, A), ∀s < t, x ∈ E, A ∈ B(E),

for some function P (s, x, t, A). Note that

P{Xt ∈ A |Xs = x} =
P ({Xt ∈ A, Xs = x})

P ({Xs = x})
=

=
1

P ({Xs = x})

∫
{Xs=x}

P{Xt ∈ A |Xs}(ω)P (dω),

whenever P ({Xs = x}) > 0 and P{Xt ∈ A |Xs = x} = 0 when P ({Xs = x}) =
0, under the condition that a regular conditional probability exists.

Definition 4.18 (transition). A transition probability function on a given mea-
surable space (E, E), is a function P (s, x, t, A) defined for s < t in T (T is equal
to [0,+∞) or (−∞,+∞) in most of our cases), x in E and A in E such that

(a) for each s < t in T and x in E the function A 7→ P (s, x, t, A) is a probability
measure on (E, E),
(b) for each s < t in T and A in E the function x 7→ P (s, x, t, A) is a measurable,

(c) for any s in T , x in E and A in E we have

lim
t→s

P (s, x, t, A) = δx(A),

i.e., the limit is equal to 1 if x belongs to A, and 0 otherwise,
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(d) for each s < r < t in T, x in E and A in E we have

P (s, x, t, A) =

∫
E

P (s, x, r, dy)P (r, y, t, A),

which is referred to as the Chapman-Kolmogorov identity. It is called homo-
geneous if P (s, x, t, A) = P (0, x, t − s,A) for any t > s in T = [0,+∞) (or
T = {0, 1, 2, . . . }), x in E and any Borel measurable subset A of E, in this case
we will denote P (0, x, r, A) by P (r, x,A). In most of the cases, the space E is a
Polish space and E = B(E), its Borel σ-algebra. We say that P (s, x, t, A) is a
Feller transition probability function

(e) if the function (s, x) 7→ P (s, x, t, f), with

P (s, x, t, f) :=

∫
E

f(y)P (s, x, t, dy),

is continuous from [0, t]× E into R, for any fixed t in (0,∞) and any bounded
continuous function f from E into R.

Note that conditions (a) and (b) are natural weak regularity assumptions,
the limit in (c) is a more restrictive (but necessary) initial condition, and the
Chapman-Kolmogorov identity follows from the Markov property in Definition
4.17. Usually, when the space E is locally compact Polish space and T = [0,∞),
we replace the condition (c) by a stronger assumption, namely, for any compact
subset K of E, any s in [0,∞) and any ε > 0 we have

(a) lim
t→s

sup
x∈K

[1− P (s, x, t, B(x, ε))] = 0,

(b) lim
x→∞

sup
0≤s<t≤1/ε

P (s, x, t,K) = 0,
(4.18)

where B(x, ε) is the ball of radius ε and center x, and neighborhood of ∞ are
of the form E∖K for some compact K of E. In (4.18), the first condition (a) is
referred to as local uniformly stochastic continuity property, while condition (b)
is only necessary when E is not compact. Note that by adding one dimension
to the space E, e.g., replacing E by E × T, we can always assume that the
transition is homogeneous.

Perhaps, it could be convenient for the reader to check, for instance, Mori-
moto [100, Sec 2.6, pp. 73–76] to have a clean idea of how this Markov property
is expressed in term of the solution of an ordinary differential equation driven
by a Wiener process.

Theorem 4.19 (strong Markov). Let (P,Xt,Ft : t ∈ T ) be a Markov process
on a Polish space E with cad-lag paths and homogeneous transition function
P (t, x,A). If either P (t, x,A) is a Feller transition, i.e., condition (e) holds, or
at least the process s 7→ P (t,Xs, f) is cad-lag for every t > 0 and any bounded
continuous function f, then (1) (P,Xt,F+

t : t ∈ T ) is a Markov process with
transition P (t, x,A), where F+

t = ∩ε>0Ft+ε, and (2) F+
t = Ft, for every t ≥ 0,
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when ever Ft is the σ-algebra generated by the null sets and {Xs : s ≤ t}.
Moreover, if the cad-lag Markov process (P,Xt,Ft : t ∈ T ) exists for every
initial condition X0 = x, any x in E, and the transition function is Feller or
at least the process s 7→ P (t,Xs, f) is cad-lag for every t > 0 and any initial
condition X0 = x, then (P,Xt,F+

t : t ∈ T ) is a strong Markov process, i.e., for
any τ optional (or stopping) time, any t > 0, and every Borel measurable set A
in E,

P (X(τ + t) ∈ A | F+
τ ) = P (t,X(τ), A), a.s. on {τ <∞},

where F+
τ is the σ-algebra generated by the optional time τ, relative to {F+

t :
t ≥ 0}.

A proof of the above strong Markov property can be founded in Doob [39,
Theorems 8 and 9, pp. 556-560] or in Blumental and Getoor [17, Chapter 1,
Theorem 8.1, pp. 41-42], where almost surely right continuous (instead of cad-
lag) processes is only assumed. Moreover, adding another coordinate to include
time as a new state variable, this result is extended to non-homogenous Markov
processes with almost no changes. Indeed, if P (s, x, t, dξ) is a non-homogeneous
transition probability function then Ṗ (ẋ, t,dξ̇) = P (s, x, τ,dξ)δ(t − τ)dτ is a
homogeneous transition probability function associated to the Markov process
Ẋ(t) = (t−s,X(t−s)) with initial condition Ẋ(s) = (s,X(0)), where δ(t−τ)dτ
is the Dirac measure at {t}, ẋ = (s, x), ξ̇ = (τ, ξ) and Ė = [0,∞) × E, and
the associated Markov process Ẋ(t) = (t − s,X(t − s)) with initial condition
Ẋ(s) = (s,X(0)).

In most of the cases, the Markov process takes values in a locally compact
metric space E endowed with its Borel σ-algebra. Using the fact that Radon
measures can be regarded as linear continuous functions on the space of con-
tinuous functions with compact support, the properties in the Definition 4.18
of transition function including condition (e) and (4.18) can be rephrased as a
family of linear operators P (t, s) : C0(E) −→ C0(E), where C0(E) is the space
of continuous functions vanishing at infinity (i.e., for any ε > 0 there exists a
compact subset K of E such that |φ(x)| ≤ ε for every x in E ∖K), such that

(a) 0 ≤ P (t, s)φ ≤ 1, for every φ in C0(E) with 0 ≤ φ ≤ 1

(b) limt→s P (t, s)φ(x) = φ(x), for any x in E and φ in C0(E)

(c) P (t, s) = P (t, r)P (r, s), for any s < r < t.

Thus, if the transition function is homogeneous, i.e., P (t, s) = P (t−s), we have
a one-parameter semigroup in C0(E).

Sometimes, it is convenient to consider processes with values in a enlarged
space Ē = E∪{∞}, with an isolated point ∞ (usually, the one-point compactifi-
cation), and even defined in the whole [0,∞]. In this case, the lifetime formalism
is used, i.e., define the lifetime of a process X(·) as ς(ω) := {t ≥ 0 : X(t) = ∞},
and assume that X(t) = ∞ for every t ≥ ς. This allow to relax the condition
(a) of the definition of transition function, only the fact that P (s, x, t, ·) is a
measure with total mass not larger than 1 (instead of a probability measure) is
actually necessary.
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Usually, the transition function P (s, x, t, A) associated with a Markov pro-
cess Xt is continuous in time (i.e., in s and t) and a standard realization makes
Xt a cad-lag process. In this case, an extra property is desirable, the process
Xt = X(t) is quasi-left continuous, i.e., X(Tn) converges to X(T ) on the set
where T <∞, for any increasing sequence of stopping time Tn converging to T,
with Tn < T. It is clear that here the key fact is that Tn are stopping times. In
this sense, the process Xt do not have any deterministic jumps.

If a stochastic process represents some kind of phenomenological process
then it should characterized by its finite-dimensional distributions. Then, a
mathematical model is a realization of such a process in a convenient sample
space. However, a Markov process is also characterized by either its transition
function or it infinitesimal generator (see next chapter). It is important to
recognize that when only one stochastic process (or variable) is involved, it
finite-dimensional distributions determine the process in an appropriate sample
space (usually refer to as a realization of the process), however, when two or
more stochastic processes (or variables) are discussed, it is important to know
its joint distribution. Thus the concept of version or modification of a process
is relevant, i.e., at the end we are always working with stochastic processes as
random variables which are almost surely equals. Recall that two stochastic
processes need not to be defined in the same probability space to have the
same finite-dimensional distributions, but they do have the same law, once the
sample space has been chosen. However, to be a version (or a modification)
one of each other, they do need to be defined in the same probability space.
After a sample space has been chosen, the stochastic process are treated as
random variable, with values in the sample space. The procedure of selecting a
sample space on which a probability is constructed satisfying its characteristic
properties (e.g., the finite-dimensional distributions are given, or in the case of
a Markov process, its transition function or its infinitesimal generator is given)
is called a realization of the stochastic process.

The reader may consult the classic books by Blumental and Getoor [17],
Dynkin [44, 45] or more recent books, such as, Çınlar [29], Chung [27], Del-
lacherie and Meyer [36], Ethier and Kurtz [47], Marcus and Rosen [94], Rogers
and Williams [112], Taira [131], among many others.

4.7 Construction of Processes

A family of finite-dimensional distributions {Ps : s ∈ Tn, n = 1, 2, . . . }, on a
Borel (usually open or closed) subset of Rd, derived from a stochastic process
forms a so-called projective family, i.e., the following (natural) consistency con-
ditions conditions are satisfied:

(a) if s = (si1 , . . . , sin) is a permutation of t = (t1, . . . , tn) then for any Bi in
B(E), i = 1, . . . , n, we have Pt(B1 × · · · ×Bn) = Ps(Bi1 × · · · ×Bin),

(b) if t = (t1, . . . , tn, tn+1) and s = (t1, . . . , tn) and B in B(En) then Pt(B×E) =
Ps(B).
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If a total order is given on the index set T , it is enough to have the finite-
dimensional distributions defined only for (s1, s2, . . . , sn) such that s1 < s2 <
· · · < sn and to satisfy only a consistency conditions of the form

(b’) if t = (t1, . . . , tn) and s = (s1, . . . , sm) with t1 < · · · < tn < r < s1 < · · · <
sm and A×B in B(En)×B(Em) then P(t,r,s)(A×E ×B) = P(t,s)(A×B), for
any n,m = 0, 1, . . . .

The converse of this assertion is given by the following classic Kolmogorov (some-
time called Daniell-Kolmogorov or Čentsov-Kolmogorov) construction or the
coordinate method of constructing a process (see Kallenberg [71], Karatzas and
Shreve [75], Malliavin [93], Revuz and Yor [111], among others, for a compre-
hensive treatment).

Theorem 4.20 (Kolmogorov). Let {Ps : s ∈ Tn, n = 1, 2, . . . } be a consistent
family of finite-dimensional distributions on a Borel subset E of Rd. Then there
exists a probability measure P on (ET ,BT (E)) such that the canonical process
Xt(ω) = ω(t) has {Ps} as its finite-dimensional distributions.

Under the consistency conditions, an additive function can be easily defined
on product space (ET ,BT (E)), the question is to prove its σ-additive property.
In this respect, we point out that one of the key conditions is the fact that the
(Lebesgue) measure on the state space (E,B(E)) is inner regular (see Doob [39,
pp. 403, 777]). Actually, the above result remains true if E is a Lusin space,
i.e., E is homeomorphic to a Borel subset of a compact metrizable space. Note
that a Polish space is homeomorphic to a countable intersection of open sets of
a compact metric space and that every probability measure in a Lusin space is
inner regular, see Rogers and Williams [112, Chapter 2, Sections 3 and 6].

We recall that a cylinder set is a subset C of ET such that ω belongs to
C if and only if there exist an integer n, an n-uple (t1, t2, . . . , tn) and B ∈
B(En) such that (ω(t1), ω(t2), . . . , ω(tn)) belongs to B for any i = 1, . . . , n. The
class of cylinder sets with t1, . . . , tn fixed is equivalent to product σ-algebra in
E{t1,...,tn} ≃ En and referred to as a finite-dimensional projection. However,
unless T is a finite set, the class of all cylinder sets is only an algebra. Based on
cylinder sets, another way of re-phrasing the Kolmogorov’s construction theorem
is saying that any (additive) set function defined on the algebra of cylinder
sets such that any finite-dimensional projection is a probability measure, has a
unique extension to a probability measure on ET . In particular, if T = {1, 2, . . .}
then the above Kolmogorov’s theorem shows the construction of an independent
sequence of random variables with a prescribed distribution. In general, this is
a realization of processes where the distribution at each time is given.

Note that a set of only one element {a} is closed for the product topology of
ET and so it belongs to the Borel σ-algebra B(ET ) (generated by the product
topology in ET ). However, the product σ-algebra BT (E) (generated by cylinder
sets) contains only sets that can be described by a countable number of restric-
tions on E, so that {a} is not in BT (E) if T is uncountable. Thus we see the
importance of finding a subset Ω of ET having the full measure under the outer
measure P ∗ derived from P, which is itself a topological space. For instance,
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combining the last two theorems, if a consistent family of distributions satisfies
the a priori estimate (4.4), then we can redefine the probability measure P of
the above theorem on the space (C,B(C)), of continuous functions.

There is a very important class of stochastic processes so-called Lévy pro-
cesses which provides prototype examples, we refer to Bertoin [11] and Sato [116]
for a comprehensive study.

Definition 4.21 (Lévy process). An E-valued (E ⊂ Rd) Lévy (stochastic) pro-
cess is a couple (PX , X) as in Definition 4.13 satisfying:

(a) its increments are independent of the past i.e., for any t > s ≥ 0 the random
variable Xt −Xs is independent of Xs under PX ,

(b) it has stationary increments i.e., for any t > s ≥ 0 the random variable
Xt −Xs has the same distribution as Xt−s under PX ,

(c) its paths are continuous in probability (referred to as stochastically continu-
ous) i.e., for any ε > 0 and s ≥ 0 we have

lim
t→s

P (|Xt −Xs| ≥ ε) = 0.

Usually the condition PX(X0 = 0) = 0 is added to normalize the process.

Note that a process with independent increments, property (a), has its
finite-dimensional distributions completely determined by the distributions of
(Xt0 , Xt1 −Xt0 , . . . , Xtk −Xtk−1

), for any t0 ≤ t1 ≤ · · · ≤ tk in [0,+∞). More-
over, if the process has stationary increments, property (b), then the distri-
bution of the random variables {Xt : t ≥ 0} in E completely characterize its
finite-dimensional distributions. Adding the continuity condition (c), the Lévy
process is identified. Now, instead of looking at the distributions of Xt under
PX we may consider its characteristic functions, which is its Fourier transform
i.e., for any t ≥ 0

φt(ξ) = E{ei(ξ,Xt)} :=

∫
Ω

ei(ξ,Xt(ω))PX(dω),

where (·, ·) is the dot product in Rd and i is the imaginary unit.
It is not so hard to check that any characteristic function φ(ξ), ξ ∈ Rd has

the following properties:

(a) φ(·) is continuous from Rd into C and φ(0) = 1,

(b) φ(·) is positive definite i.e., for any k = 1, 2, . . . , ζ1, . . . , ζk in C and ξ1, . . . , ξk
in Rd we have

k∑
i,j=1

φ(ξi − ξj)ζiζ̄j ≥ 0,

we refer to Shiryayev [121, Section 2.12, pp. 272–294] for a more detail. So,
this is satisfied by the family of characteristic functions {φt : t ≥ 0}. Moreover,
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since the Lévy process (PX , X) has independent and stationary increments, see
properties (a) and (b), the one-parameter functions φt satisfies φt+s = φtφs, for
any t ≥ s ≥ 0. From the property (c) follows that the function t 7→ φt(ξ) is con-
tinuous for any ξ ∈ Rd from [0,∞) into C. Thus the characteristic function are
of the form φt(ξ) = exp[−tψ(ξ)], for some non-negative and continuous function
ψ with ψ(0) = 0. Actually the Lévy-Khintchine formula (see Protter [108, p.
32, Theorem 43] give a simple expression for the one-dimensional case

ψ(ξ) =
σ2

2
ξ2 − iαξ +

∫
|x|≥1

(1− eiξx)ν(dx) +

∫
|x|<1

(1− eiξx + iξx)ν(dx),

where ν (called Lévy measure) is a Radon measure on R∗ = R∖ {0} satisfying

ν({|x| ≥ 1}) +
∫
|x|<1

|x|2ν(dx) < +∞,

and the constants σ, α are the characteristic parameters of the process i.e.,
uniquely determine the Lévy process. This generalizes to Rd, where now σ2 is
a positive semi-definite quadratic d × d matrix, α, x and ξ are in Rd and the
dot product is used, see Bertoin [11, Theorem I.1, pp. 13–15]. Moreover, the
canonical filtration {F(t) : t ≥ 0} associated with a Lévy process (PX , X) is
right-continuous, i.e. it satisfies the usual conditions, see Definition 4.6.

The converse can be established as follows. First, by means of the classic
Bochner theorem (e.g. see Pallu de la Barrière [104, p. 157, Theorem 1] that
for any non-negative and continuous function ψ with ψ(0) = 0 such that ξ 7→
exp[−tψ(ξ)] is positive definite for any t ≥ 0, is indeed the characteristic function
of some distribution), there exist a family of probability distribution P (t, dx) for
any t ≥ 0 whose characteristic function is precisely exp[−tψ(ξ)]. Now, based on
the properties (a) and (b) of a Lévy process, the finite-dimensional distributions
are determined by

P (X(t1) ∈ B1 , X(t2) ∈ B2 , . . . , X(tn) ∈ Bn) =

= P (X(t1) ∈ B1 , X(ti)−X(ti−1) ∈ Bi −Bi−1 , 2 ≤ i ≤ n) =

= P (t1, B1)P (t2 − t1, B2 −B1) · · ·P (tn − tn−1, Bn −Bn−1) ,

for any 0 ≤ t1 ≤ t2 ≤ · · · ≤ tn. Hence, Kolmogorov construction may be applied.
The fact that the family of characteristic functions exp[−tψ(ξ)] are continuous
in t, locally uniformly in ξ implies that the process is continuous in probability
i.e., condition (c) is satisfied. Therefore, if ν, σ and α are given then there exists
a unique Lévy process with the prescribed characteristic parameters. Moreover,
as proved in Protter [108, p. 21, Theorem 30] any Lévy process has a version
which is cad-lag i.e., the paths t 7→ Xt(ω) are right-continuous functions having
left-hand limits from [0,∞) into E for any ω ∈ Ω∖N with PX(N) = 0. In other
words, the Kolmogorov construction is valid on the space of cad-lag functions.

The transition function P (t, x,A) of a Lévy process has the form of convo-
lutions semigroup, i.e., a family of probability measures on Rd such that
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(a) νs ∗ νt = νs+t for any s, t

(b) νt → δ0 in the weak topology,

and

P (t, x,A) :=

∫
Rd

1A(x+ y)νt(dy),

see Revuz and Yor [111, Propositon 2.18, pp. 96-97].
As seen in the classic Kolmogorov construction, the finite-dimensional distri-

butions characterize the statistics of a process, but not its sample properties. If
we are only interested in the statistics of a process, we may adopt another view-
point to identify a process. Instead of given its finite-dimensional distributions,
we may prescribe some time-evolution or dynamics.

Suppose that a transition (probability) function P (s, x, t, A) (see Defini-
tion 4.18) and an initial (i.e. for t = 0) distribution ν are given. Then we
can define an absolute probability function by

P0(t, A) =

∫
P (0, x, t, A) ν(dx), ∀A ∈ F

and a family of finite-dimensional distributions for t1 < · · · < tn as follows

Pt1,...,tn(A1 ×A2 × · · · ×An) =

=

∫
A1

P0(t1,dx1)

∫
A2

P (t1, x1, t2,dx2) · · ·
∫
An

P (tn−1, xn−1, tn,dxn),

for anyA1, A2, . . . , An in F . It is not hard to check that the consistency condition
(b’) is satisfied.

Thus for a given transition function on (E,F), with E ⊂ Rd, we can use
Kolmogorov construction to get a canonical process (i.e. a probability measure)
on (ET ,B(ET )). Moreover, if the continuity condition (4.4) is satisfied, which
is verifiable in term of the transition function and the initial probability i.e.,∫

E

|x− y|αP (s, x, t, dy) ≤ C|t− s|1+β , ∀s, t ∈ [0, T ], ∀x ∈ E,

for some positive constants α, β and C, then the construction can be performed
over the space C(T,E), with the local uniform convergence topology and the
induced Borel σ-algebra. Similarly, the cad-lag condition (4.5) becomes∫

E

|x− y|αP (s, x, t, dy) ≤ C|t− s| 12+β , ∀s, t ∈ [0, T ], ∀x ∈ E,

after some simplification.
If we denote by (PX , X) the process constructed as above on the product

space (ET ,B(ET )), with its canonical filtration {F(t) : t ≥ 0}, then we have
the following property (derived from the Chapman-Kolmogorov identity)

PX(X(t) ∈ · |X(s)) = P (s,X(s), t, ·), ∀t ≥ s (4.19)
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So that P (s, x, t, A) represents the conditional probability that the state of the
process belongs to A at time t knowing that initially it was x at time s. This is
referred to as the Markov property.

Let us state an useful result relative to the construction of standard Markov
process, actually the so-called Markov-Feller processes. There are several way
of constructing a good Markov process from a given Markov (or sub-Markov)
transition as in Definition 4.18 conditions (a), (b), (c) and (d). For instance
we refer to Blumental and Getoor [17, Chapter 1, Theorem 9.4, pp. 46-51],
Dynkin [45, Chapter III, Theorems 3.5, 3.6, pp. 81-92], Ethier and Kurtz [47,
Chapter 4, Theorem 1.1, pp. 157-169], among others. We summarize these
results in a non-homogeneous form as follows:

Theorem 4.22 (realization). Let P (s, x, t, dy) be a transition probability func-
tion satisfying properties (a), (b), (c), (d) of Definition 4.18 on a Polish space
E. Then, for any given probability measure ν on E and any initial time s ≥ 0,
there exist a unique Markov process (P,Xt,Ft; t ≥ s) satisfying condition (4.19)
and such that Xs has ν as its distribution. If the transition probability func-
tion either (1) is Feller, i.e., the function (s, x) 7→ P (s, x, t, f) is continuous
from [0, t] × E into R for any t in (0,∞) and any bounded continuous func-
tion f from E into R, or (2) satisfies condition (4.18), then the Markov pro-
cess (P,Xt,Ft; t ≥ s) has cad-lag paths and right-continuous filtration. More-
over, if the function (x, t) 7→ P (s, x, t, f) is continuous from [s,∞) × E into
R, for any s in [0,∞) and any bounded continuous function f from E into
R, then (Xt,Ft : t ≥ s) is quasi-left-continuous, i.e., for any increasing se-
quence of stopping time {τn : n = 1, 2, . . .} almost surely strictly convergent to
τ, P (τn ≤ τn+1 < τ < ∞, τ > s) = 1, then Xτn converges to Xτ a.s. (or
equivalently the σ-algebra Fτ is the minimal σ-algebra containing the sequence
of σ-algebra {Fτn : n = 1, 2, . . .}). Furthermore, if

lim
t→s

1

t− s
sup
x∈K

{1− P (s, x, t, B(x, ε))} = 0,

for every s ≥ 0 and x in E, then the Markov process (P,Xt,Ft; t ≥ 0) has
continuous paths.

There are several ways of expressing the continuity condition (Feller’s prop-
erty) assumed in the previous theorem. Sometime, a transition probability
P (s, x, t, dy) is called stochastically continuous if it satisfies

lim
t−s→0

P (s, x, t, {y ∈ E : |y − x| < δ}) = 1, ∀x ∈ E,

see Dynkin [45, Chapter 2]. This is equivalent to the continuity in probabil-
ity of a realization of the Markov process and the Feller character used above.
Moreover, a Markov process satisfying the above regularity on its transition
function is called a Markov-Feller process. Actually, with the aid of the sample
space D([0,∞), E) discussed later, we see that the so-called realization of the
Markov-Feller process given in the previous theorem can be regarded as a prob-
ability measure P on D([0,∞), E), with Xt(ω) = ω(t) the canonical process
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and (Ft : t ≥ 0) its canonical filtration. Moreover, it satisfies the strong Markov
property. At this point, a reading of Chapter 4 in Marcus and Rosen [94] could
be of some help.

We may look at stochastic processes with complex values. In this context,
we have the so-called second-order process, which are well adapted to dynamical
systems.

Definition 4.23 (second-order process). A (complete) probability measure PX
on (Ω,F), where Ω ⊂ CT and Ω

⋂
B(CT ) ⊂ F , together with a measurable

mapping X from Ω into itself satisfying:

(a) EX{|Xt|2} <∞, for all t in T,

(b) t 7→ Xt from T into L2(PX) is continuous

will be called a mean square continuous second-order process (PX , X).

This definition is independent of the sample path of the process, i.e., any
version of the process should satisfy the conditions (a) and (b) above. Thus, as
the case of processes continuous in probability, second-order processes cannot be
regarded as random variables with values in some appropriate (sample) function
space.

For a second-order process we can define the mean and covariance function:

µ(t) := EX{Xt} R(t, s) := EX{(Xt − µ(t))(Xs − µ(s))},

where the over-bar denotes the complex conjugate. Several properties can be
discussed for this class of processes. For instance, we can mention that a second-
order process is continuous in mean square if and only if its covariance function
R(t, s) is continuous. On the other hand, any continuous second-order process
(PX , X) with T = [a, b] has a version of the form

Xt(ω) =

∞∑
n=1

√
λnφn(t)yn(ω),

where the convergence is in L2(PX), uniformly for t in [a, b], and {φn : n =
1, 2, . . . } are the orthonormal eigenfunctions and {λn : n = 1, 2, . . . } are the
eigenvalues of∫ b

a

R(t, s)φ(s)ds = λφ(t), a ≤ t ≤ b

in L2(]a, b[) and {yn : n = 1, 2, . . . } is an orthonormal system in L2(PX) satis-
fying

yx(ω) =
√
λn

∫ b

a

φn(t)Xt(ω)dt.

We refer to Shiryayev [121, Section 2.10, pp. 260–272] for the discrete case,
and to Wong [134, Chapter 3, pp. 74–138] for more details.
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Related with the second-order processes are the so-called processes with or-
thogonal increment, which are defined as a (complete) probability measure PX
on (Ω,F), where Ω ⊂ CT and Ω

⋂
B(CT ) ⊂ F , together with a measurable

mapping X from Ω into itself satisfying:

(a) EX{|Xt −Xs|2} <∞, for all t, s in T,

(b) EX{XtXs} = 0, for all t, s in T,

It can be proved that to each such a process corresponds a monotone non-
decreasing functions FX , uniquely determined up to an additive constant, sat-
isfying

EX{|Xt −Xs|2} = FX(t)− FX(s), ∀t > s.

Moreover, the right-hand X(t+) and the left-hand X(t−) limits exists in the
L2(PX) sense, for every t in T, and X(t−) = X(t) = X(t+), except for a count-
able set in T. Thus, processes with orthogonal increments can be normalized
to be cad-lag in mean square sense. We refer to Doob [38, Chapter IX, pp.
425–451].

4.8 Examples of Markov processes

Two typical examples can be given, (a) the standard Wiener process (or Brow-
nian motion) (w(t), t ≥ 0) and (b) the standard Poisson process (p(t), t ≥ 0).
Both are the prototype of Lévy processes (see Definition 4.21). For the Wiener
process, we take the Gauss kernel

p(t, x) = (2πt)−d/2 exp(−|x|2

2t
), t > 0, x ∈ Rd (4.20)

and consider the transition function

Pw(s, x, t, A) =

∫
A

p(t− s, y − x)dy, ∀t > s, A ∈ B(Rd),

the initial probability P0 as the Dirac measure. Kolmogorov construction and
path regularity apply in this case to generate a probability measure Pw in the
space C([0,+∞),Rd), called Wiener measure. Under Pw, the canonical process
is a standard Wiener process. Certainly there several ways to construct a Brow-
nian motion and a critical point is to show continuity of its paths. In general, a
one-dimension standard Brownian motion is defined as a real valued stochastic
process {B(t) : t ≥ 0} satisfying:

(a) B(0) = 0 and for 0 ≤ s < t < ∞, the difference B(t) − B(s) is a normally
distributed random variable with mean zero and variance t− s, i.e., for every α
in R,

P
(
B(t)−B(s) > α

)
=

∫ +∞

α

(
2π(t− s)

)−1/2
exp

(
− |x|2

2(t− s)

)
dx,
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(b) for 0 ≤ t0 < t1 < · · · < tn, the family {B(t0), B(tk)−B(tk−1), k = 1, . . . , n}
is a set of independent random variables.

The above two properties characterize a Brownian motion (or Wiener process)
as an indistinguishable stochastic process. Because it is well know that (e.g.
Chung [27, p. 145]) any Brownian motion has a version with continuous path,
we work always with a continuous version, actually with the Wiener measure. A
d-dimensional version is constructed by taking d independent one-dimensional
Brownian motions. Note that the characteristic function is given by

E{exp i(ξ,B(t))} = exp
(
− t

|ξ|2

2

)
, ∀t ≥ 0,

with i =
√
−1. There are many properties on the paths of a Wiener process

{w(t) : t ≥ 0}, we mention some of them (see Itô and McKean [66], Krylov [83,
pp. 36-38])

(a) for any c non zero constant, w(t+ c)−w(c), c−1w(c2t), ∀t ≥ 0 and tw(1/t),
∀t > 0 (and = 0 for t = 0) are also Wiener process;

(b) for any constants α in (0, 1/2) and T in (0,∞) there exists a random variable
C(ω) such that E{|C|p} <∞ for any positive and finite p and

|w(t, ω)− w(s, ω)| ≤ C(ω)|t− s|α, ∀t, s ∈ [0, T ], ω ∈ Ω.

In particular, |w(t, ω)| ≤ C(ω)tα for t ∈ [0, T ] and |w(t, ω)| ≤ C(ω)t1−α for
t > T.

(c) for any ω in Ω∖N, with P (N) = 0 we have

lim sup
s↓0

|w(t+ s)− w(t)|√
−2s ln s

= 1, ∀t > 0,

lim sup
t↓0

w(t)√
2t ln(− ln t)

= 1, lim inf
t↓0

w(t)√
2t ln(− ln t)

= −1,

which are referred as the law of the iterated logarithm.

(d) let {t0,n, . . . , tk,n : n = 1, 2, . . . } be a sequence of partition of [a, b] ⊂ [0,∞)
with mesh going to zero, then

lim
n→∞

k∑
i=1

[w(ti)− w(ti−1)]
2 = b− a, a.s.

As a consequence, almost surely the sample paths t 7→ w(t, ω) of a standard
Wiener process are of unbounded variation on any interval. It is possible to
construct a Wiener process based on a complete system of orthonormal function
in L2. For instance (Krylov [83, pp. 32]), let {ξn : n = 0, 1, . . . } be a sequence
of independent (standard) normal distributed random variables. Define the
process

wkt (ω) =
1√
π
t ξ0(ω) +

√
2

π

N(k)∑
n=1

ξn(ω)
1

n
sin(nt).
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Then there exists increasing sequence of positive integers {N(k) : k = 1, 2, . . . }
such that the sequence of processes wkt converges uniformly for t ∈ [0, π] and
ω ∈ Ω ∖ N, P (N) = 0 to a Wiener process. Another typical expression is the
locally uniformly convergent series

wt(ω) =

√
2

π

∞∑
n=0

ξn
sin

(
tπ(n+ 1/2)

)
n+ 1/2

,

e.g., see Knight [82, Chapter 1].
Related to a Wiener process (or Brownian motion) is a Brownian motion

with drift, defined by x(t) := σw(t) + bt, for some constants σ and b, where
each random variable x(t) has a Gaussian distribution. Similarly, a geometric
Wiener process is defined by

x(t) := exp[σw(t) + bt], t ≥ 0,

where now x(t) has a log-normal distribution. On the other hand,

x(t) := w(t) + sup
0≤s≤t

{max[w(s), 0]}, t ≥ 0

defines a reflected Brownian motion on [0,∞), and x(t) := w(t) − tw(1), 0 ≤
t ≤ 1 defines a so-called Brownian bridge.

For a one-dimensional standard Poisson process with parameter c > 0, we
define the transition function

Pp(s, x, t, A) = exp
[
− c(t− s)

] ∞∑
k=0

[c(t− s)]k

k!
1A(x+ k) (4.21)

and we apply Kolmogorov construction. Here, the continuity condition (4.4) is
not satisfied, but the process is continuous in probability (see property (c) of
Definition 4.21). A Poisson process {p(t) : t ≥ 0}, with parameter c > 0, is
characterized by the following properties:

(a) p(0) = 0 and 0 ≤ s < t <∞, the difference p(t)− p(s) is a Poisson random
variable with mean c(t− s) i.e.,

P
(
p(t)− p(s) = n

)
=

[
c(t− s)

]n
exp

[
− c(t− s)

]
/n!, n = 0, 1, . . . ;

(b) for 0 ≤ t0 < t1 < · · · < tn, the family {p(t0), p(tk)− p(tk−1), k = 1, . . . , n}
is a set of independent random variables.

Any Poisson process has a version with right continuous (and left hand limits)
paths (see Chung [27, Theorem 3, p. 29]). Almost surely, the paths of a Poisson
process are constant except for upward jumps of size one, of which there are
finitely many in each bounded interval, but infinitely many in [0,∞]. The times
between successive jumps are independent and exponentially distributed with
parameter c. Thus, if τn is the time between the n and the (n+ 1) jumps, then
P (τn > t) = exp(−ct) for each t ≥ 0. Actually, based on this last property,
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a Poisson process can be constructed as follows. Let {τn : n = 1, 2, . . . } be a
sequence of independent exponentially distributed (with parameter c) random
variables. Define the counting process as

p(t) =

{
0 if t < τ1,

n if
∑n
i=1 τi ≤ t <

∑n+1
i=1 τi

with values in {0, 1, 2, . . . }. It can be proved (see Protter [108, Chapter 1]) that
{p(t) : t ≥ 0} is a Poisson process. Its characteristic function is given by

E{exp(iξp(t))} = exp
[
− tc(1− eiξ)

]
, ∀t ≥ 0.

Similarly, a Compound-Poisson process is given by

p(t) =

{
0 if t < τ1,

Zn if
∑n
i=1 τi ≤ t <

∑n+1
i=1 τi,

where Zn := ζ1+ζ2+· · ·+ζn, and {ζn : n = 1, 2, . . . } is a sequence of independent
identically distributed (with distribution law ν) random variables, independent
of the sequence τ1, . . . , τn. Its transition function is given by the expression of
the form

Pcp(s, x, t, A) = exp
[
− c(t− s)

] ∞∑
k=0

[c(t− s)]k

k!
νk(x+A), (4.22)

where νk = ν ∗ νk−1 is the k measure-convolutions of ν, i.e., the distribution of
the random variable Zk = ζ1 + ζ2 + · · · + ζk. In general, if ν is a distribution
in Rd with ν({0}) = 0 then a compound Poisson process pcp(t) in Rd has the
characteristic function

E{exp(iξ · pcp(t))} = exp
[
− tc(1− ν̂(ξ))

]
, ∀ t ≥ 0,

where ν̂ is the characteristic transform of ν, i.e.,

ν̂(ξ) =

∫
Rd

exp(iξ · x)ν(dx), ∀ ξ ∈ Rd.

In particular, if d = 1 and ν = δ1 then we get an standard Poisson process as
above, e.g., see Sato [116, p.18].

A more general viewpoint is to define a (standard or homogeneous) Poisson
measure (or Poisson point process) {p(t, ·) : t ≥ 0} with Lévy (characteristic or
intensity) measure m(·) by the conditions:

(a)m(·) is a Radon measure on Rd∗ := Rd∖{0}, i.e., m(B) <∞ for any compact
subset B of Rd∗;
(b) {p(t, B) : t ≥ 0} is a Poisson process with parameter m(B), for any compact
subset B in Rd∗ (with p(t, B) := 0 if m(B) = 0);
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(c) if B1, B2, . . . , Bn are disjoint Borel set in Rd∗ then the Poisson processes
p(·, B1), p(·, B2), . . . , p(·, Bn) are independent.

Note that the Lévy measure m(·) may have a singularity at the origin (at most)
of order 2, i.e.,∫

Rd
∗

(
|x|2 ∧ 1

)
m(dx) <∞.

Clearly from (b) follows

E{p(t, B)} = tm(B), ∀t ≥ 0, B ∈ B(Rd∗).

Also, Poisson measures can be represented by means of Dirac point mass (or
atoms), i.e.,

p(t, B) =
∑

0≤s≤t

1e(s)∈B , ∀t ≥ 0, B ∈ B(Rd∗),

where {e(t) : t ≥ 0} is a Poisson point process with characteristic measure
m(·), i.e., {e(t) : t ≥ 0} is a cad-lag (independent of each other) process taking
values in Rd, which is equal to 0 except for a countable number of times and its
counting process p(t, B) is a Poisson process. Equivalently, a (random) sequence
{(en, τn) : n ≥ 1} in Rd∗ × [0,∞) such that its counting process

p(t, B) =
∑
n

1en∈B 10≤τn≤t, ∀t ≥ 0, B ∈ B(Rd∗)

is a Poisson process. If m(·) is bounded, i.e., m(Rd∗) < ∞ then the following
expression

Pp(s, x, t, A) = exp
[
−m(Rd∗)(t− s)

] ∞∑
k=0

(t− s)k

k!
mk(x+A),

mk(B) =

∫
Rd

∗

mk−1(z +B)m(dz), k = 1, 2, . . . ,

gives the corresponding transition function for the Poisson measure process.
Comparing with (4.22), we see that compound Poisson processes are particular
cases of Poisson measure process. We refer to Bensoussan and Lions [9, Chapter
3, Section 5] Bertoin [11], Bremaud [21], Jacod and Shiryaev [69], Protter [108]
and Sato [116] for a systematic discussion of the above statements.

Other less typical processes (but particular cases of the above) are (c) the
Cauchy process (c(t), t ≥ 0) and (d) the deterministic process (d(t), t ≥ 0). For
the one-dimensional Cauchy process, we define the transition function

Pc(s, x, t, A) =

∫
A

π(t− s)dy

(t− s)2 + (y − x)2
, (4.23)
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and we apply Kolmogorov construction. It can be proved that the continuity
condition (4.4) is not satisfied. Only a cad-lag version of this process can be
constructed. This process can be thought of as the trace on the real line of
trajectories of a two-dimensional Brownian motion, which moves by jumps.

For the deterministic process, we use an ordinary differential equation [0, T ]×
Rd, e.g. an initial valued problem

ẏsx = f(t, ysx), t > s, ysx(s) = x, (4.24)

to define the transition function

pd(s, x, t, A) = 1A

(
ysx(t)

)
.

Certainly, the only deterministic model comparable with the previous examples
is the case ysx(t) = (t− s)a+ x, for some constant a, which is homogeneous in
time and space.

In this case we may use Kolmogorov construction with the continuity con-
dition (4.4) satisfied. However, a direct approach show that the probability
measure Pd constructed in the space C([0, T ],Rd) is simply the Dirac measure
with respect to ysx(t), i.e. for all A ∈ B(C)

Pd(A) =

{
1 if y0x(·) ∈ A,
0 otherwise,

where the initial probability is equal to δx.
Note that the Poisson process has values in a countable set and it is a typical

example of the so-called (e) Markov pure jump process. Its (time homogeneous)
transition density function, denoted by p(t, i, j), should satisfy the Chapman-
Kolmogorov identity

p(t− s, i, j) =
∑
k

p(r − s, i, k) p(t− r, k, j), ∀t > r > s, i, j.

Hence, differentiate either in s or in t and let either r− s or t− r approaches 0
to deduce either the backward equation

∂sp(t− s, i, j) =
∑
k

ρ+(s, i, k) p(t− s, k, j), ∀t > s, i, j,

ρ+(s, i, j) = lim
r→s

∂sp(r − s, i, j) ∀s, i, j,
(4.25)

or the forward equation

∂tp(t− s, i, j) =
∑
k

p(t− s, i, k) ρ−(t, k, j), ∀t > s, i, j,

ρ−(t, i, j) = lim
r→t

∂tp(t− r, i, j) ∀t, i, j,
(4.26)

The quantities ρ+(s, i, j) and ρ−(s, i, j) are the characteristic of the process,
and clearly

ρ−(s, i, j) = −ρ+(t, i, j) := ρ(i, j), independent of s, t,

ρ(i, j) ≥ 0, ∀i ̸= j, ρ(i, i) = −
∑
j ̸=i

ρ(i, j). (4.27)
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As in the deterministic example, instead of prescribing the transition function
we give an infinity array of real numbers {ρ(i, j) : i, j = 1, . . . } satisfying the
above equation (4.27). These functions represent the infinitesimal rate at which
i will jumps to j at time s. We can construct the transition function by solving
the forward equation (4.26) with an initial condition, which is a linear system
of ordinary differential equations if the i, j ranges over a finite set. We have to
solve for p(t, i, j) the equation

ṗ(t, i, j) =
∑
k

p(t, i, k) ρ(k, j), ∀t > 0, i, j,

p(0, i, j) = δi,j ,

(4.28)

where the dot means derivative in t and δi,j = 1 if i = j and zero otherwise. It
can be proved that this equation (4.28) admits a unique solution which provides
a transition function p(t, i, j) as above, see Lamperti [86, Section 6.2, pp. 114-
117]. The cad-lag condition (4.5) is satisfied, so that by means of Kolmogorov
construction a realization of the Markov pure jump process exists inD([0, T ],R).
Actually, a discrete arguments will provide a realization in {1, 2, . . . }[0,T ]. For
instance we refer to Chung [26] for a exhaustive treatment.

A so-called (Gaussian) white noise is generally understood in engineering
literature as a family of independent centered Gaussian random variables {ξ(t) :
t ≥ 0}, i.e., mean E{ξ(t)} = 0 and a covariance R(t − s) = E{ξ(t)ξ(s)} with
constant spectral density, so that

E{exp[−iξ(t)]} =
1

2π
, ∀t ≥ 0.

Such a process has a spectrum on which all frequencies participate with the same
intensity, hence a white spectrum (in analogy with the white light in optics, which
contains all frequencies of visible light, uniformly). However, such a process does
not exist in the traditional sense because we should have R(t − s) = δ(t − s),
where δ is the Dirac’s delta generalized function. All this can be mathematical
interpreted in the Schwartz distribution sense.

Definition 4.24 (generalized process). Denote by S(]0,∞[) the space of rapidly
decreasing infinite differentiable functions and by S ′(]0,∞[) its dual space, the
space of temperate distributions on ]0,∞[. In the same way that a stochastic pro-
cess can be considered as a random variable with values in R[0,∞], a generalized
stochastic process is random variable with values in the Schwartz distribution
space (S ′(]0,∞[),B(S ′)).

Note that S(]0,∞[) and S ′(]0,∞[) are reflexive and Fréchet (locally convex,
complete and metrizable) spaces, e.g., see Schwartz [118], but only with a partial
order. In particular, the concept of a process adapted to a filtration and stopping
time need to be reviewed with generalized processes. Clearly, we may use S(Rd)
and S ′(Rd) instead of S(]0,∞[) and S ′(]0,∞[).

[Preliminary] Menaldi November 19, 2022



132 Chapter 4. Working on Probability Spaces

Thus, a process {x(t) : t ≥ 0} can be regarded as a generalized process Φ,
where

⟨Φx(ω), φ⟩ :=
∫ ∞

0

x(t, ω)φ(t)dt, ∀φ ∈ S(]0,∞[), ω ∈ Ω,

but it is clear that we loss the complete order on the index set. Also, a
generalized (stochastic) process Φ is said to be Gaussian if for arbitrary lin-
early independent functions φ1, φ2, . . . , φn the n-dimensional random variable
(Φ(φ1),Φ(φ2), . . . , Φ(φn)) is normally distributed. As in the classical sense,
a generalized Gaussian process is uniquely determined by its means and co-
variance. An important advantage of a generalized process is the fact that its
derivative always exists and is itself a generalized stochastic process. In partic-
ular if we start with a Wiener process {w(t) : t ≥ 0} consider the generalized
derivative of its associated generalized process Φw i.e.

⟨Φ̇w(ω), φ⟩ := −⟨Φw(ω), φ̇⟩ ∀φ ∈ S(]0,∞[), ω ∈ Ω.

we obtain a Gaussian white noise (generalized) process. Similarly, from a
Poisson process {p(t) : t ≥ 0} we get a Poisson white noise (generalized)
process as the derivative of the generalized process associated with {p̄(t) :=
p(t)−E{p(t)} : t ≥ 0}. For instance we refer to Arnold [2, pp. 50–56], Kallianpur
and Karandikar [73] and Pallu de la Barrière [104, Chapter 7]. A comprehensive
analysis on Markov (and Gausssian) processes can be found in the recent book
by Marcus and Rosen [94].
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Chapter 5

Working with Stochastic
Processes

Contrary to previous Chapter 4, the purpose of this chapter is to learn a little
bit more on Markov processes (and a little ‘neighborhood’ of them) based on
typical examples, but with a certain emphasis in the arguments used. This ma-
terial could be adapted, perhaps, to a series of ‘extensive lectures’ on stochastic
processes, with a clear focus on Markov processes.

For instance, the interested reader may want to check the book by Revuz
and Yor [111, Chapters 0-III, pp. 1–118] to find a carefully written introduction
with full details on various questions that are almost ignored in what follows.
Moreover, there many excellent books on this subject, with various orientations,
that the reader should search to find the most suitable one in each particular
situation.

A general stochastic process with values in a Polish space (separable com-
plete metric space) E, usually locally compact (e.g., closed subset of Rd or a
one-point compactification of an open), on a probability space (Ω,F , P ) is a
family of random variables (measurable mappings, almost surely defined), de-
noted by either X = X(t) or X = Xt, from Ω into E indexed by a set T
(usually a subset of real numbers). We suppress the qualifier general when a
suitable regularity on the paths is imposed, i.e., at least separable and measur-
able. From the phenomenological viewpoint, a stochastic process is identified
by prescribed properties given on the family of finite-dimensional distributions.
A priori, a stochastic process can be viewed as a random variable X with values
in the product topological space ET , which is not a Polish space if E and T
are uncountable. Mathematically, we add some regularity conditions (such as
continuity) on the paths of the stochastic process (X(·, ω), for each ω), so that
we can consider a much smaller subset of ET , with a structure of Polish space
(non-locally compact), where the process actually lives. Usually, these Polish
spaces are either C([0,∞), E), the space of E-valued continuous functions, or
D([0,∞), E), the space of cad-lag functions as described in section 1.12. Ac-
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tually, we use always the cad-lag regular form of a stochastic process, that is,
given a stochastic process {Y (t) : t ∈ T} with an uncountable (index) subset
T ⊂ [0,∞), the cad-lag regularisation (usually this is also a version of Y (t)) is
the stochastic process X given by X(t, ω) = lims∈Q,s→t Y (t, ω) and defined for
any t in T, where the limits from the right and from the left (on the rational or
dyadic-rational numbers Q) exist finitely. Therefore, we say that the stochastic
process Y is regularisable if the cad-lag regularisation is defined for any t in T.
It can be proved that a process is regularisable if and only if the process and its
(rational) up-crossings are locally bounded, moreover, the set of regularisable
stochastic processes is measurable, see Rogers and Williams [112, Chapter 2,
Section 5, pp. 163–166].

