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Abstract 

Maternal lineages of West Eurasian and North African origin account for 11.5% of 

total mitochondrial ancestry in Puerto Rico. Historical sources suggest that this 

ancestry arrived mostly from European migrations that took place during the four 

centuries of the Spanish colonization of Puerto Rico. This study analyzed 101 

mitochondrial control region sequences and diagnostic coding region variants from 

a sample set randomly and systematically selected using a census-based sampling 

frame to be representative of the Puerto Rican population, with the goal of defining 

West Eurasian-North African maternal clades and estimating their possible 

geographical origin. Median-joining haplotype networks were constructed using 

HVR-I and –II sequences from various reference populations in search of shared 

haplotypes. A posterior probability analysis was performed to estimate the 

percentage of possible origins across wide geographic regions for the entire sample 

set and for the most common haplogroups on the island. Principal component 

analyses were conducted to place the Puerto Rican mtDNA set within the variation 

present amongst all reference populations. Our study shows that up to 38% of West 

Eurasian and North African mitochondrial ancestry in Puerto Rico most likely 

migrated from the Canary Islands. However, most of those haplotypes had 

previously migrated to the Canary Islands from elsewhere, and there are substantial 

contributions from various populations across the circum-Mediterranean region and 

from West African populations related to the modern Wolof and Serer peoples from 

Senegal and the nomad Fulani who extend up to Cameroon. In conclusion, the West 

Eurasian mitochondrial ancestry in Puerto Ricans is geographically diverse. 

However, haplotype diversity seems to be low and frequencies have been shaped 

by population bottlenecks, migration waves, and random genetic drift. 

Consequently, approximately 47% of mtDNAs of West Eurasian and North African 

ancestry in Puerto Rico probably arrived early in its colonial history. 
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Puerto Ricans are an admixed population composed of three main ancestral 

subcontinental groups: Sub-Saharan African, European and Native American (Bryc 

et al. 2010; Moreno-Estrada et al. 2013). Documentary sources supported by the 

archaeological record indicate that the Spanish occupation of Puerto Rico began in 

1506, and that by 1513 each of these ancestral populations coexisted on the island. 

Subsequent migration waves of mostly European and Sub-Saharan African 

individuals occurred for at least four centuries after the beginning of colonization 

(Emmer 1999; Picó 2004). A previous study based on a sample set representative 

of the population of Puerto Rico showed that 61.3% of Puerto Rican mitochondrial 

DNAs (mtDNAs) are of Native American origin, whereas 27.2% are Sub-Saharan 

African and 11.5% West Eurasian (Martínez-Cruzado et al. 2005). Subsequent 

studies have produced consistent results (Vilar et al. 2014). However, a study on 

the autosomal ancestry of the same sample set identified average genome ancestry 

proportions of around 63.7% European, 21.2% Sub-Saharan African, and 15.2% 

Native American (Via et al. 2011). Other studies conducted with Puerto Ricans 

living in the continental USA have produced similar results (Bryc et al. 2010; 

Moreno-Estrada et al. 2013; Gravel et al. 2013).  

In Puerto Rico, European migrations began with the Spanish colonization 

of the early 16th century. Historical sources indicate that the first migrations were 

fostered by the Spanish Crown’s selective migration policy, which excluded “Jew”, 

“Moor” and “Gypsy” men from settling on the island (Cifre De Loubriel 1964). 

Later during the 16th century, the Spanish Crown abandoned this policy and agreed 

to welcome all migrants (Cifre De Loubriel 1964). Documentary sources indicate 

that the majority of emigrants from Spain originated in Aragon, Basque Country, 

Valencia, Galicia, Extremadura, Catalonia, Andalusia, Canary Islands, and Castile 

(Fernández Méndez 1970).  