We are going to deal only with stochastic processes admitting a cad-lag
version, unless otherwise stated. Thus for the initial (nominal or reference)
stochastic process, we take a canonical realization, i.e., a complete probabil-
ity space (Ω,F , P ) and a random variable X with values in the Polish space
D([0,∞), E). Usually, we may want to set Ω = D([0,∞), E), F = B(Ω),
X(t) = ω(t), X−(t) = ω(t−), and use the (complete) σ-algebras {F(t), t ∈ T}
and {F−(t), t ∈ T} generated by the family of E-valued random variables
{X(s), s ≤ t, s ∈ T} and {X−(s), s ≤ t, s ∈ T}, respectively. Most of the
times, E ⊂ Rd and P is the (unique) Wiener measure on D([0,∞),Rd) with
support in C([0,∞),Rd). Other processes Y , Z, . . . are regarded as random
variables with values in the (non-locally compact) Polish space D([0,∞), E) or
with values in C([0,∞), E) if possible. Sometimes, these processes are regarded
also as a maps from Ω × T into E. For instance, an increasing process Y will
have also the property (on the paths) that t 7→ Y (t, ω) is increasing, for ev-
ery ω in Ω ∖ N, with P (N) = 0. Thus, unless otherwise stated, a E-valued
stochastic process is a measurable function from a complete probability space
(Ω,F , P ) into the canonical space D([0,∞), E), i.e., a D([0,∞), E)-valued ran-
dom variable, which imposes the cad-lag regularity on paths. In any case, it
is implicitly assumed that we have choose a probability space (Ω,F , P ) where
regular conditional probability exists.

Our main interest is (strong) Markov processes admitting a cad-lag realiza-
tion and having a (continuous) transition function. These stochastic processes
are identified by (1) a prescribed (continuous) transition function, or (2) a given
(continuous) Markov-Feller semigroup, which in turn can be obtained by its in-
finitesimal generator. With the previous introduction, the purpose of this chap-
ter is to discuss (in some detail) certain topics in stochastic analysis as a tool
to describe (or generate) Markov processes. Certainly, it is implicity assume
a minimum understanding of probability, e.g., see Bremaud [21, Appendix A1,
pp. 255–295].

5.1 Discrete Time

To motivate some delicate points in the theory of continuous time processes we
discuss first sequences of random variables, i.e., random processes in discrete
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time. First, a filtered space is a complete probability space (Ω,F , P ) and an
increasing sequence (so-called filtration) of sub σ-algebras (Fn : n = 0, 1, . . .),
Fn−1 ⊆ Fn, for all n = 1, 2, . . . , such that F0 contain all null sets. A stochastic
sequence (or process) (Xn : n = 0, 1, . . .) is a sequence of R-valued (or Rd-
valued) random variables, ‘identified’ almost surely (i.e., P -equivalence class).
Its associated natural filtration is the sequence (Fn : n = 0, 1, . . .) of sub σ-
algebras generated by {X0, X1, . . . , Xn} and augmented with all null sets, i.e.,
σ[X0, X1, . . . , Xn] and all null sets. Given a filtered space, a stochastic sequence
(or process) (Xn : n = 0, 1, . . .) is called adapted if every random variable Xn

is Fn-measurable. Also, it is called predictable if every random variable Xn is
Fn−1-measurable, for any n = 1, 2, . . . , here X0 is ignored or taken equal to
zero. A stopping time η is a maps (identified almost surely) from Ω into the set
{0, 1, . . . ,∞} such that {η ≤ n} (or equivalently {η = n}) belongs to Fn for any
n ≥ 0, where F∞ = F . For an given stopping time, the σ-algebra Fη is defined
as the collection of all subsets A in F such that A ∩ {η ≤ n} (or equivalently
A ∩ {η = n}) belongs to Fn, for any n ≥ 0. Note that a typical stopping time
is the hitting time (or entry time) of a Borel subset B of B(R) (or B(Rd)) for
a stochastic sequence (Xn : n = 0, 1, . . .), i.e., η = inf{n ≥ 0 : Xn ∈ B}, where
η = ∞ if Xn does not belong to B for any n ≥ 0.

Similar to Kolmogorov’s extension theorem (see Theorem 4.20) we can men-
tion the following construction of the direct product of probability spaces (e.g.,
Halmos [57, Section VII.38, Theorem B, pp. 157–158]), namely, there exists
a unique probability measure P on the (countable) product space Ω =

∏
nΩn

with the product σ-algebra F (generated by the collection of cylindrical sets
Cn =

∏n
k=1 Fk ×

∏∞
k=n+1 Ωk, with Fk in Fk,) such that P (Cn) =

∏n
k=1 Pk(Fk)

for every cylindrical set. Note that the countable assumption is really not
an issue, it can be easily dropped. Sometimes, cylindrical sets (or cylinder
sets) are defined as Cn = Fn ×

∏∞
k=n+1 Ωk, with Fn in the (finite) product

σ-algebra
∏n
k=1 Fk. Even if the representation is not unique (e.g., replace Fn

with Fn×Ωn+1 and begin the infinite product at n+2 instead of n+1), under
this later definition the class of all cylindrical sets is an algebra of sets in Ω.
Indeed, this follows from the properties (a) the complement of cylindrical set
corresponding to n, Fn is the cylindrical set corresponding to n, F cn, with F cn
being the complement of Fn in

∏n
k=1 Ωk and (b) the union of two cylindrical

sets (corresponding to n, Fn and to n, F ′
n) is the cylindrical set corresponding

to n, Fn ∪ F ′
n.

A direct consequence of the above result is the construction of sequences of
independent and identically distributed Rd-valued random variables, i.e., given
a distribution µ on Rd the exists a stochastic sequence (Zn : n = 0, 1, . . .) on a
complete probability space (Ω,F , P ) such that

(1) P (Zk ∈ B) = µ(B), ∀B ∈ B(Rd),

(2) P (Zk ∈ Bk, ∀k = 1, . . . , n) =

n∏
k=1

P (Zk ∈ Bk),

for every Bk in B(Rd) and any n ≥ 1, where B(Rd) is the Borel σ-algebra in Rd.
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Thus, the series of partial sum X0 = 0, Xn =
∑n
k=1 Zk is called a random walk

in Rd or a d-dimensional random walk with incremental distribution µ.
The reader is also referred to Tulcea’s theorem (e.g., Neveu [102, Section

V.1, pp. 153–159], Shiryayev [121, Section II.9, Theorem 2, pp. 243–250]),
which is specially designed for construction of Markov chains (processes) from
transition functions. To present this result on product probability , we need some
notation. First, a transition probability between two measurable spaces (Ω,F)
and (Ω′,F ′) is a function Q : Ω × F ′ → [0, 1], Q(ω, F ′), which is measurable
in ω and a probability in F ′. Note two particular cases, (1) Q(ω, F ′) = P (F ′)
a fixed probability on (Ω′,F ′) for every ω in Ω, and (2) Q(ω, F ′) = 1{q(ω)∈F ′}
where q : Ω → Ω′ is a measurable function.

For (Ωi,Fi) a sequence of measurable spaces, the product σ-algebra F =∏∞
i=1 Fi on the product space Ω =

∏∞
i=1 Ωi is generated by the cylindrical sets

Cn =

n∏
i=1

Fi ×
∞∏

i=n+1

Ωi, with Fi ∈ Fi, ∀i, n = 1, 2, . . . (5.1)

For a fixed n, denote by Fn a sub σ-algebra of F generated by the n-cylindrical
sets as above. It is clear that Fn can be identified with the σ-algebra

∏n
i=1 Fi

of finite product space
∏n
i=1 Ωi, and that F is generated by the algebra ∪nFn.

Let P1 be a probability on (Ω1,F1) and Qk be a transition probability from

finite product space (
∏k−1
i=1 Ωi,

∏k−1
i=1 Fi) into (Ωk,Fk), for k ≥ 2. We desire to

construct a probability P on the infinite product space (Ω,F) such that

P (Cn) =

∫
F1

P1(dω1)

∫
F2

Q2(ω1,dω2) . . .

∫
Fn

Qn(ω1, . . . , ωn−1,dωn),

for any cylindrical set Cn as in (5.1). Note that if Pn denotes the restriction of
P to

∏n
i=1 Fi (i.e., the finite-dimensional distributions of P ) then the right-hand

term prescribes a particular form for Pn, where a disintegration (by means of the
transition probability Qn) is assumed a priori. Comparing with Kolmogorov’s
extension theorem, we assume that the finite-dimensional distributions enjoy a
disintegration condition, instead of a topological assumption in the spaces Ωi.

Now, for a fixed n, consider the following expression constructed backward
by induction:

P (ω1, . . . , ωn;F ) = 1Fn(ω1, . . . , ωn), F = Fn×
∞∏

i=n+1

Ωi, F
n ∈

n∏
i=1

Fi,

P (ω1, . . . , ωk−1;F ) =

∫
Ωk

P (ω1, . . . , ωk−1, ωk;F )Qk(ω1, . . . , ωk−1,dωk),

P (ω1;F ) =

∫
Ω2

P (ω1, ω2;F )Q2(ω1,dω2),

P (F ) =

∫
Ω1

P (ω1;F )P1(dω1).
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A Fubini-Tonelli type theorem ensures that each step of the above construction
is possible and that P (ω1, . . . , ωk;F ) is a transition probability from the (finite)

product space (
∏k
i=1 Ωi,

∏k
i=1 Fi) into (Ω,Fn), for any k = n, . . . , 1; and that

P (F ) is a probability on (Ω,Fn). It is also clear that for cylindrical sets as (5.1)
we have

P (Cn) =

∫
F1

P1(dω1)

∫
F2

Q2(ω1,dω2) . . .

∫
Fn

Qn(ω1, . . . , ωn−1,dωn),

P (ω1, . . . , ωk−1;F ) =
( k−1∏
i=1

1Fi(ωi)
)∫

Fk

Qk(ω1, . . . , ωk−1,dωk)×

×
∫
Fk+1

Qk+1(ω1, . . . , ωk−1, ωk,dωk+1) . . .

∫
Fn

Qn(ω1, . . . , ωn−1,dωn),

P (ω1, . . . , ωn;Cn) =

n∏
i=1

1Fi
(ωi),

and therefore, P (ω1, . . . , ωn;F ) = P (ω1, . . . , ωn−1;F ) for any F in Fn−1. This
last property allows us to consider n = 1, 2, . . . and to extend (uniquely) the
definition of P (ω1, . . . , ωn;F ) to F in the algebra ∪nFn.

Theorem 5.1 (Tulcea). Under the above notation, the function Pn(ω, F ) =
P (ω1, . . . , ωn;F ), with ω = (ω1, . . . , ωn, . . .), is a transition probability from
(Ω,Fn) into (Ω,F). Moreover (Ω,F , P ) is a probability space on which Pn pro-
vides a regular conditional probability for Fn.

Proof. Only a brief idea is given. The central point is show the σ-additivity of
Pn on the algebra ∪nFn with P0 = P, and then to use Caratheodory exten-
sion to have a probability on F . To this purpose, suppose that there exists a
decreasing sequence {Ak} in ∪nFn such that ∩kAk = ∅ with limk P (Ak) ̸= 0.
Then, the above construction of the P1 show that there exists a ω∗

1 such that
limk P (ω

∗
1 ;Ak) ̸= 0, and by induction, we can construct a sequence ω∗ =

(ω∗
1 , . . . , ω

∗
n, . . .) such that limk P (ω

∗
1 , . . . , ω

∗
n;Ak) ̸= 0. Since Ak belongs to some

Fm with m = m(k), from the construction of P we obtain P (ω∗
1 , . . . , ω

∗
n;Ak) =

1Ak
(ω∗) if n ≥ m(k). Hence ω belongs to Ak for every k, which is a contradic-

tion.

First let us discuss Kolmogorov’s extension theorem (see Theorem 4.20)
in a general product space Ω =

∏
t∈T Ωt, F =

∏
t∈T Ft. We assume given

a family of finite-dimensional distributions {Ps : s ∈ Tn, n = 1, 2, . . .} on
Ωs = Ωt1 × · · · × Ωtn , with s = (t1, . . . , tn) which satisfies the consistency
conditions, namely

(a) if s = (si1 , . . . , sin) is a permutation of t = (t1, . . . , tn) then for any Bi in
Fti , i = 1, . . . , n, we have Pt(B1 × · · · ×Bn) = Ps(Bi1 × · · · ×Bin),

(b) if t = (t1, . . . , tn, tn+1) and s = (t1, . . . , tn) and B in Fs = Ft1 × · · · × Ftn
then Pt(B × Ωtn+1

) = Ps(B).
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If a total order is given on the index set T , it is enough to have the finite-
dimensional distributions defined only for (s1, s2, . . . , sn) such that s1 < s2 <
· · · < sn and to satisfy only a consistency conditions of the form

(b’) if t = (t1, . . . , tn) and s = (s1, . . . , sm) with t1 < · · · < tn < r < s1 < · · · <
sm and A × B in F t × Fs then P(t,r,s)(A × Ωr × B) = P(t,s)(A × B), for any
n,m = 0, 1, . . . .

Consistency along is not sufficient to ensure the existence of a probability P
defined on (Ω,F) such that Ps be the restriction (or image trough the projection)
of P over (Ωs,Fs). Some sort of topology is necessary on Ωt so that Ps results
inner regular (e.g., see Doob [39, pp. 403, 777], Neveu [102, Section III.3, pp.
74–81]), for instance, if Ωt is a Lusin space (i.e., Ωt is homeomorphic to a
Borel subset of a compact metrizable space) and Ft = B(Ωt) its Borel σ-algebra
then every probability measure is inner regular. Under these conditions, the
construction of the measure P is possible.

It is interesting to note that there is almost no difficulty to extend Tulcea’s
construction to a general product space with an index non necessarily countable.
Indeed, we assume that Ps, with s = (t1, . . . , tn), has the form

Ps(Cn) =

∫
F1

Pt1(dω1)

∫
F2

Qt1,t2(ω1,dω2) . . .

∫
Fn

Qt1,...,tn(ω1, . . . , ωn−1,dωn),

for some family of transition probabilities {Qs : s = (s′, t), s′ ∈ Tn−1, n ≥ 2, t ∈
T} from (Ωs

′
,Fs′) into (Ωt,Ft), and any cylindrical set Cn =

∏
t∈T Ft with

Ft = Ωt if t ̸= ti for every i, and Fti ∈ Fti . Hence, we can construct a family of
consistent probability on any countable product. Since only a countable number
of finite-dimensional is involved in proving the σ-additivity, we have a probabil-
ity in general product space Ω. Thus, the disintegration of the finite-dimensional
distributions in term of the transition probabilities {Qs : s ∈ Tn, n ≥ 2} replace
the extra condition on inner regular measures. Moreover, Tulcea’s construction
yields an expression for a regular conditional distribution on any countable sub-
set of indexes.

A very useful and well know result is the following

Lemma 5.2 (Borel-Cantelli). Let (F1, F2, . . .) a sequence of measurable sets in
a probability space Ω,F , P ). (1) If

∑
n P (Fn) < ∞ then P (∩n ∪k≥n Fk) = 0.

(2) If (F1, F2, . . .) is independent and
∑
n P (Fn) = ∞ then P (∩n ∪k≥n Fk) = 1.

It may be worthwhile to recall that independence is stable under weak con-
vergence, i.e., if a sequence (ξ1, ξ2, . . .) of Rd-valued random variables converges
weakly (i.e., E{f(ξn)} → E{f(ξ)} for any bounded continuous function) to a
random variable ξ then the coordinates of ξ are independent if the coordinates
of ξn are so. On the other hand, for any sequence (F1,F2, . . .) of σ-algebras
the tail or terminal σ-algebra is defined as Ftail = ∩n ∨k≥n Fk, where ∨k≥nFk
is the smaller σ-algebra containing all σ-algebras {Fk : k ≥ n}. An important
fact related to the independence property is the so-called Kolmogorov’s zero-
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one law, which states that any tail set (that is measurable with respect to a tail
σ-algebra) has probability 0 or 1.

Another typical application of Borel-Cantelli lemma is to deduce almost
surely convergence from convergence in probability, i.e., if a sequence {xn} con-
verges in probability to x (i.e., P{|xn − x| ≥ ε} → 0 for every ε > 0) with a
stronger rate, namely, the series

∑
n P{|xn−x| ≥ ε} <∞, then xn → x almost

surely.
A key tool to study sequences of random variables is the martingale concept.

Definition 5.3 (discrete martingale). A stochastic sequence (Xn : n = 0, 1, . . .)
is called a martingale relative to a filtration (Fn : n = 0, 1, . . .) if

E{|Xn|} <∞, ∀n, and E{Xn | Fn−1 } = Xn−1, a.s., n ≥ 1.

A super or sub martingale is defined similarly, replacing the equal sign = by the
≤ or ≥ signs, respectively.

Note that Xn turns out to be Fn-measurable and it is determined almost
surely, actually we take Xn as a Fn-measurable function defined everywhere.
If only the complete probability space (Ω,F , P ) is given, then the filtration
(Fn : n = 0, 1, . . .) is naturally generated by the stochastic sequence (Xn :
n = 0, 1, . . .), i.e., Fn is the smallest sub σ-algebra of F containing all null
sets and rendering measurable the random variables {X0, X1, . . . , Xn}. A super-
martingale decreases on average while a sub-martingale increases on average.
Since X0 is integrable, we may focus our attention on sequences with X0 = 0. A
typical example of martingale is a real valued random walk or Rd-valued random
walk since (super-/sub-) martingales can be defined by coordinates when dealing
with Rd-valued random variables. Also, if φ is a convex and increasing real-
valued function such that E{φ(Xn)} < ∞ for some sub-martingale (Xn : n =
0, 1, . . .) then the stochastic sequence (φ(Xn) : n = 0, 1, . . .) is also a sub-
martingale.

In most cases, the filtration Fn is generated by another sequence of random
variables {Y0, Y1, . . .}, i.e., Fn = σ[Y0, . . . , Yn], which is regarded as the history.
In this case, Xn = hn(Y0, . . . , Yn) for some Borel function hn : Rn+1 → R, e.g.,
see Karr [78].

Many important results are found in the study of martingales, related to
estimates and representation, we will mention only some of them. For Doob’s
upcrossing estimate, denote by UN (X, [a, b]) the number of up-crossings of [a, b]
by time N for a fixed ω, i.e., the largest k such that 0 ≤ s1 < t1 < · · · <
sk < tk ≤ N, Xsi < a and Xti > b, for any i = 1, 2, . . . k. Then for any
super-martingale the estimate

(b− a)E{UN (X, [a, b])} ≤ E{(XN − a)−} (5.2)

holds. Note that the number of steps does not appear directly on the right-
hand side, only the final variable XN is relevant. To show this key estimate, by
induction, we define C1 = 1X0<a, i.e., C1 = 1 if X0 < a and C1 = 0 otherwise,
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and for n ≥ 2,

Cn = 1Cn−1=1 1Xn−1≤b + 1Cn−1=0 1Xn−1<a

to construct a bounded nonnegative super-martingale Yn =
∑n
k=1 Ck(Xk −

Xk−1). Clearly, the sequence (Cn : n = 1, 2, . . .) is predictable. Based on the
inequality

YN ≥ (b− a)UN (X, [a, b])− [XN − a]−,

for each ω, the estimate (5.2) follows.
The Doob’s super-martingale convergence states that for a super martingale

(Xn : n = 0, 1, . . .) bounded in L1, i.e., supn |Xn| <∞ the limits X∞ = limnXn

exists almost surely. The convergence is in L1 if and only if the sequence (Xn :
n = 0, 1, . . .) is uniformly integrable, and in this case we have E{X∞ | Fn} ≤ Xn,
almost surely, with the equality for a martingale. To prove this convergence,
we express the set Ω0 of all ω such that the limit limnXn(ω) does not exist in
the extended real number [−∞,+∞] as a countable union of subsets Ωa,b where
lim infnXn(ω) < a < b < lim supnXn(ω), for any rational numbers a < b. By
means of the upcrossing estimate (5.2) we deduce

Ωa,b ⊆
∞⋂
m=1

∞⋃
n=1

{ω : Un(X, [a, b]) > m},

P (

∞⋂
m=1

∞⋃
n=1

{ω : Un(X, [a, b]) > m}) = 0,

which yields P (Ω0) = 0. Thus the limit exists in [−∞,+∞] and by Fatou’s
Lemma, it is finite almost surely.

If p > 1 and (Xn : n = 0, 1, . . .) is a nonnegative sub-martingale bounded in
Lp then Doob’s Lp inequality reads as follows

∥ sup
n
Xn∥p ≤ p′ sup

n
∥Xn∥p, with 1/p+ 1/p′ = 1, (5.3)

where ∥ · ∥p denotes the in Lp = Lp(Ω,F , P ). However, p′ = ∞ for p = 1, this
inequality becomes

∥ sup
n
Xn∥1 ≤ e

e− 1
sup
n

∥Xn ln
+Xn∥1, (5.4)

where ln+(·) is the positive part of ln(·). Note that (p′)p ≤ 4 for every p ≥ 2.
Indeed, if the set Ωrn of all ω where supk≤nXk ≥ r is expressed as the disjoint
union

Ωrn =

n⋃
k=0

Ωrn,0 with

Ωrn,k = {X0 < r} ∩ {X1 < r} ∩ · · · {Xk−1 < r} ∩ {Xk ≥ r},
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and Ωrn,0 = {X0 ≥ r}, then we have Xk ≥ r on Ωrn,k, which yields the Doob’s
maximal inequality

r P
(
sup
n
Xn ≥ r

)
≤ E{Xn1supnXn≥r} ≤ E{Xn}.

Now, to deduce Doob sup-estimate (5.3) for sub-martingale bounded in Lp, with
p > 1, first check the claim that for any two nonnegative random variables x
and y,

if r P (y ≥ r) ≤ E{x1y≥r} then E{yp} ≤ (p′)pE{xp}. (5.5)

by using Hölder inequality in the last equality of

E{yp} = p

∫ ∞

0

rp−1P (y ≥ r)dr ≤ p

∫ ∞

0

rp−2E{x1y≥r}dr =

=
p

p− 1
E{xyp−1} = p′

(
E{xp}

)1/p(E{yp})1/p′ ,
and replace y with y ∧ k with k → ∞ if necessary, to obtain (5.5). Next, choose
y = supnXn and x = Xn to conclude.

The Doob’s decomposition gives a clean insight into martingale properties.
Let (Xn : n = 0, 1, . . .) be a stochastic sequence of random variables in L1, and
denote by (Fn : n = 0, 1, . . .) its natural filtration, i.e., Fn = σ[X0, X1, . . . , Xn].
Then there exists a martingale (Mn : n = 0, 1, . . .) relative to (Fn : n = 0, 1, . . .)
and a predictable sequence (An : n = 0, 1, . . .) with respect to (Fn : n = 0, 1, . . .)
such that

Xn = X0 +Mn +An, ∀n, and M0 = A0 = 0. (5.6)

This decomposition is unique almost surely and the stochastic sequence (Xn :
n = 0, 1, . . .) is a sub-martingale if and only if the stochastic sequence (An :
n = 0, 1, . . .) is monotone increasing, i.e., An−1 ≤ An almost surely for any n.
Indeed, define the stochastic sequences (An : n = 1, . . .) by

An =

n∑
k=1

E{Xk −Xk−1 | Fk−1}, with Fk = σ[X0, X1, . . . , Xk]

and (Mn : n = 1, . . .) with Mn = Xn − X0 − An to obtain the decomposition
(5.6). This implies that the only deterministic martingale is a constant.

Given a martingale M = (Mn : n = 0, 1, . . .) with each Mn in L2 and
M0 = 0, we may use the above decomposition to express the sub-martingale
M2 = (M2

n : n = 0, 1, . . .) as M2 = N + A, where N = (Nn : n = 0, 1, . . .) is
a martingale and A = (An : n = 0, 1, . . .) is a predictable increasing sequence,
both N and A null at n = 0. The stochastic sequence A is written as ⟨M⟩ and
called the angle-brackets sequence of M. Note that

E{M2
n −M2

n−1 | Fn−1} = E{(Mn −Mn−1)
2 | Fn−1} = An −An−1,
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for every n ≥ 1. Similarly, define the stochastic sequence (of quadratic variation)

[M ]n =

n∑
k=1

(Mk −Mk−1)
2, ∀n ≥ 1,

and [M ]0 = 0. Then the stochastic sequence V = (Vn : n = 1, 2, . . .),

Vn =M2
n − [M ]n =

n∑
k=1

2Mk−1Mk

is a martingale. Note that [M ] is an adapted sequence while ⟨M⟩ is predictable,
so the strength of the Doob’s decomposition. It is clear that

E{|Mn|2} = E{⟨M⟩n} = E{[M ]n}, ∀n ≥ 1,

which combined with the p-estimate (5.3), p = 2, yields

E{sup
k≤n

|Mk|2} ≤ 4 sup
k≤n

E{⟨M⟩k}, ∀n ≥ 1.

Actually, this generalize into the following Davis-Burkhölder-Gundy inequality

cp E{([M ]n)
p/2} ≤ E{sup

k≤n
|Mk|p} ≤ Cp E{([M ]n)

p/2}, (5.7)

valid for any n ≥ 1 and p > 0 and some constants Cp > cp > 0 independent
of the martingale (Mn : n = 0, 1, . . .). Even for p = 1, we may use C1 = 3 in
the right-hand side of (5.7). Moreover, the L2-martingale (Mn : n = 0, 1, . . .)
may be only a local martingale (i.e., there exists a sequence of stopping times
η = (ηk : k = 0, 1, . . .) such that Mη,k = (Mη,k

n : n = 0, 1, . . .), defined by
Mη,k
n (ω) = Mn∧ηk(ω)(ω), is a martingale for any k ≥ 0 and ηk → ∞ almost

surely), the time n may be replaced by a stopping time η (or ∞), the angle-
brackets ⟨M⟩ can be used in lieu of [M ], and the above inequality holds true.
All these facts play an important role in the continuous time case.

Let X = (Xn : n = 0, 1, . . .) be a sub-martingale with respect to (Fn :
n = 0, 1, . . .) and uniformly integrable, i.e., for every ε there exists a suffi-
ciently large r > 0 such that P (|Xn| ≥ r) ≤ ε for any n ≥ 0. Denote by
A = (An : n = 0, 1, . . .) and M = (Mn : n = 0, 1, . . .) the predictable and
martingale sequences given in the decomposition (5.6), Xn = X0+Mn+An, for
all n ≥ 0. Since X is a sub-martingale, the predictable sequence A is monotone
increasing. The Doob’s optional sampling theorem implies that the martingale
M is uniformly integrable, moreover A∞ = limnAn is integrable and the fam-
ilies of random variable {Xη : η is a stopping} and {Mη : η is a stopping} are
uniformly integrable. Furthermore, for any two stopping times η ≤ θ we have

E{Mθ | Fη} =Mη, a.s. and E{Xθ | Fη} ≥ Xη, a.s. (5.8)

We skip the proof (easily found in the references below) of this fundamental
results. Key elements are the convergence and integrability of the limit M∞ =
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limnMn (almost surely defined), which allow to represent Mn as E{M∞ | Fn}.
Thus, specific properties of the conditional expectation yield the result.

For instance, the reader is referred to the books Bremaud [21], Chung [26],
Dellacherie and Meyer [36, Chapters I–IV], Doob [38, 40], Karlin and Taylor [76,
77], Nelson [101], Neveu [103], Williams [133], among others.

5.2 Filtered Spaces

We have seen that the study of stochastic processes leads to the discussion on
probability measures in separable complete metric spaces, i.e., in Polish spaces
(recall that a countably product of Polish spaces is a Polish space with the
product topology and that any Borel set of a Polish space is a continuous image
of the product Polish space N∞, sequences of nonnegative integer numbers).
Natural models for stochastic dynamical systems are the Markov processes.
Since past, present and future information are represented by sets of events,
a systematic analysis of families of σ-algebras is necessary. Thus, the starting
point is a (complete) probability space with either a filtration or a process with
its natural filtration.

Remark that all properties concerning a Filtered space are not preserved
accross any possible version of a given process, e.g., if X and Y are versions of
the same process (namely, P{X(t) ̸= Y (t)} = 0 for every t ≥ 0) then X may be
adapted to the filtration but not Y . In this way, for a given process X we can
take any version, but as soon as a filtration is involved, the given version kept.
However, changing the processes in an evanescent set is fine, since the filtration
is complete.

Definition 5.4. Given a filtered space (Ω,F , P,F(t) : t ≥ 0), this is a (usually
complete) probability space (Ω,F , P ) and a (standard) filtration F = (F(t) :
t ≥ 0), i.e., F(0) contains all P -negligible (or P -null) sets in F (complete)
and F(t) =

⋂
ε>0 F(t + ε) (right-continuous). Sometimes, this is also called

stochastic basis, see Jacod and Shiryaev [69, Chapter 1].
(a) The σ-algebra M of progressively measurable sets is composed by all subsets
A of Ω × [0,∞) such that A ∩ (Ω × [0, t]) belongs to F(t) × B([0, t]) for every
t ≥ 0.
(b) The σ-algebra O of optional or well-measurable sets is generated by sets of
the form F0 × {0} and F × [s, t), where F0 ∈ F(0) and F ∈ F(s) for s < t in
(0,∞).
(c) The σ-algebra P of predictable sets is generated by sets of the form F0×{0}
and F × (s, t], where F0 ∈ F(0) and F ∈ F(s) for s < t in (0,∞).

Note that sometimes the variables t and ω may be exchanged so that the σ-
algebras M, O and P are regarded as defined on [0,∞)×Ω instead of Ω×[0,∞).
As long as no confusion arrives, we will ignore this fact.

It may be convenient to use the notation F = (F(t) : t ≥ 0) for a filtration
and assume that F is the minimal σ-algebra containing all sets belonging to
F(t) for some t ≥ 0, so that (Ω,F, P ) denotes a stochastic basis. If a given
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filtration (F0(t) : t ≥ 0) does not satisfy the usual conditions of completeness
and right-continuity then its usual augmentation (F(t) : t ≥ 0) is defined as the
minimal filtration satisfying F0(t) ⊂ F(t) for all t, plus the usual conditions.
The σ-algebra F(t) can be constructed in two steps, first F0(t) is completed
with all null sets to a new σ-algebra F̄0(t) and second F̄0(t) is made right-
continuous by defining F(t) =

⋂
s>t F̄0(s). Thus, for any F in F(t) there exists

a F0 in F0(t+) =
⋂
s>t F0(s) such that F∆F0 = (F∖F0)∪(F0∖F ) is a null set.

Completing the family of increasing σ-algebras to become a filtration (satisfying
the usual condition) is a routing task, however this is an important issue when
dealing with the strong Markov property as discussed later on. The passage
from F0(t) to F0(t+) is a very technical matter that we have to deal when the
realization or simulation of a processes is studied. For instance, it can be easily
proved that the completion of history of a Lévy process (or of a right-constant
process) is actually right-continuous, e.g., see Bremaud [21, Appendix A2.3, pp.
303–311], Davis [34, Appendix A2, Theorem A2.2, pp. 259–261], Protter [108,
Section 1.4, Theorem 31, pp. 22–23].

Note that the three σ-algebras defined in term of the filtration (F(t) : t ≥ 0)
are all on Ω × [0,∞) and not on Ω alone. We have P ⊂ O ⊂ M and it can
be proved that the predictable class P (optional class O, resp.) is the minimal
σ-algebra for which adapted left-continuous (right-continuous, resp.) processes
are measurable as function from Ω× [0,∞) into the state space (e.g., E ⊂ Rd).

Recall that a random variable τ with values in [0,∞] is called a stopping
time (or optional time) if sets of the form {ω : τ(ω) ≤ t} are measurable
with respect to F(t) for every t ≥ 0. This is equivalent to imposing that the
stochastic interval Jτ,∞J is optional, see Definition 4.7. Thus, P (O, resp.)
are generated by stochastic interval of the form J0, τK (J0, τJ, resp.) where τ
is any stopping time. Filtration satisfying the usual condition (right-continuity
and completeness) are necessary to be able to identify a stopping time with it
equivalent class, as explained below.

Assume that a right-continuous filtration F = {F (t) : t ≥ 0} is given. If O
is an open set of Rd and X is a cad-lag F-adapted process with values in Rd,
then the hitting time τO of an open set O is a stopping time, where

τO = inf
{
t > 0 : X(t) ∈ O

}
,

and τO = +∞ if X(t) ∈ Rd∖O for every t ≥ 0. Indeed the relation τO (ω) < t if
and only if X(s, ω) ∈ O for some rational number in [0, t) shows that the event
{τO < t} belongs to F(t) and so {τO ≤ t} is in F(t+). Similarly, if C is a closed
set of Rd then the contact time τ̃

C
of a closed set C is also an stopping time,

where

τ̃
C
= inf

{
t ≥ 0 : either X(t) ∈ C or X(t−) ∈ C

}
,

with X(0−) = X(0). Indeed, use the fact that τ̃
C
(ω) ≤ t if and only if the

infimum over all rational numbers s in [0, t] of the distance from X(s, ω) to C
is zero. However, if K is a compact set of Rd then to check that the entry time
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τ̄
K

of a compact set K is also an stopping time, where

τ̄
K
= inf

{
t ≥ 0 : X(t) ∈ K

}
,

is far more delicate. The argument uses ordinal numbers and involves the as-
sumption of P -completion F̄ for the filtration F, i.e., F̄ is the minimal right-
continuous filtration such that F(0) contains all P -nulls sets in F̄ , the P -
completion of F . In this case, for any F̄-stopping time T there exists a F-stopping
time S such that P{T = S} = 1 and F̄ (T ) is the smaller σ-algebra containing
F(S+) all P -null sets. Furthermore, by means of the so-called analytic sets
(i.e., continuous or Borel images of Borel sets in a Polish space), a deeper result
shows that the hitting time of any Borel set is indeed a stopping time, e.g., see
Doob [39, pp. 419–423] or Rogers and Williams [112, Sections II.73–76].

A process X with values in E ⊂ Rd is progressively measurable (resp. op-
tional or predictable) if the map (t, ω) 7→ X(t, ω) or equivalently (t, ω) 7→(
t,X(t, ω)

)
is measurable with respect to M (resp. O or P). In particular,

if (t, x) 7→ a(t, x) is a Borel function and X is progressively measurable (re-
spectively, optional or predictable) then so is the map (t, ω) 7→ a

(
t,X(t, ω)

)
.

On the other hand, a stopping time τ is called predictable if there exists an
announcing sequence of stopping times {τn : n = 1, 2, . . . }, i.e., τn increases to
τ and P (τn < τ if τ > 0) = 1; sometimes the condition P (τ > 0) = 1 is also
requested. It is not hard to show that τ is a predictable time if and only if
the stochastic interval Jτ,∞J is predictable. Note that τ + ε is a predictable
(stopping) time for any stopping time τ and any constant ε > 0. Moreover, if
τ and θ are predictable times then all stochastic intervals that have τ, θ, 0 or
∞ as endpoints are predictable sets. There are many interesting measurability
question on these points, e.g., see Bichteler [14, Section 3.5]

Based on the alternative way of generating the σ-algebras O and P (as
mentioned above), we deduce that a right-continuous (resp. left-continuous)
progressively measurable process is optional (resp. predictable). When working
with cad-lag (continuous) processes, the difference between the progressively
measurable and optional (predictable) processes have almost no importance.
Recall that given a filtered space (Ω,F , P,F(t) : t ≥ 0) a stochastic process X
is called adapted if the random variable ω 7→ X(t, ω) is F(t)-measurable for any
t ≥ 0. Thus, any adapted cad-lag process is progressively measurable.

The concept of a predictable (also called previsible) or optional process im-
plies that of adapted process (to a given filtration) in a way suggested by the
name. Denote by PR the family of subsets of Ω×[0,∞) containing all sets of the
form F0×{0} and F × (s, t], where F0 ∈ F(0) and F ∈ F(s) for s < t in (0,∞),
is called the class of predictable rectangles. Sometimes, the sets F0 × {0} need
special consideration and some authors prefer to remove these type of sets from
the definition of the σ-algebra P. As it was defined, the σ-algebra P of subsets
of [0,∞)×Ω generated by all predictable rectangles is called the predictable σ-
algebra associated with the filtration {F(t) : t ≥ 0}. Another equivalent way of
generating the predictable σ-algebra is to define P as generated by the stochas-
tic intervals of the form J0, τK, for stopping times τ with respect to the given
filtration {F(t) : t ≥ 0}.
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Sometimes, the filtration {F(t) : t ≥ 0} is quasi-left continuous, namely,
F(τ−) = F(τ) for any predictable stopping time τ. This is the case of a (contin-
uous) Markov-Feller process (see Rogers and Williams [112, Chapter 6, Theorem
18.2, pp. 346–347]).

It should be clear by now that filtered spaces are a fundamental feature of
the theory of stochastic processes and definitions of our central object, Markov
processes, will involve a filtration. Heuristically speaking, the σ-algebra F(t)
is the collection of event that may occur before or at the time t (i.e., the set
of possible pasts up to time t). In what follows, unless otherwise stated, we
assume that filtered space (Ω,F , P,F(t) : t ≥ 0) is given, sometime denoted by
(Ω,F, P ) and also called stochastic basis, with F = (F(t) : t ≥ 0), F = σ{F(t) :
t ≥ 0}, and the three σ-algebras P ⊂ O ⊂ M, called predictable, optional
and progressively measurable, respectively, as in Definition 5.4. Moreover, if
Ω is also a Polish space then F contains the Borel σ-algebra B(Ω), actually,
F = B(Ω) in most of the cases.

On a given measurable space (Ω,F) we may define its universal completion
F0 =

⋂
P FP , where FP is the completion of F relative to P, and the intersec-

tion is over all probability measures P on F . This is to say that A ∈ F0 if and
only if for every P there exist B and N in F such that B∖N ⊂ A ⊂ B∪N and
P (N) = 0 (since B and N may depend on P, clearly this does not necessarily
imply that P (N) = 0 for every P ). Thus, a universally complete measurable
space satisfies F = F0. The concept of universally measurable is particularly
interesting when dealing with measures in a Polish space Ω, where F = B(Ω)
is its Borel σ-algebra, and then any subset of Ω belonging to F0 is called uni-
versally measurable. In this context, it is clear that a Borel set is universally
measurable. Also, it can be proved that any analytic set is universally mea-
surable, and on any uncountable Polish space there exists a analytic set (with
not analytic complement) which is not a Borel set, e.g., see Dudley [41, Section
13.2].

A detailed discussion on the strong Markov property involves a measured
filtration (Ω,F,P), i.e., besides the filtration (Ω,F), we have a class of probability
measures P on (Ω,F), with F = F(∞). Then, the P-universal completion F0

(i.e., the family P is implicitly understood in the notation) of the filtration F is
defined by adding all null sets, i.e.,

F0(t) =
⋂
ε>0

⋂
P∈P

σ
(
F(t+ ε),NP

)
, ∀t ≥ 0,

where NP denotes the σ-algebra of (P,F)-null sets (i.e., all the subsets of some
set N in F with P (N) = 0). Hence the new filtration F0 is right-continuous and
universally complete (i.e., the universal completion of F0(t) is again F0(t), for
every t) by construction but not necessarily complete with respect to a particular
probability P in the class P. Furthermore, sometimes not all (P,F)-null sets are
necessary, and completion arguments are reviewed. Countable unions of sets N
with P (N) = 0 and the property of being F(t)-measurable (for some finite t)
are called P -nearly empty sets. Thus, a set N in F = F(∞) with P (N) = 0
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which is not in F(t), for every t finite, may not be nearly empty. Then, a
measured filtration is called P-regular if F(t) = FP(t) for every t ≥ 0, where
FP(t) =

⋂
P∈P FP (t), with FP (t) the σ-algebra of all subsets A of Ω such that

for every P in the class P, the symmetric difference (A ∖ AP ) ∪ (AP ∖ A) is
P -nearly empty for some AP in F(t). Note that FP (t) contains the completion
of F(t) relative to the restriction of P to F(t) (so it is universally complete),
but it could be smaller than σ

(
F(t),NP

)
. Moreover, filtration {FP(t+) : t ≥ 0}

is also P-regular, and called the P-natural enlargement of F. Essentially, as long
as we work with a right-continuous regular filtration, the technical points about
measurability are resolved, this is usually referred to as the natural conditions.
For instance, see the book Bichteler [14, Section 1.3] for a comprehensive study.

When a process is viewed as a function of two-variables, (t, ω) 7→ X(t, ω),
properties like continuity or monotonicity refers to the path (i.e., to the function
t 7→ X(t, ω) for a fixed ω, which are global property on the variable t only), while
properties like integrable or bounded may refer to either one of the variables
or even to both variables. However, the qualifier integrable usually refers to
the random variable ω 7→ X(t, ω), for a fixed t ≥ 0. As discussed later, when
a filtration is given, the term locally will apply to any property of a process
involving both variables with a precise meaning, e.g., a process X is locally
bounded if there is a (increasing) sequence (τn : n ≥ 1) of stopping times
satisfying P (τn ↑ ∞) = 1 such that the stopped process Xn(t) = X(t ∧ τn) is
bounded. In all statements and procedures, processes are considered equals if
their paths differ in a set of measure zero (i.e., they are indistinguishable one of
each other), but sometimes we may select a particular element of its equivalent
class to perform a specific construction. All these terminologies become clear
from the context of the discussion.

5.3 Bounded Variation

Let us consider real-valued (or Rd-valued) processes (X(t) : t ≥ 0) in a prob-
ability space we (Ω,F , P ). If a filtration F = (F(t) : t ≥ 0) is also given then
the term adapted (to F) is implicitly assumed (although sometimes is explic-
itly mentioned) and the qualifier raw is to be used to explicitly assume not
necessarily adapted.

5.3.1 Pathwise Properties

An (monotone) increasing [(monotone) decreasing, resp.] stochastic process
(X(t) : t ≥ 0) is such that the function t 7→ X(t, ω) is increasing [decreasing,
resp.] for every ω, except perhaps in a null set. Because an increasing function
has left and right-hand limits at each points, it is convenient to normalize the
process to be right-continuous. Thus an increasing process is a random variable
X (almost surely defined) with values in the sample spaceD([0,∞),R) such that
X(t) ≥ X(s) for every t ≥ s. Also, vector valued process (i.e., in D([0,∞),Rd))
can be considered.
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Similarly, a stochastic process X = (X(t) : t ≥ 0) is said to be of locally
bounded variation in [0,∞) (or simplifying, of finite variation) if it is a random
variableX with values in the sample spaceD([0,∞),R) and its variation process
{var(X, [0, t]) : t ≥ 0} is finite,

var(X, [0, t]) = sup{
n∑
i=1

|X(ti)−X(ti−1)| : 0 = t0 < t1 < · · · < tn = t},

where the supremum is taken over all partitions of the interval [0, t], var is
referred to as the variation operator . Clearly, as long as the process is cad-lag,
we may only consider some countable family of partitions, e.g., partitions with
ti = i2−n for i = 0, 1, . . . , 2n. It can be defined the positive {var+(X, [0, t]) :
t ≥ 0} and the negative {var−(X, [0, t]) : t ≥ 0} variation processes exchanging
the absolute value | · | with the positive part [ · ]+ and the negative part [ · ]−
of a real number in the above definition. Note that because X is cad-lag, the
supremum can be taken over partitions with end points t1 < · · · < tn−1 in a
countable dense set so that the functions X 7→ var(X, ·), X 7→ var+(X, ·) and
X 7→ var−(X, ·) are measurable from D([0,∞),R) or C([0,∞),R) into itself.

It can be checked that, e.g., Gordon [55, Chapters 4 and 6],

var(X, [0, t]) = var+(X, [0, t]) + var−(X, [0, t]) and

Xt −X0 = var+(X, [0, t])− var−(X, [0, t]) ∀t ∈ [0,∞),

and that the three variation processes

{var(X, [0, t]) : t ≥ 0}, {var+(X, [0, t]) : t ≥ 0}, {var−(X, [0, t]) : t ≥ 0}

are (monotone) increasing (and cad-lag); and they are adapted, optional or
predictable if the initial process X is so. Thus we can look at a locally bounded
variation process X as two random variables var+(X, [0, t]) and var−(X, [0, t])
with values in the sample space D = D([0,∞),R), i.e., a probability measure P
on D with the Borel σ-algebra B(D) and two increasing and measurable maps
var+(X, [0, t]) and var−(X, [0, t]) from D into itself. Note that var+(X, [0, t])
and var−(X, [0, t]) are minimal in the sense that if X is of bounded variation
and X = Y − Z with each Y and Z monotone increasing then var+(X, [0, t])−
var+(X, [0, s]) ≤ Yt−Ys and var−(X, [0, t])−var−(X, [0, s]) ≤ Zt−Zs, for every
t ≥ s. This is the so-called Jordan decomposition. On the other hand, given a
(cad-lag) bounded variation process X, its continuous part is defined as Xc(t) =
X(t)−Xjp(t), where the jump part is defined by Xjp(t) =

∑
0<s≤t δX(s), with

δX(s) = X(s) −X(s−). It is clear that, by rearranging the jumps, we can re-
write the jumps part as Xjp(t) =

∑
n[X(τn)−X(τn−)]1τn≤t, where the series

converges absolutely for any t and the random times τn are stopping times if
the process Xjp is adapted, see Sato [116, Lemma 21.8, Chapter 4, pp. 138–
140]. Moreover, since the continuous part Xc(t) is still of bounded variation,
it is differentiable almost everywhere and we have Xc(t) = Xac(t) + Xsc(t),

where Xac(t) =
∫ t
0
Ẋc(s)ds is called the absolutely continuous part and Xsc(t)
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is the singular continuous part . Thus, any bounded variation process X can be
written as a unique sum Xac +Xsc +Xjp called Lebesgue decomposition.

On the other hand, for any cad-lag process X and any ε > 0 we can define
the ε-jumps process as

Xεj(t) =
∑

0<s≤t

δX(t)1|δX(t)|≥ε, ∀t > 0,

and the ε-almost continuous process Xεc(t) = X(t) − Xεj(t). However, the
continuous part, i.e., limε→0X

εc(t) may not be defined in general. Certainly,
this would be Xc(t) when X has locally bounded variation. However, the above
limit will make sense in the L2 topology for square integrable local martingales
and defined for every process which is a local martingale, as discussed later.

A monotone increasing or a locally bounded variation process X induces a
Borel (positive or signed) measure on [0,∞) by setting

µ({0}) = X(0, ω) and µ(]a, b]) = X(b, ω)−X(a, ω), 0 < a < b,

for each sample path X(·, ω), which is referred to as the Lebesgue-Stieltjes
measure. Conversely, if a (Borel) locally finite signed measure µ on [0,∞) is
defined for ω which is weakly measurable i.e. ω 7→ µ(A,ω) is measurable for
each Borel subset A of [0,∞) then we can define process of bounded variation
as X(t, ω) = µ([0, t], ω), for any t ≥ 0. Based on Fubini’s theorem, it can be
proved that given two processes X and Y of locally bounded variation (cad-lag)
we have the integration-by-part formula

X(b)Y (b)−X(a)Y (a) =

∫
(a,b]

X(t−)dY (t) +

+

∫
(a,b]

Y (t−)dX(t) +
∑
a<t≤b

δX(t) δY (t).

When the integrands Y (t−) and X(t−) are left-continuous and the integrator
X(t) and Y (t) are right-continuous as above, the integral can be regarded in
the Riemann-Stieltjes sense, where X(t−) is the left-hand limit at t. Also, the
last two terms may be grouped and considered as an integral in the sense of
Lebesgue-Stieltjes, i.e.,∫

(a,b]

Y (t)dX(t) =

∫
(a,b]

Y (t−)dX(t) +
∑
a<t≤b

δX(t) δY (t),

where δX(t) = X(t)−X(t−) is the jump at t.Moreover, given a locally bounded
variation (cad-lag) process Y , the equation

X(t) = 1 +

∫
(0,t]

X(t−)dY (t), ∀t ≥ 0,
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has a unique solution X, in the class of locally bounded variation process (cad-
lag), which is explicitly given by the formula

X(t) = exp
[
Y c(t)− Y c(0)

] ∏
0<s≤t

(1 + δY (s)),

where Y c(t) = Y (t)−
∑

0<s≤t δY (s) is the continuous part of the process (Y (t) :
t ≥ 0), the (infinite) product is the exponential of the absolutely convergence
series

∑
0<s≤t ln(1 + δY (s)), and clearly, if Y (τ)− Y (τ−) = −1 for some τ > 0

then X(t) = 0 for any t ≥ τ, see Shiryayev [121, pp. 204–208], Doob [40, pp.
160–166], Chung and Williams [28, pp. 4–6].

An elementary process (or piecewise constant over stochastic intervals) is a
stochastic process of the form

Y (t) =

n∑
i=1

Yi−11(τi−1,τi](t), t ≥ 0, (5.9)

where 0 = τ0 ≤ τ1 ≤ . . . ≤ τn are stopping times and Yi−1 is a F(τi−1)
measurable random variable for any i. It is called bounded if all Yi−1 are bounded
random variables. The set of (bounded) elementary processes form a subalgebra
(i.e., closed by natural addition and multiplication) of predictable sets. Note
that processes of the form (5.9) are left-continuous with right-hand limits, i.e.,
the (right-hand limit) process Y (t+) is cad-lag, and satisfies Y (0) = 0.

If Y is an elementary process and X is a locally bounded variation process
(cad-lag) then we may take Y as an integrand andX as an integrator to construct
the integral process for t ≥ 0 by

Z(t) =

∫
(0,t]

Y (s)dX(s) =

n∑
i=1

Yi−1[X(t ∧ τi)−X(t ∧ τi−1)]. (5.10)

This integral extends to all predictable processes Y in either Riemann-Stieltjes
or Lebesgue-Stieltjes sense. In particular, the above integral makes sense for any
bounded adapted cag-lad (left-continuous with right-hand limits) Y. Actually,
if the Lebesgue-Stieltjes integral is used then dX(t) means dµX (the signed
measure induced by the cad-lag bounded variation process X) integration over
the interval (0, t], but if the Riemann-Stieltjes integral is used then we mean

∫
(0,t]

Y (s)dX(s) = lim
α→0+, β→t+

∫ β

α

Y (s)dV (s) =

∫
]0,t]

Y (s)µ
X
(ds).

Clearly, the Lebesgue-Stieltjes integral makes also sense when the integrand Y
is not necessarily cag-lad. Moreover, from the integration by part formula we
deduce the following property. If a function f is continuously differentiable from
Rd into R and X = (X1, . . . , Xd) is a stochastic process with values in Rd where
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each components Xi is a process of locally bounded variation then we have

f(X(t))− f(X(0)) =

∫
(0,t]

∇f(X(s−))dX(s) +

+
∑

0<s≤t

[
f(X(s))− f(X(s−)−∇f(X(s−)) δX(s))

]
, (5.11)

If the initial process X is adapted then the integral (5.10) defines an adapted
cad-lag stochastic process (Z(t) : t ≥ 0) of locally bounded variation, with

var(Z, [0, t]) =

∫
(0,t]

|Y (s)| var(X,ds).

Actually, as long as the above integral is finite (in Lebesgue sense) with a pre-
dictable processes Y (s) and locally bounded variation process X(s), the integral
(5.10) defines a process Z(t) with locally bounded variation.

Sometimes it is necessary to make a time change in Stieltjes integrals. For
a given increasing cad-lag process A with values in [0,∞] consider

A−1(s) = inf{t ≥ 0 : A(t) > s}, ∀s ≥ 0, (5.12)

with A−1(s) = 0 for s ≤ sup{t ≥ 0 : A(t) = 0}, and A−1(s) = +∞ if A(t) ≤ s
for all t ≥ 0. This define a cad-lag process (A−1(s) : s ≥ 0) with the properties

A−1(s−) = inf{t ≥ 0 : A(t) ≥ s}, ∀s ≥ 0,

A[A−1(s)] ≥ s, ∀s ≥ 0,

A(t) = inf{s ≥ 0 : A−1(s) > t}, ∀t ≥ 0.

If A is continuous then A−1 may not be continuous (when A is not strictly
increasing). The following change of variables formula can be obtained. For any
nonnegative Borel measurable function f on [0,∞) we have∫

[0,∞)

f(t)dA(t) =

∫ ∞

0

f(A−1(s))1A−1(s)<∞ds,∫
[u(a),u(b)]

f(t)dA(t) =

∫
[a,b]

f(u(t))dA(u(t)),

for any continuous non-decreasing process u on the bounded interval [a, b].

A typical example is a real-valued Poisson process X(t) with parameter
c > 0, which is a process of bounded variation and a jumps process of the form
X(t) =

∑
n 1t≥θn , where θn = τ1 + · · · + τn and (τ1, τ2, . . .) is a sequence of

independent exponentially distributed (with parameter c) random variables. If
Y is a (cad-lag) bounded adapted process with respect to X then the following
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(cad-lag) adapted processes are defined by the Riemann-Stieltjes integrals

M(t) =

∫
]0,t]

Y (s−)dX(s)− c

∫ t

0

Y (s)ds, ∀t ≥ 0,

N(t) =M2(t)− c

∫ t

0

Y 2(s)ds, ∀t ≥ 0,

E(t) = exp
{∫

]0,t]

Y (s−)dX(s) + c

∫ t

0

[1− eY (s)]ds
}
, ∀t ≥ 0.

Taking the left-hand limit Y (s−) in the integral with respect to X is essential
to make the Riemann-Stieltjes integral meaningful. It will be seen later that
these three processes M, N, E are martingales and the above integral will be
called stochastic integral when the process Y is predictable with respect to X.

Note that all arguments made above for locally bounded variation process
are of a pathwise character, without any assumption of integrability in Ω.

5.3.2 Integrable Finite Variation

No specific difference was made in the previous pathwise discussion regarding
path with bounded variation within any bounded time-interval and within the
half (or whole) real line, i.e., bounded variation paths (without any other qua-
litication) refers to any bounded time-interval, and so the limit A(+∞) for a
monotone paths could be infinite. Moreover, no condition on integrability (with
respect to the probability measure) was assumed, and as seen later, this inte-
grability condition (even locally) is realted to the concept of martingales.

Now, we mention that an important role is played by the so-called integrable
increasing processes in [0,∞), i.e., processes A with (monotone) increasing path
such that

E{sup
t
A(t)} = E{ lim

t→∞
A(t)} = E{A(∞)} <∞,

and processes with integrable bounded variation or integrable finite variation
on [0,∞), i.e., processes A where the variation process {var(A, [0, t]) : t ≥ 0}
satisfies

E{sup
t

var(A, [0, t])} = E{var(A, [0,∞[)} <∞,

or equivalently, A = A+ −A− where A+ and A− are integrable increasing pro-
cesses in [0,∞). These two concepts are localized as soon as a filtration is given,
e.g., if there exists a (increasing) sequence of stopping times (τn : n ≥ 1) sat-
isfying P (limn τn = ∞) = 1 such that the stopped process An(t) = A(t ∧ τn)
is an integrable increasing process in [0,∞) for any n then A is a locally inte-
grable increasing process in [0,∞). Note that processes with locally integrable
bounded variation or locally integrable finite variation on [0,∞), could be mis-
interpreted as processes such that their variations {var(A, [0, t]) : t ≥ 0} sat-
isfy E{var(A, [0, t])} < ∞, for any t > 0. It is worth to remark that any
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predictable process of bounded (or finite) variation (i.e., its variation process
is finite) is indeed of locally integrable finite variation, e.g., see Jacod and
Shiryaev [69, Lemma I.3.10]. Moreover, as mentioned early, the qualifiers in-
creasing or bounded (finite) variation implicitly include a cad-lag assumption,
also, the qualifier locally implicitly includes an adapted condition. In the rare
situation where an adapted assumption is not used, the tern raw will be explic-
itly used.

A simple application of the change of time (5.12), i.e., the following expres-
sion for a cad-lag increasing process A,

E
{∫ T

0

X(t)dA(t)
}
=

∫ ∞

0

E
{
X
(
A−1(s)

)
1A−1(s)<∞

}
ds,

proves that for any two nonnegative measurable processes (non necessarily
adapted) X and Y satisfying E

{
X(τ)1τ<∞

}
= E

{
Y (τ)1τ<∞

}
, for every stop-

ping time τ, we have

E
{∫ r

0

X(t)dA(t)
}
= E

{∫ r

0

Y (t)dA(t)
}
, ∀r ∈ (0,∞].

Now, if Fτ denotes the σ-algebra associated with a stopping time (see Defini-
tion 4.7) then the condition

E
{
X(τ)1τ<∞

∣∣F(τ)
}
= E

{
Y (τ)1τ<∞

∣∣F(τ)
}
, a.s.

implies

E
{∫ ∞

τ

X(t)dA(t)
∣∣F(τ)

}
= E

{∫ ∞

τ

Y (t)dA(t)
∣∣F(τ)

}
, (5.13)

almost surely, which is used later with martingale.
On the other hand, we can verify that if A and B are two cad-lag increasing

processes (non necessarily adapted) such that

E
{
A(t)−A(s)

∣∣F(s)
}
= E

{
B(t)−B(s)

∣∣F(s)
}
, a.s.,

for every (extended) real numbers 0 ≤ s ≤ t ≤ ∞, then we have

E
{∫ T

0

X(t−)dA(t)
∣∣F(τ)

}
= E

{∫ T

0

X(t−)dB(t)
∣∣F(τ)

}
, (5.14)

for every T ≥ 0 and for every nonnegative cad-lag adapted process X.
Let us go back to the relation of locally bounded variation process X with

a Borel (positive or signed) measure on [0,∞)

µ({0}) = X(0, ω), µ(]a, b]) = X(b, ω)−X(a, ω), 0 < a < b

and abandon the pathwise analysis. Similar to the null sets in Ω, a key role
is played by evanescent sets in [0,∞) × Ω, which are defined as all sets N in
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the product σ-algebra B([0,∞))×F such that P ({∪tNt}) = 0, where Nt is the
t section {ω : (ω, t) ∈ N} of N. For a given process A of integrable bounded
variation, i.e., such that

E{sup
t

var(A, [0, t]} <∞,

we may define (bounded) signed measure µA (this time) on [0,∞) × Ω by the
formula

µA(]a, b]× F ) = E
{
1F

∫
]a,b]

dA(t)
}
, ∀b > a ≥ 0, F ∈ F . (5.15)

Since progressively, optional or predictable measurable sets are naturally iden-
tified except an evanescent set, the measure µA correctly represents a process
A with integrable bounded variation. Conversely, a (bounded) signed measure
µ on [0,∞) × Ω corresponds to some process A if and only if µ is a so-called
signed P -measure, namely, if for any set N with vanishing sections (i.e., satis-
fying P{ω : (ω, t) ∈ N} = 0 for every t) we have µ(N) = 0. A typical case is
the point processes, i.e.,

A(t) =
∑
n

an1τn≥t,

where τn−1 ≤ τn and τn−1 < τn if τn < ∞ is a sequence of stopping times and
an is F(τn)-measurable random variable with values in R∗ = R∖ {0}, for every
n. Then, for each fixed ω the function t → A(t, ω) is piecewise constant, but
even if all the random variable an are bounded, the variation of the process A
may not be integrable. The measure µA takes the form

µA(X) =
∑
n

E{anX(τn)} = E
{∫

[0,∞)

∫
R∗

aX(t, ω) νA(dt, da, ω)
}
,

νA(B,ω) = #{n : (τn(ω), an(ω)) ∈ B},

for every B in B([0,∞)×R∗), where # denotes the number of elements in a set
and X is any bounded measurable process, in particular of the form X(t, ω) =
1]a,b](t)1F (ω), for some set F in F . It may seem more complicate to use the
random measure νA defined on [0,∞) × R∗, but indeed this is characteristic
to jumps processes. The reader is referred to the discussions in the books by
Dellacherie and Meyer [36, Section VI.2, pp. 113–164], Jacod and Shiryaev [69,
Section 1.3, pp. 27–32], Rogers and Williams [112, Sections VI.19–21, pp. 347–
352], and Elliott [46], Protter [108], among others, to complement the above
remarks and following theorem–definition

Definition 5.5 (compensator). Let (Ω,F , P,F(t) : t ≥ 0) be a given filtered
space. For any bounded (or integrable) measurable process X there exists a
unique predictable process pX, called predictable projection, such that for any
predictable stopping time τ we have E{pX1τ<∞} = E{X1τ<∞}. It is proved
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that a process A with integrable bounded variation is predictable if and only
if µA(X) = µA(

pX) for any bounded measurable process X, see (5.15). Now,
given a process A with integrable bounded variation with a corresponding signed
P -measure µA on [0,∞)×Ω, the dual predictable projection of µA is defined by
duality as follows

µpA(X) = E
{∫

[0,∞)

pX(t, ω)dA(t, ω)
}
,

for any bounded measurable process X. Since µpA is a signed P -measure which
commutes with the predictable projection, its corresponding process with inte-
grable bounded variation, denoted by Ap, is predictable and satisfies

E{
∫
[0,∞)

X(t, ω)dAp(t, ω) = E{
∫
[0,∞)

pX(t, ω)dA(t, ω),

for any bounded measurable process X, and called the compensator of A.

Similarly to above, we may define the optional projection, and dual optional
projection, with the notations oX, µoA and Ao. Clearly, the above statements can
be localized, i.e., the process X can only be assumed locally bounded or locally
integrable, and the process A can only be supposed with locally integrable finite
variation.

It will be stated later that the dual predictable projection µpA corresponding
to a signed P -measure µA of an adapted process A with integrable bounded
variation is actually characterized by the fact that the (Stieltjes integral) process∫

[0,t]

X(t−, ω)dA(t, ω)−
∫
[0,t]

X(t−, ω)dAp(t, ω). t ≥ 0

is a martingale for any bounded adapted process X. It is clear that t 7→ X(t−)
is a predictable process and that in the above martingale condition it suffices
to take processes of the form X(t) = 1t≤τ for some stopping time τ, i.e., the
process t 7→ A(t ∧ τ)−Ap(t ∧ τ) is a martingale.

Related with the compensator definition is the (unique) decomposition of
any positive increasing adapted right-continuous process A into the sum of a
continuous increasing adapted process cA with cA(0) = 0 and a right-continuous
increasing adapted process jA which can be expressed as follows:

jA(t) =
∑
n

an 1t≥τn ,

where {τn} is a sequence of stopping times with bounded disjoint graphs and
an is a bounded positive F(τn)-measurable function for every n. The proof of
this fact is rather simple, first define inductively τ i,0 = 0 and

τ i,j = inf{t > τ i,j : A(t+)−A(t−) ≥ 1/i},
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and then τ i,jk = τ i,j if A(t+) − A(t−) ≤ k + 1 and τ i,j ≤ k, and τ i,jk = ∞
otherwise. Clearly {τ i,jk } is countable and can be rewritten as {τ ′

n : n = 1, 2, . . .},
which is a sequence of stopping times with bounded graphs. Again, defining
τn = τ

′

n if τi ̸= τn for every i = 1, . . . , n and τn = ∞ otherwise, we get the
desired sequence, with an = A(τn+)−A(τn−).

Similarly, if A is as above and φ : [0,∞) → [0,∞) is a continuously differen-
tiable function and for a given r ≥ 0 we set

τr = inf{t ≥ 0 : A(t) ≥ r} and θr = inf{t ≥ 0 : A(t) > r},

which are both stopping times (as seen later, τr is predictable), then for every
bounded measurable process X we have∫ ∞

0

X(s)dφ(A(s)) =

∫ ∞

0

X(τr)φ
′(r)1τt<∞dr =

=

∫ ∞

0

X(θr)φ
′(r)1θt<∞dr.

Details on the proof of these results can be found in Bichteler [14, Section 2.4,
pp. 69–71].

As mentioned above, another measure associated with a process X is the
so-called jumps measure, which is a random measure on [0,∞)×R∗, with R∗ =
R∖ {0} with integer values and defined, for each ω, by

ν(]a, b]×B) = #{t : a < t ≤ b, X(t)−X(t−) ∈ B},

for every b > a ≥ 0 and B in B(R∗), i.e., ν is the number of jumps of the
process X in the time interval ]a, b] which belongs to the set B. Typically,
if X = P is a Poisson measure process then the compensator of ν is indeed
the (deterministic) Lévy measure m. Clearly, the above integer-valued random
measure is defined even if the process X is not of locally bounded variation,
only the cad-lag property is used.

On the other hand, we may define the quadratic variation of X over a par-
tition π = (t0 < t1 < · · · < tn) is given by

var2(X,π) =

n∑
i=1

|X(ti)−X(ti−1)|2,

and then quadratic variation operator as

var2(X, [0, t]) = lim
r→0

var2(X, [0, t], r),

var2(X, [0, t], r) = sup{var2(X,π)}, ∀t > 0,
(5.16)

where the supremum is taken over all partitions πt = (0 = t0 < · · · < tn = t) of
the interval [0, t], with ti − ti−1 ≤ r. It is easy to imagine a process with only
jumps such that var2(X, [0, t]) <∞ but var(X, [0, t]) = ∞ for any t > 0, i.e., the

[Preliminary] Menaldi November 19, 2022



5.3. Bounded Variation 157

sum of small jumps at the origin is infinite but the sum of the square converges.
Moreover, if the process X is continuous with bounded variation then the esti-
mate var2(X,π) ≤ w(X,π) var(X,π) shows that necessarily var2(X,π) → 0 as
the mesh of the partition δ(π) = maxi{ti− ti−1} vanishes, where w(X,π) is the
modulus of continuity of X on π, namely,

w(X,π) = sup
i

sup
{
|X(t)−X(s)| : t, s ∈ [ti−1, ti]

}
.

However, we may construct a continuous process X with unbounded variation
and with the above vanishing quadratic variation property. Furthermore, for
a process X with vanishing quadratic variation we can setup and define the
Riemann-Stieltjes integral to show that∫ b

a

[X(t)]m dX(t) =
1

m+ 1

[
[X(b)]m+1 − [X(a)]m+1

]
,

for every b > a ≥ 0. For instance, if X = W is a Wiener process then
E{var2(W,π)} = tn − t0 and the relevance of the quadratic variation is clear
when a pathwise analysis is not available. As seen later, this is a typical be-
havior for martingale processes. We refer the interested reader to Doob [40,
Chapters X–XI, pp. 157–204] for a neat analytic approach.

The technique to treat cad-lag processes is essentially as follows. On one
hand, the pathwise study is efficient for cad-lag process with local bounded
variation paths. This includes (1) continuous process with local bounded varia-
tion path and (2) jump processes X with jumps of local bounded variation, i.e.,∑
s≤t |δX(s)| < ∞ for every t > 0. For every cad-lag jump process X, there is

only a finite number of jumps that are larger than any deterministic constant
r, so the number of larger jumps is finite, i.e.,

∑
s≤t 1{|δX(s)|≥r} <∞. Thus,

X(t) = lim
r→0

∑
s≤t

1{|δX(s)|≥r}δX(s), ∀t > 0,

but the series may not converge absolutely. In particular, we look at jumps
processes with jumps satisfying

∑
s≤t |δX(s)|2 <∞ for every t > 0, which does

not necessarily have local bounded variation paths. For these processes, the
pathwise arguments are not longer valid. By imposing a local integrability (with
respect to the path, i.e., E{

∑
s≤τk |δX(s)|2} <∞), for some increasing sequence

of stopping time {τ1, τ2, . . .} with τk → ∞, the compensator/martingale theory
can be used. This is part of the stochastic integral theory, where jump processes
are better viewed as random measure. Continuous martingale processes with no
local bounded variation paths are also studied with non-pathwise technique. A
more pure analytic point of view is the use of the so-called orthogonal random
measure.

Some arguments use a enumeration of the jumps, certainly, they are denu-
merable but to have them in a ordered way, we need to use ordinal numbers.
An intuitive feeling is the fact that we can count through countable ordinals
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(where each nonempty subset has a first element) as follows:

1, 2, 3, . . . ,∞,∞+ 1,∞+ 2, . . . , 2∞, 2∞+ 1, . . .

3∞, 3∞+ 1, . . . ,∞2, . . . ,∞3, . . . ,∞∞,∞∞ + 1, . . .

where ∞ is the first infinite ordinal. Each countable ordinal is either a successor
α+1 of some countable ordinal α or a limit ordinal β = sup{α : α < β}, which
is the supremum of ordinals less than it. For instance, to count the jumps of a
cad-lag process X, first we set τ0 = 0, a0 = X(0) and given an ordinal i with
successor i+ 1 we define

τi+1 = inf
{
t ≥ τi : X(t) ̸= X(t−)

}
, ai+1 = X(τi+1)−X(τi+1−),

while, given a limit ordinal i we define

τi = sup
j<i

τj , ai = X(τi)−X(τi−).

Thus, for each countable ordinal i we have defined τi and ai such that i ≤ j
implies τi ≤ τj , where τi may be infinite for some ω. Because there is a countable
number of jumps, we have supi τi(ω) = ∞ and so, for every t and ω there is a first
(necessary countable) ordinal such that for κ = κ(t, ω) we have τi ∧ t = τi+1 ∧ t,
for every i ≥ κ. This means that all the jumps of X within [0, t] are listed
with τi and ai for i ≤ κ, the problem is that the possible values of the κ(t, ω) is
uncountable (in much the same way that the number of finite ordinals is infinite),
so that τi may not be an stopping time for some limit ordinal i. However, τi is
almost surely equal to a stopping time. Indeed, set

ci = E{exp(−τi)}, c = inf
i
ci,

where the infimum is taken over all countable ordinals. Thus, there exists a
sequence of (countable) ordinals {ι(n) : n ≥ 1} independent of ω such that
cι(n) → c as n→ ∞. If ι(∞) is the countable ordinal limn ι(n) we have cι(∞) = c

and the stopping time sup
{
τι(n) : n

}
is equal to τι(∞) almost surely. Hence,

each τi in the above construction can be chosen to be a stopping time. On the
other hand, to construct a (purely) jump process from its jumps, we need some
assumptions on the cad-lag process, e.g., locally bounded variation. Indeed, by
induction procedure, we may define the sum or series, starting from S0 = a0, we
set Si+1 = ai+1+Si if i has a successor and Si = ai+

∑
j<i Sj (which converges

absolutely) if i is a limit ordinal. Hence, the process Sκ(t,ω)(ω) or equivalently∑
i≤κ(t,ω) ai(ω) is optional. This same argument applies to semi-martingales, as

seen in the next section.

5.4 Martingales

Related to the Markov processes with values in Rd, is the concept of (vec-
tor) martingales. Moreover, the martingale property can be extended to pro-
cesses with values in Hilbert, Banach or co-nuclear (the strong dual of a nuclear
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space) spaces, e.g., see Kallianpur and Xiong [74, Chapter 3, pp. 85–126] and
Métivier [98].

Definition 5.6 (general martingale). A (general) martingale with states in
E ⊂ Rd is a (complete) probability measure P on (Ω,F), together with a mea-
surable mapping M (P -equivalence class) from (Ω,F) into (ET ,BT (E)) and an
increasing family of completed σ-algebras (Ft : t ∈ T ) on (Ω,F) satisfying the
martingale property

E{|Mt|} <∞, ∀t, E{Mt | Fs} =Ms, a.s. ∀t > s,

where Mt is the t-component of M. If the family of σ-algebras (Ft : t ∈ T )
is not mentioned, then it is assumed (Ft : t ∈ T ) is the history (Ht : t ∈ T )
of the process (Mt : t ∈ T ), i.e., Ht is generated by the random variables
{Ms : s ≤ t} and the null sets. Moreover, we say that the martingale is cad-lag
if (Ft : t ∈ T ) is a filtration satisfying the usual conditions and except on a set
of P -probability zero, the paths of (Mt : t ∈ T ) are cad-lag. The martingale is
continuous if their paths are continuous. Furthermore, if d = 1, i.e., with values
in R, we may define also super - or sub-martingale by replacing the equal sign
by either ≤ or ≥ in the above condition.

In most of the cases considered here, the index T is a bounded real interval or
[0,∞), and the probability P is fixed, so that a (good) particular member of the
P -equivalence class is used and called (super- or sub-)martingale. As usually,
the conditional expectation operator identifies an equivalence class of processes
satisfying the above condition and so another condition on the sample path is
needed to make the above martingale condition workable in continuous time,
e.g., a minimal condition would be a separable martingale and a more reasonable
condition is right-continuity in probability. It is clear that if (Mt : t ≥ 0) is a
cad-lag martingale relative to (or with respect to) (Ft : t ≥ 0) then it is also a
cad-lag martingale relative to its canonical (or natural) filtration (Ht : t ≥ 0),
the history of the process, see Definitions 4.16 and 4.17 on Markov processes.
Certainly, if (Mt : t ≥ 0) is a super-martingale then (−Mt : t ≥ 0) is a sub-
martingale.

When the filtration is the history of the process, the second condition in the
martingale property of the above Definition 5.6 can be rephrased as follows

E
{
M(t)

n∏
i=1

hi
(
M(si)

)}
= E

{
M(s)

n∏
i=1

hi
(
M(si)

)}
(5.17)

for any integer n, for every 0 ≤ s1 < s2 ≤ · · · ≤ sn ≤ s < t, any (real-valued)
Borel and bounded (in Rd) functions hi, i = 1, . . . , n. Moreover, if the process
(Mt : t ≥ 0) is right-continuous in L1, i.e.,

lim
t↓s

E{|Mt −Ms|} = 0, ∀s ≥ 0,

then, applying the martingale property (5.17) to continuous functions hi and
si + εi, s+ ε, with 0 < εi ≤ ε, we deduce another expression of the martingale
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property, namely,

E
{
M(t)

n∏
i=1

hi
(
M(si + 0)

)}
= E

{
M(s)

n∏
i=1

hi
(
M(si + 0)

)}
(5.18)

for any integer n, for every 0 ≤ s1 < s2 ≤ · · · ≤ sn ≤ s < t, any (real-
valued) continuous and bounded (in Rd) functions hi, i = 1, . . . , n. Note that
relation (5.18) represents the second condition in the martingale property of
Definition 5.6, where (Ft : t ≥ 0) is the smallest filtration satisfying the usual
conditions which makes the process (Mt : t ≥ 0) adapted. This proves that if
(Mt : t ≥ 0) is a right-continuous (actually it suffices that it be right-continuous
in probability) martingale with respect to (Ft : t ≥ 0) then (Mt : t ≥ 0)
is also a martingale relative to the (possible larger) right-continuous filtration
(F̄t : t ≥ 0), with F̄t = ∩ε>0Ft+ε. Clearly, if (Mt : t ≥ 0) and (Nt : t ≥ 0) are
two sub-martingales (or super-martingales, respectively) relative to the same
filtration (Ft : t ≥ 0) then the new process (Mt∨Nt : t ≥ 0) (or (Mt∧Nt : t ≥ 0),
respectively) is also a sub-martingale (or super-martingale, respectively).

It is clear that the martingale condition does not distinguish modifications of
the process, so it may be possible to have a (general) martingale which paths are
not necessarily cad-lag, with a filtration which is not necessarily right-continuous
(or completed). Thus, the assumption of a setup with a filtration satisfying
the usual conditions is not at all granted, completion with null sets is a rather
technical condition, but the right-continuity is essential to the well behavior and
mathematically workable study of (sub-/super-) martingale processes. This is
illustrated by the Doob’s regularization result, which uses the following concept.

Let D be a countable dense set in R (e.g., the rational numbers) and x be a
function from D into R. The function x is called regularisable if the right-hand
and left-hand limits exist finitely within D for every real value, i.e., for every t
in R there exist real values x(t+) and x(t−) such that for every ε > 0 there is
a δ > 0 (possible depending on ε, x(·) and t) such that 0 < s − t < δ implies
|x(s) − x(t+)| < ε and 0 < t − s < δ implies |x(s) − x(t−)| < ε. Clearly, when
the initial function x is defined in an interval I of R, first the function x is
restricted to the set I ∩D and then the above definition is applied for t in the
interval I. In most cases, the countable dense set D can be arbitrary chosen or
easily understood from the context. Usually I = [0,∞) and so x(0−) is either
not defined or set equal to 0 for the sake of completeness. If a function x is
regularisable (within D) then x+ and x− (right and left limits) denote the new
functions obtained as the pointwise limits.

An interesting point is that a function x : D ∩ [0,∞) → R is regularisable if
and only if for every integer N and any compact interval [a, b] with a < b in D,
the following expressions are finite,

∥x∥∞,D∩[a,b] = sup
{
|x(s)| : s ∈ D ∩ [a, b]

}
,

UN (x, [a, b]) = sup
{
k : 0 ≤ s1 < r1 < s2 < . . . < sk < rk ≤ N,

, x(si) < a, x(ri) > b, si, ri ∈ D, ∀i
}
.
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As in the discrete case, UN (x, [a, b]) is called the upcrossings of the interval [a, b]
by time N.

Theorem 5.7. Let M = {Mt : t ≥ 0} be a real-valued family of random
variables in a probability space (Ω,F , P ) which satisfies the (super- or sub-)
martingale property relative to an increasing family of σ-algebras {F(t) : t ≥ 0},
i.e.,

E{|M(t)|} <∞, ∀t, E{M(t) | Fs} =Ms, a.s. ∀t > s ≥ 0,

with = replaced by ≤ or ≥ when (super- or sub-) is used. ThenM is regularisable
except in a set of probability zero, and the processes M+ = {M(t+) : t ≥ 0}
and M− = {M(t−) : t ≥ 0} are cad-lag (super- or sub) martingales relative to
{F(t+) : t ≥ 0} and {F(t−) : t ≥ 0}, respectively. Moreover, if the function
t 7→ E{M(t)} is right-continuous (resp., left-continuous) then M+ (resp., M−)
is a version of M.

For a complete detail on the proof see, e.g., Dellacherie and Meyer [36,
Section VI.1] or Rogers and Williams [112, Section II.5, Subsections 65–67,
pp. 169–174]. Clearly, the above results include the following statement. Let
{F(t) : t ≥ 0} be a right-continuous and complete the filtration, and assume that
the function t 7→ E{M(t)} is right-continuous (e.g., this mean right-continuity
holds if M is a martingale). Then M+ is a version of M, which is a cad-lag
(super- or sub-) martingale relative to the filtration {F(t) : t ≥ 0}. Moreover,
if M is separable then so is M+ and therefore M+ is indistinguishable from M,
i.e., M itself is a cad-lag (super- or sub-) martingale.

An integrable process with independent increments and zero mean is not
always a typical example of martingale, some regularity on the path is needed.
For instance, if {w(t) : t ≥ 0} is a standard Wiener process in Rd then it is also
a continuous martingale, and if {p(t) : t ≥ 0} is a standard Poisson process then
(Mt : t ≥ 0), with Mt = p(t) − E{p(t)}, is a cad-lag martingale. In general,
we will see that if (Xt : t ≥ 0) is a cad-lag Markov process with infinitesimal
generator A (see then the stochastic process

Mt = φ(Xt)−
∫ t

0

Aφ(Xs)ds, ∀t ≥ 0

is a cad-lag martingale, for any (smooth) function φ in the domain D(A) of
the infinitesimal generator A. In fact, as seen later, this is a characterization
of the Markov processes in terms of the so-called martingale problem. On the
other hand, the concept of martingale is a sort of complementary definition with
respect to bounded variation processes, in the sense that the only continuous
martingale of bounded variation is the trivial or constant process.

To study martingales we begin with either (1) a filtered space (Ω,F , P,Ft :
t ≥ 0) satisfying the usual conditions and we look at cad-lag stochastic processes
(Xt : t ≥ 0) as random variables with valued in the canonical spaceD([0,∞),Rd)
or (2) a canonical space D = D([0,∞),Rd), with its Borel σ-algebra B, the
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canonical process (Xt = ω(t), t ≥ 0) and it associated the filtration (Ft : t ≥
0) and we look for probability measures on D. Thus, a cad-lag martingale is
viewed as a random variable with values in the canonical space D, identified
with its equivalence class, namely, all processes which are indistinguishable (or
equivalent) of it, and as long as we use cad-lag (or separable) processes this
agree with the notion of version (or modification).

We rephrase the above martingale concept

Definition 5.8 (martingale). A martingale (process) relative to a given filtered
space (Ω,F , P,F(t) : t ≥ 0) is a random variable M (P -equivalence class) with
values into the canonical space D([0,∞),Rd) satisfying the martingale property

E{|M(t)|} <∞, ∀t, E{M(t) | F(s)} =M(s), a.s. ∀t > s,

where M(t) = M(ω)(t). If the filtration {F(t) : t ≥ 0} is not mentioned,
then it is assumed that {F(t) : t ≥ 0} is the smallest filtration satisfying the
usual condition, which renders the process {M(t) : t ≥ 0} adapted. Moreover,
the martingale is called continuous if M take values into the canonical space
C([0,∞),Rd) almost surely, and it is called uniformly integrable if the family of
random variables {M(t), t ≥ 0} is uniformly integrable, i.e., for any ε > 0 there
is a r > 0 sufficiently large such that P{|M(t)| ≥ r} ≤ ε, for any t in [0,∞).
When d = 1, i.e., with values in R, we may define also super - or sub-martingale
by replacing the equal sign by either ≤ or ≥ in the above condition. Sometimes,
martingales are considered in a bounded time interval instead of the semi-line
[0,∞).

First, note the role of uniformly integrability by mentioning Doob’s martin-
gale convergence and optional-sampling results

Theorem 5.9. IfM is martingale bounded in L1, i.e., supt E{|M(t)|} <∞, the
limit M(∞) = limt→∞M(t) exists almost surely and the convergence of M(t)
to M(∞) is in L1 if and only if the martingale is uniformly integrable. On the
other hand, ifM is an uniformly integrable martingale then (a) the family of Rd-
valued random variable {M(τ) : τ is a stopping time} is uniformly integrable,
and (b) for any stopping times τ ≤ θ the equality E{M(θ) |F(τ)} =M(τ) holds
almost surely.

As in the discrete case, the proof is mainly based on the Doob’s upcross-
ing estimate. A (super-/sub-) martingale M satisfying the property (a) of the
above theorem is called of class (D) (Dirichlet class). Note that an uniformly
integrable super(or sub)-martingale need not to be of class (D). However, for
any nonnegative sub-martingale X we have

r P
(
sup
s≤t

X(s) ≥ r
)
≤ E{X(t)1sups≤tX(s)≥r} ≤ E{X(t)}, (5.19)

and therefore

∥ sup
s≤t

X(s)∥p ≤ p′ ∥X(t)∥p, with 1/p+ 1/p′ = 1, (5.20)
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actually, valid even if t is replaced by a stopping time τ. Here ∥ · ∥p denotes the
norm in Lp(Ω, P,F). However, p′ = ∞ for p = 1, this inequality becomes

∥ sup
s≤t

X(s)∥1 ≤ e

e− 1
∥X(t) ln+X(t)∥1, (5.21)

where ln+(·) is the positive part of ln(·), but this is rarely used.
Note that (5.13) implies that for any positive cad-lag martingale M, which

is written asM(t) = E{M(∞)|F(t)} ifM is uniformly integrable, and any local
integrable increasing process A with A(0) = 0, we have

E
{
X(t)A(t)

}
= E

{∫ t

0

Y (s)dA(s)
}
, ∀t ∈ (0,∞),

and even for t = ∞ if M is uniformly integrable.
Now, based on (5.14), an local integrable increasing process A with A(0) = 0

is called natural if

E
{∫ T

0

M(t)dA(t)
}
= E

{∫ T

0

M(t−)dA(t)
}
, ∀T ∈ R, (5.22)

for every nonnegative, bounded and cad-lag continuous martingaleM. Since the
process Y (t) = Y (t)1t<τ + Y (τ)1s≥τ is a martingale for any stopping time τ,
we deduce that (5.22) is equivalent to either

E
{∫ ∞

0

M(t)dA(t)
}
= E

{∫ ∞

0

M(t−)dA(t)
}
, (5.23)

or

E
{∫ τ

0

M(t)dA(t)
}
= E

{∫ τ

0

M(t−)dA(t)
}
, ∀ stopping time τ,

and that the increasing process B(t) = B(t)1t<τ + B(τ)1s≥τ is also natural.
Finally, if A is an integrable increasing natural process then (5.23) holds for any
uniformly integrable cad-lag martingale M.

With all these properties in place, we can check that if X is a cad-lag sub
martingale and A and B are two cad-lag increasing natural processes such that
A(0) = B(0) = 0 and X − A and X − B are (cad-lag) martingale then A(t) =
B(t), almost surely, for every t ≥ 0.

As we can check later, this notion of (cad-lag) increasing natural process
agrees with the more general condition of (cad-lag) increasing predictable pro-
cess. For further details, the reader may want to take a look at certain points
in the book by Meyer [99].

The following decomposition is extremely useful to extend the previous result
to sub-martingales.

Theorem 5.10 (Doob-Meyer). If X is a (continuous) sub-martingale of class
(D) then there exists a uniformly integrable martingale M and an integrable
predictable (continuous) monotone increasing process A, both null at time zero
such that X = X(0) +M +A. Moreover, this decomposition is unique.
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For instance, a comprehensive proof of this fundamental results can be found
Rogers and Williams [112, Section VI.6, pp. 367–382]. In particular, if X is an
adapted (cad-lag) increasing process satisfying E{supt |X(t)|} <∞ then X is a
sub-martingale of class (D) and the above decomposition yields the predictable
compensator as in Definition 5.5. Certainly, this can be extended to integrable
bounded variation processes, by using the positive and negative variation.

Therefore, the previous convergence Theorem 5.9 can be extended to super-
/sub-martingales of class (D) and the process A = AX is called the (predictable)
compensator of the sub-martingale M. Note that µA on [0,∞) × Ω associated
with the increasing process A, as defined by (5.15), satisfies

µA(Kτ, θK) = E{Aθ −Aτ} = E{Xθ −Xτ},

for any stopping times τ ≤ θ and where the the stochastic interval Kτ, θK is viewed
as the subset {(ω, t) : τ(ω) < t ≤ θ(ω)} of [0,∞) × Ω. This is one of the key
elements used in the definition of the process A, i.e., the fact that for any given
sub-martingale X of class (D) we can construct a unique bounded (positive)
measure on [0,∞)× Ω defined by µA(]τ, θ]) = E{Xθ −Xτ}. Actually, it is also
established in the Doléans’ proof of the above decomposition, that for a quasi-
leftcontinuous (or regular) sub-martingale X (i.e., E{X(τ)} = E{X(τ−)} for
any predictable stopping time τ or equivalently A is continuous) the predictable
(or conditional) variation for a partition π = (t0 < t1 < · · · < tn),

pvar(X,π) =

n∑
i=1

E{X(ti)−X(ti−1) | F(ti−1)}, (5.24)

which is equal to pvar(A, π), has the following property: for any ε > 0 there is
a δ > 0 such that E{|pvar(X,πt) − A(t)|} ≤ ε for any partition π = πt with
tn = t and ti − ti−1 ≤ δ, for every i = 1, 2, . . . , n.

Let us denote by M2(Ω, P,F ,F(t) : t ≥ 0) the space of square-integrable
martingales M null at time zero, i.e., besides the martingale conditions in Defi-
nition 5.8 we imposeM(0) = 0 and supt≥0 E{|M(t)|2} <∞. A square-integrable
martingale M is uniformly integrable and the convergence theorem applies to
produce a F(∞)-measurable random variable M∞ = M(∞) with values in R
(or Rd) and square-integrable such that M(t) = E{M(∞) | F(t)}. Hence, the
space M2(Ω, P,F ,F(t) : t ≥ 0) can be identified with the closed subspace of
the Hilbert space L2(Ω, P,F∞), F∞ = F(∞), satisfying E{M(∞) | F(0)} = 0.
Note that if M∗ denotes the sup-process defined by M∗(t) = sups≤t |M(s)| and
its limit M∗(∞) = supt≥0 |M(t)| then we have

E{|M∗(∞)|2} ≤ 4 sup
t≥0

E{|M(t)|} = 4E{|M(∞)|2},

after using Doob’s estimate (5.20) with p = 2. Thus, M2(Ω, P,F ,F(t) : t ≥ 0)
can be regarded as a Banach space with the norm ∥M∗(∞)∥p, with p = 2, for
any element M, without changing the topology. Moreover, the space of con-
tinuous square-integrable martingale processes, denoted by M2

c (Ω, P,F ,F(t) :
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t ≥ 0) is a closed subspace of the Hilbert space M2(Ω, P,F ,F(t) : t ≥ 0).
Thus, we may consider its orthogonal complement referred to as purely dis-
continuous square-integrable martingale processes null at time zero and de-
noted by M2

d (Ω, P,F ,F(t) : t ≥ 0), of all square-integrable martingale pro-
cesses Y null at time zero satisfying E{M(∞)Y (∞)} = 0 for all elements M in
M2
c (Ω, P,F ,F(t) : t ≥ 0), actually,M and Y are what is called strongly orthogo-

nal, i.e., (M(t)Y (t) : t ≥ 0) is an uniformly integrable martingale. The concept
of strongly orthogonal is actually stronger than the concept of orthogonal inM2

and weaker than imposing M(t) −M(s) and Y (t) − Y (s) independent of F(s)
for every t > s.

Let M be a (continuous) square-integrable martingale process null at time
zero, in a given filtered space (Ω, P,F ,F(t) : t ≥ 0). Based on the above ar-
gument M2 is a sub-martingale of class (D) and Doob-Meyer decomposition
Theorem 5.10 applies to get a unique predictable (continuous) increasing pro-
cess ⟨M⟩, referred to as the predictable quadratic variation process. Thus, for
a given element M in M2(Ω, P,F ,F(t) : t ≥ 0), we have a unique pair Mc

in M2
c (Ω, P,F ,F(t) : t ≥ 0) and Md in M2

d (Ω, P,F ,F(t) : t ≥ 0) such that
M = Mc +Md. Applying Doob-Meyer decomposition to the sub-martingales
Mc and Md we may define (uniquely) the so-called quadratic variation (or op-
tional quadratic variation) process by the formula

[M ](t) = ⟨Mc⟩(t) +
∑
s≤t

(Md(s)−Md(s−))2, ∀t > 0. (5.25)

Note that [Mc] = ⟨Mc⟩ and Md(t) −Md(t−) = M(t) −M(t−), for any t > 0,
but that ⟨M⟩ is the predictable (dual) projection of the increasing process [M ],
as defined in Section 5.3. We re-state these facts for a further reference

Theorem 5.11 (quadratic variations). Let M be a (continuous) square-integra-
ble martingale process null at time zero, in a given filtered space (Ω, P,F ,F(t) :
t ≥ 0). Then (1) there exists a unique predictable (continuous) integrable mono-
tone increasing process ⟨M⟩ null at time zero such that M2 − ⟨M⟩ is a (con-
tinuous) uniformly integrable martingale, and (2) there exists a unique optional
(continuous) integrable monotone increasing process [M ] null at time zero such
that [M ](t) − [M ](t−) = (M(t) −M(t−))2, for any t > 0, and M2 − [M ] is a
(continuous) uniformly integrable martingale. Moreover M = 0 if and only if
either [M ] = 0 or ⟨M⟩ = 0.

Also, the optional quadratic variation can be defined by means of the stochas-
tic integral and for any ε > 0 there is a δ > 0 such that

E
{

sup
0<t≤1/ε

|var2(M,πt)− [M ](t)|
}
≤ ε,

for any partition πt = (0 = t0 < t1 < · · · < tn = t) with 0 < ti − ti−1 ≤ δ,
for every i = 1, 2, . . . , n, where var2(M,πt) is the optional quadratic variation
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operator

var2(M,πt) =

n∑
i=1

E{|M(ti)−M(ti−1)|2}, (5.26)

and ti in the partition may be stopping times. This previous limit could be used
as definition of [M ], and then we may define the predictable variation process
⟨M⟩ as the compensator of the optional quadratic variation [M ].

If the filtration can be chosen quasi-left continuous (i.e., satisfying F(τ−) =
F(τ) for every predictable stopping time τ) or equivalently if the predictable
variation process ⟨M⟩ is continuous then for any ε > 0 there is a δ > 0 such
that E{|pvar2(M,πt)−⟨M⟩(t)|} ≤ ε for any partition πt = (0 = t0 < t1 < · · · <
tn = t) with 0 < ti − ti−1 ≤ δ, for every i = 1, 2, . . . , n, where var2(M,πt) is
the optional quadratic variation operator and pvar2(M,πt) is the predictable
quadratic variation operator defined by (5.24), i.e., pvar2(M,πt) converges in
L1 to ⟨M⟩ as the mesh goes to zero.

These are key results in the study of martingales and foundation of the
stochastic integrals for continuous martingales. To understand the conver-
gence in the L1-norm of the predictable quadratic variation as defined in The-
orem (5.11), first we realize that the predictable quadratic variation operator
on M is equal to the predictable variation operator on ⟨M⟩, i.e., pvar2(M,π) =
pvar(⟨M⟩, π), as defined by (5.24). Setting Ak(s) = min{⟨M⟩(s), k}, for s ≥ 0,
for a given partition πt = (0 = t0 < t1 < · · · < tn = t) we consider the (finite)
sequence of bounded random variables

xi = E{Ak(ti)−Ak(ti−1) | F(ti−1)} − [Ak(ti)−Ak(ti−1)],

for i = 1, 2, . . . , tn, which are orthogonal in L2(Ω,F , P ). Based on the elemen-
tary bound (a− b)2 ≤ 2a2 + 2b2 and Jensen’s inequality we obtain

E{x2i } ≤ 4E{[Ak(ti)−Ak(ti−1)]
2},

which yields

E{[pvar(Ak, πt)−Ak(t)]2} =

n∑
i=1

E{x2i } ≤

≤ 4

n∑
i=1

E{[Ak(ti)− Ak(ti−1)]
2} ≤ 4E{ρ(Ak, [0, t], δ)Ak(t)},

where ρ(Ak, [0, t], δ) is the modulus of continuity of Ak, i.e.,

ρ(Ak, [0, T ], δ) = sup{Ak(t)−Ak(s) : 0 ≤ s < t ≤ T},

and 0 < ti − ti−1 ≤ δ, i ≥ 1. Since

E{|pvar2(M,πt)− ⟨M⟩(t)|} ≤
≤ E{|pvar(Ak, πt)− Ak(t)|}+ E{⟨M⟩(t)− Ak(t)},
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we obtain the L1 convergence stated in quadratic variation theorem above, when
we assume that ⟨M⟩ is continuous, which is equivalent to the quasi-left conti-
nuity of the filtration.

Moreover, if M is a continuous martingale with M(t) = 0 then

pvar2(M,πt) ≤ pvar(M,πt) ρ(M, [0, t], δ),

for any partition πt = (0 = t0 < t1 < · · · < tn = t) with 0 < ti − ti−1 ≤ δ,
i = 1, 2, . . . . Thus, the predictable square variation process ⟨M⟩ vanishes, when
M has almost surely path of bounded variation, i.e., M is the null process.

Similarly, the predictable ℓ-variation (ℓ > 2) of any ℓ-integrable martingale
M null at time zero is defined by

pvarℓ(M,π) =

n∑
i=1

E{|M(ti)−M(ti−1)|ℓ | F(ti−1)}, (5.27)

with π = (t0 < t1 < · · · < tn). Therefore, the inequality

pvarℓ(M,πt) ≤ pvar2(M,πt) [ρ(⟨M⟩, [0, t], δ)]ℓ/2−1,

for any partition πt = (0 = t0 < t1 < · · · < tn = t) with 0 < ti − ti−1 ≤ δ,
i = 1, 2, . . . and ℓ > 2, proves that pvarℓ(M,πt) → 0 almost surely as the
mesh of the partition δ vanishes. These two facts about the convergence of the
predictable quadratic variation and ℓ-variation (ℓ > 2) are essential to define
the stochastic integral.