The vast majority of Spaniards arriving to Puerto Rico were single men who, 

by 1506 had begun to intermarry with Native American women. The Governor 

reported to the Crown in 1530 that, of a total of 369 “white” men in Puerto Rico, 

only 57 were married to “white” women (Brau 1904). The Crown took measures to 

increase the number of “white” people on the island. This included ordering “white”, 
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enslaved Christian women to be sent to Puerto Rico in 1512, and instituting a policy 

of subsidizing the migration of Spanish families by offering free tools and seeds 

(Thomas 1997; Díaz-Soler 2000). From this initiative, 50 families consisting of 207 

people arrived to Puerto Rico in a single ship in 1520. However, constant conflict 

with local Native Americans, frequent hurricanes, the little gold found in Puerto 

Rico, and the gold rush that developed in Perú at the time stymied the development 

of a stable settler population (Fernández Méndez 1970).  

In 1532, the Spanish crown enacted an order that limited the number of 

enslaved Sub-Saharan Africans on island farms to five per each “white” peasant. 

Hence, peasants were sent to Puerto Rico mostly from the poorest parts of Spain, 

especially the southern provinces of Andalusia and Extremadura, but also from 

Castile and the Canary Islands (Fernández Méndez 1970). In 1695, 20 families 

numbering 100 members were sent to Puerto Rico from the Canary Islands by 

request of the Governor (Brau 1904). This event marked the beginning of 

subsequent migration waves from the Canary Islands that lasted for the next two 

centuries (Cifre De Loubriel 1964).  

Between 1720 and 1730, Puerto Rico received a group of 176 families from 

the Canary Islands, each formed by a minimum of five individuals (Borges Jacinto 

del Castillo 1969). During this time, most migrants from the Canary Islands settled 

in Venezuela, Mexico, Cuba, Puerto Rico, Uruguay, Dominican Republic, and 

colonial French Louisiana (Rodríguez Mendoza 2004; Santana Pérez 2008). The 

18th century ended with a total population of 153,234 individuals settled in Puerto 

Rico (Cifre De Loubriel 1964).  

Migratory activity to Puerto Rico peaked in the 19th century due to the 

approval of the Royal Decree of Grace of 1815 and the crumbling of the Spanish 

empire in the Americas. The Decree incentivized Spanish and European migration 

to Puerto Rico by permitting the settlement of foreign Catholics with their wealth 

and slaves (Fernández Méndez 1970). According to Cifre De Loubriel (1964), soon 

after the implementation of the Royal Decree, French and French Haitians were the 

most common non-Hispanic migrants arriving to Puerto Rico, followed by people 

from Italy, Portugal and Corsica. Other migrants arrived in minor proportions from 

Germany, Ireland, North America, England, Switzerland, Austria, Denmark, the 

Netherlands, Scotland, Sweden, and Belgium. Furthermore, due to local political 

struggles in Venezuela, Cuba and Puerto Rico became the most viable destinations 

for Canary Islanders (Rodríguez Mendoza 2004; Santana Pérez 2008). Additional 

influxes of Canary Islanders occurred between 1855 and1860, when the Spanish 

government promoted their migration to Puerto Rico after the island suffered a 

cholera epidemic which resulted in the death of 26,820 people (Fernández Méndez 

1970).  

Whereas a Spanish origin for a large number of the Puerto Rican mtDNAs 

may be expected, the relative contribution of Spain versus other sources, and among 
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the other sources themselves is a matter of debate. In this study, we use the most 

extensive Puerto Rican mtDNA data to date, obtained through a census-based 

sampling frame designed to produce a sample set representative of the Puerto Rican 

population. We aim to determine the geographic origins of those mtDNAs in Puerto 

Rico that belong to haplogroups typically associated with West Eurasian and North 

African (WE-NA) populations (superhaplogroup N(xABFOPSY)). After 

subhaplogroup classification through control region sequencing and RFLP analysis, 

we applied clustering, probability and phylogenetic analytical methods to identify 

those populations most likely to have contributed these maternal lineages to Puerto 

Rico. We find strong genetic drift manifested by the presence of certain defined 

subhaplogroups at excess frequency in the Puerto Rico mtDNA pool. 
 

Materials and Methods 
DNA samples.  We used 101 West Eurasian mtDNA samples that were previously 

collected, extracted and tested with RFLP by Martínez-Cruzado et al. (2005). 