With all this in mind, for any two square-integrable martingale process null
at time zero M and N we define the predictable and optional quadratic covari-
ation processes by

⟨M,N⟩ =
(
⟨M +N⟩ − ⟨M −N⟩

)
/4,

[M,N ] =
(
[M +N ]− [M −N ]

)
/4,

(5.28)

which are processes of integrable bounded variations.
Most of proofs and comments given in this section are standard and can

be found in several classic references, e.g., the reader may check the books by
Dellacherie and Meyer [36, Chapters V–VIII], Jacod and Shiryaev [69], Karatzas
and Shreve [75], Neveu [103], Revuz and Yor [111], among others.

Given a cad-lag integrable process X we can associate the so-called Föllmer
finitely additive measure on the ring R generated by all predictable rectangles
by the expression

λX(]s, t]× F ) = E{(Xt −Xs)1F }, ∀t > s ≥ 0, F ∈ Fs,
λX({0} × F ) = 0 ∀F ∈ F0.

(5.29)

The variation of λX for any A in R is defined by

|λX |(A) = sup
{ n∑
i=1

|λX(Ai)|
}
, (5.30)
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where the supremum is taken over all finite partition of A, i.e., A = ∪ni=1Ai,
with Ai in R and Ai ∩ Aj = ∅ if i ̸= j. Replacing the absolute value | · | in
the above definition (5.30) with the positive or negative part, the positive or
negative variation λ+X or λ−X is also defined. It satisfies λ+X + λ−X = |λX | and
λ+X − λ−X = λX . It is easily seen that the three variations |λX |, λ+X and λ−X are
finitely additive measure.

The process X is called a quasi-martingale if its variation |λX |([0, t] × Ω)
given by (5.30) is finite for every t > 0. An interesting point is that the sum
of a bounded martingale and an adapted (cad-lag) integrable process or the
difference of two non-negative super (or sub) martingale is a quasi-martingale,
and indeed (see Protter [108, Theorem II.3.8, pp. 96-97]) any quasi-martingale
admits a decomposition as a difference of two positive right continuous super
(or sub) martingales. The notion of quasi-martingale can be easily generalized
to the multi-dimensional case (even with values in a Banach space). It can be
proved that X is a quasi-martingale if and only if

sup
{ n∑
i=1

∣∣E{X(ti)−X(ti−1) | F(ti−1)}
∣∣} <∞,

where the supremum is taken over all partition of the form 0 = t0 < ti < · · · <
tn = t, any n ≥ 1.

If the initial process X has integrable bounded variation then λX can be
extended to a σ-additive measure on the predictable σ-algebra P. Conversely,
the finitely additive measure λX on R can be extended to σ-additive measure
on P if X is a quasi-martingale of the class (D), i.e., such that the family of
random variables {X(τ) : τ is a stopping time} is uniformly integrable. The
interested reader may consult the book by Métivier [98].

5.5 Semi-Martingales

Starting from a (super-/sub-) martingale (M(t) : t ≥ 0) relative to a filtration
(F(t) : t ≥ 0) and a stopping time τ, we may stop M at time τ and preserve the
martingale property, i.e., define a new (super-/sub-) martingale (M(t ∧ τ) : t ≥
0) relative to the (stopped) filtration (F(t ∧ τ) : t ≥ 0). Thus, the martingale
property is stable under the above stopping time operation and give rise to the
following concept.

Definition 5.12 (localization). Let (Ω,F , P,F(t) : t ≥ 0) be a given filtered
space. The term locally or local is applied to a property relative to a stochastic
processes {X(t) : t ≥ 0} with the understanding that there exists a sequence
of stopping times τn, with τn → ∞, such that the stopped process {X(t ∧ τn) :
t ≥ 0} satisfies the required property for any n, e.g., we say that {X(t) : t ≥ 0}
is a local martingale or locally integrable or locally bounded if for any n the
process {X(t∧τn) : t ≥ 0} is respectively a martingale or integrable or bounded.
The sequence {τn : n = 1, 2, . . .} is called a reducing sequence for the process
{X(t) : t ≥ 0}.
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In some cases, it may be some ambiguity regarding the above definition, e.g.,
when we refer to a local uniform integrable martingale or to a uniform integrable
local martingale, fortunately, we can prove that all cases used here are exactly
the same. One of the reasons for using the above localization is the following
construction: if (τn : n ≥ 1) is a reducing sequence of stopping times for a local
martingale X defined on [0, τ), τn → τ then define τ0 = 0 and

γ(t) =

{
t− k + 1 if τk−1 + k − 1 ≤ t < τk + k − 1,
τk if τk + k − 1 ≤ t < τk + k,

which yields γ(t) = t on [0, τ1], γ(t) = τ1 on [τ1, τ1 + 1], γ(t) = t − 1 on
[τ1 + 1, τ2 + 1], γ(t) = τ2 on [τ2 + 1, τ2 + 2], γ(t) = t − 2 on [τ2 + 2, τ3 + 2],
γ(t) = τ3 on [τ3 + 2, τ3 + 3], etc. Strictly speaking γ compresses the time
interval [0,∞) onto [0, τ) and Xγ = (X(γ(t)) : t ≥ 0) is well defined, actually
Xγ is a martingale relative to (F(γ(t)) : t ≥ 0). This construction is a key
element to extend previous results on (super-/sub-) martingales to local (super-
/sub-) martingales, where integrability is no more an issue. Actually, by means
of the Doob’s optional sampling theorem if (super-/sub-) martingale X relative
to the filtration (F(t) : t ≥ 0) then Xγ = (X(γ(t)) : t ≥ 0) is a (super-/sub-)
martingale relative to the filtration (F(γ(t)) : t ≥ 0) for any family of stopping
times such that P (γ(s) ≤ γ(t) <∞) = 1 for any 0 ≤ s ≤ t, for instance, see the
books by Ikeda and Watanabe [62, pp. 32–34] or Durrett [43, pp. 38–42] for
more details and comments.

A very important point in the localization principle is the fact that when a
property is localized, we are not given away only the integrability E{|X(t)|} <
∞, for any t ≥ 0, more is included. For instance, there are continuous non-
negative super-martingales which are local martingales but not martingales, a
typical example is a M(t) = 1/|W (t)|, where W is a Wiener process in R3

with |W (0)| = 1. Indeed, by means of the (Gaussian) density of W we may
show that E{|M(t)|} < ∞ and because 1/|x| is a fundamental solution for the
Laplace equation we can complete the argument. Note that τn = inf{t ≥ 0 :
|M(t)| > n} is a reducing sequence for M but the family of random variables
{M(t ∧ τn) : n = 1, 2, . . .} is not uniformly integrable. On the other hand, a
local (super-/sub-) martingale X satisfying

E{sup
s≤t

|X(s)|} <∞, ∀t,

is indeed a (super-/sub-) martingale, note the sup inside the mathematical ex-
pectation.

For any local sub-martingale we may define a reducing sequence as follows
τn = inf{t ∈ [0, n] : |X(t)| ≥ n}. Thus, a local sub-martingale is locally of class
(D) and Theorem 5.10 applies to the stopped process. Thus the uniqueness
yields the following local version of Doob-Meyer decomposition: A local sub-
martingale X can be expressed as X = X(0) + M + A, where M is a local
martingale and A is a predictable locally integrable monotone increasing process,
both null at time zero. The case where the (local) predictable compensator A is
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continuous is very import. As mentioned above, these are quasi-left continuous
processes, which are characterized by the condition either F(τ) = F(τ−) or
P{X(τ) = X(τ−)} = 1 valid for any predictable stopping time τ.

Note that not all local martingales are locally square-integrable martingale.
For instance a local martingale X with locally square-integrable jump process
δX = (X(t)−X(t−) : t > 0) is actually a locally square-integrable martingale,
so that continuous local martingales are locally square-integrable martingale.
Hence, for a given local martingale M the predictable quadratic variation pro-
cess ⟨Mc⟩ is defined as the unique predictable locally integrable monotone in-
creasing process null at time zero such that M2

c − ⟨Mc⟩ is a (continuous) local
martingale. Next, the (optional) quadratic variation process [M ] is defined as

[M ](t) = ⟨Mc⟩(t) +
∑
s≤t

[M(s)−M(s−)]2, ∀t ≥ 0, (5.31)

where the second term in the right-hand side is an optional monotone increasing
process null at time zero, not necessarily locally integrable (in sense of the
localization in Ω defined above). An important point here is the fact that the
square of the jumps are locally integrable, i.e., the process

√
[M ] is locally

integrable and therefore∑
s≤t

[M(s)−M(s−)]2 <∞, ∀t > 0, (5.32)

almost surely. This follows from the use the compensator of Definition 5.5 and
two facts: (1) for any cad-lag process there is only a finite number of jumps
greater than a positive constant, i.e., |M(s) −M(s−)| > ε, almost surely, and
(2) any local martingale with jumps bounded by a constant is locally square-
integrable.

On the other hand, given a local martingale M and a real number κ there
exists two local martingales Vκ and Nκ such that M = Vκ +Nκ, where V is a
locally bounded (or finite) variation process and the jumps of N are bounded
by κ. Thus, a local martingale is the sum of a local square-integrable martingale
and a locally finite variation process.

It is also clear that we can write M =Mc+Md, where Mc is the continuous
local martingale part and Md is the so-called purely discontinuous local mar-
tingale part, so that M(t) −M(t−) = Md(t) −Md(t−) for any t > 0. Beside
the defining fact that any square-integrable purely discontinuous martingale is
orthogonal to any square-integrable integrable continuous martingale, we may
define purely discontinuous martingales as locally uniform L2-limits of local
martingales with local finite variation, i.e., Md is purely discontinuous if and
only if there exists a sequence {Xn : n ≥ 1} of locally integrable finite variation
processes of the form

Xn(t) =Md(0) +An(t)−Apn(t), An(t) =
∑

0<s≤t

(
Xn(s)−Xn(s−)

)
,
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where Apn is the compensator of An as in Definition 5.5, such that

E
{

sup
0≤t≤T

|Xn(t)−Md(t)|2
}
→ 0,

for any constant T > 0, e.g., see Kallenberg [71, Theorem 26.14, pp. 527–529].

On the other hand, if the local martingaleM is also locally square-integrable
then the predictable quadratic variation process ⟨M⟩ is defined as the unique
predictable locally integrable monotone increasing process null at time zero
such that M2 − ⟨M⟩ is a local martingale. In this case ⟨M⟩ is the predictable
compensator of [M ]. Hence, via the predictable compensator we may define the
angle-bracket ⟨M⟩ when M is only a local martingale, but this is not actually
used. An interesting case is when the predictable compensator process ⟨M⟩
is continuous, and therefore [M ] = ⟨M⟩, which is the case when the initial
local martingale is a quasi-left continuous process. Finally, the optional and
predictable quadratic variation processes are defined by coordinates for local
martingale with values in Rd and even the co-variation processes ⟨M,N⟩ and
[M,N ] are defined by orthogonality as in (5.28) for any two local martingales
M and N. For instance we refer to Rogers and Williams [112, Theorem 37.8,
Section VI.7, pp. 389–391]) where it is proved that [M,N ] defined as above
(for two local martingales M and N) is the unique optimal process such that
MN − [M,N ] is a local martingale where the jumps satisfy δ[M,N ] = δM δN.

It is of particular important to estimate the moments of a martingale in term
of its quadratic variation. For instance, if M is a square-integrable martingale
withM(0) = 0 then E{|M(t)|2} = E{[M ](t)} = E{⟨M⟩(t)}. IfM is only locally
square-integrable martingale then

E{|M(t)|2} ≤ E{[M ](t)} = E{⟨M⟩(t)}.

In any case, by means of the Doob’s maximal inequality (5.20), we deduce

E{ sup
0≤t≤T

|M(t)|2} ≤ 4E{⟨M⟩(T )},

for any positive constant T, even a stopping time. This can be generalized to
the following estimate: for any constant p in (0, 2] there exists a constant Cp
depending only on p (in particular, C2 = 4 and C1 = 3) such that for any local
martingale M with M(0) = 0 and predictable quadratic variation ⟨M⟩ we have
the estimate

E{ sup
0≤t≤T

|M(t)|p} ≤ Cp E{
(
⟨M⟩(T )

)p/2}, (5.33)

for every stopping time T. If ⟨M⟩ is continuous (i.e.,M is quasi-left continuous),
we can proceed as follows. For a given r > 0 and a local martingale M we set
τr = inf{t ≥ 0 : ⟨M⟩(t) ≥ r2}, with τr = 0 if ⟨M⟩(t) < r2 for every t ≥ 0. Since
⟨M⟩ is continuous we have ⟨M⟩(τr) ≤ r2 and (M(t ∧ τr) : t ≥ 0) is a bounded
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martingale. Thus, for any c > 0 we have

P ( sup
t≤T∧τr

M2(t) > c2) ≤ 1

c2
E{M2(T ∧ τr)} =

=
1

c2
E{⟨M⟩(T ∧ τr)} ≤ 1

c2
E{r2 ∧ ⟨M⟩(T )}.

Hence, for r = c we obtain

P (sup
t≤T

M2(t) > c2) ≤ P (τc < T ) + P ( sup
t≤T∧τc

M2(t) > c2) ≤

≤ P (⟨M⟩(t) > c2) +
1

c2
E{c2 ∧ ⟨M⟩(T )}.

Now, setting c = r1/p, integrating in r and using Fubini’s theorem we deduce

E{sup
t≤T

|M(t)|p} =

∫ ∞

0

P (sup
t≤T

M2(t) > r2/p) dr ≤

≤
∫ ∞

0

[
P (sup

t≤T
⟨M⟩(t)r2/p) + 1

r2/p
E{r2/p ∧ ⟨M⟩(T )}

]
dr =

=
4− p

2− p
E
{[

⟨M⟩(T )
]p/2}

,

so that we can take Cp = (4−p)/(2−p), for 0 < p < 2. If ⟨M⟩ is not continuous,
then it takes longer to establish the initial bound in c and r, but the estimate
(5.33) follows. This involves Lenglart–Robolledo inequality, see Liptser and
Shiryayev [88, Section 1.2, pp. 66–68].

A very useful estimate is the so-called Davis-Burkhölder-Gundy inequality
for local martingales vanishing at the initial time, namely

cp E{
(
[M ](T )

)p/2} ≤ E{sup
t≤T

|M(t)|p} ≤ Cp E{
(
[M ](T )

)p/2}, (5.34)

valid for any T ≥ 0 and p ≥ 1 and some universal constants Cp > cp > 0
independent of the filtered space, T and the local martingale M. In particular,
we can take C1 = C2 = 4 and c1 = 1/6. Moreover, a stopping time τ can be
used in lieu of the time T and the above inequality holds true.

Note that when the martingaleM is continuous the optional quadratic varia-
tion [M ] may be replaced with the predictable quadratic variation angle-brackets
⟨M⟩. Furthermore, the p-moment estimate (5.33) and (5.34) hold for any p > 0
as long as M is a continuous martingale. All these facts play an important role
in the continuous time case. By means of this inequality we show that any local

martingale M such that E{|M(0)| +
(
supt>0[M ](t)

)1/2} < ∞ is indeed a uni-
formly integrable martingale. For instance, we refer to Kallenberg [71, Theorem
26.12, pp. 524–526], Liptser and Shiryayev [88, Sections 1.5–1.6, pp. 70–84] or
Dellacherie and Meyer [36, Sections VII.3.90–94, pp. 303–306], for a proof of the
above Davis-Burkhölder-Gundy inequality for (non-necessary continuous) local
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martingale and p ≥ 1, and to Revuz and Yor [111, Section IV.4, pp. 160–171]
for continuous local martingales.

Now, combining bounded variation processes with martingales processes and
localization arguments, we are led to the following definition.

Definition 5.13 (semi-martingale). Let (Ω,F , P,F(t) : t ≥ 0) be a given
filtered space. A semi-martingale is a random variable X (P -equivalence class)
with values into the canonical space D([0,∞),Rd) which can be expressed as
X = X(0)+A+−A−+M, where X(0) is a Rd-valued F(0)-measurable random
variable, A+, A−, are adapted monotone increasing locally integrable processes
and M is a local martingale, satisfying A+(0) = A−(0) = M(0) = 0. Thus,
A = A+−A− is a process with locally integrable bounded variation paths.

Based on the uniqueness of Doob-Meyer decomposition, a local martingale
null at time zero with locally bounded variation is identically zero if it is pre-
dictable (in particular if it is continuous or deterministic). Since there are
non-constant martingales with locally bounded variation paths (e.g., purely
discontinuous local martingales), the decomposition in the definition of semi-
martingale is not necessarily unique. Usually, the above definition of semi-
martingale is known as special semi-martingale, but this is sufficiently general
for our study. These (special) semi-martingales include a natural condition of lo-
cal integrability (local first moment) on the bounded variation part (the adapted
process A). The equivalent of this local integrability property, applied to the
martingale part (the process M), is actually a necessary condition for martin-
gale. Unless explicitly mentioned, we drop the adjective special in using of the
name semi-martingale but we may call general or non-special semi-martingale
when the process A in the above definition may not be locally integrable. Note
that the only reason why the process A may not be integrable is because of the
large jumps. It is clear then that a (special) semi-martingale is the difference
of two local sub-martingales. Moreover, a local sub-martingale zero at the ori-
gin can be written in a unique manner as the sum of a local martingale and
an increasing predictable process, both zero at the origin. Thus, the concept
of special semi-martingales is equivalent to that of quasi-martingales, e.g. see
Kallenberg [71], Protter [108].

Theorem 5.14. Let (Ω,F , P,F(t) : t ≥ 0) be a filtered space. Then every semi-
martingale X = (X(t) : t ≥ 0) admits the unique canonical decomposition X =
X(0) +A+M, where A is a predictable process with locally integrable variation
and M is a local martingale, both satisfying A(0) = M(0) = 0. Moreover,
the quadratic variation [M ] defined by (5.31) is the unique optional monotone
increasing process such thatM2−[M ] is a local martingale and the jumps δ[M ] =
δM δM, where δM(t) = M(t) −M(t−). Furthermore, the processes

√
[M ] (by

coordinates) and sup{|X(s) − X(0)| : 0 ≤ s ≤ t} are locally integrable. If the
semi-martingale X is quasi-left continuous (i.e., either P{X(τ−) = X(τ)} = 1
or F(τ−) = F(τ) for every predictable stopping time τ), then the process A in
the semi-martingale decomposition is continuous.
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Note that the local martingale appearing in the above expression has a
unique representationM =Mc+Md, whereMc (respectivelyMd) is the contin-
uous (purely discontinuous) part. Also, ifM is a local martingale withM(0) = 0
and [M ] denotes its (optional) quadratic variation (or characteristic) then for
any t > 0 and any sequence of partitions (πk : k = 1, 2, . . .), with πk of the form
(0 = t0 < t1 < · · · < tn = t) and the mesh (or norm) of πk going to zero we have
var2(M,πk) → [M ](t) in probability as k → 0, see Liptser and Shiryayev [88,
Theorem 1.4, pp. 55–59].

Semi-martingales are stable under several operations, for instance under
stopping times operations and localization, see Jacod and Shiryaev [69, The-
orem I.4.24, pp. 44-45].

Observe that a process X with independent increments (i.e., which satis-
fies for any sequence 0 = t0 < t1 < · · · < tn−1 < tn the random variables
{X(t0), X(t1)−X(t0), . . . , X(tn)−X(tn−1)} are independent) is not necessar-
ily a semi-martingale, e.g., deterministic cad-lag process null at time zero is a
process with independent increments, but it is not a general semi-martingale
(not necessarily special!) unless it has finite variation. It is clear that Rd-valued
processes with independent increments are completely described by their char-
acteristic functions, namely

X̂(λ, t) = E{exp(iλ ·X(t))}, ∀t ≥ 0, λ ∈ Rd,

which is a complex-valued cad-lag function. It can be proved that a process
X with independent increments is a general semi-martingale if and only if the
(deterministic) function t 7→ X̂(λ, t) has locally bounded variation for any λ
in Rd. Moreover, a process X with independent increments has the form X =
Y +A, where Y is a general semi-martingale with independent increments and
A is a deterministic cad-lag process (or function) from [0,∞) into Rd+ with
A(0) = 0. On the other hand, if X is an integrable (cad-lag!) process with
independent increments, i.e., E{|X(t)|} <∞ for every t ≥ 0, and (F(t) : t ≥ 0)
is its natural filtration then

E{X(t) | F(s)} = E{X(t)−X(s)}+X(s), a.s.,

for any t ≥ s ≥ 0. Hence, X is a (super-/sub-) martingale if and only if E{X(t)−
X(s)} = 0 (≤ 0/≥ 0) for any t ≥ s ≥ 0.

The only reason that a semi-martingale may not be special is essentially the
non-integrability of large jumps. If X is a semi-martingale satisfying |X(t) −
X(t−)| ≤ c for any t > 0 and for some positive (deterministic) constant c > 0,
then X is special. Indeed, if we define τn = inf{t ≥ 0 : |X(t)−X(0)| > n} then
τn → ∞ as n → ∞ and sup0≤s≤τn |X(s) −X(0)| ≤ n + c. Thus X is a special
semi-martingale and its canonical decomposition X = X(0) + A +M satisfies
|A(t)−A(t−)| ≤ c and |M(t)−M(t−)| ≤ 2c, for any t > 0.

Similar to (5.34), another very useful estimate is the Lenglart’s inequality:
If X and A are two cad-lag adapted processes such that A is monotone increas-
ing and E{|Xτ |} ≤ E{Aτ}, for every bounded stopping time τ, then for every
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stopping time τ and constants ε, η > 0 we have

P
{
sup
t≤τ

|Xt| ≥ ε
}
≤ 1

ε

[
η + E

{
sup
t≤τ

(At −At−)
}]

+ P
{
Aτ ≥ η

}
, (5.35)

and if A is also predictable then the term with the jump (At−At−) is removed
from the above estimate. A simple way to prove this inequality is first to reduce
to the case where the stopping time τ is bounded. Then, defining θ = inf{s ≥
0 : |Xs| > ε} and ϱ = inf{s ≥ 0 : As > η}, since A is not necessarily continuous,
we have Aϱ− ≤ η and

Aθ∧τ∧ϱ ≤ η + sup
t≤τ

(At −At−),{
sup
t≤τ

|Xt| > ε
}
⊂

{
θ ≤ τ < ϱ

}
∪
{
Aτ ≥ η

}
.

Hence, by means of the inequality

P
{
θ ≤ τ < ϱ

}
≤ P

{
|Xθ∧τ∧ϱ| ≥ ε

}
≤ 1

ε
E
{
Aθ∧τ∧ϱ

}
,

we obtain (5.35). However, if A is predictable then ϱ is a predictable time,
and there is a sequence of stopping times (ϱk : k ≥ 1) converging to ϱ such
that ϱk < ϱ if ϱ > 0. Thus Aθ∧τ∧ϱ ≤ Aϱ− almost surely, which completes the
argument.

Given a local martingale M, a good use of (5.35) is when the predictable
compensator process ⟨M⟩ is continuous, and therefore [M ] = ⟨M⟩, so that

P
{
sup
t≤τ

|Mt| ≥ ε
}
≤ η

ε2
+ P

{
⟨M⟩τ ≥ η

}
, ∀ε, η > 0, (5.36)

for any stopping time τ. This is the case of a quasi-left continuous local martin-
gale M.

For a comprehensive treatment with proofs and comments, the reader is
referred to the books by Dellacherie and Meyer [36, Chapters V–VIII], Liptser
and Shiryayev [88, Chapters 2–4, pp. 85–360]. Rogers and Williams [112,
Section II.5, pp. 163–200], among others. A treatment of semi-martingale
directly related with stochastic integral can be found in Protter [108].

Let us insist on the following concept, which characterize a large class of
Markov processes suitable for modelling.

Definition 5.15 (quasi-left continuous). As mentioned previously, a filtration
(F(t) :≥ 0) of a probability space (Ω,F , P ) is called quasi-left continuous or
regular if for any increasing sequence of stopping time {τn : n = 1, 2, . . .} almost
surely strictly convergent to τ, P (τn ≤ τn+1 < τ < ∞, τ > 0) = 1, the σ-
algebra F(τ) is the minimal σ-algebra containing the sequence of σ-algebra
{F(τn) : n = 1, 2, . . .}. This is equivalent to the condition F(τ) = F(τ−) for
any predictable stopping time, recall that a stopping time τ is predictable if
there exists an announcing sequence of stopping times {τn : n = 1, 2, . . . }, i.e.,
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τn increases to τ and P (τn < τ, τ > 0) = 1. A (cad-lag) integrable stochastic
process X adapted to a filtration {F(t) : t ≥ 0} is called quasi-left continuous or
regular if X(τn) converges to X(τ) almost surely for any announcing sequence
of stopping times τn convergent to τ.

It can be proved (e.g., Rogers and Williams [112, Chapter VI, Theorems
18.1-2, pp. 346-347]) that a filtration {F(t) : t ≥ 0} is quasi-left continuous if
and only if every uniformly integrable martingale M relative to {F(t) : t ≥ 0}
satisfiesM(τ) =M(τ−) for any predictable stopping time and that anyMarkov-
Feller process (also called Feller-Dynkin process) is regular with respect to its
natural filtration, the discussion goes as follows.

Let E be a locally compact Polish (i.e., complete separable metric) space
(usually, E is an open or closed subset of Rd). A Markov-Feller process with
states in E possesses a Feller semigroup {P (t) : t ≥ 0} in C0(E), with infinitesi-
mal generator A with domain D(A) ⊂ C0(E). Its transition function P (t, x,dy)
can be defined on a compact base space Ė, the one-point compactification of E,
by P (t, x, {∞}) = 1−P (t, x, E), so that P (t, x, Ė) = 1. For any initial distribu-
tion on Ė, we denote by P the (complete) probability measure induced by the
transition function P (t, x,dy) on the canonical space D([0,∞), Ė) with its Borel
σ-algebra B, its canonical process X(t) = ω(t) and its filtration {F(t) : t ≥ 0},
see Definition 4.18 and Theorem 4.22. Note that the probability measure P and
the completion necessary to generate the filtration {F(t) : t ≥ 0} depend on the
initial distribution r → P{X(0) ≤ r}. All these elements constitute a standard
realization of a Markov-Feller or Feller-Dynkin process with state in E (strictly
speaking in Ė).

Now, for a function f in C0(Ė) and λ > 0 the resolvent operator is given by

Rλf(x) =

∫ ∞

0

e−λt P (t)f(x) dt =

∫ ∞

0

dt

∫
E

e−λt f(y)P (t, x,dy),

and satisfies

Rλf(x) = E{ξ |X(0) = x}, with ξ =

∫ ∞

0

e−λt f(X(t))dt.

Denoting by Ex{·} the (conditional) expectation with respect to the probability
measure P with the Dirac measure at x as the initial distribution and applying
Markov property, we find that

Ex{ξ | F(t)} =

∫ t

0

e−λs f(X(s))ds+ e−λtRλf(X(t)), a.s. ∀t > 0,

which proves that the right-hand side is a uniformly integrable martingale. Thus
the Optional-Stopping Theorem 5.9, part (b), yields

Ex
{∫ τ

0

e−λt f(X(t))dt
}
+ Ex{e−λτRλf(X(τ))} = Rλf(x).
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Hence, if f = (λ − A)φ for some φ in the domain D(A) of the infinitesimal
generator A we deduce that the process Y (t) = Y (t, φ, λ) given by

Y (t) = e−λt φ(X(t)) + φ(x) +

∫ t

0

e−λs (λ−A)φ(X(s))ds,

is a uniformly integrable martingale relative to (P x,F(t) : t ≥ 0). Therefore,
the following identity, so-called Dynkin’s formula

E{φ(Xθ)} = E{φ(Xτ )}+ E{
∫ θ

τ

Aφ(X(t)) dt} (5.37)

holds for any function φ in D(A) and any stopping time satisfying P{τ ≤ θ <
∞} = 1. Moreover, the filtration {F(t) : t ≥ 0} is quasi-left continuous, i.e.
F(τ) = F(τ−) and X(τ) = X(τ−) (almost surely) for any predictable stopping
time τ.

For instance, we refer to Rogers and Williams [112, Chapter III, pp. 227–
349], Dellacherie and Meyer [36, Chapters XI–XVI], Dynkin [45], among others.
Also, the reader interested in a comprehensive study on the theory of martingales
may consult the books He et al. [59] or Liptser and Shiryayev [88].

5.6 Strong Markov Processes

Starting from a filtered space (Ω,F , P,F(t) : t ≥ 0), we may consider stochastic
processes X with values in some Polish space E (complete separable metric
space, usually locally compact) as (1) a family of E-valued random variables
{X(t) : t ≥ 0}, (2) a function on a product space X : [0,∞) × Ω → E, (3)
a function space valued random variable, i.e., either a random variable with
values in some sub-space of E[0,∞) or a mapping from [0,∞) into the space of
E-valued random variables. Except when explicitly mentioned, we are looking
at a stochastic process as a random variable with values in some function space,
a Polish space non-locally compact which most of the cases is eitherD([0,∞), E)
or C([0,∞), E), with E being an Borel (usually open or closed) subset of Rd.

A stochastic process X with values in a Polish space E (even more general,
E could be a Lusin space, i.e., a topological space homeomorphic to a Borel
subset of a complete separable metric space) is called a Markov process in the
filtered space (Ω,F , P,F(t) : t ≥ 0) if the Markov property is satisfied, i.e.,

E{f(X(t) | F(s)} = E{f(X(t) |X(s)}, (5.38)

for every t ≥ s and any bounded Borel real function f on E. This is an almost
surely equality due to the use of conditional probability. It means that the only
information relevant for evaluating the behavior of the process beyond time s is
the value of the current state X(s). This implies in particular that X is adapted.
Points x in E are called states and E is the state space of X.

A Markov process can be identified by its transition function, which is de-
fined by taking a particular class of function f in (5.38), namely characteristic
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or indicator functions f = 1B of Borel subsets B of E, i.e., with B in B(E).
The transition function p(s, x, t, B) is defined with following (minimal) regular-
ity conditions:

(1) for fixed 0 ≤ s ≤ t, x in E, the function B 7→ p(s, x, t, B) is a probability
measure on

(
E,B(E)

)
,

(2) for fixed 0 ≤ s ≤ t, B in B(E) the function x 7→ p(s, x, t, B) is Borel mea-
surable,

(3) for every 0 ≤ s ≤ t, x in E, B in B(E) we have the identity p(s,X(s), t, B) =
E{1B(X(t)) | F(s)}, almost surely.

Really, (1) and (2) are necessary conditions to make sense to the key con-
dition (3). However, the Markov property alone is not sufficient to define the
transition function. Condition (3) implies that for every s ≥ 0, x in E, B in
B(E) we have p(s, x, s, B) = 1B(x) and standard properties of the conditional
probability yield the Chapman-Kolmogorov identity

p(s, x, t, B) =

∫
E

p(r, y, t, B)p(s, x, r, dy), (5.39)

valid for any 0 ≤ s < r < t, x in E and B in B(E).
Markov processes are mathematical model for phenomena which evolve in

time, in a random way and following some dynamic or evolution law. Most
often, statistical experiments or physical considerations give only information
about the so-called finite-dimensional distributions of a process. This means
that for a given initial probability measure µ on

(
E,B(E)

)
and times 0 ≤ t0 <

t1 < · · · < tn the probabilities Pt0,t1,...,tn on En+1 defined by

Pt0,t1,...,tn(B0 ×B1 × · · · ×Bn) =

=

∫
B0

µ(dx0)

∫
B1

p(t0, x0, t1,dx1)

∫
B2

p(t1, x1, t2,dx2) · · ·

· · ·
∫
Bn−1

p(tn−2, xn−2, tn−1,dxn−1) p(tn−1, xn−1, tn, Bn) (5.40)

are the finite-dimensional distributions. Thus, starting from a function p satis-
fying the properties (1) and (2) of a transition function, and if the function p sat-
isfies the Chapman-Kolmogorov identity (5.39), then the above relation (5.40)
defines a consistent family of finite-dimensional distributions on the canonical
product space E[0,∞). Note that the Dirac measure δ(x0), i.e., the unit mass
concentrated at x0, is the typical initial distribution at time t0. For simplicity,
let us discuss homogeneous Markov process, i.e., the case where the transition
function is time invariant, i.e., p(s, x, t, B) = p(0, x, t − s,B) for every t ≥ s, x
in E and B in B(E). Hence, the transition function can be taken as p(x, t, B),
with t ≥ 0. Remark that by adding an extra variable (the time), we can al-
ways reduce to homogeneous case. Thus, Kolmogorov’s existence theorem can
be used to construct a Markov process with the given transition function p, for
each initial probability measure µ at time t0 = 0, and then we have a family of
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Markov processes. Therefore, by a realization of Markov process with transi-
tion probability function p we mean a collection (Ω,F ,Ft, Xt, Px, t ≥ 0, x ∈ E)
where Px is the probability measure constructed as above with initial probabil-
ity µ = δx, the Dirac measure at x. In Kolmogorov’s construction, the process
Xt(ω) = X(t, ω) = ω(t) is the coordinate (or identity) mapping and F(t) is
the natural filtration associated with the process X(t), which is not always
right-continuous. Some difficulties appear since F(t) should be completed with
respect to the probability measure Px, given a completed filtration Fx(t) or
Fµ(t), which depend on initial parameter x or µ.

By means of the transition probability function, we may re-write the Markov
property (5.38) as

P{X(s+ t) ∈ B | F(s)} = p(X(s), t, B), (5.41)

for every t ≥ s ≥ 0 and any Borel subset B of E. Now, a strong Markov process
is one for which the Markov property holds at stopping times of the filtration
{F(t) : t ≥ 0}, i.e.,

P{X(T + t) ∈ B | F(T )}1T<∞ = p(X(T ), t, B)1T<∞, (5.42)

for every t ≥ 0, any stopping time T and any Borel subset B of E. This says
that the probabilistic evolution of the process after the stopping time T is just
that of another process restarted at T, i.e., the process restarts at stopping time.
The reader is referred to Doob [39, Theorems 8 and 9, pp. 556-560], see The-
orem 4.19, for conditions ensuring the right-continuity of the filtration and the
strong Markov property. In the statement (5.42), we remark the interest in
using a filtration satisfying the usual condition, in particular the need of hav-
ing a completed σ-algebra F(0). A useful definition in this context is the so-
called universally completed filtration, which is constructed as follows. First,
let {F(t) : t ≥ 0} be the filtration (history) generated by the canonical pro-
cess X(t, ω) = ω(t), not necessarily satisfying the usual conditions. Denote by
{Fµ(t) : t ≥ 0} the filtration which is obtained by completing F(0) with re-
spect to the probability measure Pµ. Now the universally completed filtration
is {F0(t) : t ≥ 0}, where F0(t) = ∩µFµ(t), for every t ≥ 0. Note that the
filtration {F0(t) : t ≥ 0}, does not necessarily satisfies the usual conditions, but
it is right-continuous if the initial filtration {F(t) : t ≥ 0} is so.

As discussed earlier, the product space E[0,∞) does not provide a suitable
mathematical setting, we need to use the Polish sample space D([0,∞), E) or
C([0,∞), E). This imposes more conditions on the transition function p, and
eventually we are lead to the study of Markov-Feller processes and semigroups.

The reader may consult the classic references Blumental and Getoor [17],
Dynkin [45] or more recent books, e.g., Davis [34], Rogers and Williams [112].
For instance, Morimoto [100, Sec 2.6, pp. 73–76] is a good reading to grasp the
meaning of Markov property in a simple way when applied to ordinary stochastic
differential equations driven by a Wiener process.

One of the most simple Markov processes in continuous time is the Poisson
process. If {τn : n, n = 1, 2, . . .} is a sequence of independent exponentially
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distributed (with parameter λ) random variables, then the random variable
θn = τ1 + · · · + τn has a Γ-distribution with parameters λ and n − 1, for n =
1, 2, . . . , i.e.,

P{θn ≤ t} =
λn

(n− 1)!

∫ t

0

sn−1e−λxds, ∀ t ≥ 0,

and the counting process defined by

p(t, ω) =

∞∑
n=1

1θn(ω)≤t, ∀ t ≥ 0 (5.43)

is a Poisson process, i.e., p(0) = 0, p(t) − p(s) is a Poisson variable with mean
λ(t− s), namely

P{p(t)− p(s) = n} =
[
λ(t− s)

]n
exp

[
− λ(t− s)

]
,

for every n = 0, 1, . . . , and for any 0 ≤ t0 < t1 < · · · < tn the family
{p(t0), p(tk) − p(tk−1) : k = 1, 2, . . . , n} is a set of independent random vari-
ables. The parameter λ is usually called jump rate.

In a compound Poisson process the construction (5.43) is modified as follows

pc(t, ω) =

∞∑
k=1

ηn(ω)1θn(ω)≤t, ∀ t ≥ 0, (5.44)

where {ηn : n = 1, 2, . . .} is a sequence of independent identically distributed
(with distribution law ν and independent of the {τn}) Rd-valued random vari-
ables. A integer-valued measure process can be associated, namely

ρc(t, B, ω) =

∞∑
k=1

1θk(ω)≤t1ηk(ω)∈B , ∀ t ≥ 0, B ∈ B(Rd), (5.45)

which captures all features of the compound process and extends to the so-called
Poisson measures. Note that E{ρc(t, B, ω)} = t λ ν(B). The parameters λ and
ν yield the integral operator

Ih(x) = λ

∫
R

[
h(x+ y)− h(x)

]
ν(dy), ∀x ∈ Rd, (5.46)

which is a characteristic element of the compound Poisson process. This integral
operator is the infinitesimal generator of the Markov process, which in turn is
determined by its kernel, the Lévy measureM(dy) = λ ν(dy). Note that to make
the expression (5.45) interesting, we assume ν({0}) = 0 and then the mass of
the origin M({0}) does not play any role in the definition of I, thus the Lévy
measure is on Rd∗ = Rd ∖ {0}.

All these examples are time and spatially homogeneous Markov processes.
To relax the homogeneity, we must allow the Lévy measure to depend on t
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and x. For instance, we take M(x, dy) in the expression (5.46) of the integral
operator. The dependency on x of the kernel could be very general and in some
cases hard to track. A typical assumption is the representation

M(x,B) = λ(x) ℓ({ζ ∈ [0, 1] : x+ j(x, ζ) ∈ B}), (5.47)

for every x in Rd and B in B(Rd∗), where ([0, 1],L, ℓ) is the canonical Lebesgue
probability measure space, λ : Rd → [0,∞) and j : Rd × [0, 1] → Rd∗ are
measurable functions, on which some regularity (such as continuity) in x may
be required.

If {Zn, Un : n = 1, 2, . . . } are double sequence of independent uniformly
distributed random variables in ([0, 1],L, ℓ), then the transformation

Θ(x, u) = inf
{
t ≥ 0 : exp[−t λ(x)] ≤ u

}
, (5.48)

with Θ(x, 0) = +∞, yields the construction of the following Markov jump pro-
cess by induction. Given θk−1 and xk−1 we define

θk = θk−1 +Θ(xk−1, Uk),

xk = xk−1 + j(xk−1, Zk)

and for any t in the stochastic interval [[θk−1, θk[[ set x(t) = xk. Naturally, we
can start from any initial time θ0 and state x0, but we use θ0 = 0 and any given
x0. Assuming that θn → ∞ (e.g., this hold if λ(·) is bounded) the process x(t)
is defined for every time t ≥ 0. Its associated integer-valued measure process is
given by

ρ(t, B, ω) =

∞∑
k=1

1θk(ω)≤t1xk(ω)∈B , ∀ t ≥ 0, B ∈ B(Rd). (5.49)

The integral operator becomes

Ih(x) = λ(x)

∫
[0,1]

[
h(x+ j(x, ζ))− h(x)

]
ℓ(dζ), ∀x ∈ Rd, (5.50)

which make sense for any bounded Borel measurable function h. The process
{x(t) : t ≥ 0} a cad-lag realization (and piecewise constant) of a strong Markov
process. Several other variations are possible.

5.7 Extended Generators

Let E be a Borel subset of Polish space, let B(E) be the Banach space of
bounded Borel measurable functions f from E into R with sup-norm ∥ · ∥,
and let (Ω,F ,Ft, Xt, Px, t ≥ 0, x ∈ E) be a (strong) Markov process. For
t ≥ 0, define an operator P (t) : B(E) → B(E) by P (t)f(x) = Ex{f(X(t)},
where Ex{·} denotes the mathematical expectation relative to Px. It is clear
that P (t) is a contraction, i.e. ∥P (t)f∥ ≤ ∥f∥, for every t ≥ 0, and that the
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Chapman-Kolmogorov identity (5.39) are equivalent to the semigroup property
P (t)P (s) = P (s+ t), for every t, s ≥ 0.

Denote by B0 the subset of B(E) consisting of those functions f for which
∥P (t)f −f∥ vanishes as t goes to zero. The contraction property shows that B0

is a closed subspace of B(E) and {P (t) : t ≥ 0} is called strongly continuous on
B0. Moreover, (1) B0 is invariant under P (t), for every t ≥ 0, and (2) for every
f in B0 (which is itself a Banach space), the function t 7→ P (t)f is continuous
from [0,∞) into B0.

Now, let A be the strong infinitesimal generator of {P (t) : t ≥ 0} with
domain D(A) ⊂ B0 ⊂ B(E), i.e, f belong to D(A) and Af = g if and only if

lim
t→0

∥∥∥P (t)f − f

t
− g

∥∥∥ = 0.

Note that the domain D(A) is as important as the expression of A, there are
examples of two different Markov process with the same expression for the in-
finitesimal generator A but with disjoint domains D(A), see Davis [34, Chapter
2].

Based on properties of derivatives and Riemann integrals of continuous func-
tions with values in a Banach space, we can establish:

(1) if f ∈ B0 and t > 0 then∫ t

0

P (s)fds ∈ D(A) and A

∫ t

0

P (s)fds = P (t)f − f,

(2) if f ∈ D(A) and t ≥ 0 then P (t)f ∈ D(A) and

d

dt
P (t)f = AP (t)f = P (t)Af,

P (t)f − f =

∫ t

0

AP (s)fds =

∫ t

0

P (s)Afds.

In probabilistic terms, if u(t) = u(x, t) = Ex{f(X(t))} = P (t)f(x) with f in
D(A) then u satisfies

∂tu(t) = Au(t), u(0) = f, (5.51)

which is an abstract version of the so-called Kolmogorov backward equation. The
semigroup is determined by (5.51) and this determines the transition (probabil-
ity) functions p(x, t, B), which determines the finite-distributions and hence the
probability measure Px, i.e., the Markov process itself. Certainly, some tech-
nical conditions are required to turn this calculation into reality. For practical
calculations it is more important the second expression in (2) which can be
written as

Ex{f(X(t)} = f(x) + Ex
{∫ t

0

Af(X(s)ds
}
, (5.52)
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for every f in D(A), which is known as Dynkin formula.

Let f be in D(A) and define the real-valued process {Mf (t) : t ≥ 0} by

Mf (t) = f(X(t))− f(X(0))−
∫ t

0

Af(X(s))ds. (5.53)

By using the semigroup property and conditional expectation arguments, we
can show that for every x in E the process {Mf (t) : t ≥ 0} is a martingale in
(Ω,F , Px,F(t), t ≥ 0), i.e.,

Ex{Mf (t) | F(s)} =Mf (s), ∀t ≥ s ≥ 0.

Thus, a natural extension of the domain D(A) of the (strong) infinitesimal
generator is as follows.

Definition 5.16 (extended generator). Let B∗(E) be the space of all Borel
measurable functions, not necessarily bounded, from E into R. We say that
a function f belongs to the domain of the extended (infinitesimal) generator
if there exists another function g in B∗(E) such that t 7→ g(X(t)) is locally
integrable Px-almost surely and the process {Mf (t) : t ≥ 0} defined by

Mf (t) = f(X(t))− f(X(0))−
∫ t

0

g(X(s))ds

is a local martingale, i.e., there exists an increasing sequence of stopping times
{τn : n = 1, 2, . . .}, with τn → +∞ such that the stopped process Mn

f (t) =
Mf (t∧ τn) is a uniformly integrable martingale for each n. We use the notation
D(Ā) for the extended domain and Āf = g for the extended generator.

Note that D(A) ⊂ D(Ā) and that Āf is uniquely defined (module subset
of potential zero). Indeed, if f = 0 then the process {Mf (t) : t ≥ 0} is a
continuous martingale with locally bounded variation, thereforeMf (t) =Mf (0)
is the constant process zero. Hence, Af = 0 except possibly on some measurable
set B of E such that∫ ∞

0

1B(X(t))dt = 0, Px − a.s.,

for every x in E. Such a set B is said to have potential zero. The process
{X(t) : t ≥ 0} spend no time in B, regardless of the starting point, so the
process {Mf (t) : t ≥ 0} does not depend on the values of Af for x in B, and
Af is unique up to sets of zero potential.

When {Mf (t) : t ≥ 0} is a martingale, Dynkin formula (5.52) holds. Usually,
it is quite difficult to characterize D(Ā) but in most of the cases, there are easily
checked sufficient conditions for membership in the extended domain D(Ā). For
instance, the reader is refereed to the books by Davis [34, Chapter 1], Ethier
and Kurtz [47, Chapter 4] for more details.
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Let us go back to the examples in the previous section. For the particu-
lar case of the Poisson process (p(t) : t ≥ 0) given by (5.43), the extended
infinitesimal generator is

Af(x) = λ[f(x+ 1)− f(x)], ∀x ∈ R

while for the compound Poisson process (pc(t) : t ≥ 0) (5.43), A is the integral
operator I given by (5.46). What is perhaps more relevant is the extended
domain D(Ā), which have not restriction at all (i.e., all real-valued function
defined on R) for the Poisson process, while a condition on local integrability,
i.e., a measurable function f : R → R belongs to D(Ā), for the compound
Poisson process with parameters λ and ν, if and only if

E{
∞∑
i=1

|f(x+ ηi)− f(x)|1θi<σn
} <∞, ∀x, n,

where σn is a sequence of stopping times with σn → ∞ almost surely.
For the class of Markov jump process constructed by induction, see (5.48)

and (5.49), the full description of the extended domain D(Ā), with A = I as
in (5.50), is as follow. First, we say that a process {h(x, t, ω) : t ≥ 0, x ∈ Rd}
belongs to L1(ρ), (where ρ is the integer-valued measure process) if

E
{ ∞∑
i=1

h(xk, θk, ω)
}
<∞.

Similarly, h belongs to L1
loc(ρ), if there exists a sequence {σk : k ≥ 0} of stopping

times with σn → ∞ almost surely such that

E
{ ∞∑
i=1

h(xk, θk ∧ σn, ω)
}
<∞, ∀n.

Now, a measurable function f belongs to D(Ā) if the process h(x, t, ω) = f(x)−
f(x(t−, ω)) belongs to L1

loc(ρ). This is particular case of Davis [34, Theorem
26.14, pp. 69–74].

5.8 Poisson Processes and Queues

In a practical way, a stochastic process is a mathematical model of a proba-
bilistic experiment that generates a sequence of numerical values as it evolves
in time. Each numerical value in the sequence is modelled by a random vari-
able, so a stochastic process is simply a (finite or infinite) sequence of random
variables. However, the properties of the evolution in time become essential
when the focus is on the dependencies in the sequence of values generated by
the process. Typically, arrival-type or outcome-type processes occur very fre-
quently (“arrival” of such as message receptions at a receiver, job completions
in a manufacturing cell, customer purchases at a store, trials of coin tosses, etc),
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where the focus is on modeling the “inter-arrival” (times between successive ar-
rivals) are independent variables. These processes become Markov processes as
the dimension is increased. In Markov processes, the experiments that evolve
in time exhibit a very special type of dependence: the next value depends on
the past values only through the current value, the present.

Clearly, the way how time is measured is critical. Essentially, there are
only two ways, “discrete time” (where a unit time is identified and used, i.e.,
integer numbers are the model) and “continuous time” (where the time goes
continuously, i.e., real numbers are the model). For instance, if the arrivals
occur in discrete time and the inter-arrival times are geometrically distributed,
this is the Bernoulli process described as a sequence {x1, x2, . . .} of independent
random variables xi with P{xi = 1} = p (arrival occurs in the i trial with
probability 0 < p < 1) and P{xi = 0} = p (arrival does not occur in the i trial).
Here, arrival also means success in the outcome under consideration. Standard
calculations show that if Sn = x1+x2+ · · ·+xn denotes the number of arrivals
in n independent trials then

P{Sn = k} =

(
n

k

)
pk(1− p)k, k = 0, 1, . . . , n,

with a mean E{Sn} = np and a variance E{Sn−np}2 = np(1−p), i.e., a binomial
distribution with parameters p and n. Similarly, if T = inf{i ≥ 0 : xi = 1}
denotes the number of trials up to (and including) the first arrival then

P{T = k} = (1− p)k−1p, k = 1, 2, . . . ,

with mean E{T} = 1/p and a variance E{Sn − 1/p}2 = (1 − p)/p2, i.e., a
geometric distribution with parameter p. This yields the memoryless fact that
the sequence of random variables {xn+1, xn+2, . . .} (the future after n) is also
a Bernoulli process, which is independent of {x1, . . . , xn}. Also, the fresh-start
property holds, i.e., for a given n define Tn = inf{i ≥ n : xi = 1} then Tn−n has
a geometric distribution with parameter p, and is independent of the random
variables {x1, . . . , xn}.

The equivalent of this in continuous time is the Poisson process, where the
inter-arrival times are exponentially distributed, i.e., given a sequence of inde-
pendent identically exponentially distributed random variables {τ1, τ2, . . .}, the
counting process

p(t) =

{
0 if t < τ1,

n if
∑n
i=1 τi ≤ t <

∑n+1
i=1 τi

with values in {0, 1, 2, . . . }, is called a Poisson process. A realization of this
process requires some properties on the probability space.

Perhaps the simplest example of an uncountable probability space is the
unit interval with the Lebesgue measure ([0, 1],L, ℓ), where L is the Lebesgue
σ-algebra. The real-valued random variable U(ω) = ω satisfies ℓ(U ≤ r) =
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(r ∧ 1) ∨ 0 for every r in Rd, which is referred to as the uniform distribu-
tion on [0, 1]. More general the Hilbert cube Ω = [0, 1]{1,2,...}, i.e., the space
of sequences ω = (ω1, ω2, . . .) with values in [0, 1], endowed with the product
σ-algebra F = L{1,2,...} and the product measure P = ℓ{1,2,...}, provides a
canonical space for a sequence of independent random variables (U1, U2, . . .),
each having uniform distribution on [0, 1], defined by Ui(ω) = ωi, for every
ω = (ω1, ω2, . . .). In theory, almost all statistical simulation is based on this
probability space. Random number generator in computers produce sequences
of numbers which are statistically indistinguishable (as much as possible) from
samples (U1, U2, . . .). Random variables with other distributions are then pro-
duced by well-known transformations. For instance, given a distribution F in
the real line, i.e., a function F : R → [0, 1] monotonically increasing and right-
continuous with F (−∞) = 0 and F (+∞) = 1, its inverse function defined by
F−1(ρ) = inf{r : F (r) ≥ ρ} satisfies F−1(ρ) ≤ r if and only if ρ ≤ F (r). Thus, if
U is a random variable uniformly distributed in [0, 1] then V = F−1(U) satisfies
P (V ≤ r) = F (r), i.e., F is the distribution of V.

Given a Borel subset E of Rd, it is possible to construct a one-to-one Borel
function ϕ : E → [0, 1] such that ϕ(E) is a Borel subset of [0, 1] and ϕ−1 :
ϕ(E) → E is Borel measurable. From this we deduce that for any measure µ on a
Borel subset E of Rd there exists a measurable function Υ : [0, 1] → E such that
ℓ(Υ−1(B)) = µ(B) for every B in B(E), the Borel σ-algebra B(Rd) restricted
to E. Indeed, setting F (r) = µ(ϕ−1([0, r])) and F−1(ρ) = inf{r : F (r) ≥ ρ} as
above we may take Υ(ρ) = ϕ−1(F−1(ρ)) for any F−1(ρ) belongs to ϕ(E) and
Υ(ρ) = 0 otherwise.

One of the advantages of stochastic modeling is that calculations are greatly
facilitated if the model is formulated as a Markov process, so that general meth-
ods for computing distributions and expectations (based on the Dynkin formula
and the Kolmogorov backward equation) are available. If the randomness is
in the form of point events then the prototype is the Poisson process. A non-
negative real random variable T is exponentially distributed if its survivor func-
tion F (t) = FT (t) = P (T > t), for every t ≥ 0, has the form F (t) = e−λt, for
some constant λ > 0. The mean and the standard deviation of T are both equal
to 1/λ. The memoryless property of the exponential distribution relative to the
conditional distribution, i.e.,

P (T > t+ s | T > s) =
F (t+ s)

F (s)
= F (t) = e−λt,

make T a prototype of a (Markov) stopping time. Thus the conditional dis-
tribution of the remaining time (i.e., given T > s) is just the same as the
unconditional distribution of T, regardless of the elapsed time s. Another way
of expressing this is in terms of the hazard rate, which is by definition a function
h(t) satisfying

lim
δ→0

P (T ∈]s, s+ δ] | T > s)− h(s)

δ
= 0,
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i.e., h(s)δ expresses, to first order, the probability that T occurs ’now’ given that
it has not occurred ’so far’. In the exponential case we have P (T ∈]s, s+δ] | T >
s) = 1− e−λδ, so that the hazard rate is constant, h(t) = λ. For a non-negative
random variable with a general density function ψ the hazard rate is given by

h(s) =
ψ(s)

Ψ(s)
, ∀s ∈ [0, c[, with

Ψ(s) =

∫ ∞

s

ψ(r)dr, c = inf{r : Ψ(r) = 0},

where Ψ(s) is the corresponding survivor function. In fact, there is a one-to-one
correspondence between h and Ψ based on the ordinary differential equation
Ψ̇ = −hΨ and the initial condition Ψ(0) = 1. Thus the exponential is the only
distribution with constant hazard rate.

Let us construct a sequence of independent identically distributed (expo-
nential with parameter λ > 0) random variables (τ1, τ2, . . .) in the canonical
Hilbert cube (Ω,F , P ). Let (U1, U2, . . .) be the canonical sequence of indepen-
dent random variables each having uniform distribution on [0, 1] as above. Then
setting Ψ(t) = e−λt and Ψ−1(u) = inf{t ≥ 0 : Ψ(t) ≤ u}, for every u > 0,
we define τi = Ψ−1(Ui(ω)) = − ln[Ui(ω)]/λ, for every i ≥ 1, which satisfies
P (τi > t) = Ψ(t), i.e., exponentially (with parameter λ) distributed and inde-
pendent.

Now define θ0 = 0, θn = τ1 + τ2 + . . . + τn, which has Γ(λ, n), i.e., P (θn ∈
dt) =

(
λns(n−1)/(n− 1)!

)
e−λtdt, and

N(t) =

∞∑
i=1

1t≥θi , i.e., N(t) = n if θn ≤ t < θn+1.

The sample functions of (N(t) : t ≥ 0) are right-continuous step functions with
jumps of height 1 at each τi, in particular it is cad-lag, belonging to the canonical
sample space D([0,∞[). The random variable N(t) has a Poisson distribution
P (N(t) = n) = e−λt(λt)n/n!, with mean E{N(t)} = λt. Denote by (Ft : t ≥ 0)
it natural filtration, i.e., Ft is the σ-algebra generated by the random variables
{N(s) : 0 ≤ s ≤ t}. Fix t > 0 and denote by θt the last jump time before t,
i.e, θt(ω) = θn(ω), with θn(ω) ≤ t < θn+1(ω) and n = nt(ω). In view of the
memoryless property of the exponential, if τ∗1 = θn+1−t and τ∗i = τn+i, for i ≥ 2,
with n = nt(ω), then the conditional distribution of τ∗1 given Ft (or equivalently,
given that τn+1 > t − θn) is exponential, P (τ∗1 > s | Ft) = e−λt, and so the
sequence {τ∗1 , τ∗2 , . . .} is independent identically distributed (exponential with
parameter λ > 0). It follows that N∗(s) = N(t+ s)−N(t), s ≥ 0 is a Poisson
process independent of Ft, i.e., the process ’restart’ at time t. In particular, it has
independent increments, i.e., N(t2)−N(t1) and N(t4)−N(t3) are independent
variables for any 0 ≤ t1 ≤ t2 ≤ t3 ≤ t4. This implies that (N(t) : t ≥ 0) is a
Markov process, indeed, for any bounded and Borel measurable function and
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t > s ≥ 0 we have

E{f(N(t)) | Fs} = eλ(t−s)
∞∑
k=0

f(k +Ns)
[λ(t− s)]k

k!
,

since N(t)−N(s) is Poisson distributed with mean λ(t− s). The Poisson pro-
cess may be considered as a Markov process in either the integer numbers
E = {0,±1,±2, . . .} or the non-negative integer numbers E = {0, 1, 2, . . .}.
The process i+N(t) yields probability measure Pi and the transition function
is

p(i, t, j) =

{
eλt (λt)

j−i

(j−i)! , if j ≥ i,

0 otherwise,

for any i, j in E. This defines a semigroup P (t) = E{f(x+N(t))} on the space
B(E) of real (Borel) bounded functions on E. The infinitesimal generator A is

Af(x) = lim
t→0

E{f(x+N(t))}
t

= λ[f(x+ 1)− f(x)], ∀x ∈ E,

where the domain D(A) of the strong infinitesimal generator is the space func-
tions f for which the above limit exists uniformly in x. Consider the process

Mf
x (t) = f(x+N(t))− f(x)−

− λ

∫ t

0

[f(x+N(r) + 1)− f(x+N(r))]dr, t ≥ 0

for any f in B(E) and x in E. In view of the independent increment property
and the fact that N(t)−N(s) is Poisson distributed, we have for t > s

E{f(x+N(t))− f(x+N(s)) | Fs} =

= e−λ(t−s)
∞∑
k=0

[f(k + x) − f(x)]
[λ(t− s)]k

k!

and

E{λ
∫ t

s

[f(x+N(r) + 1)− f(x+N(r))]dr} =

= λ

∞∑
k=0

[f(x+ k + 1)− f(x+ k)]

∫ t

s

e−λr
(λr)k

k!
dr,

which yields E{Mf
x (t) −Mf

x (s) | Fs} = 0, i.e., (Mf
x (t) : t ≥ 0) is a martingale.

Actually, this calculation remains valid for any function (because E is countable,
all functions are Borel measurable) such that E{|f(x+N(t))|} < ∞, for every
x in E and t ≥ 0. By the optional sampling theorem, the process Mf,n

x (t) =
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Mf
x (t ∧ n ∧ θn) is also a martingale, since n ∧ θn is a bounded stopping time.

However, the process (Mf,n
x (t) : t ≥ 0) involves only the values of f on the

finite set {x, x + 1, . . . , x + n}. Therefore, the process (Mf
x (t) : t ≥ 0) is a

local martingale for any function. Thus the domain D(Ā) of the extended
infinitesimal generator Ā consists of all functions f : E → R with not restriction
at all.

The renewal process is closely related to the Poisson process. It is a point
process (N(t) : t ≥ 0) defined in a similar way to the Poisson process but
with the inter-arrival time τi now being a sequence of independent identically
distributed random variables with some density function ψ on [0,∞), not nec-
essarily exponential. The process clearly ’restarts’ at each ’renewal time’ θi and
the well-known renewal equation

m(t) = E{N(t)}, m(0) = 0,

m(t) =

∫ t

0

[1 +m(t− r)]ψ(r)dr, ∀t ≥ 0,

which can be solved by the Laplace transform methods.
The sequences of inter-arrival time {τ1, τ2, . . .} is now constructed as follows.

Then setting Ψ(t) =
∫∞
t
ψ(r)dr and Ψ−1(u) = inf{t ≥ 0 : Ψ(t) ≤ u}, for every

u > 0, we define τi = Ψ−1(Ui(ω)), for every i ≥ 1, which satisfies P (τi > t) =
Ψ(t), i.e., independent identically distributed with density ψ.

When τi is not exponentially distributed, the memoryless property does not
hold and the conditional distribution of the residual time τ∗1 = θn+1 − t (as
defined above for the Poisson process) given Ft depends on the time t−θn since
the last jump. Therefore, the renewal process itself is not a Markov process,
if we add a new variable S(t) = t − θn, the time since the last jump where
θn ≤ t < θn+1, then the new two-component process X = {(N(t), S(t)) : t ≥ 0}
is a Markov process on E = {0, 1, 2, . . .} × [0,∞). Its evolution can be simulate
as follows. For a fixed (n, s) and with ψ(t), Ψ(t) as above, we set first

λ(r) =


ψ(r)

Ψ(r)
if 0 ≤ r < cΨ,

0 otherwise,

with cΨ = inf{r : Ψ(r) = 0}, and then

Ψ(s, t) = exp
(
−
∫ t

s

λ(r)dr
)
, ∀t ≥ s ≥ 0.

Note that Ψ(0, t) = Ψ(t), for every t ≥ 0. Thus, we re-define

Ψ−1(s, u) = inf{t ≥ 0 : Ψ(s, t) ≤ u}, τ1(ω) = θ1(ω) = Ψ−1(s, U1(ω)),

with the convention that Ψ−1(s, u) = +∞ if Ψ(s, t) > u for every t ≥ 0.
The sample path X(t, ω) is then (n, s + t) if 0 ≤ t < θ1(ω) and (n + 1, 0) if
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t = θ1(ω) < ∞. Next, if θ1(ω) < ∞ we restart with the initial state (n + 1, 0)
and the same recipe. This is τ2(ω) = Ψ−1(0, U2(ω)), θ2(ω) = θ1(ω) + τ2(ω) and

X(t, ω) =

{
(n+ 1, t− θ1(ω)) if θ1(ω) ≤ t < θ2(ω),

(n+ 2, 0) if t = θ2(ω) <∞,

and so on. The key point is that this construction generalizes to a much more
general situation.

The formal expression of the infinitesimal generator is

Af(n, s) = lim
t→0

E{f(n+N(t), s+ S(t)} − f(n, s)

t
=

= ∂sf(n, s) + λ(s)[f(n + 1, 0) − f(n, s)],

where the hazard rate λ(t) = ψ(t)/Ψ(t) and ∂s means the partial derivative
in the second variable, i.e., in s. The domain D(A) of the strong infinitesimal
generator should include conditions to ensure that the above limit exists uni-
formly in (n, s), in particular f(n, s) should be differentiable in s. However, the
domain D(Ā) of the extended infinitesimal generator would only impose that
s 7→ f(n, t) be absolutely continuous.

Another typical example is a single-server queue. Customers arrive at a
queue at random times {θ1 ≤ θ2 ≤ · · · } which require a service time {ς1, ς2, . . .},
measured in units of time for processing. The total service load presented up
to time t is L(t) = L0 +

∑
i ςi1θi≤t, where L0 ≥ 0 is the service load existing at

time 0. The virtual waiting time V (t) is the unique solution of the equation

V (t) = L(t)−
∫ t

0

1V (r)>0dr, ∀t ≥ 0,

and represents the time a customer arriving at time t waits for service to begin,
or equivalently, the amount of unprocessed load at time t.

A similar way to describe a queueing system is by means of the relation
Q(t) = Q0+A(t)−D(t), where (A(t) : t ≥ 0) and (D(t) : t ≥ 0) are non-explosive
point processes without common jumps, i.e., A(t) = n for θn ≤ t < θn+1 and
D(t) = n for ϑn ≤ t < ϑn+1, θ0 = ϑ0 = 0, θn, ϑn → ∞ as n → ∞ and
P (θi = ϑj) = 0, for every i, j. The random variable Q0 is the initial state and
the state process satisfies Q(t) ≥ 0, for any t ≥ 0, which is interpreted as the
number of customer waiting in line or being attended by the server (i.e., in the
system). The processes A and D are called arrival and departure processes.
Thus, if A and B are two nonexplosive point processes without common jumps
then to achieve the conditionQ(t) ≥ 0 we set Y (t) = Q0+A(t)−B(t) andm(t) =
min{Y (r)∧0 : r ∈ [0, t]}. Hence, a simple queueing systemQ(t)+Q0+A(t)−D(t)

can be constructed with Q(t) = Y (t) −m(t), D(t) =
∫ t
0
1Q(r−)>0dB(r), where

also m(t) =
∫ t
0
1Q(r−)=0dB(r).

There is a conventional classification A/B/n of queueing systems, where A
refers to the arrival process (i.e., statistics of the increasing sequence of random
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variables {θ1, θ2, . . .}), B to the service process (i.e., statistics of the sequence
of random variables {ς1, ς2, . . .}) and n is the number of servers. For instance,
consider a M/G/1 queue, i.e., the letter M (for Markov) means that arrival
are independent and exponential, i.e., from a Poisson process, and G (for gen-
eral) means that the service time independent identically distributed with some
arbitrary distribution on (0,∞).

A variable ν indicates whether the queue is busy ν = 1 or empty ν = 0. This
means that ν vanishes, ν = 0, if and only if the virtual waiting time vanishes,
v = 0. Thus, starting from a time t0 ≥ 0 with ν(t0) = 1 and V (t0) = v, the
process v(t) = V (t) decreases at unit rate until it hits zero, say at time t1.
Then ν(t1) becomes zero, ν(t1) = 0, and v(t) = 0 until a new arrival t2 > t1
which takes an exponential time, and (ν, v) jumps to (1, ϑ), i.e., ν(t2−) = 0,
ν(t2+) = 1, v(t2−) = 0 and v(t2+) = ς. The state (ν, v) has a Markov evolution
on the set E = {(0, 0)} ∪ {1} × (0,∞), which is normalized to be a cad-lag
process. Roughly speaking, if the initial state is (1, v) then after a short time
δ the state becomes (1, v − δ) with probability (1− λδ), while with probability
λδ the Markov process jumps to the new state (1, v + ς − δ), where ς has the
distribution on (0,∞) of the services time, namely Fϑ, and λ is the parameter
of the exponential distribution of the arrival times. With this in mind, the
infinitesimal generator has the expression

Af(1, v) = −∂vf(1, v) + λ

∫
(0,∞)

[f(1, v + z)− f(1, v)]Fϑ(dz),

Af(0, 0) = λ

∫
(0,∞)

[f(1, z)− f(0, 0)]Fϑ(dz),

for any v in (0,∞). It is clear that this formula of the infinitesimal generator A
does not include the fact that the process jumps from (1, 0) to (0, 0), immediately
after hitting (1, 0). This is the boundary conditions

f(1, 0) =

∫
[0,∞)

f(1, z)Fϑ(dz)

added to the strong domain D(A) or extended D(Ā).
A construction of the Markov process starting at x = (ν, v) is described in the

canonical Hilbert cube (Ω,F , P ), where (U1, U2, . . .) is sequence of independent
random variables each having uniform distribution on [0, 1]. First we set

Q(x,B) =

∫
[v,∞)

1B(z)Fς(dz),

X(x, t) =

{
(ν, v − t) if ν = 1,

(ν, v) otherwise,

and

T(x) =

{
v if ν = 1,

+∞ otherwise.
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Given an initial state x = (ν, v) in E = {(0, 0)} ∪ {1} × (0,∞) we define

Ψ(x, t) = 1t<T(x)e
−λt,

the survivor function of the first jump time θ1 of the process and its (generalized)
inverse

Ψ−1(x, u) = inf{t ≥ 0 : Ψ(x, t) ≤ u}, τ1(ω) = θ1(ω) = Ψ−1(x, U1(ω)),

with the convention that Ψ−1(x, u) = +∞ if Ψ(x, t) > u for every t ≥ 0.
This yields P (θ1 > t) = Ψ(x, t). As mentioned above, we are working in the
canonical Hilbert cube and there exist a measurable function Υ from E × [0, 1]
into E̊ = {1} × (0,∞) such that ℓ({u : Υ(x, u) ∈ B}) = Q(x,B), for every B
in B(E), where ℓ is the Lebesgue measure on [0, 1]. The sample path X(t, ω) is
defined up to the first jump as follows:

X(t, ω) = X(x, t), if 0 ≤ t < θ1(ω),

X(θ1(ω), ω) = Υ(X(x, θ1(ω)), ω), U2(ω)), if θ1(ω) <∞.

Note that when ν = 1, as long as t < θ1(ω) we have v− t > 0. If t = θ1(ω) <∞
then v − t ≥ 0. On the other hand, when ν = 0 we have θ1(ω) < ∞ and
X(t, ω) = (0, v) for every t < θ1(ω). In any case, the definition of Υ ensure
that X(θ1(ω), ω) belongs to E̊ = {1} × (0,∞). Now, if θ1(ω) < ∞ the process
restarts from X(θ1(ω), ω) according to the same recipe. Thus, if θ1(ω) <∞ we
define

τ2(ω) = Ψ−1(X(θ1(ω), ω), U3(ω)), θ2(ω) = θ1(ω) + τ2(ω)

and the sample path X(t, ω) up to the next jump is given by

X(t, ω) = X(x, t− θ1(ω)), if θ1(ω) ≤ t < θ2(ω),

X(θ2(ω), ω) = Υ(X(x, τ2(ω)), ω), U4(ω)), if θ2(ω) <∞,

and so on.
This procedure define the sample path X(t, ω) if the sequence θk(ω) → ∞.

Hence, a common assumption is to impose that

E{N(t)} <∞, with N(t) =
∑
k

1t≥θk ,

which yield some condition on the distribution Fς(t) of the sequence {ς1, ς2, . . .}
associated with the service time. Since

P (t < τi <∞) = 1t<T(x)e
−λt

a condition on the type P (ς > ε) = 1 for some positive ε, on the service time
distribution ensures the required assumption.

If the arrival process is a renewal process instead of a Poisson process then we
need one more variable to have a Markov process, the time since the last jump
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s, so that the state is x = (ν, v, s) in E = {(0, 0)}× [0,∞)∪{1}×(0,∞)× [0,∞)
and an intensity or hazard rate λ(t) = ψ(t)/Ψ(t), where ψ is the density of
the arrival times. The previous simulation can be adapted, where s + t is the
evolution in last variable, which is reset to zero each time a new arrival occurs.

It is clear that the above technique can be used for more general situation,
e.g., a G/G/n queue system and many other stochastic models.

Another type of common jump process is the so-called doubly stochastic
Poisson process or conditional Poisson process (N(t) : t ≥ 0) with stochastic
intensity λ = λ(t, ω) ≥ 0 relative (i.e., adapted) to the filtration (Ft : t ≥ 0) on
a probability space (Ω,F , P ), which is defined by the condition

E
{
eiζ[N(t)−N(s)] | Fs

}
= exp

[(
eiu − 1

) ∫ t

s

λ(r)dr
]
,

for every t ≥ s ≥ 0, where λ(r) is an F0-measurable and almost surely integrable
function in [0, t]. Usually, the intensity takes the form λ(t, ω) = λ(t, Y (t, ω)),
where the process (Y (t) : t ≥ 0) is F0-measurable and the function (t, y) 7→
λ(t,m) is a nonnegative Borel measurable with some appropriate integrability
conditions. This means that on one hand we have a Poisson process with in-
tensity λ(t, y) where the parameter y is replaced by an independent process
y = Y (t) and the σ-algebra F0 is augmented with the σ-algebra generated by
(Y (t) : t ≥ 0) to meet the F0-measurability condition. A conditional Poisson
process (N(t) : t ≥ 0) is characterized by the property

E
{∫ ∞

0

X(t)dN(t)
}
= E

{∫ ∞

0

X(t)λ(t)dt
}
,

valid for any Ft-predictable process (X(t) : t ≥ 0), c.f., Bremaud [21, Chapter
2, Theorem T4]. Thus its predictable jumps compensator is the integral process

⟨N⟩(t) =
∫ t
0
λ(r, ω)dr. Conditional Poisson processes are in general not Markov

processes, however, if the intensity function λ(t, ω) = λ(Y (t)), where (Y (t) :
t ≥ 0) is a F0-measurable Markov process, then the couple (N,Y ) becomes a
Markov process with a suitable filtration, actually a compound Poisson process.

To end this section let us mention the so-called multivariate point processes
which are defined by means of two sequences {θ0, θ1, θ2, . . .} and {ζ1, ζ2, . . .}
of random variables with values in [0,∞] and {1, 2, . . . , d}, respectively, and
satisfying θ0 = 0, if θn < ∞ then θn < θn+1, and called nonexplosive when
θ∞ = limn θn = ∞. The sample path is defined by the d-counting process
(Ni(t) : t ≥ 0), i = 1, 2, . . . , d

Ni(t) =

∞∑
n=1

1θn≤t 1ζn=i,∀t ≥ 0.

Both the d-vector process (N(t) : t ≥ 0) with nonnegative integer-values com-
ponents as above and the double sequence {θn, ζn : n = 1, 2, . . .} are called
d-variate point process. Note each component (Ni(t) : t ≥ 0) is a (simple or
univariate) point process and that only one component jumps at a given time,
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i.e., there is not common jumps among all the processes (Ni(t) : t ≥ 0), for
i = 1, 2, . . . , d. For instance, if the double sequence {θn, ζn : n = 1, 2, . . .} is
independent identically distributed, θn Γ(λ, n) distributed and ζn such that
P (ζn = 1) = p, P (ζn = 2) = 1 − p, with some constant p in (0, 1), then in-
terpreting N1(t) as the births and N2(t) as the deaths up to time t of a given
population, the expression N1(t)−N2(t) is a birth-and-death process.

For instance, the reader is refereed to the books by Borovkov [19, Chapters 5
and 6, pp. 155–193], Bremaud [21, 22], Daley and Vere-Jones [33, 32], Davis [34,
Chapter 1], Revuz and Yor [111, Section XII.1, pp. 471–480], among others.

5.9 Piecewise Deterministic Processes

Non-diffusion stochastic models called piecewise-deterministic Markov processes
(PDP) is proposed as a general framework for studying problems involving
non-diffusion continuous-time dynamical systems whose deterministic motion
is punctuated by random jumps. A great number of applications in engineering
systems, operations research, management science, economic and applied prob-
ability show the importance of these systems. Queuing systems, investment
planning, stochastic scheduling and inventory systems are some examples, we
refer to Davis [34] for a comprehensive study.

5.9.1 Vector Fields and ODE

Let g : Rd → Rd be a globally Lipschitz continuous function, i.e., there exists
a constant M > 0 such that |g(x) − g(x′)| ≤ M |x − x′| for every x, x′ in Rd.
It is well-know that the ordinary differential equation (ODE) relative to g, i.e.,
the initial value problem (IVP) ẋ(t) = g(x(t)), x(0) = x, has a unique solution
defined for every x in Rd. We denote by X(x, t) its solution, i.e.,

∂tX(x, t) = g(X(x, t)), ∀t ∈ R, X(x, 0) = x, ∀x ∈ Rd,

which has the properties:

(1) the map Xt : x 7→ X(x, t) is Lipschitz continuous (uniformly in t), one-to-one
and onto, indeed, X−1(x, t) = X(x,−t), for every x in Rd and t in R,
(2) the family {Xt : t ∈ R} is a group, i.e., Xt ◦ Xs = Xt+s, or more explicitly
X(x, t+ s) = X(X(x, s), t), for every x in Rd and t, s in R.
This is referred to as an homogeneous Lipschitz flow in Rd.

If f is a real valued continuously differentiable function, i.e., f in C1(Rd),
then we may consider X as a first-order differential operator, G : C1(Rd) →
C0(Rd), defined by

Gf(x) =

d∑
i=1

gi(x)∂
if(x), ∀x ∈ Rd,
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where ∂if means the first partial derivative with respect to the variable xi. By
means of the chain rule we deduce that t 7→ x(t) is a solution of the ODE relative
to g if and only if

Gf(x(t)) =

d∑
i=1

gi(x(t))∂
if(x(t)), ∀t ∈ R, , ∀f ∈ C1(Rd),

which is a coordinates-free form of the differential equation, the operator G (and
the function g) is know as the vector field associated with the flow X = {Xt : t ∈
Rd}.

If the function g is continuously differentiable then the function homeomor-
phism x 7→ X(x, t) is indeed a diffeomorphism and it satisfies the linear system
of ODEs

∂tXi,j(x, t) =

d∑
k=1

gi,k[X(x, t)] Xk,j(x, t),

for every i, j = 1, . . . , d, x in Rd and t ∈ R, where the subscript i, j as in Xi,j
denotes the the first partial derivative in the xj variable of the i component of
X(x, t), i.e., ∂jXi(x, t).

This analysis can be extended to non-flat manifolds and the assumption on
g can be weakened. Of particular interest for us is the case where Rd is replaced
by a finite intersection of nonempty domain D having a representation of the
form

D = {x ∈ Rd : ϕ(x) < 0}, ϕ ∈ C1(Rd), |∇ϕ(x)| ≥ 1, ∀x ∈ ∂D, (5.54)

which implies that D is an open set with an outward unit normal vector given
by ∇ϕ(x)/|∇ϕ(x)| on the boundary ∂D. The function g defining the vector
field G and the flow X is usually assumed locally Lipschitz continuous in D̄
and with linear growth when D is unbounded. Local uniqueness and existence
of solution to the IVP is ensure by the local Lipschitz continuity, and so the
solution is extended to its maximum interval of existence with bounds (which
may be infinite) t∧

D̄,x
< t∨

D̄,x
. If t∨

D̄,x
< ∞ (or t∧

D̄,x
< ∞) then we assume that

there exist t < t∨
D̄

(t > t∧
D̄
) such that X(x, t) does not belongs to D̄. This non-

explosive condition effectively rule out the case where an explosion occurs in
closure D̄. The linear growth condition implies this non-explosion assumption,
but it is not necessary. Thus under this non-explosion condition we can define
the first exit time from any Borel subset E of D̄ as follows

τE(x) = inf{t ≥ 0 : X(x, t) ̸∈ E}, ∀x ∈ D̄,

with the convention that τE(x) = ∞ if X(x, t) belongs to E for every t ≥ 0. It
is clear that τE(x) = 0 for any x in D̄∖E and that x 7→ τE(x) is a measurable
[0,∞]-valued function. Also, if g(x) · ν(x) > 0, with ν(x) = ∇ϕ(x)/|∇ϕ(x)| the
exterior unit normal vector at x in ∂D, then τD̄(x) = 0. On the other hand, if
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g(x) · ν(x) ≤ 0 for every x in ∂D then τD̄(x) > 0 for any x in ∂D, i.e., X(t, x)
belongs to D̄ for every x in D̄ and t ≥ 0.

It is convenient to divide the flow X = {Xt : t ∈ Rd} into two flows, a forward
flow X = {Xt : t ≥ 0} and a backward flow X = {Xt : t ≤ 0}.

Theorem 5.17. Let g : Rd → Rd be a locally Lipschitz continuous function
which yields a forward flow X = {Xt : t ≥ 0} without explosions in D̄ as above,
so that the first exist times τD from the open set D and τD̄ from the closed
set D̄. Then the functions x 7→ τD(x) and x 7→ τD̄(x) are lower and upper
semi-continuous, respectively. If ∂0D = {x ∈ ∂D : τD̄(x) = 0} then τD̄(·) is
continuous if and only if ∂0D is closed.

Proof. Take x and s such that τD̄(x) < s. Then there exists s′ such that X(x, s′)
does not belongs to D̄. If xn → x, by the continuity of X(·, s′) and because
Rd ∖ D̄ is open, there exists N such that X(xn, s

′) does not belongs to D̄, for
any n ≥ N. Thus τD̄(xn) ≤ s′. This proves that lim supn τD̄(xn) ≤ τD̄(x), i.e.,
x 7→ τD̄(x) is upper semi-continuous.

Similarly, take x and s such that τD(x) > s. Then the closed set {X(x, t) :
0 ≤ t ≤ s} is contained in the open set D. If xn → x, again by continuity, there
exists N such that {X(xn, t) : 0 ≤ t ≤ s} contained in D, for any n ≥ N. Thus
τD(xn) ≥ s. This proves that lim infn τD(xn) ≥ τD(x), i.e., x 7→ τD(x) is lower
semi-continuous.

If τD̄(·) is continuous then it is clear that ∂0D is closed. On the other
hand, take x in D̄ such that τD̄(x) <∞. Since the composition property yields
X(x, t+ τD̄(x)) = X(X(x, τD̄(x)), t), we deduce that X(x, τD̄(x)) must belongs to
∂0D. Hence the forward flow exists necessarily though ∂0D. If τD̄(x) > s then
the closed set {X(x, t) : 0 ≤ t ≤ s} has a positive distance to the closed set ∂0D.
As in the case of τD(·) we deduce that τD̄(·) is lower semi-continuous.

We state for further reference the following concept.

Definition 5.18 (locally Lipschitz continuous forward flow). Let E be a set in
Rd having the following property, either

(1) E is the union of an open set E̊ in Rd and a relative open part ∂E∖ ∂0E of
its boundary ∂E (which is the non-active boundary , so that the active boundary
∂0E is closed); the interior set E̊ is a finite intersection of nonempty domain D
having a representation of the form (5.54), or

(2) after a permutation of coordinates the set E has the form E = E1 × E2,
where E1 is as in (1) but relative to Rd1 with d1 < d and E2 is a single point in
Rd−d1 and the corresponding vector field g has only d1 non-zero components,
i.e., g can be considered as a function from Rd into Rd1 .
If g is a locally Lipschitz function from the closure Ē into Rd then the following
ODE ẋ(t) = g(x(t)), for any t > 0, can be uniquely solved for any given initial
condition x(0) = x in Rd and locally define flow (x, t) 7→ X(x, t) as the solution
of the above IVP on the maximal interval of existence [0, t∨x [, i.e., for any x in
Rd the solution x(t) = X(x, t) is defined for every 0 ≤ t < t∨x ≤ +∞. We say
that X = {X(x, t) : t ≥ 0, x ∈ E} is a locally Lipschitz forward flow associated to
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the vector field g on E ⊂ Rd or to first-order differential operator G on C1(Rd),
with active boundary ∂0E if for any x in E we have either (1) t∨x = +∞ and
X(x, t) belongs to E for any t ≥ 0 or (2) X(x, t) belongs to ∂0E for some t in
]0, t∨x [. The forward flow X = {X(x, t) : t ≥ 0} is locally Lipschitz continuous in
x in E, locally uniformly in t and the first exit time τE(x) from E is denoted
by T(x). We may use the notation XE and TE to emphasize the dependency on
the domain E.

If the boundary ∂E of E (or E1 if necessary) is smooth (e.g., E = {x ∈ Rd :
ϕ(x) < 0} as above) so that the outward normal vector ν(x) at x can be defined
then every x in ∂E satisfying g(x) · ν(x) > 0 belongs to ∂0E (active boundary)
while and g(x) · ν(x) < 0 implies that x in the non-active boundary. The fact
that we assume ∂0E closed or ∂E ∖ ∂0E relatively open ensure that the ∂0E
is the closure of x in ∂E satisfying g(x) · ν(x) > 0. Moreover, a key property is
the continuity of the first exit time from E, i.e.,

T(x) = inf{t > 0 : X(x, t) ̸∈ E} = inf{t > 0 : X(x, t) ∈ ∂0E},

which is defined for any x in E, with the convention that T(x) = ∞ if X(x, t)
belongs to E for every t > 0. This means that the sets {x : T(x) < ∞} and
{x : T(x) = ∞} are disjointed (one of them may be empty), and that the
function x 7→ T(x) is continuous on {x : T(x) < ∞}. Note that the part of the
boundary ∂E ∖ ∂0E plays no role, and it is actually ignored. Two interesting
cases are when either (1) ∂0E = ∅ so that E is closed, E = Ē, or (2) ∂0E = ∂E
so that E is relative open E = E̊1 × E2, where E2 is a single point in Rd−d1 .
Moreover, the simplest situation is when E = Rd1 ×E2 and g is locally Lipschitz
in Rd with a linear growth.

Given a locally Lipschitz continuous forward flow X = {X(x, t) : t ≥ 0, x ∈ E}
with (closed!) active boundary ∂0E then

P (t)f(x) = f(X(x, t ∧ T(x))), ∀t ≥ 0, x ∈ E,

defines a semigroup on the C∗(E), real-valued bounded continuous functions on
E vanishing on ∂0E. If f is a C1 function then

P (t)f(x)− f(x) =

∫ t

0

P (s)Gf(x)ds =

∫ t

0

GP (s)f(x)ds,

for every t ≥ 0 and x in E. Thus the extended infinitesimal generator of the
semigroup {P (t) : t ≥ 0}, denoted by Ḡ has the domain D(Ḡ) which are all real-
valued measurable functions f on E vanishing on ∂0E such that the function
t 7→ P (t)f(x) is absolutely continuous on [0, T ] for every positive real number
T ≤ T(x) and for every x in E. In this case, the expression P (s)Gf(x) is only
defined almost every where in s relative to the Lebesgue measure. The function f
is only continuous along the flow, not necessarily continuous in other directions.

In same situations, it is important to single out the time variable so that
weaker assumptions can be made. For instance, we may call X = {X(s, x, t) :
t ≥ s ≥ 0, x ∈ E} a nonhomogeneous locally Lipschitz forward flow associated
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with the time-variant vector fields G = {G(t) : t ≥ 0} the solution of the IVP
ẋ(t) = g(x(t), t), x(s) = x. Typical assumptions are (1) the function x 7→ g(x, t)
is locally Lipschitz continuous with linear growth, uniformly in t, i.e., for any
compact subset K of Ē and any T > 0 there exists a constant M such that
|g(x, t) − g(x′, t)| ≤ M |x − x′| for every x, x′ in K, and t in [0, T ], and if E
is unbounded then there exist a constant C such that |g(x, t)| ≤ C(1 + |x|),
for any x in Ē and t ≥ 0, and the function t 7→ g(x, t) is (Borel) measurable.
Under this assumptions, the IVP has only absolutely continuous solutions and
the flow have the composition property Xr,t ◦Xs,r = Xs,t or equivalent X(s, x, t) =
X(s, X(r, x, t), r), for every t ≥ r ≥ s. Differentiating with respect to the initial
data, we deduce the well-known relations between the flow and the vector field,
namely ∂sX(s, x, t) = −G(s)X(s, x, t), i.e.,

∂sXi(s, x, t) = −gj(x, s) ∂jXi(s, x, t), ∀t ≥ s ≥ 0, x ∈ E,

and ∂tX(s, x, t) = −G∗(t)X(s, x, t), i.e.,

∂tXi(s, x, t) = ∂j
[
gj(x, t) Xi(s, x, t)

]
, ∀t ≥ s ≥ 0, x ∈ E,

which are the deterministic equivalent of Kolmogorov backward and forward
equations. Also, we refer the reader to the book by Ladde and Lakshmikan-
tham [85] for a complete treatment of ODE with random coefficients.

5.9.2 Definition of PDP

Again, this is a generalization of the Poisson process in the direction of strong
Markov processes as in a queueing system. Essentially, this stochastic process
has deterministic evolutions between two consecutive jumps, instead of being
constant as a Poisson process. The deterministic dynamic are characterized by a
family vector fields, namely g(n, x) defined for every x in E ⊂ Rd and each n in a
countable set N. The jump mechanism has a jump rate λ(n, x) and a transition
distribution Q(n, x, ·). Note that the jump rate determines when to jump, so a
vanishing jump rate (i.e., λ = 0) means not jump at that particular position,
while an infinite jump rate (i.e., λ = +∞) translates into a instantaneous jump.
The transition distribution rate Q(n, x, ·) determines where to jump, also called
transition probability measures of jumps.

Let X = {X(n, x, t) : t ≥ 0, x ∈ E, n = 0, 1, . . .} be a family (indexed by n) of
locally Lipschitz forward flows associated to vector fields g(n, ·) on E ⊂ Rd or
to first-order differential operator G(n, ·) on C1(Rd), with active boundary ∂0nE
(which may depend on n) and first exit from E time T(n, x) (or first hitting time
to ∂0En), see Definition 5.18. Occasionally, we may use Xn(x, t) = X(n, x, t)
to emphasize the countable index n. Note that the dimension d is fixed and
generally large, since g(n, ·) may have several zero components which change
with n. Clearly, the case where only finitely many n are used may be defined as
a module operation in the variable n. Moreover, it may be useful to allow the
set E to depend on n, i.e., En ⊂ Rdn , but we chose to disregard this case for
now.

[Preliminary] Menaldi November 19, 2022



5.9. Piecewise Deterministic Processes 199

There are two type of jumps: (1) interior jumps, which are produced while
inside region E∖∂0nE and (2) boundary jumps, which are produced while on the
active boundary ∂0nE. Note that a point x belongs to the active boundary ∂0nE
if and only if T(n, x) = 0. The forward flow X(n, x, t) is defined for t in [0, T(n, x)]
and for every (n, x) the backward flow X(n, x,−t) belongs to the inside E∖∂0nE
for t sufficiently small. Also, the functions x → T(n, x) and (x, t) → X(n, x, t)
are continuous for every n. The interior jumps have the same exogenous origin
as the one produced in the Poisson process, but the boundary jumps are forced
or imposed by the continuous dynamic of the forward flow X.

The state space of this piecewise deterministic process is N × E, where N
is a countable set (possible finite). Sufficient conditions on g to construct a
locally Lipschitz forward flow have been discussed in the previous section, and
the assumption of the jump are the following:

(1) the map (n, x) 7→ λ(n, x) is a Borel measurable function from N × E
into [0,∞] and for each (n, x) there exists ε = ε(n, x) > 0 such that t 7→
λ(n, X(n, x, t)) is integrable in the interval [0, ε),

(2) for each B in B(N × E) the map (n, x) 7→ Q(n, x,B) is measurable, and
for each (n, x) in N × E the map B 7→ Q(n, x,B) is a probability measure on
N × E satisfying Q(n, x, {(n, x)}) = 0.

Note that the integrability condition of (1) ensure that after any jumps,
we do have a continuous evolution following the forward flow for a positive
time, while the last condition of (2) ensure a state discontinuity at every jump
time. Piecewise deterministic processes viewed as Markov processes have state
in N×E, a discrete (piecewise constant in t) component {n(t) : t ≥ 0} in N and
a continuous (piecewise continuous in t) component {x(t) : t ≥ 0} in E ⊂ Rd.
These conditions are mainly necessary to make sense to the jump mechanism,
however, we need another condition to forbid the accumulation of boundary
jumps.

Perhaps, the most typical situation in hybrid system modelling, including
most of the queueing systems, is the case of finitely many n, i.e., the state space
is {0, 1, 2, . . . ,K} × E, and the locally Lipschitz forward flows {Xn(x, t) : t ≥
0, x ∈ E} are indexed by n = 0, 1, . . . , N. The particular case when with only
one n, namely n = 0, is essentially different from the others, the discrete com-
ponent is useless, and we may work directly on E. This is, we do have a Markov
process in E which generalize the Poisson process, without adding a discrete
component. Even in this simple situation, we do not have a Feller process. The
active boundary introduces instantaneous predictable jumps, producing a de-
terministic discontinuity. Thus, unless there is not active boundary, a piecewise
deterministic process is not a Feller process, but we do have a strong Markov
process. According to the definition and assumptions on the locally Lipschitz
forward flow Xn in Definition 5.18, the active boundary ∂0nE is closed and con-
tains all reachable points from the inside E ∖ ∂0nE, i.e., defining

T(n, x) = inf{t > 0 : X(n, x, t) ̸∈ E} = inf{t > 0 : X(n, x, t) ∈ ∂0nE}, (5.55)

which is defined for any x in E, with the convention that T(n, x) = ∞ if X(n, x, t)
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belongs to E for every t > 0. The sets {x : T(n, x) <∞} and {x : T(n, x) = ∞}
are disjointed (one of them may be empty), and that the function x 7→ τ(n, x)
is continuous on {x : T(n, x) < ∞}. To effectively rule out the accumulation of
boundary jumps, see Davis [34, Proposition 24.6, pp 60–61], we may assume λ
is bounded and that there exists ε > 0 such that

Q(n, x, {(n, x) : T(n, x) ≥ ε}) = 1, ∀ (n, x), x ∈ ∂0nE, (5.56)

which include the particular case of an empty active boundary, i.e.,

T(n, x) = ∞, ∀ (n, x) ∈ N × E.

Let us discuss a realization (or construction) of piecewise deterministic pro-
cesses are described above, similarly to Section 5.8, but to emphasize the two
components (discrete and continuous), we use the notation (n, x) instead of x.
Thus the Markov process with sample path (n(t), x(t) : t ≥ 0), starting form a
fixed initial point (n(0), x(0)), is realized in the canonical Hilbert cube (Ω,F , P ),
where (U1, U2, . . .) is sequence of independent random variables each having uni-
form distribution on [0, 1]. We suppose given the characteristics g, λ and Q on
the state space N×E which determine the flow X, T as in Definition 5.18 satisfy-
ing (5.55). The jump mechanism satisfies the conditions (1) and (2) mentioned
above and assumption (5.56).

First we define

Ψ(n, x, t) = 1t<T(n,x) exp
[
−
∫ t

0

λ(n, X(n, x, s))ds
]
, (5.57)

the survivor function of jumps times and its (generalized) inverse

Ψ−1(n, x, u) = inf{t ≥ 0 : Ψ(n, x, t) ≤ u}, (5.58)

with the convention that Ψ−1(n, x, u) = +∞ if Ψ(n, x, t) > u for every t ≥ 0.
Note that P{Ψ−1(n, x, Uk) > t} = Ψ(n, x, t), for any k. In other words, always
0 ≤ Ψ−1(n, x, Uk) ≤ T(n, x), P{Ψ−1(n, x, Uk) = T(n, x) < ∞} ≤ P{Uk = 0} =
0, and if the times T(n, x) = ∞ then {Ψ−1(n, x, Uk)} is an independent identi-
cally distributed random variables in [0,∞[, where its common distribution has
s 7→ λ(n, X(n, x, s)) as intensity. This random variable Ψ−1(n, x, Uk) represents
the waiting time for the next jump, while in the path s 7→ X(n, x, s). Secondly,
as mentioned above, we are working in the canonical Hilbert cube and there
exists a measurable function satisfying

Υ : N × E × [0, 1] −→ {(n, x) : T(n, x) ≥ ε} ⊂ N × E,

ℓ({u : Υ(n, x, u) ∈ B}) = Q(n, x,B), ∀B ∈ B(N × E),
(5.59)

where ε is as in (5.56) and ℓ is the Lebesgue measure on [0, 1].
Now the sample path

(
n(t, ω), x(t, ω) : t ≥ 0

)
is defined by induction as

follows. Given θk−1, nk−1 and xk−1, with k = 1, 2, . . . , we set

θk(ω) = θk−1(ω) + Ψ−1(nk−1(ω), xk−1(ω), U2k−1(ω)), (5.60)
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and if θk−1(ω) ≤ t < θk(ω) then

n(t, ω) = nk−1(ω), x(t, ω) = X(nk−1(ω), xk−1(ω), t), (5.61)

and if θk(ω) <∞ then

(nk, xk) = Υ
(
nk−1(ω), x(θk(ω)−, ω), U2k(ω)

)
, (5.62)

where x(s−, ω) is the left-hand limit at a time s. If θk−1(ω) = θk(ω) then we skip
(5.61), define x(θk(ω)−, ω) = xk−1(ω) and go to (5.62). Therefore, if θk(ω) = ∞
then we have define the sample path for every time t ≥ θk−1, otherwise we have
define the sample path in the stochastic interval [[θk−1, θk[[ as well as θk, nk and
xk, and we can iterate (5.60),. . . ,(5.62) with the initial θ0 = 0.