Through a procedure approved by the Institutional Review Committee of the 

University of Puerto Rico at Mayagüez (UPRM), voluntary participants completed 

an informed consent document and answered a questionnaire providing information 

about their place of birth and their oldest known maternal female ancestor.  
 
PCR.  MtDNA HVR-I and HVR-II fragments were amplified from DNA samples 

using flanking PCR primers (Table 1). The amplification reaction mix had the 

following chemical components: 5μL PCR 10x Buffer, 3μL MgCl2 (25mM), 8μL 

dNTP (2.5mM), 1.2μL of each primer (20μM), 1.5μL Bovine Serum Albumin 

(100μg/μL), 19.1μL ddH2O, 10μL of purified DNA and 1μL of Taq Polymerase 

(1U/μL). The total reaction volume was 50μL. The PCR mix was heated at 94oC 

for 2.5 minutes and then subjected to 35 cycles of 30 seconds at 94oC, 1 minute at 

56oC and 70 seconds at 72oC. To complete amplification, an extension cycle of 10 

minutes at 72oC was added. PCR products were cleaned using the Roche DNA 

Purification Kit.  

 

Table 1. HVR-I and HVR-II Amplification and Sequencing Primers 

mtDNA fragment Amplification primer Sequencing primer 

HVR-I L15829 
5’catccgtactatacttcacaac3’ 

H34 
5’accaaatgcatggagagctcc3’ 

 

L15854 
5’cctaatcctaataccaactat3’ 

L16219 
5’tgcttacaagcaagtacagca3’ 

L191  
5'cgttcaatattacaggagaac3' 

H394  
5'ccgccaaaagataaaatttg3’ 



Pre-print version. Visit http://digitalcommons.wayne.edu/humbiol/ after publication to acquire 
the final version. 

HVR-II L16491 
5’ggggtagctaaagtgaactg3’ 

H501 
5’gtgtgtgctgggtaggatg3’ 

 

H16526 
5’gggaacgtgtgggctatttagg3’ 

L16504 
5’gtgaactgtatccgacatctgg3’ 

 
 

DNA sequencing.  HVR-I and HVR-II fragments were sequenced using the 

primers shown in Table 1. DNA sequencing was performed using the Applied 

Biosystems ABI-Prism Big Dye Terminator v3.1. The sequencing reaction mix 

contained the following components: 3μL purified PCR product (5ng/μL), 0.5μL 

5X Buffer, 0.8μL primer (1μM), and 0.7μL Big Dye v3.1. Total volume of reaction 

was 5μL. The Big Dye mix was heated at 96oC for 1 minute and then subjected to 

35 cycles of 15 seconds at 96oC, 15 seconds at 50oC and 4 minutes at 60oC. After 

the completions of 35 cycles, samples were maintained at 4oC. The reaction product 

was cleaned with ethanol 90% and sodium acetate 3M to avoid sequence read 

errors. DNA sequences were read using the ABI 3130 Genetic Analyzer of the 

UPRM Department of Biology. Coding region fragments were amplified and 

sequenced to identify diagnostic SNPs for clades belonging to haplogroups H, K, 

and U. These coding region primers are listed in Table 2.  
 
Table 2. Primers Used to Identify Defining SNPs in Coding Region Fragments 

for Subhaplogroup Characterization 

 

Primer Defining 

SNP 

Subhaplogroup Additional 

SNPs 

H3346 

5’attaggaatgccattgcgatta3’ 

 

L4485 

5’gtactaattaatcccctggcc3’ 

 

H7104 

5’tggtctagggtgtagcctg3’ 

 

L3517 

5’cacatctaccatcaccctc3’ 

 

L4485 

5’gtactaattaatcccctggcc3’ 

 

L4754 

G3010A 

A2851G 

 

G4769A 

 

 

T6776C 

 

 

G3915A 

 

 

A4727G 

 

 

A4793G 

H1 

H1h2 

 

H2a 

 