To actually see that the sample path is defined for every time, we will show
that

lim
k→∞

θk = ∞, a.s.. (5.63)

Indeed, define the counting jump process Nt = k if θk−1 ≤ t < θk with N0 = 0
and k ≥ 1. By means of (5.57) and the fact that λ is bounded (λ ≤ c), we can
construct a Poisson process (Np

t : t ≥ 0) with rate c, that dominate the counting
process (Nt : t ≥ 0), i.e, Nt ≤ Np

t . Thus E{Nt} ≤ E{Np
t } = ct, which implies

the condition (5.63).
We will only consider the class of piecewise deterministic processes satisfying

the condition (5.63) is satisfied, or even more if E{Nt} <∞ for every , besides
the assumptions made on the vector fields Xn, Tn and (1) and (2) above on the
jump mechanism.

Since (n(t) : t ≥ 0) is piecewise constant, (x(t) : t ≥ 0) is piecewise continu-
ous and both are right-continuous, we take pass to the canonical sample space
D([0,∞), N × E) and define the integer-valued measure process

ρ(t, B, ω) =

∞∑
k=1

1θk(ω)≤t1xk(ω)∈B , ∀ t ≥ 0, B ∈ B(Rd) (5.64)

associated with the piecewise deterministic process constructed above. When
necessary, we may write ρnx(t, ω,B) to indicate dependency on the initial state
n0 = n, x0 = x at time θ0 = 0.

It is proved in Davis [34, Sections 25, 26, Theorems 24.3, 25.5, 26.14] that the
filtration (history) generated by the piecewise deterministic processes is right-
continuous, that

(
n(t, ω), x(t, ω) : t ≥ 0

)
is an homogeneous strong Markov

process in the canonical sample space D([0,∞), N × E). Also, the extended
infinitesimal generator has complete description as follows.

The expression of the extended infinitesimal generator

Āf(n, x) = Gnf(n, x) + If(n, x),

Gnh(x) =

d∑
i=1

gi(n, x)∂ih(x),

If(n, x) = λ(n, x)

∫
N×E

[f(η, ξ)− f(n, x)]Q(n, x,dη × dξ)

(5.65)
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where the first-order differential operator Gn is acting only on the continuous
variable x, while the integral operator I may involves both variable n and x.

To full describe the extended domain D(Ā) we need the following concept.
Now we say that a process {h(n, x, t, ω) : n ∈ N, x ∈ Rd, t ≥ 0, } belongs to
L1(ρ), with ρ = ρ(t, ω,B) given by (5.64) if

E
{∫

N×E×R+

hdρ
}
= E

{ ∞∑
i=1

h(nk, xk, θk, ·)
}
<∞. (5.66)

Similarly, h belongs to L1
loc(ρ), if there exists a sequence {σk : k ≥ 0} of stopping

times with σn → ∞ almost surely such that

E
{ ∞∑
i=1

h(nk, xk, θk ∧ σn, ·)
}
<∞, ∀n,

i.e., h(n, x, t, ·)1t<σn
belongs to L1(ρ).

A measurable function f : N ×E → R belongs to D(Ā) if and only if several
conditions are met:

(1) we have f(n, X(n, x,−t)) → f(n, x) as t→ 0 and

f(n, x) =

∫
N×E

f(η, ξ)Q(n, x,dη × dξ)

for every n in N , x in E such that T(n, x) = 0,

(2) the function t → f(n, X(n, x, t)) is absolutely continuous on [0, T(n, x) ∧ T [,
for every T > 0, n in N and x in E,

(3) for every n in N and x in E, the process

h(n, x, t) = f(n, x)− f(n(t−, ω), x(t−, ω)), ∀ t > 0,

with h(n, x, 0) = 0, belongs to L1
loc(ρnx).

Property (1) is called boundary condition since T(n, x) = 0 if and only if
x belongs to the active boundary ∂0nE, which is mainly related to the discrete
variable n. Condition (2) involves only the continuous variable x and provided
a weak sense to the differential operator Gf(n(t), x(t)) as the derivative (almost
every t, the discrete variable n and ω are regarded as parameters) of the function
t→ f(n, X(n, x, t)). Property (3) can be re-written as

E
{ n∑
k=1

|f(nk, xk)− f(nk−1, X(nk−1, xk−1, θk)|1θk ≤ n
}
<∞,

for every n ≥ 1, by taken σn = θn∧n, which is certainly verified if f is bounded.
To complete this discussion let as mention that when T(n, x) = ∞ for ev-

ery (n, x) and the jump rate λ(n, x) is bounded then a piecewise deterministic
process is a Feller process. In general, a piecewise deterministic process is a
Borel right process. This means that (a) the state space N × E is topological
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homeomorphic to a Borel subset of a compact metric space, (b) the semigroup
P (t)h = E{h(n(t), x(t)} maps the bounded Borel functions into itself, (c) the
sample paths t → (n(t), x(t)) are right continuous almost surely, (d) if f is an
α-excessive function for {P (t) : t ≥ 0} then the function t → f(n(t), x(t))
is right continuous almost surely. Recall that a non-negative function f is
called α-excessive (with α ≥ 0) if exp(−tα)P (t)f ≤ f for every t ≥ 0 and
exp(−tα)P (t)f → f as t→ 0.

As mentioned early, a comprehensive study on piecewise deterministic pro-
cess can be found in Davis [34].

5.10 Lévy Processes

Random walks capture most of the relevant features found in sequences of ran-
dom variables while Lévy processes can be thought are their equivalent in con-
tinuous times, i.e., they are stochastic processes with independent and station-
ary increments. The best well known examples are the Poisson process and
the Brownian motion. They form the class of space-time homogeneous Markov
processes and they are the prototypes of semi-martingales.

Definition 5.19. A Rd-valued or d-dimensional Lévy process is a random vari-
able X in a complete probability space (Ω,F , P ) with values in the canonical
D([0,∞),Rd) such that

(1) for any n ≥ 1 and 0 ≤ t0 < t1 < · · · < tn the Rd-valued random variables
X(t0), X(t1) − X(t2),. . . ,X(tn) − X(tn−1) are independent (i.e., independent
increments),

(2) for any s > 0 the Rd-valued random variablesX(t)−X(0) andX(t+s)−X(s)
have the same distributions (i.e., stationary increments),

(3) for any s ≥ 0 and ε > 0 we have P (|X(t) −X(s)| ≥ ε) → 0 as t → s (i.e.,
stochastically continuous) and

(4) P (X(0) = 0) = 1.

An additive process is defined by means of the same properties except that
condition (2) on stationary increments is removed.

Usually the fact that the paths of a Lévy process are almost surely cad-lag
is deduced from conditions (1),. . . ,(4) after a modification of the given process.
However, we prefer to impose a priori the cad-lag regularity. It is clear that
under conditions (2) (stationary increments) and (4) we may replace condition
(3) (on stochastically continuous paths) by condition P (|X(t)| ≥ ε) → 0 as
t→ 0, for every ε > 0.

A classic tool to analyze distributions in Rd is characteristic functions (or
Fourier transform). Thus, for a given distribution µ of a random variable ξ in
Rd, the characteristic function µ̂ : Rd → C is defined by

µ̂(y) =

∫
Rd

ei x·y µ(dx) = E{ei y·ξ}.
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Several properties relating characteristic functions are known, e.g., if µ̂ is in-
tegrable in Rd then µ is absolutely continuous with respect to the Lebesgue
measure, with a bounded continuous density g given by the inversion formula

g(x) = (2π)−d
∫
Rd

e−i x·y µ̂(y)dy.

In particular y 7→ µ̂(y) is uniformly continuous from Rd into the complex plane
C, µ̂(0) = 1 and µ̂ is positive definite, i.e., for any k = 1, 2, . . . , ζ1, . . . , ζk in

C and x1, . . . , xk in Rd we have
∑k
i,j=1 µ̂(xi − xj)ζiζ̄j ≥ 0. Moreover, Bochner

Theorem tell us that the converse, i.e., any complex-valued continuous function
φ in Rd with φ(0) = 1 and positive definite is the characteristic function of a
distribution, e.g., Da Prato and Zabczyk [30, Theorem I.2.3, pp. 48–52] for a
proof valid in separable Hilbert spaces.

If µ1 and µ2 are the distributions of two Rd-valued independent random
variables ξ1 and ξ2 then the convolution µ1 ⋆ µ2 defined by

(µ1 ⋆ µ2)(B) =

∫
Rd×Rd

1B(x+ y)µ1(dx)µ2(dy), ∀B ∈ B(Rd)

is the distribution of the sum ξ1 + ξ2. We have µ̂1 ⋆ µ2 = µ̂1 µ̂2, and therefore,
the characteristic functions of independence of random variables is product of
characteristic function of each variable.

If X is a Lévy process then we may consider the characteristic function of
the Rd-valued random variable X(1), i.e.,

µ̂(y) = E{ei y·X(1)}.

Since X(1) = X(1/n) + [X(2/n) − X(1/n)] + · · · + [X(1) − X(1 − 1/n)], the
random variable X(1) can be expressed as the sum of n independent identically
distributed random variables, the distribution µ is the n-fold convolution of some
distribution µn, i.e., µ = µn⋆n , µn is the distribution of X(1/n). A distribution
µ with the above property is called infinitely divisible. For instance, Gaussian,
Cauchy and Dirac-δ distributions on Rd, as well as Poisson, exponential and Γ
distributions on R, are infinitely divisible, for instance see Stroock [126, Section
3.2, pp. 139–153].

Any infinitely divisible distribution µ has a never vanishing characteristic
function µ̂ which can be expressed as an exponential function, i.e.,

µ̂(y) = exp[−ϕ(y)], ∀y ∈ Rd,

where ϕ is uniquely determined as a complex-valued continuous function in Rd
with ϕ(0) = 1, which is called characteristic exponent or the Lévy symbol.
Thus, we have E{ei y·X(t)} = exp[−tϕ(y)] for t rational and by continuity for
any t ≥ 0. Since the Fourier transform is one-to-one, the expression

µ̂⋆t(y) = exp[−tϕ(y)], ∀y ∈ Rd, t > 0,
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5.10. Lévy Processes 205

define the ⋆t-convolution. Moreover, µ⋆t is also an infinitely divisible distribu-
tion.

A key result is Lévy-Khintchine formula states that a complex-valued func-
tion ϕ is the characteristic exponent of an infinitely divisible distributions µ if
and only if

ϕ(y) = i g · y + 1

2
Qy · y +

∫
Rd

∗

[
1− ei y·x + i y · x1|x|<1

]
m(dx),

for every y in Rd, where g belongs to Rd, Q is a non-negative semi-definite
d× d-matrix and m is a Radon measure on Rd∗ = Rd∖ {0} which integrates the
function x 7→ |x|2 ∧ 1. The representation of ϕ by (g,Q,m) is unique. However,
the cut-off function 1|x|<1 may be replaced by a bounded smooth function which
is equal to 1 at the origin, e.g. (1+|x|2)−1. In this case, the parameter g changes
and we have for every y in Rd,

ϕ(y) = i f · y + 1

2
Qy · y +

∫
Rd

∗

[
1− ei y·x + i

y · x
1 + |x|2

]
m(dx),

f = g +

∫
Rd

x
[ 1

1 + |x|2
− 1|x|<1

]
m(dx).

We may also use sinx as in Krylov [84, Section 5.2, pp. 137–144], for the
one-dimensional case.

An important class of Lévy processes are the so-called (compound) Poisson
processes. A Lévy process X is called a Poisson process with parameter c > 0, if
X(t) has a Poisson distribution with mean c t, for every t ≥ 0. Similarly, a Lévy
process X is called a compound Poisson process with parameters (c, γ), where
c > 0 and γ is a distribution in Rd with γ({0}) = 0 (i.e., γ is a distribution
in Rd∗), if E{ei y·X(t)} = exp[−t c(γ̂(y) − 1)], for any t ≥ 0 and y in Rd. The
parameters (c, γ) are uniquely determined by X and a simple construction is
given as follows. If {ζn : n = 1, 2, . . . } is a sequence of independent identically
distributed (with distribution law γ) random variables, and {τn : n = 1, 2, . . . }
is another sequence of independent exponentially distributed (with parameter
c) random variables, with {ζn : n = 1, 2, . . . } independent of {τn : n = 1, 2, . . . },
then for θn = τ1+τ2+· · ·+τn (which has a Gamma distribution with parameters
γ and n), the expressions

X(t) =

∞∑
n=1

ζn1t≥θn , with δX(t) = X(t)−X(t−)

δX(θn) = ζn, and δX(t) = 0 if t ̸= θn, ∀n, or equivalently

X(t) = ζ1 + ζ2 + · · ·+ ζn if

n∑
i=1

τi = θn ≤ t < θn+1 =

n+1∑
i=1

τi,

are realizations of a compound Poisson process and its associate point (or jump)
process. Indeed, for any integer k, any 0 ≤ t0 < t1 < · · · < tk and any Borel sub-
sets B0, B1, . . . , Bk of Rd we can calculate the finite-dimensional distributions

[Preliminary] Menaldi November 19, 2022



206 Chapter 5. Working with Stochastic Processes

of X by the formula

P (X(t0) ∈ B0, X(t1)−X(t0) ∈ B1, . . . , X(tk)−X(tk−1) ∈ Bk) =

= P
(
X(t0) ∈ B0

)
P
(
X(t1)−X(t0) ∈ B1

)
. . . P

(
X(tk)−X(tk−1) ∈ Bk

)
.

This yields the expression

E{ei y·X(t)} = exp[−t c (1− γ̂(y))], ∀y ∈ Rd, t ≥ 0,

which is continuous in t. Then, all conditions in Definition 5.19, including the
stochastic continuity of path (3), are satisfied. Note that for a pairwise disjoint
family of Borel sets of the form ]si, ti] × Bi, with 0 ≤ si < ti, Bi in B(Rd),
i = 1, 2, . . . , k the integer-valued random variables

ν(]si, ti]×Bi) =

∞∑
n=1

1si<θn≤ti 1ζn∈Bi
, ∀i = 1, 2, . . . , k

are independent identically Poisson distributed, with parameter (or mean) c (ti−
si)γ(Bi).

An interesting point is the fact that a compound Poisson process in R, with
parameters (c, σ) such that c > 0 and σ is a distribution in (0,∞), is increasing
in t and its Laplace transform is given by

E{e−ξX(t)} = exp
[
− t c

∫
(0,∞)

(e−ξx − 1)σ(dx)
]
, ∀ξ ∈ R, t ≥ 0.

These processes are called subordinator and are used to model random time
changes, possible discontinuous. Moreover, the Lévy measure m of any Lévy
process with increasing path satisfies∫

R1
∗

|x|m(dx) =

∫ ∞

0

x m(dx) <∞,

e.g., see books Bertoin [11, Chapter III, pp. 71-102], Itô [65, Section 1.11] and
Sato [116, Chapter 6, pp. 197-236].

Another interesting case is the so-called symmetric Lévy processes where the
characteristic exponent (also called Lévy exponent) ϕ(y) (defined early) satisfies∫

Rd

∣∣ 1

1 + ϕ(y)

∣∣ dy <∞,

which implies that ϕ(y) is a positive real-valued even function. Moreover, the
only possible case occurs when the dimension d = 1, and actually, ϕ(y) takes
the form

ϕ(y) =
1

2
Qy2 + 2

∫
Rd

∗

[
1− cos(xy)

]
m(dx), ∀y ∈ R
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for some nonnegative constant Q and some measure m on R which integrates
the function (1 ∧ x2). In this one-dimensional case, the resolvent (measure)∫

R
f(y)R(λ,dy) =

∫ ∞

0

e−λtE
{
f
(
X(t) + x

)}
dt,

has the density

r(λ, y) =
1

π

∫ ∞

0

cos(xy)

λ+ ϕ(y)
dt, ∀y ∈ R,

while the transition densities are given by

p(t, x) =
1

π

∫
R
e−xy e−tϕ(y)dy, ∀t > 0, x ∈ R,

see the book by Marcus and Rosen [94, Section 4.1, pp. 135-144] for details.
The interested reader, may consult the book by Applebaum [1], which discuss
Lévy process at a very accessible level.

The next typical class Lévy processes is the Wiener processes or Brownian
motions. A Lévy process X is called a Brownian motion or Wiener process
in Rd, with (vector) drift b in Rd and (matrix) co-variance σ2, a nonnegative-
definite d× d matrix, if E{ey·X(t)} = exp [−t(|σy|2/2− i b)], for any t ≥ 0 and y
in Rd, i.e., if X(t) has a Gaussian distribution with (vector) mean E{X(t)} = bt
and (matrix) co-variance E{(X(t)− bt)∗(X(t)− bt)} = tσ2. A standard Wiener
process is when b = 0 and σ2 = 1, the identity matrix. The construction of
a Wiener process is a somehow technical and usually details are given for the
standard Wiener process with t in a bounded interval. The general case is an
appropriate transformation of this special case. First, let {ξn : n = 1, 2, . . . } be
a sequence of independent identically normally distributed (i.e., Gaussian with
zero-mean and co-variance 1) random variables in Rd and let {en : n = 1, 2, . . . }
be a complete orthonormal sequence in L2(]0, π[), e.g., en(t) =

√
2/π cos(nt).

Define

X(t) =

∞∑
n=1

ξn

∫ t

0

en(s)ds, t ∈ [0, π].

It is not hard to show that X satisfies all conditions of a Wiener process, except
for the stochastic continuity and the cad-lag sample property of paths. Next,
essentially based on the (analytic) estimate: for any constants α, β > 0 there
exists a positive constant C = C(α, β) such that

|X(t)−X(s)|α ≤ C |t− s|β
∫ π

0

dt

∫ π

0

|X(t)−X(s)|α |t− s|−β−2ds,

for every t, s in [0, π], we may establish that that series defining the process X
converges uniformly in [0, π] almost surely. Indeed, if Xk denotes the k partial
sum defining the process X then an explicit calculations show that

E{|Xk(t)−Xℓ(s)|4} = E
{∣∣∣ k∑

n=ℓ+1

ξn

∫ t

s

en(r)dr
∣∣∣4} ≤ 3|t− s|2,
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for every t ≥ s ≥ 0 and k > ℓ ≥ 1. After using the previous estimate with α = 4
and 1 < β < 2 we get

E{ sup
|t−s|≤δ

|Xk(t)−Xℓ(s)|4} ≤ C δβ , ∀δ > 0, k > ℓ ≥ 1,

for a some constant C > 0. This proves that X is a Wiener process with continu-
ous paths. Next, the transformation tX(1/t) (or patching k independent copies,
i.e., Xk(t) if (k− 1)π ≤ t < kπ, for k ≥ 1.) produces a standard Wiener process
in [0,∞) and the process b t+ σX(t) yields a Wiener process with parameters
b and σ.

The above estimate is valid even when t is multidimensional and a proof can
be found in Da Prato and Zabczyk [31, Theorem B.1.5, pp. 311–316]. For more
details on the construct arguments, see, e.g., Friedman [50] or Krylov [83].

We are ready to state the general existence result

Theorem 5.20 (construction). Let m be a Radon measure on Rd∗ such that∫
Rd

∗

|x|2 ∧ 1m(dx) <∞,

Q be a nonnegative-definite d × d matrix and g be a vector in Rd. Then there
exists a unique probability measure P on the canonical probability space Ω =
D([0,∞),Rd) such that the canonical process (X(t) = ω(t) : t ≥ 0) is a Lévy
process with characteristic (g,Q,m), i.e.,

E{ei y·X(t)} = exp[−t ϕ(y)], ∀y ∈ Rd, t ≥ 0, with

ϕ(y) = i g · y + 1

2
Qy · y +

∫
Rd

∗

[
1− ei y·x + i y · x1|x|<1

]
m(dx).

Conversely, given a Lévy process X the characteristic (g,Q,m) are uniquely
determined through the above formula.

Proof. Only some details are given. First, consider the case where Q = 0, which
corresponds to Poisson measures and point processes, a step further from the
compound Poisson processes. Essentially, a point process is the jumps process
constructed from a cad-lag process. Poisson measures are particular case of
integer-valued measures, which are the distribution of the jumps of cad-lag
processes. More extensive comments can be are given, here we recall a couple of
arguments used to construct a Poisson measure. Let m be a Radon measure in
Rd∗ (which integrates the function |x|2 ∧ 1 is used later) and write m =

∑
kmk,

where mk(B) = m(B ∩Rk), Rd∗ = ∪kRk, m(Rk) <∞ and Rk ∩Rℓ = ∅ if k ̸= ℓ.
To each mk we may associate a compound Poisson and point processes

Yk(t) =

∞∑
n=1

ζn,k1t≥θn,k
or Yk(t) = Zn,k if θn−1,k < t ≤ θn,k,

δYk(t) = Yk(t)− Yk(t−) = ζn,k1t=θn,k
, ∀t ≥ 0,
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where θn,k = τ1,n,k+ τ2,n,k+ · · ·+ τn,n,k, {τi,n,k : i = 1, . . . , n, n = 1, 2, . . . } is a
sequence of independent exponentially distributed (with parameterm(Rk) = ck)
random variables, and Zn,k = ζ1,k + ζ2,k + · · · + ζn,k, {ζn,k : n = 1, 2, . . . }
is another sequence of independent identically distributed (with distribution
law mk/ck) random variables, the family {τi,n,k, ζn,k : i = 1, . . . , n, n, k ≥
1} is independent. Since the processes {Yk : k ≥ 1} are independent, the
characteristic function of the point process Y =

∑
k Yk is the product of those

of Yk, which should reconstruct the measure m. The independence property
and the diffuse character (non atoms) of the exponential distribution ensure
that there are no simultaneous jumps among the {Yk : k ≥ 1}. Hence, the jump
process δY =

∑
k δYk is indeed a Poisson point process with characteristic

measure m, i.e.,

ν(]s, t]×B) =

∞∑
n,k=1

1s<θn,k≤t 1ζn,k∈B , ∀t > s ≥ 0, B ∈ B(Rd∗)

is a Poisson random measure with intensity measure E{ν(]s, t] × B)} = (t −
s)m(B). In general, we cannot re-order the jumps in a increasing manner as
those of a compound Poisson process. Next, some martingale estimates are
necessary to establish good behavior of the process Y. First the exponential
formula, for any complex-valued Borel function f on Rd∗

if

∫
Rd

∗

|1− ef(x)|m(dx) <∞ then ∀t ≥ 0 we have

E
{
exp

[ ∑
0≤s≤t

f(δY (s))
]}

= exp
{
− t

∫
Rd

∗

[1− ef(x)]m(dx)
}
.

Secondly, the Doob’s maximal inequality for the compensated jumps

E
{

sup
0≤t≤T

∣∣∣ ∑
0≤s≤t

f(δY (s))− t

∫
Rd

∗

f(x)m(dx)
∣∣∣2} ≤ 4T

∫
Rd

∗

|f(x)|2m(dx),

valid for any real valued Borel function f on Rd∗ and any T > 0, see Sections 5.3
and 5.4 for more detail and references.

After compensate the small jumps, this Poisson measure ν and its associated
jump process δY yield a Lévy process with characteristic (0, 0,m). Indeed, define

X1(t) =

∫
]0,t]×{|x|≥1}

x ν(ds× dx) =
∑
s≤t

δY (s)1|δY (s)|≥1,

and

Xε
2(t) =

∫
]0,t]×{ε≤|x|<1}

x ν(ds× dx)− E
{∫

]0,t]×{ε≤|x|<1}
x ν(ds× dx)

}
=

∑
s≤t

δY (s)1ε<|δY (s)|≤1 − t

∫
ε≤|x|<1

xm(dx),
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for t, ε > 0, which are two compound Poisson processes with characteristic
exponents

ϕ1(y) =

∫
|x|≥1

[
1− ei y·x

]
m(dx), ∀y ∈ Rd,

ϕε2(y) =

∫
ε≤|x|<1

[
1− ei y·x + i y · x

]
m(dx), ∀y ∈ Rd,

respectively, after using the above exponential formula. In view of the martin-
gale inequality

E
{
sup
t≤T

|Xε
2(t)−Xδ

2 (t)|2
}
≤ 4T

∫
δ≤|x|<ε

|x|2m(dx),

for every T > 0, ε > δ > 0, and because the intensity measure m integrates the
function |x|2∧1, the family of processes {Xε

2 : ε > 0} converges to a process X2

and

E
{
sup
t≤T

|Xε
2(t)−X2(t)|2

}
≤ 4T

∫
|x|<ε

|x|2m(dx),

for every T > 0 and ε > δ > 0. This cad-lag process X2 has stationary indepen-
dent increments, so a Lévy process with characteristic exponent

ϕ2(y) =

∫
|x|<1

[
1− ei y·x + i y · x

]
m(dx), ∀y ∈ Rd.

Therefore, X1 +X2 is a Lévy process with characteristic (0, 0,m).
Now to conclude, consider given a drift g in Rd and a co-variance Q (non-

negative-definite d× d matrix). If B is a standard Wiener process independent
of (X1, X2) (i.e., of the previous construction) then define X3 = (

√
QB(t)−g t :

t ≥ 0), which is a Lévy process with characteristic exponent

ϕ3(y) = i g · x+
1

2
Qy · y, ∀y ∈ Rd.

Finally, X = X1 + X2 + X3 is a Lévy process with the desired characteris-
tic (g,Q,m). The converse follows from Lévy-Khintchine formula for infinitely
divisible distributions.

An important point to remark is that the above construction shows that
any Lévy process is a Wiener process plus the limit of a sequence of compound
Poisson processes. Also note that any infinitely divisible probability measure on
Rd can be viewed as the distribution of a Lévy process evaluated at time 1.

It is perhaps relevant to remark that even if any Lévy process can be ex-
pressed as a limit of compound Poisson processes, the structure of a typical
graph of Levy process eludes us. For instance, almost surely, the jumping times
J = {t : X(t, ω) ̸= X(t−, ω)} are countable, and (a) if the Levy measure sat-
isfies m(Rd) = ∞ then J is dense in [0,∞) while (b) if m(Rd) < ∞ then J
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can be written as an increasing sequence {τk : k ≥ 1}, τk ≤ τk+1, of indepen-
dent random variables having exponential distributions with mean 1/m(Rd), see
Sato [116, Theorem 21.3, pp. 136–137].

Note that for a given Lévy process X with the characteristic (g,Q,m) we
can define δX(t) = X(t) − X(t−) and the integer-valued (random) measure
νX associated with the jumps δX of X, and its martingale measure µX =
νX −m, since m = νpX is the predictable jump compensator (which is actually
deterministic). To make sense to discontinuous (purely jumps) part Xd(t) of X,
which is the compensated sum of all jumps

∑
s≤t δX(s), and therefore define its

continuous part as Xc = X −Xd we proceed essentially as above. For t, ε > 0,
consider

X1(t) =

∫
]0,t]×{|x|≥1}

x νX(ds× dx) =
∑
s≤t

δX(s)1|δX(s)|≥1,

and

Xε
2(t) =

∫
]0,t]×{ε≤|x|<1}

xµX(ds× dx) =

=
∑
s≤t

δX(s)1ε<|δX(s)|≤1 − t

∫
ε≤|x|<1

xm(dx)

are compound Poisson process, and using the canonical semi-martingale de-
composition, the limit process Xd = X1 + limε→0X

ε
2 is a Lévy process with

characteristic exponent

ϕδ(y) =

∫
Rd

∗

[
1− ei y·x + i y · x

]
1|x|<1m(dx), ∀y ∈ Rd,

which is called the discontinuous (purely jumps) part of X. If the jumps are
not of bounded variation, the series

∑
s≤t δX(s) is meaningless, unless it is

compensated with the small jumps (we used jumps greater than 1, but it suffices
greater than some positive constant). Sometimes we ignore large jumps (by
assuming that the Lévy measure m integrates z at infinite), and so the Lévy
process corresponding to the characteristic exponent

ϕd(y) =

∫
Rd

∗

[
1− ei y·x + i y · x

]
m(dx), ∀y ∈ Rd.

is uniquely determined could be used as Xd.
Since X is quasi-left continuous, we have δX = δXd. Due to the indepen-

dence of increments, X(t)−X(t−) results independent of X(t−) = Xc(t), i.e.,
the processes Xc and Xd are independent and the characteristic exponent of Xc

must be

ϕc(y) = i g · x+
1

2
Qy · y, ∀y ∈ Rd.
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Thus Xc is a Wiener process and the characteristic (g,Q,m) can also be found
as

g = −E{Xc(1)}, Q = E{[Xc(1) + g]∗[Xc(1) + g]
}
,

m(B) = E
{ ∑

0<t≤1

1δX(t)∈B
}
, ∀B ∈ B(Rd),

where δX(t) = X(t)−X(t−), Xc = X −Xd and (·)∗ is the transpose operator.
On the other hand, if A is a n× d matrix then AX = (AX(t) : t ≥ 0) is a n

dimensional Lévy process with characteristic

g = Ag +

∫
Rd

∗

Ax[1|Ax|<1 − 1|x|<1]m(dx),

QA = AQA∗, mA = mA−1,

where mA−1(B) = m({x : Ax ∈ B}).
If Q = 0 and the Lévy measure m integrates the function |x| ∧ 1 then the

characteristic exponent may be re-written in a simpler way, as

ϕ(y) = −i g · x+

∫
Rd

∗

[
1− ei y·x

]
m(dx), ∀y ∈ Rd,

where g is now referred to as the drift coefficient. In this case, the Lévy process
has locally bounded variation, not necessarily integrable, unless m integrates
the function |x|. Certainly, if X has a finite Lévy measure m on Rd∗ then X is a
compound Poisson process plus a drift.

Now we take a look at the resolvent operators associated with Lévy processes.
Let {P (t) : t ≥ 0} be the semigroup associated with a Lévy process, i.e.,

P (t) : C0(Rd) → C0(Rd), P (t)f(x) = E{f(X(t) + x)}, (5.67)

where C0(Rd) is the Banach space of continuous functions vanishing at infinity.
Then, the family {R(λ) : λ > 0} of linear and bounded operators from C0(Rd)
into itself and the family of {R(λ, dy) : λ > 0} of finite measures on Rd, defined
by

R(λ)f(x) =

∫ ∞

0

e−λ t P (t)f(x)dt and∫
Rd

f(y)R(λ, dy) = E
{∫ ∞

0

e−λ t f(X(t))dt
}
, (5.68)

which satisfies

R(λ)f(x) = E
{∫ ∞

0

e−λ t f(X(t) + x)dt
}

and∫
Rd

f(y)R(λ, dy) = R(λ)f(0),
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are called the resolvent operators and the resolvent kernel associated with the
Lévy process X. It is also clear that R(λ) is a convolution operator, i.e.,

if

∫
Rd

f(y)Ř(λ, dy) = E
{∫ ∞

0

e−λ t f(−X(t))dt
}

then (Ř(λ, ·) ⋆ f)(x) =
∫
Rd

f(x− y)Ř(λ, dy) = R(λ)f(x).

The resolvent operators describe the distribution of the Lévy process evalu-
ated at independent exponential times, i.e., if τ = τ(λ) is an independent (of
X) random variable having an exponential law with parameter λ > 0, then
E{f(X(τ) + x)} = λR(λ)f(x).

The semigroup property yields the identity

R(λ)−R(µ) = (µ− λ)R(λ)R(µ), ∀λ, µ > 0 or

Ř(λ, ·)− Ř(µ, ·) = (µ− λ)Ř(λ, ·) ⋆ Ř(µ, ·)
(5.69)

so-called resolvent equation. Thus the image of C0(Rd) under R(λ), denoted by
D, does not depend on λ > 0. Since

λR(λ)f(x)− f(x) =

∫ ∞

0

e−s[P (s/λ)f(x)− f(x)]ds

we deduce that λR(λ)f → f in C0(Rd) as λ → ∞. Therefore, D is a dense
subspace of C0(Rd). Moreover, if R(λ)f = R(λ)g for some λ > 0, the resolvent
equation shows that R(λ)f = R(λ)g for any λ > 0 and then, as λ → ∞ we
deduce f = g, i.e., R(λ) is a one-to-one mapping from C0(Rd) onto D. The
infinitesimal generator A from D into C0(Rd) is defined by the relation

R(λ)(λI −A) = I or equivalently A = λI − [R(λ)]−1, (5.70)

where I is the identity mapping, and D = DA is called the domain of the
infinitesimal generator A.

The Fourier transform for f in L1(Rd), namely

f̂(ξ) =

∫
Rd

ei x·ξf(x)dx, ∀ξ ∈ Rd,

yields simple expressions of these operators in term of the characteristic expo-
nent

ϕ(ξ) = − ln(E{eiX(1)·ξ})

of the Lévy process X. We have for any f in L1(Rd) ∩ L∞(Rd)

P̂ (t)f(ξ) = e−tϕ(−ξ)f̂(ξ), ∀t ≥ 0, ξ ∈ Rd,

R̂(λ)f(ξ) = [λ+ ϕ(−ξ)]−1f̂(ξ), ∀λ > 0, ξ ∈ Rd,
(5.71)
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and, for any f in DA such that Af belongs to L1(Rd)

Âf(ξ) = −ϕ(−ξ)f̂(ξ), ∀ξ ∈ Rd. (5.72)

Hence, Lévy-Khintchine formula and the inversion of Fourier transform yield
the following expression for the infinitesimal generator of Lévy processes

Af(x) = −g · ∇f +
1

2
∇ ·Q∇f +

+

∫
Rd

∗

[
f(·+ y)− f − 1|y|<1 y · ∇f

]
m(dy), (5.73)

for any smooth function f, e.g., twice-continuously differentiable and bounded
function f.

Let us mention a result from Blumental and Getoor [17]. If the resolvent
kernel R(λ, x+ dy) is absolutely continuous (with respect to the Lebesgue mea-
sure) for some λ > 0 and some x in Rd then it is absolutely continuous for
every λ > 0 and every x in Rd. Moreover this is equivalent to the so-called
strong Feller property of the resolvent operators, namely, for any λ > 0 and f
in L∞(Rd) the function x 7→ R(λ)f(x) is continuous.

To conclude this section we briefly discuss the so-called local time associated
with a Levy process, full details can be found in the book Bertoin [11, Chapter V,
pp. 125–154]. Let X(t) a one dimensional Lévy process, then its characteristic
function is given by

E{exp(iξX(t))} = e−tψ(ξ)

where ψ is characterized by

ψ(ξ) = −iγξ + 1
2σ

2ξ2 −
∫
R

(
eiξy − 1− iξy1{|y|<1}

)
dm(y)

where dm(y) is the Lévy measure. For instance, the choice γ = 0, σ = 1 and
dm = 0 yields the Brownian motion, while γ = 0 and σ = 0 produces a pure
jump processes. In particular, m = δ1 corresponds to the Poisson process and
for dm(y) = 1

|y|1+α dy, with 0 < α < 2, we get the so-called α-stable Lévy

processes with ψ(ξ) = 2
c |ξ|

α, where

|ξ|α = − c
2

∫
R

(
eiξy − 1− iξy1{|y|<1}

)
m(dy),

1

c
=

∫ ∞

0

1− cos s

s1+α
ds,

i.e., c = 2
πΓ(1 + α) sin(πα2 ).

For any t > 0, the occupation measure µ(t, dx) on the time interval [0, t] of
the Lévy process X is defined as

µ(t, B, ω) =

∫ t

0

1{X(s,ω)∈B}ds,

for every Borel subset of R.
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Theorem 5.21 (occupation measure). For any t ≥ 0, the occupation measure
µ(t,dx) is absolutely continuous with respect to the Lebesgue measure with a
density in L2(dy × P ) if and only if∫

R
ℜ
{ 1

1 + ψ(y)

}
dy <∞. (5.74)

Moreover, if the above condition fails, then µ(t, dx) is singular with respect to
the Lebesgue measure for any t > 0 and with probability 1.

Brownian motions and α-stable Lévy processes with 1 < α < 2 satisfy
condition (5.74) and therefore theirs occupation measures have densities with
respect to the Lebesgue measure. While Poisson processes and α-stable Lévy
processes with 0 < α ≤ 1 do not satisfy (5.74).

Now, if condition (5.74) is satisfied then for every t > 0 and any x in R we
can define

ℓ(t, x) = lim sup
ϵ→0

1
2ϵ

∫ t

0

1{|X(s)−x|<ϵ}ds,

which is referred to as the local time at the level x and time t for the Lévy
process X. It is clear that {ℓ(t, x) : x ∈ R} serves as a F(t)-measurable version
of the density of µ(t, dx). Note that for every x, the process ℓ(·, x) is (cad-
lag) nondecreasing, which may increase only when X = x. Thus, ℓ is jointly
measurable.

To end this section, let us take a look at the path-regularity of the Lévy
processes. If we drop the cad-lag condition in the Definition 5.19 then we use
the previous expressions (for either Lévy or additive processes in law) to show
that there exits a cad-lag version, see Sato [116, Theorem 11.5, p. 65], which is
actually indistinguishable if the initial Lévy or additive process was a separable
process.

Proposition 5.22. Let y be an additive process in law on a (non-necessarily
completed) probability space (Ω,F , P ), and let F0

t (y) denote the σ-algebra gen-
erated by the random variables {y(s) : 0 ≤ s ≤ t}. Define Ft(y) = F0

t (y) ∨ N ,
the minimal σ-algebra containing both F0

t (y) and N , where N = {N ∈ F :
P (N) = 0}. Then Ft(y) = ∩s>tFs(y), for any t ≥ 0.

Proof. Set F+
t (y) = ∩s>tFs(y) and F0

∞(y) = ∨t≥0F0
t (y). Since both σ-algebras

contain all null sets in F , we should prove that E(Z | F+
t (y)) = E(Z | Ft(y)) for

any F0
∞(y)-measurable bounded random variable Z, to get the right-continuity

of the filtration. Actually, it suffices to establish that

E{ei
∑n

j=1 rjy(sj) | F+
t (y)} = E{ei

∑n
j=1 rjy(sj) | Ft(y)}

for any choice of 0 ≤ s1 ≤ s2 ≤ . . . ≤ sn, (r1, r2, . . . , rn), and n. Moreover, only
the case s1 > t need to be considered. To this purpose, we use the character-
istic function ft(r) = E{eiry(t)} which satisfies ft+s(r) = ft(r)fs(r), and the
martingale property of Mt(r) = eiry(t)/ft(r) with respect to Ft(y).
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Now, let s1 > t′ ≥ t and consider

E{ei
∑n

j=1 rjy(sj) | Ft′(y)} = fsn(rn)E{e
i
∑n−1

j=1 rjy(sj)Msn(rn) | Ft′(y)} =

= fsn(rn)E{ei
∑n−1

j=1 rjy(sj)Msn−1
(rn) | Ft′(y)} =

= fsn−sn−1
(rn)fsn−1

(rn−1 + rn)×

× E{ei
∑n−2

j=1 rjy(sj)Msn−1
(rn−1 + rn) | Ft′(y)}) =

= . . . = fsn−sn−1
(rn)fsn−1−sn−2

(rn−1 + rn)×
× fsn−2−sn−3

(rn−2 + rn−1 + rn) ×
× . . .× fs2−s1(r2 + · · ·+ rn−2 + rn−1 + rn)e

ir1y(s1),

i.e., we have

E{ei
∑n

j=1 rjy(sj) | Ft+ε(y)} = E{ei
∑n

j=1 rjy(sj) | Ft(y)}, ∀ε > 0.

and the proof is finished by passing to the limit as ε→ 0.

• Remark 5.23. Sometimes, an adapted process y (not necessarily cad-lag) is
called additive with respect to a filtration F (non necessarily right-continuous
or complete) if the random variable y(s)− y(t) is independent of F(t), for any
s > t ≥ 0. Because y is adapted and F(t) increasing, this is equivalent to a
stronger condition, namely, the σ-algebra G(t) generated by {y(s2) − y(s1) :
s2 > s1 ≥ t} is independent of F(t) for any t ≥ 0. Now, let N be the σ-algebra
of all null sets in F and set F(t+) = ∩ε>0F(t + ε). If y is right-continuous in
probability then we want show that E{· | F(t+)} = E{· | F(t)}. Indeed, for any
t there is a sequence {tn}, tn > t convergent to t and a set of measure null
such that y(tn, ω) → y(t, ω), for every ω in Ω∖N. Since y(s)− y(tn), s > t, is
independent of F(tn) ⊃ F(t+), we have

E
{
f
(
y(s)− y(tn)

)
1F

}
= E

{
f
(
y(s)− y(tn)

)}
E{1F }, ∀F ∈ F(t+),

for every continuous function f. Hence, y(s)−y(t), s > t is independent of F(t+),
i.e., G(t)∨N is independent of F(t+), for every t ≥ 0. Now, if A is in F(t) and
B in G(t)∨N then the F(t)-measurable random variable 1A P (B) is a version of
the conditional expectation E{1A1B | F(t+)}, and a class monotone argument
shows that for any bounded and F(t) ∨ G(t) ∨ N -measurable random variable
h we have a F(t)-measurable version of the E{h | F(t+)}. This proves that
F(t+) = F(t) ∨ N , i.e., another way of proving the previous Proposition 5.22.
This proof is inspired by Letta [87], based on a personal communication.

The reader is referred to the books by Bremaud [21], Elliott [46], Prot-
ter [108]), and the comprehensive works by Bertoin [11, Chapters O and I, pp.
1–42] and Sato [116, Chapters 1 and 2, pp. 1–68].

5.11 Transition Functions

Now we focus on the transition functions of spatially homogeneous Markov pro-
cesses or additive processes. There are several aspects of a Markov Process,
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depending on the specific emphasis given to the discussion, one of the following
elements is first studied and then other elements are derived. A Markov process
with valued in Rd may be presented as

(a) a family of Rd-valued stochastic processes X = Xsx indexed by the initial
distribution X(s) = x, s ≥ 0,

(b) a probability transition function P (s, x, t, A) with t > s ≥ 0, x ∈ Rd and A
a Borel subset of Rd,
(c) a family of linear and bounded evolution operators Φ(t, s) from B(Rd), the
Banach space of bounded Borel real-valued function on Rd into itself, indexed
by t ≥ s ≥ 0,

(d) a family of linear and bounded operators R(λ) from B(Rd) into itself, in-
dexed by λ > 0,

(e) a family of linear possible unbounded (infinitesimal generator) operators
A(t) defined in a subspace D(A(t)) of B(Rd) into B(Rd), indexed by t ≥ 0.

Certainly, each of these (a),. . . ,(e) elements should satisfy some specific condi-
tions to yield a Markov process.

The elements R(λ) in (d) are called resolvent operators and are mainly used
with time-homogeneous Markov processes, i.e., when (a) Xsx = X0x for any
s > 0 or (b) P (s, x, t, A) = P (0, x, t − s,A) for any t > s ≥ 0 or (c) the
evolution operators Φ(t, s) = Φ(t− s) for any t > s ≥ 0 or (e) A(t) = A for any
t ≥ 0. It is clear that by adding a new dimension to Rd we may always assume
we are in the time-homogeneous, however, in most of the cases, we prefer to
live the special time variable t with its preferential role and to work with non-
time-homogeneous Markov processes. It is possible to use a Polish (separable
complete metric space) O instead of the Euclidean space Rd, usually O is locally
compact since the infinite-dimensional case needs some special care.

The principle stating that the future is independent of the past given the
present is called Markov property and formally is written as

P{X(t) ∈ B |X(r), r ≤ s} = P{X(t) ∈ B |X(s)}, (5.75)

for every t > s ≥ 0 and B ∈ B(Rd), which should be satisfied by the family of
processes. This same property viewed by the transition function is called the
Chapman-Kolmogorov identity ,

P (s, x, t, B) =

∫
Rd

P (s, x, r, dy)P (r, y, t, B), (5.76)

for every t > r > s, x in Rd and B in B(Rd). For the evolution operators this is
called the semigroup property are written as

Φ(t, s) = Φ(t, r)Φ(r, s) in B(Rd), ∀t > r > s > 0, (5.77)

and in the case of time-homogeneous Markov processes, the resolvent operators
satisfy the so-called resolvent equation, namely

R(λ)−R(ν) = (ν − λ)R(λ)R(ν) in B(Rd), ∀λ, ν > 0. (5.78)
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The resolvent {R(λ) : λ > 0} is mainly used in potential theory, the semi-group
{Φ(t) : t ≥ 0} and the infinitesimal generator A are well know in analysis, while
the family of stochastic processes X and the transition function P (s, x, t, B)
are more probabilistic tools. At this general level, we ramark that the Markov
property (5.75) is almost surely satisfied, i.e., only version of the stochastic
processes are involved and therefore a property on the sample path should be
added. The evolution and resolvent operators are defined on B(Rd), which is a
non-separable Banach space, so that in general the theory is very delicate.

Out interest is in Markov-Feller or Feller-Dynkin processes, instead of the
large space B(Rd) we use the separable Banach space C0(Rd), of all continuous
functions vanishing at infinity (i.e., for any ε > 0 there exists a compact subset
K of Rd such that |φ(x)| ≤ ε for every x in Rd ∖K). Thus, after a one-point
compactification method, we are reduced to C(R̄d), with R̄d = Rd ∪ {∞} being
a compact Polish space. For the family of stochastic processes Xx, this yields
a cad-lag condition on the sample path. Regarding the Chapman-Kolmogorov
identity (5.76) we have

Definition 5.24 (transition function). A (Markov) transition function on the
Borel space (Rd,B), B = B(Rd), is a function P (s, x, t, B) defined for t > s ≥ 0,
x in Rd and B in B such that

(a) for each t > s ≥ 0 and x in Rd the function B 7→ P (s, x, t, B) is a positive
measure on (Rd,B), with P (s, x, t,Rd) ≤ 1,

(b) for each t > 0 and B in B the function (s, x) 7→ P (s, x, t, B) is a measurable,

(c) for any s ≥ 0, for any compact subset K of Rd and any ε > 0 we have

lim
t→s

sup
x∈K

[
1− P (s, x, t, {y ∈ Rd : |y − x| ≤ ε})

]
= 0,

so-called uniformly stochastic continuous,

(d) for each t > r > s ≥ 0, x in Rd and B in B we have

P (s, x, t, B) =

∫
Rd

P (s, x, r, dy)P (r, y, t, B),

i.e., Chapman-Kolmogorov identity.

These properties can be rephrased in term of linear non-negative operators from
B(Rd), the space of real-valued bounded and Borel functions on Rd, into itself,
defined by

P (t, s)φ(x) =

∫
Rd

φ(y)P (s, x, t, dy) = P (s, x, t, φ), (5.79)

for every t > s ≥ 0 and x in Rd, which satisfies

(a’) for each t > s ≥ 0 and φ in B(Rd) with 0 ≤ φ ≤ 1 we have 0 ≤ P (t, s)φ ≤ 1,

(b’) for each t > s ≥ 0 and x in Rd the mapping B 7→ P (t, s)1B(x) is σ-additive
on B(Rd),
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(c’) for any s ≥ 0 and φ in C0(Rd), continuous functions on Rd vanishing at
infinity, we have

lim
t→s

P (t, s)φ(x) = φ(x), ∀x ∈ Rd,

i.e., the stochastic continuity property , a weaker version of (c),

(d’) for each t > r > s ≥ 0, x in Rd and B in B we have

P (t, s) = P (t, r)P (r, s), in B(Rd),

usually referred to as the semigroup property , and the transition function is
called a Feller transition if the following condition (e) , so-called Feller property ,
is satisfied

(e) for each t > s ≥ 0 and φ in C0(Rd) we have P (t, s)φ in C0(Rd), i.e., P (t, s)
can be considered as acting on C0(Rd).
It is called time-homogeneous if P (s, x, t, B) = P (0, x, t − s,B) and spatially-
homogeneous if P (s, x, t, B) = P (s, 0, t, B − x), for any t > s ≥ 0, x in Rd and
B in B. It is called a transition probability function if P (s, x, t,Rd) = 1, for any
t > s ≥ 0 and x in Rd.

Certainly, to define a transition function we only need a measurable space
(E, E) and t belonging to some set T with a complete order, instead of the Eu-
clidean space Rd and the real semi-line [0,∞). However, for time-homogeneous
transition function, essentially we need the semi-line [0,∞) and for the spatially-
homogeneous transition function E has to be a vector space, e.g., Rd.

Condition (b’) is satisfied when E is locally compact, i.e., Rd, but it is
mentioned above as a difficulty when considering the infinite-dimensional case.
Instead of the transition function in the form P (s, x, t, B) we may look at the
family of linear non-negative operators P (t, s) from C0(Rd) into itself as a two-
parameter C0-semigroup, which satisfies 0 ≤ P (t, s)φ ≤ 1 for any 0 ≤ φ ≤ 1.

For instance, the reader is referred to Stroock and Varadhan [129, Chapter
9, pp. 208–247] for some useful estimates on the transition probability functions
for diffusion processes in Rd.

In either of these two equivalent forms of transition function we complete the
definition by using the one-point compactification of E, say Ē = E ∪ {∞} with
P (s, x, t, {∞}) = 1 − P (s, x, t,Rd), so that P (s, x, t, B) is a transition function
in compact Polish space Ē. Thus, time-homogeneous means P (t, s) = P (t − s)
while spatially-homogeneous means that P (t, s) commutes with the translations
operators Thφ(x) = φ(x − h), i.e., for any t > s ≥ 0 and h in Rd we have
P (t, s)Th = Th P (t, s) in C0(Rd).

Condition (c) or (c’) means that the Markov process X is stochastically
continuous, i.e., for any ε > 0 and s ≥ 0 there is a δ > 0 such that P{|X(t) −
X(s)| ≥ ε} < ε for any t in ](s − δ) ∧ 0, s + δ[. On a bounded interval, this
is equivalent to a uniformly stochastically continuous property, namely for any
ε > 0 there is a δ > 0 such that P{|X(t)−X(s)| ≥ ε} < ε for any t, s in [0, 1/ε]
satisfying |t − s| ≤ δ. Actually, because the Polish space E is locally compact,
both conditions (c) and (c’) are equivalent under the Feller assumption (d).
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The relation between a transition function and the evolution operators (or
semigroup) is clearly (5.79) with Φ(t, s) = P (t, s). In the time-homogeneous
case, this relates with the resolvent operators by

R(λ)φ(x) =

∫ ∞

0

e−t λ Φ(t)φ(x)dt =

=

∫ ∞

0

e−t λdt

∫
Rd

φ(y)P (t, x,dy), ∀x ∈ Rd, (5.80)

which may be generalized to the non-homogeneous case.
A crucial relation between the transition function P (s, x, t, B) and the family

of stochastic processes X = Xsx is the equality

P{X(t) ∈ B |X(r), r ≤ s} = P (s,X(s), t, B), (5.81)

for every t > s ≥ 0 and B in B(Rd), which is the Markov property itself. This
is the primary building block, in the sense that when the family of stochastic
processes X is given first, some property on their paths is necessary to construct
the transition function, condition (5.75) is not sufficient. The general theory of
Markov processes is rather delicate, so that we prefer to limit ourself to the case
of standard Markov processes, i.e., cad-lag path and stochastically continuous
in a filtered spaces (satisfying the usual conditions).

Generally, a Markov process is used for modeling the dynamic of a motion
(e.g., of a particle). Intuitively, the Markov property expresses a prediction
of subsequent motion (of a particle), knowing its position at time t, does not
depend on what has been observed during the time interval [0, t]. In most of the
cases, the above (simple) Markov property is not sufficient, this starting afresh
property need to be used with stopping times. This is called the strong Markov
property and written as

P{X(t+ τ) ∈ B |X(r + τ), r ≤ 0} = P (τ, t,X(τ), B), (5.82)

for every t ≥ 0, B in B(Rd), and every stopping time. It is clear that any Markov
process with cad-lag paths and a Feller transition satisfies the strong Markov
property (5.82).

Only in very particular cases the transition function is explicitly known,
such as a Wiener or a Poisson process, see (4.20) or (4.21). In most of the
cases, the transition function is constructed from a family of linear possible
unbounded (infinitesimal generator) operators A(t) defined in a domain D(A(t))
and indexed in t ≥ 0. Moreover, what is actually known is the expression to
the operators A(t) for smooth or test functions, e.g., A(t) is a second order
elliptic differential operator with given coefficients, or more general an integro-
differential operator of a particular form. The semigroup theory or the theory of
evolution operators address this question, i.e., (1) if a semigroup {Φ(t) : t ≥ 0}
is given then characteristic properties on its so-called infinitesimal generator A
are listed and (2) if a given operator A satisfies the characteristic properties of
an infinitesimal generator then a semigroup {Φ(t) : t ≥ 0} can be constructed.
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For a linear and bounded operator A the arguments go back to the exponential
function, i.e.,

Aφ = lim
t→0

Φ(t)φ− φ

t
and Φ(t) =

∞∑
n=0

(t A)n

n!
= etA.

In general, a much more sophisticated argument is necessary, Conditions (a’) and
(e’) of the Definition 5.24 are characteristic properties of the so-called Markov-
Feller (or Feller-Dynkin) semigroups, which is the main tool we use to model
stochastic dynamics. Clearly, assumption (e’) imposes a certain type of regu-
larity, while (a’) translates into the so-called maximum principle satisfied by its
infinitesimal generator, see Appendix B for an overview of the semigroup Φ(t)
and its infinitesimal generator A

For a given transition probability function P (s, x, t, B) as in Definition 5.24,
since P (s, x, t, B) and an initial distribution determine the finite-dimensional of
the Markov process, we may use Kolmogorov’s construction to define a family
of Rd-valued random variables {Xsx(t) : t ≥ 0} for each initial time s ≥ 0 and
initial distribution x in Rd such that the Markov property (5.81) is satisfied,
i.e., for any real numbers s < t1 < · · · < tn and Borel subsets B1, . . . , Bn of Rd

the family of probability measures

Psx,t1,...,tn(B1 × . . .×Bn) =

∫
B1

P (s, x, t1,dx1)×

×
∫
B2

P (t1, x1, t2,dx2) . . .

∫
Bn

P (tn−1, xn−1, tn,dxn),

for any s < t1 < · · · < tn, has the consistency property. Therefore there exists a
unique probability measure Psx on the space Ω of all functions from [s,∞) into
Rd such that Psx{X(t) ∈ B} = P (s, x, t, B) for any t > 0 and B in B(Rd), where
X is the canonical (coordinate or projection) process, namely X(t, ω) = ω(t) for
any ω in Ω. Besides this, for any bounded and measurable function f(x1, . . . , xn)
we have

Esx{f(X(t1), . . . , X(tn))} =

∫
P (s, x, t1,dx1)×

×
∫
P (t1, x1, t2,dx2) . . .

∫
f(x1, . . . , xn)P (tn−1, xn−1, tn,dxn).

Thus, the Markov property (5.81) holds true for this construction. Since no
condition on the paths is assumed, this is referred to as a Markov process in
law, where the crucial Markov property may be re-written as

Esx{f(X(s1), . . . , X(sm)) g(X(r + t1), . . . , X(r + tn))} =

= Esx{f(X(s1), . . . , X(sm))h(X(r))},

where h(ξ) = Erξ{g(X(r + t1), . . . , X(r + tn))} and s < s1 < . . . < sm ≤ r ≤
t1 < . . . < tn. Note that only conditions (a), (b) and (d) in Definition 5.24 of
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transition function are used to construct a Markov process in law. As mentioned
previously, if the transition function P (s, x, t, B) is not a full probability, i.e.,
P (s, x, t,Rd) ≤ 1 then we need to use the one-point compactification R̄d of Rd

and define P (s, x, t, {∞}) = 1 − P (s, x, t,Rd) and P (s,∞, t, {∞}) = 1. In this
case, the above random variables {Xsx(t) : t ≥ 0} take values in R̄d.

Given a transition function P (s, x, t, B) we define the modulus of stochastic
continuity by

α(ε, T, δ,K) = sup
{
1− P

(
s, x, t, {y : |y − x| ≤ ε}

)
:

: ∀x ∈ K, s, t ∈ [0, T ], 0 < t − s ≤ δ
}
, (5.83)

where K ⊂ Rd. Because of assumption (c) or (c’) on a transition function we
know that for any ε, T > 0 and any x in Rd we have α(ε, T, δ, {x}) → 0 as
δ → 0. However, we need to assume that

lim
δ→0

α(ε, T, δ,Rd) = 0, ∀ε, T > 0, (5.84)

This condition (5.84) is satisfied for a Feller transition.
The following result addresses the construction of standard Markov processes

Theorem 5.25. Let P (s, x, t, B) be a transition probability function satisfy-
ing (5.84). Then for any initial condition (s, x) there exists a probability mea-
sure Psx on the canonical space D([0,∞),Rd) such that the canonical process
X(t, ω) = ω(t) is a Markov process with transition function P (s, x, t, B), which
satisfies Psx{X(t) = x, t ≤ s} = 1. Moreover, if the transition function satisfies

lim
δ→0

α(ε, T, δ,Rd)
δ

= 0, ∀ε, T > 0, (5.85)

then the support of the measure Psx is the canonical space C([0,∞),Rd). Fur-
thermore, if P (s, x, t, B) is a Feller transition function then the strong Markov
property relative to the canonical filtration (F(t) : t ≥ 0) (universally completed
with respect to the family {Psx : (s, x)} and right-continuous), i.e.,

Psx{X(θ) ∈ B | F(τ)} = P (τ,X(τ), θ, B), ∀B ∈ B(Rd), (5.86)

for any finite stopping times θ ≥ τ ≥ s, and the filtration (F(t) : t ≥ 0) is
quasi-left continuous.

Proof. Since this is a classic result for the construction of Markov processes,
only the key points will be discussed here, for instance, reader may consult the
book by Dellacherie and Meyer [36, Section XIV.24, pp. 169–172] or Sato [116,
Theorem 11.1, pp. 59–63] for details.

First, we need some notation. Let R be a subset of times in [0,∞) and ε > 0.
We say that a family X = {X(t) : t ≥ 0} of Rd-valued random variables (1)
has ε-oscillations n-times in R for a fixed ω if there exist t0 < t1 < · · · < tn in
R such that |X(ti)−X(ti−1)| > ε for any i = 1, . . . , n, or (2) has ε-oscillations
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infinitely often in R for a fixed ω if for any n the family X has ε-oscillations
n-times in R. Denote by BX(n, ε,R) and BX(∞, ε, R) the set of ω where X has
ε-oscillations n-times and infinitely often in R, respectively.

Most of the arguments is to find a modification of the Markov process in
law constructed above. To that effect, denote by Ω2 the set of ω such that the
one-sided limits

lim
s→t, s<t s∈Q

X(s, ω) and lim
s→t, s>t s∈Q

X(s, ω)

exist in Rd for any t ≥ 0. Note that for any strictly decreasing sequence {tn} to
t, of rational numbers in [0, ℓ], there exists N = N(ε, ℓ) such that |X(tn, ω) −
X(tN , ω)| ≤ ε for any n ≥ N and ω in Ω∖BX(∞, ε, [0, ℓ]∩Q). This shows that
Ω2 contains the set

Ω∗
2 = Ω∖

∞⋃
ℓ=1

∞⋃
k=1

BX(∞, 4/k, [0, ℓ] ∩Q),

which is measurable since Q is countable.
The following modification, X∗(t, ω) = 0 for every ω ∈ Ω∖ Ω∗

2, and

X∗(t, ω) = lim
s→t, s<t s∈Q

X(s, ω), ∀ω ∈ Ω∗
2,

has cad-lag paths and because the stochastically continuity we obtain

P{X(t, ω) = X∗(t, ω), ω ∈ Ω∗
2} = 1.

To complete this cad-lag modification we need to show that P (Ω∗
2) = 1.

The following estimate, proved by induction on the integer n, yields the
result as discussed below. If 0 ≤ s1 < · · · < sm ≤ r ≤ t1 < · · · < tk < r+ δ ≤ T
and R = {t1, . . . , tk} then we have

E{Z 1BX(n,4ε,R)} ≤ E{Z} [2α(ε, T, δ,Rd)]n, (5.87)

for every Z = f(X(s1), . . . , X(sℓ)) with a nonnegative measurable function f,
and where α(ε, T, δ,Rd) is defined by (5.83). A key point is the fact that the
right-hand side does not depend on k.

Thus, to show that P (Ω∗
2) = 1 we will prove that P{BX(∞, 4/k, [0, ℓ]∩Q)} =

0 for any integer k and ℓ. Indeed, by making a subdivision of [0, ℓ] into j equal
intervals, we obtain

P{BX(∞, 4/k, [0, ℓ] ∩Q)} ≤

≤
j∑
i=1

lim
n→∞

P{BX(n, 4/k, [(i − 1)ℓ/j, iℓ/j] ∩Q),

and from the above estimate (5.87) with {t1, t2, . . .} = [(i − 1)ℓ/j, iℓ/j] ∩ Q
deduce

P{BX(n, 4/k, [(i− 1)ℓ/j, iℓ/j] ∩Q)} ≤ [2α(1/k, ℓ, ℓ/j,Rd)]n,
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for every n = geq1. In view of condition (5.84), for a given ℓ we can select the
integer j sufficiently large so that 2α(1/k, ℓ, ℓ/j,Rd) < 1. Hence, as n → ∞ we
get P{BX(n, 4/k, [(i− 1)ℓ/j, iℓ/j] ∩Q)} = 0, which implies P (Ω∗

2) = 1.
When condition (5.85) is satisfied, we have to find a measurable set Ω∗

1 with
P (Ω∗

1) = 1 and such that X∗(t, ω) = X∗(t−, ω) for any t > 0 and ω in Ω∗
1.

Indeed, for a given ℓ > 0, consider the set R(n, ε, ω), with n = 1, 2, . . . and
ε > 0, defined as the number of i = 1, . . . , n such that |X∗(iℓ/n, ω) −X∗((i −
1)ℓ/n, ω)| > ε. Then, ω 7→ R(n, ε, ω) is measurable and

E{R(n, ε, ·)} ≤ nα(ε, ℓ, ℓ/n).

Hence, condition (5.85) and Fatou’s lemma yield E{lim infn→∞R(n, ε, ·)} = 0
and therefore the set

Ω∗
1(ℓ) =

∞⋂
k=1

{
ω : lim inf

n→∞
R(n, 1/k, ω) = 0

}
is measurable with full measure, i.e., P{Ω∗

1(ℓ)} = 1. Moreover, if ω is in Ω∗
1(ℓ)

then for any t in (0, ℓ] we have |X∗(t, ω)−X∗(t−, ω)| ≤ ε, for every ε > 0. Thus
Ω∗

1 =
⋂
ℓ Ω

∗
1(ℓ) has the desired property.

It is clear that once a cad-lag version, namely X∗, has been found, we can
take the image probability measure in the canonical space to produce Psx as
required. On the other hand, the stochastic continuity and the cad-lag regularity
of the paths imply that P{X∗(t) = X∗(t−)} = 1 for any t > s.

The right-continuity of paths ensures that the process X∗ is adapted to
F(t) = Fsx(t+) =

⋂
ε>0 Fsx(t), where Fsx(t) is the σ-algebra generated by

the canonical process and P -null sets. Thus (5.86) is satisfied after using the
continuity of the transition probability function and approximating any finite
stopping time.

Regarding the quasi-left continuity we proceed as follows. Let {τn : n ≥ 1}
be a sequence of stopping times convergence almost surely to τ, with P (τn <
τ <∞, τ > s) = 1. For any two functions f and g in C0(Rd) we have

lim
t→0

lim
n→∞

E{f(X∗(τn)) g(X
∗(τn + t))} =

= lim
t→0

E{f(X∗(τ−)) g(X∗(τ + t−))} = E{f(X∗(τ−)) g(X∗(τ))},

because the right-continuity of the paths. On the other hand, the strong Markov
property (5.82) and the Feller property imply

lim
n→∞

E{f(X∗(τn)) g(X
∗(τn + t))} = E{f(X∗(τ−))P (τ, τ + t,X∗(τ−), g)}

and

lim
t→0

E{f(X∗(τ−))P (τ, τ + t,X∗(τ−), g)} = E{f(X∗(τ−)) g(X∗(τ−))}.

Hence,

E{f(X∗(τ−)) g(X∗(τ))} = E{f(X∗(τ−)) g(X∗(τ−))},

i.e., P{X∗(τ) = X∗(τ−)} = 1 and X∗ is almost surely continuous at τ.
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Usually, condition (5.84) is replaced by

(a) lim
|x|→∞

sup
0≤s<t≤T

P (s, x, t,K) = 0,

(b) lim
δ→0

α(ε, T, δ,K) = 0, ∀ε, T > 0,
(5.88)

for any compact subset K of Rd, and assumption (5.85) can be substituted by

lim
δ→0

α(ε, T, δ,K)

δ
= 0, ∀ε, T > 0, any compact K ⊂ Rd, (5.89)

and in general this construction ie valid for a transition function, without the
probability condition P (s, x, t,Rd) = 1, see Taira [130, Chapter 9 and 10, pp.
273–424].

To properly handle the strong Markov property, we need to use the univer-
sally complete σ-algebra, i.e., first we remark that the above construction can
be used with any initial law µ at any time 0 and the corresponding filtration is
{F0µ(t) : t ≥ 0}. Thus F0(t) =

⋂
µ F0µ(t), which is not necessarily complete

with respect to P 0µ, but it satisfies F0(t+) = F0(t), i.e., it is right-continuous,
and the so called Blumenthal’s zero-one law, i.e., P (A) = 0 or P (A) = 1 for any
A in

⋂
t>0 F0(t).

Let us look at the particular case of additive processes, see Definition 5.19,
which include the Lévy processes. The transition function of an additive process
is spatially homogeneous, i.e., if P (s, x, t, B) is the transition function of an
additive process X then P (s, x, t, B) = P (s, 0, t, B − x) and we only have to
consider transition functions of the form P (s, t, B). Thus, any additive processX
yields a transition function P (s, t, B) = P{X(t)−X(s) ∈ B}, for any t > s ≥ 0
and B in B(Rd) so that X is a (stochastically continuous) Markov process in
Rd stating at 0. Its associated semigroup is called a convolution semigroup, i.e.,

P (t, s)φ(x) =

∫
Rd

φ(x+ y)P (s, t,dy)

and Chapman-Kolmogorov identity is re-written as

P (s, t, B) =

∫
Rd

P (s, r,dx)P (r, t, B − x),

for every t > r > s ≥ 0 and B in Rd. It is also clear that the previous Theo-
rem 5.25 applies to this case, to obtain a cad-lag of additive processes in law.
Because the transition function P (s, t, B) is spatially homogeneous, it satisfies
the Feller conditions and the process is quasi-left continuous, see Definition 5.15.

Lévy processes X are also time-homogeneous and its semigroup is a true
convolution and the infinitely divisible distribution µ = X(1) completely deter-
mines the process, see Section 5.10. Thus to each infinitely divisible distribution
µ there corresponds a Lévy process. For instance, Poisson and compound Pois-
son processes correspond to Poisson and compound Poisson distributions. The
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Lévy process on Rd corresponding to a Cauchy distribution with parameters γ
in Rd and c > 0, namely, for any B in B(Rd),

µ(B) = π−(d+1)/2Γ(d+1
2 ) c

∫
B

(
|x− γ|2 + c2

)−(d+1)/2
dx,

and µ̂(y) = e−c|y|+i γ·y, ∀y ∈ Rd, (5.90)

is called a Cauchy process. However, the Lévy process on R corresponding to
an exponential distribution is called a Γ-process, since it has a Γ distribution at
any t > 0.

If X is an additive process on Rd with a Gaussian distribution at each t,
then X has continuous paths almost surely, see Sato [116, Theorem 11.7, pp.
63-64]. For instance, for dimension d = 1, the characteristic function is

E{ei y·X(t)} = e−t y
2/2, ∀t ≥ 0, y ∈ Rd,

and a simple calculation shows that condition (5.85) of Theorem 5.25 is satisfied.
Actually, the only additive process with continuous paths are Wiener processes.

For a given additive process X we consider the σ-algebra F(t) generated by
all null sets and the family of random variables X(s) with s ≤ t. Because of
the independence of increments, an application of Kolmogorov’s zero-one law
to a tail σ-algebra shows that F(t) is already right-continuous, so that it is the
filtration associated with X.

The reader is referred to the books by Blumental and Getoor [17], Dellacherie
and Meyer [36, Chapters XI–XVI], Ethier and Kurtz [47], Sato [116, Chapter 1
and 2, pp. 1–68], among others.

5.12 Hunt and Standard Processes

In the modern theory of Markov processes, the emphasis is put on Markov tran-
sition functions p(t, x,A), where t ≥ 0, x ∈ E, a locally compact Hausdorff
space, and A is any element of the Borel σ-algebra in E, as described in the pre-
vious Section 5.11 for the case E = Rd. Thus, starting from a Markov transition
function (or its Laplace transform, the resolvent), the actual construction of a
Markov process having the prescribed transition functions is known a realization
of the Markov process. Certainly, Kolmogorov construction and path regular-
ity is the natural approach. Moreover, the strong Markov property is a highly
desired. Therefore, continuous time Markov processes are usually constructed
in the canonical cad-lag sample space Ω = D([0,∞), E), i.e., we construct a
probability measure P on Ω such that the canonical process Xt(ω) = ω(t) is the
desired Markov process. Furthermore, to simplify the notation, only the time-
homogenous Markov process is considered, since by adding one dimension to the
space (i.e., using E× [0,∞) instead of E) all assumptions can be transported to
the time-dependent case. Clearly, it is not necessary to have an explicit form for
the transition function (or resolvent). Only a number of properties are involved,
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which can be obtained from a given semigroup. The semigroup is described in
term of its infinitesimal generator or its Dirichlet form.

Essentially based on super-median functions and super-martingales argu-
ments, the general theory of processes (e.g. Dellacherie and Meyer [36, Section
XIV.24, pp. 169–172]) shows that a cad-lag realization can be constructed for
any Markov transition function, i.e., satisfying (a), (b) and (d) of Definition 5.24,
i.e.,

(a) for each t > 0 and x in E the function B 7→ P (t, x,B) is a probability
measure on (E,B(E)),

(b) for each B in B(E) the function (t, x) 7→ P (t, x,B) is a measurable,

(c) for any x in E and B in B(E) we have

lim
t→0

P (t, x,B) = δx(A),

i.e., the limit is equal to 1 if x belongs to A, and 0 otherwise,

(d) for each s, t > 0, x in E and B in B(E) we have

P (s+ t, x,B) =

∫
E

P (s, x,dy)P (t, y, B),

i.e., the Chapman-Kolmogorov identity holds.

Condition (c) is not actually necessary, but certainly is a natural complement
to (d), which becomes necessary for the sub-Markov transitions, see below.
Note that the Chapman-Kolmogorov identity combined with the inequality 0 ≤
P (t, x,B) ≤ 1 show that the limit in (c) is monotone decreasing.

Besides the Feller property, there is another key property (necessary to build
a nice theory), the so called quasi-left continuity . Moreover, the one-point
compactification Ē = E ∪ {∞} (where the symbol ∞ does not belong to E)
of a locally compact Hausdorff space E (the state space) and the concept of a
coffin state and a lifetime are necessary (recall that for a locally compact space
E, a point ∞ is adjoined to E as the point at infinity if K is not compact, and
as an isolated point if K is compact). Typically, given a stopping time ς and
an adapted E-valued cad-lag process Y on a filtered probability space (Ω,F, P ),
F = (Ft : t ≥ 0), we define a new process X as follows

X(t) =

{
Y (t) if t < ς,
∞ if t ≥ ς,

which is Ē-valued with lifetime ς. Clearly, the process Y needs only to be defined
on the semi-open stochastic interval J0, ςJ. Now, a cad-lag (up to its lifetime)
process X with values in Ē has the lifetime ς = inf{t ≥ 0 : X(t) = ∞} if
X(t) = ∞ for every t ≥ ς. It is important to observe that X with values in Ē
may not be “fully” cad-lag, the limit as t→ ς does not necessarily exist. Thus,
the canonical cad-lag space D([0,∞), E) cannot be used with Ē instead of E,
this requires some adjustment, via the so-called Ray resolvent. This means that
the coffin state and one-point compactification state space are just convenient
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notations, the key elements are the lifetime ς and the E-valued process X, which
is cad-lag only up to ς, i.e., the pathwise left-hand limit X(ς−) may not exist,
even on ς <∞.

Definition 5.26 (quasi-left continuity). Let ς be a stopping time on a filtered
probability space (Ω,F, P ), F = (Ft : t ≥ 0). A cad-lag adapted process X
with valued in E is called quasi-left continuous on J0, ςJ if X(τn) → X(τ)
almost surely on {τ < ς}, for any increasing sequence {τn} of stopping times
converging to τ, with τn < τ almost surely.

Note that for a (cad-lag) quasi left-continuous we have P{X(t) = X(t−)} =
0 for every t in J0, ςJ and the set of probability zero, where Xτn fails to converge,
depends on the stopping time τ and the sequence {τn}. Hence, in general the
process is not continuous on the left, because it may not be possible to find a
common set of probability zero for all times, i.e., a continuous modification of
X does not necessarily exist.

Recall also that a stopping time τ is predictable if and only if that there
exists an increasing sequence of stopping times τn with τn < τ almost surely
and converging to τ . Also, a stopping time τ is called totally inaccessible if for
any predictable stopping time θ we have that P (τ = θ <∞) = 0.

It is proved in Jacod and Shiryaev [69, Propositions 1.32, 2.26], that the
random set of discontinuities of any cad-lag process X, i.e., the set of random
jumps JX = {(t, ω), X(t−, ω) ̸= X(t, ω)} has the form JX =

⋃
nJτnK where τn

is a sequence of stopping times, which is called a sequence that exhausts the
jumps of X. Moreover, the following statements are equivalent:

(1) the process X is quasi left-continuous on J0,∞J,
(2) we have X(τ−) = X(τ) almost surely on {τ < ∞} for every predictable
time τ,

(3) there exists a sequence of totally inaccessible stopping times that exhausts
the jumps of X.

5.12.1 Digression on Markov processes

As mentioned early and mainly for the notation simplicity, details are given only
for time-homogeneous Markov processes.

Definition 5.27 (Markov processes). A cad-lag Markov process with values in
a Hausdorff space E is composed by the following elements:

(1) the canonical cad-lag space D = D([0,∞), E) endowed with σ-algebra F ,
the σ-algebra generated by the canonical process Xt(ω) = ω(t),

(2) a right-continuous increasing family of σ-algebras F = (Ft : t ≥ 0) on (D,F),
i.e., a not necessarily completed filtration,

(3) a family of cad-lag processes (Pµ, X) or (P,Xµ) (depending on what is to
be emphasized) indexed by µ, i.e., Pµ is a probability measure on (D,F) and
Xµ a measurable function from D into itself, such that the E-valued random
variable X(t) is Ft-measurable, for every t ≥ 0, and µ is the initial distribution
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on the state space E, i.e., P{X(0) ∈ B} = µ(B), for every B in B(E),

(4) a transition function p on E, i.e., (a),. . . , (d) above are satisfied,

All these elements come together in the Markov property

P (X(t) ∈ B | Fs) = p(t− s,X(s), B), ∀t ≥ s ≥ 0, ∀B ∈ B(E), (5.91)

which is an almost surely equality.

Observe that the left hand side in the Markov property is only defined almost
surely, while the right hand side is well defined everywhere. This means that for
every µ there exists a subset N = Nµ of the canonical space D with Pµ(N) = 0
such that equality (5.91) holds outside of N.

The above definition may take place in an arbitrary probability space (Ω,F),
but since the processes are cad-lag, the canonical sample can be used to con-
cretize arguments. Moreover, with the notation (Pµ, X) the probability measure
is emphasized with X(t, ω) = ω(t) the canonical process, while (P,Xµ) suggests
a fixed probability with a selectable process Xµ.

The indexation in term of distributions µ on the state space is not actually
necessary, a smaller class suffices. Indeed, if the Markov process can be con-
structed for any µ = δx with x in E and some measurability conditions are im-
posed on the mapping x 7→ (Px, X) or x 7→ (P,Xx), where Px andXx correspond
to the initial distribution δx, e.g., Px{X(0) = x} = 1 or P{Xx(0) = x} = 1.
Clearly, we have Pµ = Px µ(dx).

The filtration F needs to be universally completed with respect to the prob-
ability measures Pµ or Px. This is to enlarge each F0 (and consequently Ft
for every t > 0) with sets which have measure zero relative to each Pµ, i.e.,
first define Fµ

t by completing Ft with respect to Pµ, next set F0
t = ∩µFµ

t

and finally, take F̄t = ∩ε>0F0
t+ε to make it right-continuous if necessary, i.e.,

F̄ = (F̄t : t ≥ 0). In most of the cases, the initial filtration F is just the history
of the process X, which may depends on µ if we insist in the (P,Xµ) setting.
So, by using the embedding in the canonical space (Pµ, X) with X(t, ω) = ω(t)
the canonical processes, the initial filtration is fixed and F̄ is usefully.

For this universally completed filtration F̄, we consider an equality similar
to (5.91), namely, for every almost surely finite stopping time τ relative to F̄
assume

P (X(τ + t) ∈ B | F̄τ ) = p(t,X(τ), B), ∀t ≥ 0, ∀B ∈ B(E), (5.92)

which is again an almost surely equality, and where F̄τ is the σ-algebra generated
by the stopping time τ. This is referred as the strong Markov property and
a Markov process satisfying this condition is called a strong Markov process.
Certainly, condition (5.92) can be relative to the initial filtration F, but some
technical reasons lead to the universally completed filtration F̄.

For the canonical cad-lag space, the so-called shift operator ϑt(ω) = ω(·+ t)
is viewed as mapping D into itself, and satisfying

Xs ◦ ϑt = Xt ◦ ϑs = Xs+t, ∀t, s ≥ 0,
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where the composition Xs ◦ ϑt(ω) = Xs(ϑt(ω)) is used. In the abstract setting
the shift map ϑ is postulate with the above properties. The strong Markov
property takes the form

P (Xt ◦ ϑτ ∈ B | F̄τ ) = p(t,Xτ , B), ∀t ≥ 0, ∀B ∈ B(E),

for every almost surely finite stopping time τ relative to F̄.
In all the above, it is clear that the transition function is the main element

in the definition of Markov processes. The construction of a Markov transi-
tion function is quite delicate and several ways are known. Starting from a
infinitesimal generator or a Dirichlet form, functional analysis and in particu-
lar the semigroup theory are used to obtain suitable transition functions. Its
probabilistic counterpart starts with simple (or known) Markov processes and
via some transformations a transition function is obtain, the key arguments are
stochastic differential equations and its generalizations. In some cases, the tran-
sition function obtained is not quite a Markov transition function, it is what is
called a sub-Markov transition function, i.e., all conditions are satisfied, except
for (a) where p(t, x, ·) is only a sub-probability, i.e., B 7→ p(t, x,B) is a measure
with p(t, x, E) ≤ 1. In this case, the condition (c) is more important.

Some restrictions on the state space E are necessary to deal with sub-Markov
transition function, namely, E is now a locally compact Hausdorff. This is
necessary to consider its one-point compactification Ē = E ∪ {∞} and the
companion argument about coffin state and lifetime of a process. This sub-
Markov case is reduced to the preceding Markov theory by extending the given
sub-Markov transition function in E to a Markov transition function on Ē.
Indeed, set p̄(t, x,B) = p(t, x,B) for any Borel set B in E, p̄(t, x, {∞}) =
1 − p(t, x, E), p̄(t,∞, {∞}) = 1 and p̄(t,∞, E) = 0. As mentioned early, this
extra point is often called the coffin state. The extra coffin state ∞ does not
belong to E, it is the point at “infinity” when E is non compact and it is an
isolated point when E is compact.

Hence, the sub-Markov case is reduced to a Markov case on a compact space
Ē, which has a particular isolated point. For the Markov process X correspond-
ing to the Markov transition function p̄ on the one-point compactification Ē,
the lifetime functional

ς = inf
{
t ≥ 0 : X(t) = ∞

}
(5.93)

acting on the canonical space plays a fundamental role. Again, observe that the
canonical cad-lag space still being D([0,∞), E) and not D([0,∞), Ē), because
X̄ with values in Ē is not “fully” cad-lag, the limit as t→ ς does not necessarily
exist. Hence, a Markov process with values in the compact space Ē with lifetime
ς = ∞ (almost surely for every Pµ) is actually a realization of a Markov tran-
sition on the initial locally compact space E. A sub-Markov transition function
produces either a E-valued cad-lag sub-Markov process with a lifetime ς < ∞
with positive probability or equivalently a Ē-valued cad-lag (up to its lifetime)
Markov process.
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Most of the interest is on state spaces E, which are actually Polish spaces
(complete separable metric spaces) so that the canonical cad-lag sample space
D([0,∞), E) is also a Polish space. The locally compact character is used when
dealing with sub-Markov transition functions.

The canonical process Xt(ω) = X(t, ω) = ω(t) and the shift map ϑt(ω) =
ϑ(t, ω) = ω(· + t), which are defined on the canonical space D([0,∞), E), may
be considered as E-valued and D-valued cad-lag processes, respectively (note
that X = {X(t) : t ≥ 0} can be regarded as a D-valued random variable).
If we work on the one-point compactification state space Ē and the canonical
filtration F is used (i.e., generated by the canonical process) then the lifetime
functional (5.93) can be interpreted as a stopping time. There are other type of
functionals or processes that we may consider

Definition 5.28 (functional). Let A and L be measurable functions from the
canonical cad-lag space D([0,∞), E) into D([0,∞),R). Then A is called an
additive functional if A0(ω) = 0 and At(ω)−As(ω) = At−s(ω(·+ s)), for every
t ≥ s ≥ 0 and ω in D([0,∞), E). Also L is called a multiplicative functional
if L0(ω) = 1 and Lt(ω)Ls(ω) = Lt−s(ω(· + s)), for every t ≥ s ≥ 0 and
ω in D([0,∞), E). Similarly, an additive functional A is called increasing (or
nondecreasing) ifAt−As ≥ 0, for every t > s ≥ 0, and a multiplicative functional
L is called positive (or nonnegative) if Lt ≥ 0, for every t > 0. If A or L is
considered on the one-point compactification state space Ē then we also require
A or L to be constant on the stochastic interval Jς,∞J, i.e., it has been extended
to [0,∞) with values in Ē.

It is possible to generalize and suppose that At has bounded variation trajec-
tories, still having the possibility to integrate with respect to At in the Stieltjes
sense. Typical examples are

At =

∫ t

0

c(Xs)ds and Lt = exp
{∫ t

0

c(Xs)ds
}
,

where c is a positive (measurable) function defined on E, and in the case of Ē
we suppose c(∞) = 0.

If one is working on an abstract measurable space (Ω,F) then the shift
operator ϑ is used to re-write the conditions as At−As = At−s ◦ϑs and LtLs =
Lt−s ◦ ϑs, for every t > s ≥ 0. In this case, functionals are regarded as either
R-valued cad-lag processes or D([0,∞),R)-valued random variables.

As usually, the difficulty appears as soon as a probability (or a family of
probabilities, as in the case of Markov processes) is assigned on the canoni-
cal space D([0,∞), E). The functionals are almost surely defined and we are
interested in having “good” versions (or modifications) of them.

5.12.2 Classification of Markov processes

Concrete examples of Markov processes like diffusion processes, jump processes
and Lévy processes have many properties in common besides the Markov prop-
erty. They have all the Feller property, i.e., the semigroup associated to the
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transition functions is a (strongly) continuous on C0(E), in particular, it maps
the function space C0(E) in itself or equivalent the Feller property is satisfied.
Here the state space E is a locally compact Hausdorff space (usually a Polish
space), and C0(E) is the space of continuous functions null at infinity. Note
that the Feller processes are defined just starting from the transition functions.

It can be proved that given a Feller transition function p(t, x,A) in E, there
exist strong Markov processes (with cad-lag quasi left-continuous trajectories)
having p as its transition function, e.g. see Rogers and Williams [112, Chap-
ters III and VI]. The class of processes defined by these properties is the class of
Hunt processes, which contains the Feller processes. A Hunt process can be con-
structed from any regular symmetric Dirichlet form (see Fukushima et al. [51]).
However, to extend this result to regular non-symmetric Dirichlet forms (see
Ma and Röckner [91]), it is necessary to consider a light generalization of Hunt
process, that of standard process, introduced by Blumenthal and Getoor [17].

Roughly speaking, we can schematize

Feller processes ⊂ Hunt processes ⊂ standard processes ⊂ right processes
Ray processes

where formal definitions are given below.

Definition 5.29 (Hunt and standard). Let us be a time-homogeneous cad-lag
Markov process (as in Definition 5.27) with values in a Hausdorff space E (i.e.,
obtained form a Markov transition function on E where its lifetime functional
ς = ∞ by definition) or with values in the one-point compactification Ē of a
locally compact Hausdorff space E (i.e., obtained form a sub-Markov transition
function on E where ς denotes its lifetime functional).

(a) It is called a Hunt process if the strong Markov property (5.92) is satisfied
and the paths are quasi left-continuous on [0,∞), with respect to any probability
Pµ.

(b) It is called a standard process if the strong Markov property (5.92) is satisfied
and the paths are quasi left-continuous on [0, ς), with respect to any probability
Pµ.

(c) Finally, it is special standard if also the random variable Xτ is
∨
n Fτn -

measurable, for any increasing sequence {τn} of stopping times converging to τ,
with τn < τ almost surely.

Here
∨
n Fτn is the smaller σ-algebra which contains Fτn , for every n ≥ 1.

Note the small difference with Hunt and Standard processes on the quasi left-
continuous property that is valid almost surely on {τ < ζ}, instead of {τ <∞}.
Thus a standard process is a Hunt process if its lifetime is infinite or is it is
quasi left-continuous at ς, i.e., a Hunt process is realized in the canonical space
D([0,∞), E) or D([0,∞], Ē). Clearly, it can be proved that any Hunt process is
a special standard process.

The following result holds:

Theorem 5.30. A Hunt process admits a Lévy system, i.e., there exists a
continuous additive functional H and a family of kernel N(x, dy) on E, such
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that t 7→ Ht is a continuous, N(x, {x}) = 0 for any x ∈ E, and

Eµ
( ∑

0<s≤t

f(Xs−, Xs)1JX (s, ω)
)
=

= Eµ
(∫ t

0

dHs

∫
E

f(Xs, y)N(Xs,dy)
)

(5.94)

for any Borel positive f , defined on E×E, and any initial distribution µ on E,
where JX = {(t, ω), X(t−, ω) ̸= X(t, ω)}.

Recall that a kernel N(x,dy) on E means (a) for each x in E the map
B 7→ N(x,B) is a (σ-finite) measure on B(E) and (b) for each B in B(E)
the map x 7→ N(x,B) is measurable. For instance, a proof can be found in
Benveniste and Jacod [10] or Sharpe [119, Section 73, pp. 342–350].

Note that if we consider any Borel positive f , defined on E×E with f(x, x) =
0 then (5.94) reads

Eµ
( ∑

0<s≤t

f(Xs−, Xs)
)
= Eµ

(∫ t

0

dHs

∫
E

f(Xs, y)N(Xs,dy)
)
,

and for f = 1 out of diagonal we get that Eµ{number of jumps in (0, t]} =
Eµ{Ht}.

Following the discussion in Rogers and Williams [112, Chapter III], the class
of Ray processes (defined in a axiomatic way) is the most convenient, among the
various classes of Markov processes, to cope all the (time-continuous) Markov
chains. They are in a sense “equivalent” to the class of right processes, intro-
duced by Meyer (la classe droite), see also Dellacherie and Meyer [36, Chapters
XI–XVI] or Sharpe [119, Chapter I].

As already pointed out, to give a Markov transition function p(t, x,A) on
E (which is jointly measurable in t and x) is equivalent to give the Laplace
transform, called in this context a resolvent kernel

Rλ(x,A) =

∫ ∞

0

e−λt p(t, x,A) dt

For any bounded Borel function f on E we consider also the resolvent operator

Rλf(x) =

∫
E

f(y) Rλ(x,dy)

that verifies the resolvent identity Rλ −Rµ + (λ− µ)RλRµ = 0 and λRλ1 = 1.
If it happens that the resolvent operator maps C0(E) into itself and λRλ → I in
the uniform convergence of C0(E), then the Markov process associated is Feller
process.

Ray weakened the condition of strong continuity in zero, introducing the
so called Ray resolvent. To this end, let us introduce the concept of α-super-
median function, i.e. a positive, continuous and bounded function on E such
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that

λRλ+αf ≤ f, ∀λ > 0,

and let us denote the cone of α-super-median functions by CSMα.
Now, {Rλ} is called a Ray resolvent on E if each Rλ maps Cb(E) → Cb(E)

and ⋃
α≥0

CSMα separates points of E.

In other words, given two points x, x′ in E, there exist a α and a α-super-median
function f such that f(x) ̸= f(x′). The canonical Markov process associated
to a Ray resolvent admits a cad-lag modification that has the strong Markov
property.

• Remark 5.31. In potential theory the resolvent operator Rλ is called the λ-
potential operator. There is a concept similar to α-super-median functions in
term of the semigroup Pt associated to the Markov transition function p(t, x,A),
namely, a positive Borel function f is called α-super-mean-valued (also called α-
super-averaging, see Chung [27, p. 45]) if e−αtPtf ≤ f for all t ≥ 0. A α-super-
mean-valued function is also a α-super-median function, but, in general, the
converse is not true, i.e., a α-super-median function is not necessarily a α-super-
mean-valued function. In potential theory it is important also the concept of α-
excessive function f , i.e., a α-super-mean-valued function f such that e−αtPtf ↑
f as t ↓ 0. This class of functions are useful generalization of super-harmonic
functions in classical potential theory.

Definition 5.32 (right and Ray processes). The class of right processes with
state space E is the class of time-homogeneous cad-lag strong Markov processes,
such that the process f(Xt) is almost surely right continuous for any α > 0 and
any α-super-mean-valued function f . On the other hand, a Ray process is one
with Ray resolvent, i.e., the super-median functions ∪α≥0CSM

α separates points
of E.

A useful result is the fact that any standard process is a right process,
which is not so simple to prove. As mentioned early, Ray processes are (time-
homogeneous) cad-lag strong Markov processes.

5.12.3 Some Examples and Remarks

First we give a couple of examples.

Example 5.1. Consider jump Markov processes, for instance, see the books
Bremaud [21], Feller [48, II, Section X.3, pp. 316–320], Ethier-Kurtz [47, Section
8.1, pp. 376–382], Sharpe [119, Section 72, pp. 339–342]. Let {Xt} be a cad-
lag piecewise constant process. In order that {Xt} be a Markov process, we
introduce a kernel Q(x,B) on E, which describes the probability distribution of
the points where the process jumps away from x, and a function λ(x) ≥ 0, that
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describes the rate of jumps, i.e. P x(τ > t) = e−λ(x)t, where τ = inf{t : Xt ̸=
X0}. We set τ0 = 0 and define recursively τn = τn−1 + τ(ϑτn−1) the subsequent
jump times. Alternatively we describe the process by means of infinitesimal
generator

Af(x) = λ(x)

∫
E

[
f(y)− f(x)

]
Q(x,dy).

In this case, if λ is bounded then then Lévy system can be taken as

Ht =

∫ t

0

λ(Xs)ds, N(x,B) = Q(x,B).

If λ is not bounded we can take

Ht = t, N(x,B) = λ(x)1λ(x)<∞Q(x,B).

In general the Lévy system for a Markov process is not uniquely determined.

Example 5.2. In the case of a Lévy process in Rn, with Lévy measure ν, then
we choice for a Lévy system can be

Ht = t, N(x,B) = ν(B − x).

For example, consider the symmetric Cauchy process, i.e. a purely jump Lévy
process with Lévy measure

ν(dy) =
1

π

1

y2
dy

on R∖ {0}.

Now, let us show some application of additive functionals. Given a Hunt
process {Xt} with Markov transition function p(t, x,A), consider a continuous
positive additive functional At and the multiplicative functional

Lt = e−At

as in Definition 5.28. We will consider two other Hunt processes, starting from
Xt.

The first is XA
t , the canonical subprocess of Xt with respect to the multi-

plicative functional Lt. It is constructed starting from the Markov transition
function pA(t, x,B), given by the semigroup

PAt f(x) = Ex{Ltf(Xt))}, x ∈ E, f Borel and positive.

It is possible also to construct XA
t by introducing a new “lifetime”

ςA = inf{t < ζ : At ≥ ζ},
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where ζ is a random variable exponentially distributed with mean value 1 and
independent of the Hunt process Xt with respect to P x, for every x ∈ E. Then
define

XA
t = Xt, for t < ςA

and XA
t = ∞ otherwise. For details see Fukushima et al. [51, pag. 326].

The second process is given by

X̌t = Xτt , τt(ω) = inf{s > 0 : As(ω) > t}.

with its natural filtration F̌t = Fτt , for t ≥ 0. It can proved that the process
{X̌t} is a strong Markov process, with respect to the filtration {F̌t : t ≥ 0}.
Moreover, if At is a strictly positive continuous additive functional, then {X̌t}
is a Hunt process.

There are other functionals (besides additive or multiplicative) that can
be used to transform Markov processes, e.g., the first exit time from a region
(usually a smooth open or closed subset of Rd). For instance, if O is an open
connected subset of Rd (which is the interior of its closure) then the procedure
of stopping the process at the first exit time from the closure of O, namely,

XO
t = Xt∧τ , τ(ω) = inf{s ≥ 0 : Xs(ω) ∈ Rd ∖O},

produces a Hunt Markov process if the initial we were so. However, XO may not
be a Feller process when X is Feller. Note that the Hunt character of the process
has to do mainly with time-regularity of the paths, which is clearly preserved by
the above functional (even if O is only a Borel set), while the Feller character
involves the study of τ = τx as a functional depending on the initial condition
X0 = x. The reader may consult, among other sources, the papers Stroock and
Varadhan [127, 128] for a complete study on the (degenerate) diffusion processes
with boundary conditions.

Perhaps, the prototype of Hunt processes are the diffusions process (with
jumps) in infinite dimension or with boundary conditions. For instance, a Levy
or Wiener process in infinite dimension does not produce a strongly continuous
semigroup in C0, even if the Feller property (i.e., mapping C0 into itself) is
satisfied. If we stop a degenerate diffusion in Rd at the first exit time from a
smooth domain then we produce a simple example of a Markov process without
the Feller property, which is stochastically continuous and produces a Hunt pro-
cess. Moreover, piecewise deterministic processes (see Davis [34] and references
therein) may not be Feller processes (this is mainly due to the nature of the
boundary conditions or jump-mechanism, they may have predictable jumps, so
they are not necessarily quasi left-continuous, see Section 5.9), but they are
cad-lag strong Markov processes, actually, Ray and right processes. If a Markov
transition function yields a Hunt process then we may expect that a sub-Markov
transition functions (with the same degree of regularities) should yield a special
standard process. On the other hand, most examples of sub-Markov transition
functions are obtained form Markov processes and multiplicative functional, so
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that really they produce Hunt processes. More representative are stochastic
differential equations with unbounded coefficients (e.g., see Stroock and Varad-
han [129, Chapter 10, pp. 248–260], which may yield explosions or solutions with
a finite lifetime, i.e., special standard processes which are not Hunt processes.