 

H3 

 

 

H6a 

 

 

H6a1 

 

 

H7 

 

 

 

A4985G 

 

 

T3027C 

 

 

 

 

 

T4639C 

A4769G 

A4985G 
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5’atactaccaatcaatactcatc3’ 

 

H9304 

5’tggagtggaagtgaaatcac3’ 

C5348T 

 

G9055A 

A9093G 

H7b 

 

U8b and K 

K1c1 

A4985G 

 

MtDNA sequences were aligned to the revised Cambridge Reference 

Sequence (rCRS) using the ClustalW tool in MEGA5 (Anderson et al. 1981; 

Andrews et al. 1999; Tamura et al. 2011). Nucleotide positions considered for 

analysis of HVR-I were 15854 – 16503 and for HVR-II were 16504 – 501. 

Sequences from 15969 to 16503 and from 33 to 501 were reliably obtained except 

when noted (Table S1). Manually-implemented imputation was performed on 

eleven occasions for population parameter, posterior probability and principal 

component (PC) analyses (Table S2). 
 

Population genetic parameters.  Population genetic parameters were estimated 

for diversity and population expansion measurements using the haplotype counts 

shown in Table S2. Haplotype sequences in HVR-I (positions 15969-16503), HVR-

II (positions 33-501) and a concatenation of both HVR-I + II were used to estimate 

the number of polymorphic segregating sites (S), the number of haplotypes in 

sample (H), Nei’s haplotype diversity parameter (Hd) (Nei 1987), Nei’s nucleotide 

diversity parameter () (Nei 1987), and Tajima’s D (Tajima 1989a,b). Analyses 

were performed using DNAsp v5.10 (Librado and Rozas 2009).  
 
Subhaplogroup characterization.  WE-NA mtDNA clades were characterized 

based on population haplogroup definitions from the literature using both control 

and coding region sequences. Haplogroup H clades were classified according to 

Roostalu et al. (2007), Loogvali et al. (2004) and Pereira et al. (2006); haplogroup 

J clades were classified according to Richards et al. (2000); haplogroup T clades 

were classified according to Abu-Amero et al. (2008), González et al. (2003), 

Maca-Meyer et al. (2004) and Behar et al. (2008); haplogroup K clades were 

classified according to Behar et al. (2006) and Behar et al. (2008); haplogroup U 

clades were classified according to Achilli et al. (2005), Álvarez et al. (2007), 

Turchi et al. (2008), Behar et al. (2008), Rando et al. (1999) and Maca-Meyer et al. 

(2004); haplogroup V clades were classified according to Álvarez et al. (2007) and 

Richards et al. (2000); haplogroups HV, R0a and R clades were classified according 

to Palanichamy et al. (2004), Kivisild et al. (2004) and Richards et al. (2000). An 

update to every haplogroup classification was performed according to the February 

18, 2016 version of the mtDNA tree build 17 in PhyloTree database (van Oven and 

Kayser 2009).  The motifs used to classify clades are shown in Table S3. 
 
Fisher’s Exact tests. Fisher’s Exact tests were conducted comparing 

subhaplogroup frequencies between Puerto Rico and those populations gathered 

from the literature and listed in Table S4, except for those in which most samples 
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lacked all or a critical part of the HVR-II (specifically Mauritanians, Malians, and 

Tuscans). Subhaplogroup characterization was based on control region sequences 

and limited RFLPs in the coding region, as specified in Table S5. Comparisons 

were made as in Sarno et al. (2014). Exact tests were performed under the null 

hypothesis that subhaplogroup frequencies were not significantly different between 

populations. A significant test (p < 0.05) suggests that the null can be rejected and 

statistically significant differences exist in subhaplogroup frequencies between 

Puerto Rico and tested populations. The tests were conducted in R version 3.2.4 

using the fisher.multicomp( ) function in the RVAideMemoirepackage 

(http://cran.rproject.org/web/packages/RVAideMemoire/). This function performs 

a pairwise comparison of multi-column contingency tables and corrects for multiple 

comparisons using the Bonferroni method. We also calculated statistical power for 

each comparison using the power.fisher.test() function in the R statmod package 

(https://cran.r-project.org/web/packages/statmod/index.html) using 10,000 

simulations.  
 