5.13 Final Comment on Markov Processes

In general, a Markov Process (MP) has a state space X and a time space T , and
depending on where T is typically N0 = {0, 1, . . .} or R+

0 = [0,∞[, or a subset set
of N0 or of R+

0 (moreover, sometimes the notation is N for N0 and R+ for R+
0 );

or adding {∞} as in N = N∪ {∞}, or using only a subset of them (e.g., a finite
set {1, 2, . . . , N} or an interval [a, b], ]a, b[, etc., or even Z = {0,±1,±, 2, . . .} or
R. More general situations can also be considered, but always T is a ‘linearly
ordered set’ (i.e., an order relation is given and for any two elements t1 and t2 it
is known whether t1 < t2, t1 > t2 or t1 = t2, this means that ‘partial order’ are
in other category!) within one of the following types: (1) discrete (= countable
set of isolated points, e.g., N0), or (2) countable (with possible non-isolated
points and under the trivial topology, i.e. every subset is open, e.g. the rational
numbers Q), or (3) trivial-uncountable (i.e., with the trivial topology, e.g., the
first uncountable ordinal Ω0), or (4) continuous (or continuous-type = non of
the previous and a Borel space with a linear order, recall Borel = measurable
subset of a complete separable metric space).

Perhaps, the classification of T is more important (or should go first) than
the classification of the state space X. Actually, it seems that only the order
structure on T and a topology on X are necessary for the so-called Markov
property, which is the central point of MP. The state space X could be classified
as (1) discrete (finite or infinite), or (2) countable, or (3) trivial-uncountable,
or (4) continuous (= Borel space), or better (5) Polish space, etc. Usually,
for measure-type properties a Borel space X gives a good setting, and this is
used for a discrete times space T (like T = N), while for a Polish space X is
preferred for a continuous times space (like T = R+). Thus, typically we say
‘discrete-time MP’ when T = N0 and ‘continuous-time MP’ when T = [0,∞[.

The name MP becomes Markov chain (MC) when the state space X is not
continuous, and also when only the time space T is not continuous. This means
that a MC could be in discrete-time or continuous-time as in MP. However,
typically a MC has a finite state space X = {1, 2, . . . , N} and T = N0. The
theory specify that a MP has: (i) a transition probability function (or kernel)
and this TPF or TPK is, in general, hard to give explicitly; (ii) an infinitesimal
generator and this IG, in general, is easier to manipulate than the TPK; actually,
properties on the TPK or IG (weak or strong) are used to fully determine the
‘specific of MP’, so that a construction or ‘realization’ of the MP can be given in
a suitable probability space, where the Markov property holds, mostly usable in
its ‘strong’ form. Actually, IGs are related to semigroups (SGs) and this gives
a natural connection with ‘semigroup theory’ in Functional Analysis, where
certainly, not every semigroup or IG corresponds to a MP. Moreover, adding
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the t, we get the ‘theory of evolution operators’, etc., etc., . . . .
It is usual to study only homogeneous MP, since any non-homogeneous MP

can be considered as a homogeneous MP with an enlarged state space, namely
T × X. Note that technically, a homogeneous MP is necessarily a particular
case of a non-homogeneous MP. There is also a large class called ‘semi-Markov
processes’ (SMP), which in short, they are MPs set in any of the four possibilities
for T ⊂ R+, where the state space has the form R+ × X, and if a SMP is
regarded in the state space X then it is not necessarily a non-homogeneous MP
with T = R+. Markov Renewal Processes (MRPs) is a well know class of SMPs
on Borel spaces X (= state), which are MPs is the discrete time N0 with state
in R+ ×X.

Usually, MCs are homogeneous in discrete time T = N0 or continuous time
T = R+, and on Borel state spaces X, i.e., a (either homogeneous or non-
homogeneous) continuous time (or discrete time) MC could be considered as
a MRP (or a SMP with T = N0). A (homogeneous) Poison processes can be
regarded as a (homogeneous) MC with either T = R+

0 and X = N0 or T = N0

and X = R+
0 × N0, while a (homogeneous) compound Poison processes can be

regarded as a (homogeneous) MC with T = R+
0 and X a Borel space. Indeed,

the IG of a homogeneous MC with discrete time T = N0 and a Borel state space
X has the form

φ 7→ Aφ(x) =

∫
X

[φ(y)− φ(x)]m(dy),

wherem(·) is a probability onX, and if the MC is set in continuous time T = R+
0

then m(·) is finite measure on X, and m(X) determines the exponential law of
transitions in time. In particular, this expression of A becomes a sum when X
is countable, i.e., the known matrices in the finite case. A homogeneous Poisson
measure p(t, B), t > 0, B ∈ B(Rd∗) with Levy measure m(B) = E{p(t, B)}/t of
order 1 defines a MP with a possible unbounded IG

Aφ(x) =

∫
R+

∗

[φ(y)− φ(x)]m(dy),

where m(·) is a measure on Rd∗ = Rd∖{0} integrating the function x 7→ |x|, i.e.,
the above expression of A makes sense when φ is C1. Adding a variable t in
the measures m(B) as m(t, B), we could get a non-homogeneous MC or a non-
homogeneous Poisson measure (or a point process), and even when m(]a, b], B)
we get a SMP with T = R+

0 . Clearly, the second case is even more general
than MRPs, and usually called Markov or semi-Markov point processes. Cer-
tainly, stochastic differential equations (SDEs) driven by Lévy processes (or a
combination of a Wiener process and a Poisson measure) are an excellent class
of more complicated examples.
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Appendix A

Exercises - Chapter (1)
Elementary Probability

All exercises are re-listed here, but now, most of them have a (possible) solution.
Certainly, this is not for the first reading. This part is meant to be read
after having struggled (a little) with the exercises. Sometimes, there are many
ways of solving problems, and depending of what was developed “in the theory”,
solving the exercises could have alternative ways. In any way, some exercises are
trivial while other are not simple. It is clear that what we may call “Exercises”
in one textbook could be called “Propositions” in others.

(1.1)Preliminary Examples

(1.1.1) Discrete Probabilities

(1.1.2) Other Probabilities

(1.1.3) Independent Random Variables

Exercise 1.1. Let {Fi : i ≥ 1} be a sequence of distributions in R, i.e.,
each Fi is a cad-lag non-decreasing function such that limr→−∞ Fi(r) = 0 and
limr→∞ Fi(r) = 1. Show that there exits a sequence {Xi : i ≥ 1} of indepen-
dent real-valued random variables defined on the universal probability space
(Ω,F , P ), Ω = [0, 1), F the Borel σ-algebra and P the Lebesgue measure, such
that P (Xi ≤ r) = Fi(r), i.e., each Xi has distribution Fi. Hint: First, complete
the above arguments so that it is clear the construction of a sequence {ξi : i ≥ 1}
of independent random variable uniformly distributed. Next, define the inverse
of each Fi as F

−1
i (s) = inf{r ∈ R : s ≤ Fi(r)}, for every s in [0, 1) and verify

that the sequence {Xi = F−1
i (ξi) : i ≥ 1} has the required properties.
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240 Solutions: A.1. Elementary Probability

(1.2) Laws of Large Numbers

(1.3) Convergence of Probabilities

(1.3.1) Tightness

(1.3.2) Approximation

(1.3.3) Various Types of Convergence

Exercise 1.2. Consider the Hilbert cube H = [0, 1]∞, i.e., h belongs to H if
and only if h : {1, 2, . . .} → [0, 1] endowed with the product norm dH(g, h) =∑
i 2

−i|g(i) − h(i)|. Verify that dH(hn, h) → 0 if and only if hn(i) → h(i) for
every i. Let (X,d) be a metric space with a countable dense subset {ei : i ≥ 1}
and define the map Φ: X → H by the formula h = Φ(x), h(i) = min{d(x, ei), 1}.
Prove d(xn, x) → 0 if and only if dH(Φ(xn),Φ(x)) → 0. Deduce Urysohn’s
Theorem, namely, any separable metric space is homeomorphic to a subset of
H, i.e., Φ is injective continuous and open. The same map Φ can be used to
convert the Borel measures on X to the Borel measure on H.
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Exercises - Chapter (2)
Basic Probability

(2.1) Characteristic Functions

Exercise 2.1. Beside the computation of the characteristic function of the
normal distribution in the real line, we should be able to verify the following
calculations:

(1) if x is a Normal random variable with mean a and variance b, i.e., with
(Lebesgue) density (2π)−1/2 exp

(
− (x− a)2/(2b2)

)
then E

{
eitx

}
= exp

(
iat−

b2t2/2
)
,

(2) if x is a Poisson random variable, i.e., P{x = k} = e−λλk/k!, for any
k = 0, 1, . . . , then E

{
eitx

}
= exp

(
λ(eit − 1)

)
,

(3) if x is a random variable with a uniform distribution on (a, b), i.e., with
(Lebesgue) density 1(a,b)/(b− a) then E

{
eitx

}
=

(
eibt − eiat

)
/
(
it(b− a)

)
,

(4) if x is a random variable with a triangular distribution on (−1/a, 1/a), i.e.,
with (Lebesgue) density1(−1/a,1/a)(a−a2|x|) then E

{
eitx

}
= 2(1−cos at)/(a2t2),

(5) if x is a random variable with an exponential distribution, i.e., with (Lebes-
gue) density 1(0,∞)e

−λxλ then E
{
eitx

}
= λ/(λ− it),

(6) if x is a random variable with a bilateral distribution, i.e., with (Lebesgue)
density e−λ|x|λ/2 then E

{
eitx

}
= λ/(λ2 + t2).

(7) if x is a Polya random variable, i.e., with (Lebesgue) density (1−cosx)(πx2)
then E

{
eitx

}
= (1− |t|)+.

(8) if x is a Cauchy random variable, i.e., with (Lebesgue) density 1/
(
π(1+x2)

)
then E

{
eitx

}
= e−|x|.

Essentially, we should calculate (3) to deduce the following expressions by using
linearity and convolution, e.g., see Durrett [42, Section 2.3, pp. 91-98].

(2.2) Central Limit Theorem

Exercise 2.2. (1) Consider the dyadic numbers Rn = {i2−n : i = 1, . . . , 4n},
R =

⋃
nRn and prove that

∑4n

i=1 1i2−n≤r = r2n, for every r in R.
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(2) Let {Xi,n : i = 1, . . . , 4n, n ≥ 1} be a countable family of identically
distributed random variables with E{Xi,n} = 0 and E{|Xi,n|2} = 1, and such
that for every index n ≥ 1 fixed, {Xi,n : i = 1, . . . , 4n} is a set of independent
random variables. Define

Wn,r = 2−n/2
4n∑
i=1

Xi,n1i2−n≤r, ∀n ≥ 1, r ∈ R,

and revise the arguments in Theorem 2.2 to show that the distribution of the
sequence {Wn,r : n ≥ 1} converges to the normal distribution N(0, r).

(3) If, besides the condition on (2), we assume that {Xi,n : i = 1, . . . , 4n, n ≥ 1}
is a set of independent random variables then, use the technique of Theorem 2.2
to show that the distribution of series

Wr =
∑
n

2−n
4n∑
i=1

Xi,n1i2−n≤r, ∀r ∈ R,

converges to the normal distribution N(0, r).

(2.3) Conditional Expectation

Exercise 2.3. If (Ω,F , P ) is a probability space and A is a sub σ-algebra
of F then denote by L2

0(A) the closed subspace of L2(Ω,F , P ) containing all
A-measurable functions with zero mean, i.e.,

L2
0(A) =

{
f ∈ L2(Ω,F , P ) : f is A-measurable and E{f} = 0

}
.

Show that two sub σ-algebras A1 and A2 of F are independent if and only if
L2
0(A1) is orthogonal to L

2
0(A2), i.e.,

E{fg} = 0, ∀f ∈ L2
0(A1), g ∈ L2

0(A2).

Prove or disprove an analogue result for a family of σ-algebras {Ai : i ∈ I}.

Exercise 2.4. Let (Ω,F) be a measurable space. Recall that a π-systems F0 is
a subset of F which is stable under finite intersections, i.e., if A and B belongs
to F0 then A∩B also belongs to F0. Also, we denote by σ(F0) the minimal sub
σ-algebra of F containing all the elements of F0, i.e. the σ-algebra generated
by F0. Prove that if H and G are two sub σ-algebras which are generated by
the π-systems H0 and G0, then H and G are independent if and only if H0 and
G0 are independent, i.e., if and only if P (H ∩G) = P (H)P (G) for any H in H0

and G in G0 (e.g., see the book by Bauer [6, Section 5.1, pp. 149–154]).

Exercise 2.5. Establish the existence for the conditional expectation on a given
probability space (Ω,F , P ) for an integrable random variable X with respect to
a sub σ-algebra G by two ways. Firstly (a) by means of the Radon-Nikodym
theorem, i.e., on the measurable space (Ω,G) consider the probability measures
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ν(G) = E{X1G} and µ(G) = E{1G} satisfying ν ≪ µ. Secondly (b) by means
of the orthogonal projection π from the Lebesgue space L2(Ω,F , P ) into the
closed subspace L2(Ω,G, P ), i.e., π satisfies (X − π(X), Y ) = 0, for any Y in
L2(Ω,G, P ), where (·, ·) denotes the scalar product.

Exercise 2.6. Let G1, . . . , Gn be a measurable disjoint sets in probability space
(Ω,F , P ) with P (Gi) > 0. If G is the σ-algebra generated by {A1, . . . , An}
then show that E{X | G} =

∑n
i=1 pi(X)1Gi

, where pi(X) = E{X1Ai
}/P (Ai).

Finally, discuss the validity of the expression E{X | G} =
∑∞
i=1(X, gi)gi, where

(·, ·) denotes the scalar product in L2(Ω,F , P ), and now G is the σ-algebra
generated by a sequence of random variables {gi, i ≥ 1}, which is assumed to
be an orthonormal system. Perhaps, one should consider first the case when gi
assumes only a finite number of values or even fi = 1Ai

/
√
P (Ai) or when {gi}

have disjoint supports.

Exercise 2.7. Let X,Y be real random variables on a complete probability
space. If Z is a random variable with values in some Polish space E then prove
that the relation X = E{Y | Z} is characterized by the condition E{Y φ(Z)} =
E{Xφ(Z)}, for all φ : E −→ R which is bounded and continuous. Moreover, if E
is locally compact, then the class of continuous function with compact support
is sufficient to characterized the conditional expectation. Furthermore, any class
of Borel functions that approximate any continuous and bounded function in
the pointwise and bounded topology is sufficient. In particular simple functions,
i.e., E{Y 1a<Z≤b} = E{X1a<Z≤b}, for every b > a in R.

Exercise 2.8. On a probability space (Ω,F , P ), let X be a real-valued random
variable independent of a sub σ-algebra G of F , and f be a bounded Borel
measurable function in R2. Define f1(y) = E{f(X, y)}. Prove that f1 is Borel
measurable and f1(Y ) = E{f(X,Y ) | G} almost surely.

Exercise 2.9. Prove that two σ-algebras G and H are independent in a proba-
bility space (Ω,F , P ) if and only if the subspace L2(G) and L2(H) are orthogonal
on the constant functions, i.e., X in L2(G), Y in L2(H), and E{X} = E{Y } = 0
imply E{XY } = 0, this is a rewording of Exercise 2.3. Next, deduce that G and
H are independent if and only if E{XY } = E{X}E{Y } for every X in L2(G)
and Y in L2(H).

Exercise 2.10. Show that a family of σ-algebras {Gi : i ∈ I} is independent
(sometimes called mutually independent) if and only if for any finite subset J of
indexes I, and for any random variables Xi in L

∞(Gi) we have E{
∏
i∈J Xi} =∏

i∈J E{Xi}, e.g., see Malliavin [92, Section IV.3, pp. 190–198].

(2.4) Regular Conditional Probability

Exercise 2.11. Let G be a finitely-generated σ-algebra, i.e., G = σ(F1, . . . , Fn).
First, show that G can be expressed as σ(G1, . . . , Gm), where the setsG1, . . . , Gm
are disjoint and minimal in the sense that any proper subset of {G1, . . . , Gm}
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does not generate G. Actually, {G1, . . . , Gm} is a partition and the set Gi are
called atoms of G, which has exactly 2m elements. Second, gives an explicit ex-
pression of P{A | G)}(ω) in term of the family of sets G1, . . . , Gm. Third, if X is
a simple random variable (i.e., having a finite number of values, say x1, . . . , xm
with P{X = xi} > 0 and

∑
i P{X = xi} = 1) then show that σ(X) (i.e.,

the minimal σ-algebra for which X is measurable) is finitely-generated, calcu-
late P{A | X = xi}, for i = 1, . . . ,m and consider the function x 7→ P (x,A)
defined as P (x,A) = P{A | X = xi} if x = xi for some i = 1, . . . ,m, and
P (x,A) = P (A) otherwise. Fourth, show that the expression P (X,A) is a regu-
lar conditional probability of A given X, i.e., for any A measurable set we have
P{A |X} = P (X,A) almost surely.

*** 2.11
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Exercises - Chapter (3)
Canonical Sample Spaces

(3.1) Continuous and cad-lag Functions

(3.2) Modulus of Continuity

(3.3) Skorokhod Topology

(3.4) Skorokhod Topology for BV functions

(3.5) Integer Measures

(3.6) Sequences of Probability
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Exercises - Chapter (4)
Probability Spaces

This part is not intended as real exercises, but as guide and a complement
to the previous sections, helping to clarify and specify some statements given
previously. The reader may take a look at the book Chaumont and Yor [24].

(4.1) Random Variables

Exercise 4.1. If F is a collection (or class) of subsets of Ω then F is called a
π-system if for any A and B in F we have A∩B in F and a λ-system if Ω belongs
to F and satisfies (a) for any A and B in F with A ⊂ B we have B∖A belongs
to F and (b) for any monotone increasing sequence of sets Ai ⊂ Ai+1 we have
A =

⋃
iAi in F . Prove the following versions of monotone class theorem: (1) If

G ⊂ F and G is a π-system and F is a λ-system then the σ-field or σ-algebra
σ(G) generated by G is contained in F . (2) If F is a π-system and H a linear
space of functions from Ω into R such that 1Ω, 1A and φ = limi φ belong to
H, for every A in F and for any sequence φi in H such that 0 ≤ φi ≤ φi+1,
φi(ω) → φ(ω) and φ(ω) is finite for any ω, then H contains all σ(F)-measurable
functions.

Exercise 4.2. Let ∨nFn be the σ-algebra generated by sequence {Fn : n ≥ 1}
of sub σ-algebra in a probability space (Ω,F , P ). Use an argument of monotone
class to show that for any set A in ∨nFn there exists a sequence {Ak : k ≥ 1}
of sets in

⋃
n Fn such that P (A ∖ Ak) and P (Ak ∖ A) converge to 0, e.g., see

Kallenberg [71, Lemma 3.16, p. 54].

Exercise 4.3. Let x be a function from a measurable space (Ω,F) into a Polish
space E (complete metric space), so X is a random variable with values in E.
Denote by Fx the σ-algebra generated by x. Use an argument of monotone class
to show that any real valued random variable φ which is Fx-measurable has the
form φ(ω) = f(x(ω)), for some Borel function f from E into R, e.g., see He et
al. [59, Theorem 1.5, p. 5] or Kallenberg [71, Lemma 1.13, p. 7].

Exercise 4.4. Let X(t, ω) be a function from T × Ω into Rd, where T is a
countable and (Ω,F) is a measurable space. Prove that the following statements
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are equivalent:

(a) The function (t, ω) 7→ X(t, ω) from is Borel measurable with respect to the
product σ-algebra B(T )×F .
(b) The function ω 7→ X(·, ω) from Ω into L0(T,Rd).
Discuss possible extensions to the case where T is a Borel subset of R, e.g. see
Doob [39, Theorem 2.1.13 in p. 408].

(4.2) Distributions and Independence

Exercise 4.5. Calculate the mean and the covariance of random variables with
a Gaussian, Poisson and exponential distributions. Moreover, show that if x is
a Gaussian variable with variance r then the even moments can be calculate by
recurrence, i.e., E{|x|2n+2} = r(2n− 1)E{|x|2n}, for any integer n ≥ 1.

Exercise 4.6. Prove that a linear combination of Gaussian random variables is
also a Gaussian random variable. Calculate its mean and covariance, and check
that all moments are finite.

(4.3) Filtrations and Optional Times

Exercise 4.7. Prove properties (a) to (i) for optional or stopping times.

Exercise 4.8. Let (Ω,F) be a measurable space. Recall that a π-systems F0 is
a subset of F which is stable under finite intersections, i.e., if A and B belongs
to F0 then A∩B also belongs to F0. Also, we denote by σ(F0) the minimal sub
σ-algebra of F containing all the elements of F0, i.e. the σ-algebra generated
by F0. Prove that if H and G are two sub σ-algebras which are generated by
the π-systems H0 and G0, then H and G are independent if and only if H0 and
G0 are independent, i.e., if and only if P (H ∩G) = P (H)P (G) for any H in H0

and G in G0 (e.g., see the book by Bauer [6, Section 5.1, pp. 149–154]).

Exercise 4.9. Establish the existence for the conditional expectation on a given
probability space (Ω,F , P ) for an integrable random variable x with respect to
a sub σ-algebra G by two ways. Firstly (a) by means of the Radon-Nikodym
theorem, i.e., on the measurable space (Ω,G) consider the probability measures
ν(G) = E{x1G} and µ(G) = E{1G} satisfying ν ≪ µ. Secondly (b) by means of
the orthogonal projection π from the Lebesgue space L2(Ω,F , P ) into the closed
subspace L2(Ω,G, P ), i.e., π satisfies (x−π(x), y) = 0, for any y in L2(Ω,G, P ),
where (·, ·) denotes the scalar product.

Exercise 4.10. Let x, y be real random variables on a complete probability
space. If z is a random variable with values in some Polish space E then prove
that the relation x = E{y | z} is characterized by the condition E{yφ(z)} =
E{xφ(z)}, for all φ : E −→ R which is bounded and continuous. Moreover, if E
is locally compact, then the class of continuous function with compact support
is sufficient to characterized the conditional expectation.
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Exercise 4.11. Prove properties (a) to (g) of the conditional expectation.

Exercise 4.12. Prove properties (h) to (m) of the conditional expectation.

(4.4) Versions of Processes

Exercise 4.13. Let G be the σ-algebra generated by a sequence {xi : i =
1, 2, . . .} of measurable functions from (Ω,F) into (R,B), and x be an integrable
random variable in the complete probability space (Ω,F , P ) with values in Rn.
Use an argument of monotone class to show that E{x | G} = 0 if and only if
E{f(x1, x2, . . . , xm)x} = 0 for any m and any bounded continuous function f
from Rn into R, e.g. see Yong and Zhou [137, Proposition 1.12 in p. 13].

Exercise 4.14. Prove that if x is in L1(Ω,F , P ) then the family of elements
in L1(Ω,F , P ), defined by {y = E{x | G} : G, is a sub σ-algebra of F} is
uniformly integrable. Indeed use Jensen’s inequality to establish that kP{|y| >
k} ≤ E{|x|}, for any k, and in view of∫

|y|>k
|y(ω)|P (dω) ≤

∫
|y|>k

|x(ω)|P (dω),

the desired result follows.

Exercise 4.15. On a probability space (Ω,F , P ), let x be a real random variable
independent of a sub σ-algebra G of F , and f be a bounded Borel measurable
function in R2. Define f1(η) = E{f(x, η)}. Prove that f1 is Borel measurable
and f1(y) = E{f(x, y) | G} almost surely.

Exercise 4.16. Let G be a finitely-generated σ-algebra, i.e., G = σ[F1, . . . , Fn].
First, prove that also G can be expressed as σ[G1, . . . , Gm], where the sets
G1, . . . , Gm are pairwise disjoint and minimal in the sense that any proper subset
of {G1, . . . , Gm} does not generate G. Actually, {G1, . . . , Gm} is a partition and
the set Gi are called atoms of G, which has exactly 2m elements. Second, gives
an explicit expression of P{A | G)}(ω) in term of the family of sets G1, . . . , Gm.
Third, if X is a simple random variable (i.e., having a finite number of values,
say x1, . . . , xm with P{X = xi} > 0 and

∑
i P{X = xi} = 1) then show

that σ(X) (i.e., the minimal σ-algebra for which X is measurable) is finitely-
generated, calculate P{A |X = xi}, for i = 1, . . . ,m and consider the function
x 7→ P (x,A) defined as P (x,A) = P{A|X = xi} if x = xi for some i = 1, . . . ,m,
and P (x,A) = P (A) otherwise. Fourth, show that the expression P (X,A) is a
regular conditional probability of A given X, i.e., for any A measurable set we
have P{A |X} = P (X,A) almost surely, see Remark 2.13.

Exercise 4.17. Let {X(t) : t ≥ 0} be a (separable) stochastic process on the
probability space (Ω,F , P ) with valued into R. Prove that if X is either right
or left continuous in probability then any dense set Q on [0,∞) is separant.
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Exercise 4.18. On a probability space (Ω,F , P ), let {Xn(t) : t ≥ 0}, n ≥ 1 be
a sequence of families of random variables and Fn(t) be the σ-algebra generated
by the random variables {Xn(s) : 0 ≤ s ≤ t} and all sets of measure zero in F .
Assume that Xn(t) converges in probability to X(t), for every t ≥ 0. Prove that

lim
n→∞

E{y | Fn(t)} = E{y | F(t)}, ∀t ≥ 0,

for every integrable random variable y such that the above limit exists in prob-
ability.

(4.5) Continuous Markov Chains

Exercise 4.19. Let {ρ(t, i, j) : i, j = 1, . . . , n} be a family of continuous func-
tions from [0,∞) into R satisfying

ρ(t, i, j) ≥ 0, ∀i ̸= j, ρ(t, i, i) = −
∑
j ̸=i

ρ(t, i, j).

Consider the n-dimensional system of ordinary differential equations

ṗs(t, i, j) =
∑
k

ps(t, i, k) ρ(t, k, j), ∀t > s, i, j.

where the dot means derivative in t and ps is the fundamental solution, i.e. it
satisfies ps(s, i, j) = δi,j .

(a) First, assume that the data are constants i.e., ρ(t, i, j) = ρ(i, j) and denote
by ρ the square matrix (ρ(i, j) : i, j = 1, . . . , n). Show that in this case, the
fundamental solution ps(t, i, j) = exp[−(t− s)ρd] exp[(t− s)(ρ− ρd)], where ρd
is the diagonal matrix with the coefficients (ρi,i : i = 1, . . . , n). Conclude that
all entries of ps(t, i, j) are non-negative and that each line adds (sum in j) to
one.

(b) Extend the previous conclusion to the general case where the data ρ may
depend on t.

(c) Assume the data are constant in t as in (a) and define λ = − infi ρi, i > 0. Let
Yn be a Markov chain with transition probability P (Yn = j |Yn−1 = i) = ρi,j/λ
if i ̸= j for n = 1, 2, . . . , and let τ1, τ2, . . . be a sequence of independent
identically distributed exponentially random variables with parameter λ i.e.,
P (τi > t) = exp(−λt), which is independent of (Y0, Y1, . . . ). Prove that Xt = Yn
for t in the stochastic interval [[Tn, Tn+1[[, where T0 = 0 and Tn = τ1+τ2+· · ·+τn,
gives a realization of the pure jumps Markov with the above infinitesimal rates
(see Durrett [43, p. 250, Example 2.1]).

(d) Discuss the case of the double sequence {ρ(t, i, j) : i, j = 1, 2, . . . } of contin-
uous functions.
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(4.6) Markov Processes

Exercise 4.20. Let H be a σ-algebra of a probability space (Ω,F , P ). Define
I the collection of all sets in F independent of H. Prove that I is closed under
monotone union and intersection. Deduce that I is the σ-algebra H⊥ generated
by all sets in F independent of H.

Exercise 4.21. Let X = (Xt : t ≥ 0) be a family of random variables with
values in a complete separable metric (Polish) space E defined on a probability
space (Ω,F , P ). Assume that X satisfies the Markov property 4.17 and suppose
that X (regarded as a process) is right-continuous in probability, i.e., for every
ε > 0 and t ≥ 0 there exists δ > 0 such that P{|Xs − Xt| ≥ ε} < ε for every
s in (t, t+ δ). Prove that X satisfies the Markov property as in Definition 4.17
with the natural filtration (Ft : t ≥ 0), i.e., the minimal increasing family of σ-
algebra satisfying the usual conditions such that Xt is Ft-measurable for every
t ≥ 0.

Exercise 4.22. LetX be a Rd-valued adapted stochastic process in (Ω,F ,Ft, P )
and suppose that for some transition function p(s, x, t, dy) we have

P{h(Xt) ∈ B | Fs} =

∫
Rd

h(y)p(s,Xs, t,dy), ∀t > s ≥ 0,

almost surely, for every t > s ≥ 0, and any real-valued continuous and bounded
function h. Verify that X is indeed a Markov process. Which other classes of
functions h could be used? How about processes taking values in some topolog-
ical space E instead of Rd?

Exercise 4.23. Let X = (Xt : t ≥ 0) be a (strong) Markov process with
values in a complete separable metric (Polish) space E defined on a probability
space (Ω,F , P ), and with transition probability function p(s, x, t, B), t > s ≥ 0,
x in E and B in B(E). If necessary, assume that for every B the mapping
(s, x, t) 7→ p(s, x, t, B) is measurable. Define

ṗ((s, x), t,dr × de) := δs+t(dr) p(s, x, s+ t,de), ∀t > 0,

for all (s, x) in Ė := [0,∞) × E, and where δs(dr) is the Dirac unit mass in
[0,∞) concentrated at r = s. Prove that Ẋ := (t,Xt) is a (strong) homoge-
neous Markov process with values in Ė and with transition probability function
ṗ((s, x), t, B), t > 0, (s, x) in Ė and B in B(Ė).

(4.7) Construction of Processes

Exercise 4.24. Prove that if X is a d-dimensional stochastic process with inde-
pendent and stationary increments (see properties (a) and (b) of Lévy processes)
then

E{φ(X(s)−X(t))ψ(X(t))} = E{φ(X(s)−X(t))} E{ψ(X(t))},
E{φ(X(s)−X(t))} = E{φ(X(s− t))},
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for any continuous function from Rd into R with compact support.

Exercise 4.25. Prove that any characteristic function possesses the properties
(a) and (b) of continuity and positive define stated in the text.

Exercise 4.26. Verify that the characteristic functions of a Lévy process have
exponential form. Discuss to what this correspond on the finite-dimensional
distributions viewpoint.

Exercise 4.27. Verify that the consistency properties are satisfied for a fam-
ily of finite-dimensional distributions constructed from a transition function
P (s, x, t, A), an initial time t0 and probability P0.

Exercise 4.28. Prove that for a Lévy process (PX , X) the continuity condition
(4.4) reduces to

EX{|Xh|α} ≤ Ch1+β ∀h > 0,

for a some positive constants α, β and C. Similarly the cad-lag condition (4.5)
can be expressed by

EX{|Xh|α} ≤ Ch
1
2+β ∀h > 0,

for a some positive constants α, β and C. Extend this result to processes gen-
erated by a transition function i.e. to Markov processes.

Exercise 4.29. By means of the finite-dimensional distributions proves that
the Wiener process satisfies the continuity condition (4.4) so that its paths are
continuous.

Exercise 4.30. Show that the continuity condition (4.4) is not satisfied for the
Poisson process but a direct calculation proves that it is continuous in proba-
bility, see property (c) of Definition 4.21.

Exercise 4.31. Proved that the cad-lag condition (4.5) is satisfied for the
Cauchy process i.e. there exist positive constants α, β and C such that∫

E

|x− y|αP (s, x, t, dy) ≤ C|t− s| 12+β , ∀s, t ∈ [0, T ], ∀x ∈ R

for ant T > 0.

(4.8) Examples of Markov processes

Exercise 4.32. Let BT (R) be the product σ-algebra (i.e., generated by the
cylinder sets), which may be smaller that B(RT ) (the minimal σ-algebra con-
taining all open sets in RT , endowed with the product topology). Prove that a
typical set in BT (R) has the form

{ω ∈ RT : (ω(t1), ω(t2), . . . ) ∈ A}
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where A ∈ B(R{1,2,... }) and (t1, t2, . . . ) is a sequence in R. Verify that a singleton
(i.e., a set of only one element) belongs to B(RT ), but does not belong to BT (R)
if the index set T is uncountable.

Exercise 4.33. Let F be the σ-algebra generated by the coordinate random
variables ω 7→ ω(t) from C([0,∞), E) into E, where E is a complete separable
metric space and t ranges over a dense set Q of [0,∞). Prove that F = B, where
B is the (Borel) σ-algebra generated by open all sets in C([0,∞), E). Conclude
that a function X from (C([0,∞), E),B) into itself is measurable if and only if
the functions ω 7→ X(t, ω) from (C([0,∞), E),B) into E are measurable for all
t in [0,∞). Prove the same result for the space (D([0,∞), E),B), where now B
is the (Borel) σ-algebra generated by open all sets in D([0,∞), E).

Exercise 4.34. For a function x from [0, T ] into R which have only discontinu-
ities of first class we define two modulii of continuity w(x, h) and w′(x, h) one
by

w(x, h, T ) := inf
{ti}

sup
i

sup{|x(t)− x(s)| : ti−1 ≤ s < t < ti}

where {ti} ranges over all partitions of the form 0 = t0 < t1 < · · · < tn = T,
with ti − ti−1 ≥ h and n ≥ 1, and the other by

w′(x, h) := sup{
√
|x(t+ h)− x(s)| |x(s)− x(t)| :

: −h < t < s < t+ h < T + h},

where we have extended x(t) = x(0) for t < 0 and x(t) = x(T ) for t > T.
Prove that for any x in D([0, T ], E) we have w(x, h) −→ 0 and w′(x, h) −→ 0
as h → 0. By means of the above modulii of continuity, give a characterization
of pre-compact sets in the the space D([0, T ], E) endowed with the Skorokhod
topology.

Exercise 4.35. Show that the space D([0,+∞], E) complete with the locally
uniform convergence [i.e., the topology in C([0,+∞], E)], but is not separa-
ble. On the other hand, show that C([0,+∞], E) is a closed subspace of
D([0,+∞], E).

Exercise 4.36. Let X be a Borel measurable function form Ω into itself, where
(Ω, dΩ) be a separable and complete metric space. Suppose that {Pn : n =
1, 2, . . . } is a sequence of probability measures on Ω which converges weakly
to P . Define {Qn : n = 1, 2, . . . } and Q as the image measures through the
mapping X of {Pn : n = 1, 2, . . . } and P. Prove that if X is P -almost surely
continuous then the sequence {Qn : n = 1, 2, . . . } converges weakly to the
measure Q.

Exercise 4.37. Let Ω be a complete metric space. Use a monotone class
argument to show that the smallest class of functions M in B(Ω) satisfying:

(a) if {fn} is a sequence in M boundedly and pointwise convergent to f then f
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belongs to B(Ω),

(b) if A is open in Ω then the characteristic (or indicator) function 1A belongs
to M,

(c) if f and g are in M then αf + βg is in M for any constant α and β,

is actually B(Ω).

=========== NEED WORK =================
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Stochastic Processes

This part is not intended as real exercises, but as guide and a complement
to the previous sections, helping to clarify and specify some statements given
previously. The reader may take a look at the book Chaumont and Yor [24].

(5.1) Discrete Time

(5.2) Filtered Spaces

(5.3) Bounded Variation

(5.4) Martingales

(5.5) Semi-Martingales

(5.6) Strong Markov Processes

(5.7) Extended Generators

(5.8) Poisson Processes and Queues

(5.9) Piecewise Deterministic Processes

(5.10) Lévy Processes

(5.11) Transition Functions

(5.12) Hunt and Standard Processes
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Notation

Some Common Uses:

N, Q, R, C: natural, rational, real and complex numbers.

i, ℜ(·), I: imaginary unit, the real part of complex number and the identity
(or inclusion) mapping or operator.

P, E{·}: for a given measurable space (Ω,F), P denotes a probability measure
and E{·} the expectation (or integration) with respect to P. As customary
in probability, the random variable ω in Ω is seldom used in a explicit
notation, this is understood from the context.

F(t), Ft, B(t), Bt: usually denote a family increasing in t of σ-algebra (also
called σ-fields) of a measurable space (Ω,F). If {xt : t ∈ T} is a family of
random variables (i.e., measurable functions) then σ(xt : t ∈ T ) usually
denotes the σ-algebra generated by {xt : t ∈ T}, i.e., the smallest sub
σ-algebra of F such that each function ω → xt(ω) is measurable. Usually
F denotes the family of σ-algebras F = {F(t) : t ∈ T}, which is referred
to as a filtration.

X(t), Xt, x(t), xt: usually denote the same process in some probability space
(Ω,F , P ). One should understand from the context when we refer to the
value of the process (i.e., a random variable) or to the generic function
definition of the process itself.

1A: usually denotes the characteristic function of a set A, i.e., 1A(x) = 1 if x
belongs to A and 1A(x) = 0 otherwise. Sometimes the set A is given as a
condition on a function τ , e.g., τ < t, in this case 1τ<t(ω) = 1 if τ(ω) < t
and 1τ<t(ω) = 0 otherwise.

δ: most of the times this is the δ function or Dirac measure. Sometimes one write
δx(dy) to indicate the integration variable y and the mass concentrated at
x. On certain occasions, δ denotes the jumps operator, defined be δX(0) =
0 and δX = X(t+)−X(t−), t > 0, any process X without discontinuity
of the second kind.

dµ, µ(dx), dµ(x): together with the integration sign, usually these expressions
denote integration with respect to the measure µ. Most of the times dx
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means integration respect to the Lebesgue measure in the variable x, as
understood from the context.

ET , B(ET ), BT (E): for E a Hausdorff topological (usually a separable com-
plete metric, i.e., Polish) space and T a set of indexes, usually this denotes
the product topology, i.e., ET is the space of all function from T into E
and if T is countable then ET is the space of all sequences of elements in
E. As expected, B(ET ) is the σ-algebra of ET generated by the product
topology in ET , but BT (E) is the product σ-algebra of B(E) or gener-
ated by the so-called cylinder sets. In general BT (E) ⊂ B(ET ) and the
inclusion may be strict.

Polish space: is a separable and complete metric space (commonly used in
Probability) and because the metric is rarely used one says ‘metrizable’
instead of metric, and clearly, an open subset of a Polish space is itself
a Polish space. Also recall that a Borel space is a Borel subset of a
complete and separable metric space, i.e., a Borel subset of a Polish space.
Other common terminology is LCCB (locally compact with countable
basis, also called locally-compact second-countable Hausdorff space), and
any LCCB is a Polish space, but not the converse, since a Polish space
could be not locally compact. e.g., L1(R).

C([0,∞),Rd) or D([0,∞),Rd) canonical sample spaces of continuous or cad-
lag (continuous from the right having left-hand limit) and functions, with
the locally uniform or the Skorokhod topology, respectively. Sometimes
the notation Cd or C([0,∞[,Rd) or Dd or D([0,∞[,Rd) could be used.
Note that occasional, the Euclidean space Rd could be replaced by a Borel
space E, with the notation C([0,∞);E) or D([0,∞);E), and in general,
these spaces are considered subspaces of the space of functions from [0,∞)
into E, usually denoted by E[0,∞).

Most Commonly Used Function Spaces:

C(X): for X a Hausdorff topological (usually a separable complete metric, i.e.,
Polish) space, this is the space of real-valued (or complex-valued) continu-
ous functions on X. If X is a compact space then this space endowed with
sup-norm is a separable Banach (complete normed vector) space. Some-
times this space may be denoted by C0(X), C(X,R) or C(X,C) depending
on what is to be emphasized.

Cb(X): for X a Hausdorff topological (usually a complete separable metric, i.e.,
Polish) space, this is the Banach space of real-valued (or complex-valued)
continuous and bounded functions on X, with the sup-norm.

C0(X): for X a locally compact (but not compact) Hausdorff topological (usu-
ally a complete separable metric, i.e., Polish) space, this is the separable
Banach space of real-valued (or complex-valued) continuous functions van-
ishing at infinity on X, i.e., a continuous function f belongs to C0(X) if
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for every ε > 0 there exists a compact subset K = Kε of X such that
|f(x)| ≤ ε for every x in X ∖K. This is a proper subspace of Cb(X) with
the sup-norm.

C0(X): for X a compact subset of a locally compact Hausdorff topological (usu-
ally a Polish) space, this is the separable Banach space of real-valued
(or complex-valued) continuous functions vanishing on the boundary of
X, with the sup-norm. In particular, if X = X0 ∪ {∞} is the one-
point compactification of X0 then the boundary of X is only {∞} and
C0(X) = C0(X0) via the zero-extension identification.

C0(X), C0
0 (X): forX a proper open subset of a locally compact Hausdorff topo-

logical (usually a Polish) space, this is the separable Fréchet (complete
locally convex vector) space of real-valued (or complex-valued) continu-
ous functions with a compact support X, with the inductive topology of
uniformly convergence on compact subset of X. When necessary, this
Fréchet space may be denoted by C0

0 (X) to stress the difference with the
Banach space C0(X), when X is also regarded as a locally compact Haus-
dorff topological. Usually, the context determines whether the symbol
represents the Fréchet or the Banach space.

Ckb (E), Ck0 (E): for E a domain in the Euclidean space Rd (i.e, the closure of
the interior of E is equal to the closure of E) and k a nonnegative integer,
this is the subspace of either Cb(E) or C0

0 (E) of functions f such that all
derivatives up to the order k belong to either Cb(E) or C0

0 (E), with the
natural norm or semi-norms. For instance, if E is open then Ck0 (E) is a
separable Fréchet space with the inductive topology of uniformly conver-
gence (of the function and all derivatives up to the order k included) on
compact subset of E. If E is closed then Ckb (E) is the separable Banach
space with the sup-norm for the function and all derivatives up to the
order k included. Clearly, this is extended to the case k = ∞.

B(X): for X a Hausdorff topological (mainly a Polish) space, this is the Banach
space of real-valued (or complex-valued) Borel measurable and bounded
functions on X, with the sup-norm. Note that B(X) denotes the σ-algebra
of Borel subsets of X, i.e., the smaller σ-algebra containing all open sets in
X, e.g., B(Rd), B(Rd), orB(E), B(E) for a Borel subset E of d-dimensional
Euclidean space Rd.

Lp(X,m): for (X,X ,m) a complete σ-finite measure space and 1 ≤ p < ∞,
this is the separable Banach space of real-valued (or complex-valued) X -
measurable (class) functions f on X such that |f |p is m-integrable, with
the natural p-norm. If p = 2 this is also a Hilbert space. Usually, X
is also a locally compact Polish space and m is a Radon measure, i.e.,
finite on compact sets. Moreover L∞(X,m) is the space of all (class of)
m-essentially bounded (i.e., bounded except in a set of zero m-measure)
with essential-sup norm.
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Lp(O), Hm
0 (O), Hm(O): for O an open subset of Rd, 1 ≤ p ≤ ∞ and m =

1, 2, . . . , these are the classic Lebesgue and Sobolev spaces. Sometimes we
may use vector-valued functions, e.g., Lp(O,Rn).

D(O), S(Rd), D′(O), S ′(Rd): for O an open subset of Rd, these are the classic
test functions (C∞ functions with either compact support in O or rapidly
decreasing in Rd) and their dual spaces of distributions. These are sep-
arable Fréchet spaces with the inductive topology. Moreover, S(Rd) =
∩mHm(Rd) is a countable Hilbertian nuclear space. Thus its dual space
S ′(Rd) = ∪mH−m(Rd), where H−m(Rd) is the dual space of Hm(Rd).
Sometimes we may use vector-valued functions, e.g., S(Rd,Rn).
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converges weakly, 14
counting function, 55
counting jump process, 201
counting process, 180, 193
criterium for tightness, 67

definition
Borel outer measure, 14
regular Borel outer meas., 14

definition of
compensator, 155
extended generator, 183
general martingale, 159
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quasi-left continuous, 175
regular, 175
semi-martingale, 173
super or sub martingale, 139
transition function, 218

diffuse, 5
Dirichlet class, 162
discrete, 4
disintegration property, 40
doubly stochastic Poisson process, 193
dual optional projection, 155
Dynkin formula, 183

entry time, 144
evanescent, 153
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expectation, 2
exponential, 6

Fatou Theorem, 29
Feller property, 219
Feller transition, 219
filtration, 135
forward flow, 196
Fourier transform, 2
fresh-start property, 185
functional

additive, 231
multiplicative, 231

Gamma, 6
Gaussian or normal, 6
generalized random processes, 43
geometric distribution, 4

hazard rate, 186
hitting time, 135, 144
homogeneous Lipschitz flow, 194
Hunt process, 232

independence, 138
independent, 2
infinitely divisible, 204
integrable bounded variation, 154
intensity, 193

Jensen’s inequality, 29
jump rate, 180
jumps measure, 156

Kolmogorov 0− 1 Law, 10

Lévy Continuity Theorem, 22
law of large numbers

binomial, 11
strong, 12

lifetime, 227
lifetime functional, 230
local martingale, 142
locally bounded variation, 57

Markov process, 177
Markov property, 217

Markov-Feller process, 176
martingale problem, 161
martingale property, 159, 162
maximum principle, 221
mean, 2
measured filtration, 146
memoryless, 185, 186
multivariate point processes, 193

natural, 163
natural enlargement, 147
nearly empty, 146
non-active boundary, 196
non-explosive, 195
nonexplosive, 193

optional, 143, 145
optional projection, 155
orthogonal random measure, 157

point processes, 208
Poisson distribution, 4
Poisson measures, 180, 208
Poisson process, 186, 205
positive definite, 204
predictable, 135, 145, 146
predictable quadratic variation, 165
probability, 1
product probability, 136
Prohorov Theorem, 15
purely discontinuous, 165

quadratic variation, 165
quasi-left continuous, 146, 227, 228
quasi-martingale, 168

random processes with cont. path, 43
random walk, 136
Ray process, 234
realization, 179, 226
reducing sequence, 168
regular conditional probab., 38
Regular conditional probability, 37
regular conditional probability, 39
regularisable, 160
relatively weakly compact, 15
renewal process, 189
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resolvent, 217
equation, 213, 217
kernel, 213
operators, 213

right-constant, 144

sample path, 218
semigroup, 197
semigroup property, 182, 217, 219
sequences of random variables, 134
shift operator, 229
single-server queue, 190
singular continuous part, 149
Skorohod Representation Thm, 18, 69
Skorokhod convergence, 55
Skorokhod topology, 51, 53
special semi-martingale, 173
square integrable local martingales, 149
standard process, 232
state space, 177
stochastic continuity property, 219
stochastically continuous, 103
stopping time, 144
strong Feller property, 214
strong infinitesimal generator, 182
strong Markov process, 179, 229
strong Markov property, 144, 220, 229
sub-Markov process, 230
sub-Markov transition function, 230
subordinator, 206

tail, 10, 138, 226
tight, 15
time changes, 151
totally inaccessible, 228
transition function, 177
transition probability, 136

uniform distribution, 4, 5, 186
uniformly integrable, 162
uniformly stochastically continuous, 219
universal completion, 146
universally complete, 225
universally completed, 179, 229
Urysohn’s Theorem, 19

variance, 2

variation operator, 148
vector field, 195
version, 218

weakly pre-compact, 15
well-measurable, 143

zero-one law, 10
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