Phylogenetic networks.  Median-joining networks based on HVR-I and HVR-II 

sequences were constructed for the most frequent subhaplogroups in Puerto Rico 

(frequency > 4) and the populations listed in Table S4 using Network 5.0 

(www.fluxus-engineering.com) (Bandelt et al. 2000). For simplification of some 

networks, a transition relative to the CRS at position 263 was assumed for 

sequences not covering that site (Dubut et al. 2004; Achilli et al. 2007). Transitions 

at hypervariable site 16519, A-to-C transversions at positions from 16182 to 16184 

associated to the 16189 mutation, and indels occurring in the interrupted C-stretch 

between positions 303 and 315 were not considered. Pertinent nucleotide positions 

were weighted according to the relative number of occurrences of each mutation in 

the worldwide human mitochondrial phylogenetic tree (Soares et al. 2009). 
 
Posterior probability analyses.  To widen the geographic span of populations 

compared to the Puerto Rican cohort, we used samples in the literature with HVR-

I sequences only, or both HVR-I and –II, for a total of 61 populations (Table S6). 

For consistency with the comparative data, sample categorization was based only 

on HVR-I sequences for this analysis (Table S7). The 61 populations were pooled 

into 30 metapopulations or subcontinental regions as described below, and the 

probability of origin of each Puerto Rican HVR-I-based clade was calculated using 

a Bayesian approach to estimate the posterior probability of finding it in any one of 

the 30 metapopulations or subcontinental regions. The calculation was made using 

the following statistical equation from Mendizabal et al. (2008): P0s =
1

n
∑ ki

Pis

Pic

n
i=1 , 

where n is the total number of Puerto Rican samples; ki is the number of times each 

clade (i) is found in the Puerto Rican sample set; Pis is the frequency of clade i in a 

specific population or subcontinental region; and Pic is the frequency of clade i in 

the metapopulation. The standard deviation for each calculation was also obtained 
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from Mendizabal et al. (2008): SD(Pos) = √
Pos(1-Pos)

n
. To define subcontinental 

regions, Europe was first divided as in Richards et al. (2000), and data was added 

to the regions as follows (Table S6): to the Mediterranean West (n = 209 in Richards 

et al. (2000)), Spain (n = 301) and Portugal (n = 273); to the Mediterranean Central 

(n = 296), North Italy (n = 388) and Sardinia (n = 42); to the Mediterranean East (n 

= 165), Crete (n = 283) and Bosnia (n = 142); to the North West (n = 453), France 

(n = 210); to the Alps (n = 215), Austria (n = 272); to the South East (n = 229), 

Slovenia (n = 104) and Hungary (n = 73); to the North Central (n = 328), Northeast 

Germany (n = 212), Poland (n = 430) and Czech Republic (n = 177); to the North 

East (n = 398), Finland (n = 200) and Russia (n = 200); to the North Caucasus (n = 

191), Georgia (n = 45), Armenia (n = 190) and Azerbaijan (n = 46) and renamed 

the region as Caucasus.  Northwest Africa was defined including Mauritania (n = 

47), Morocco (n = 61), West Sahara (n = 14), Tunisia (n = 46), Moroccan Berbers 

(n = 53) and Tunisian Berbers (n = 26).  Because of their high representation of 

haplogroup U, a group of West African populations was made from Fulani, Wolofs 

and Serers (n = 25). Middle East is composed of Dubaians (n = 193), Palestinians 

(n = 198), Bedouin (n = 73), Druze (n = 120), Nubians (n = 34), Egyptians (n = 54), 

Iraqis (n = 105), Iranians (n = 12) and Syrians (n = 62). Other populations were 

maintained individually, including the Basques (n = 155), Canarians (n = 278), 

Kurds (n = 78), Scandinavians (n = 312), Turks (n = 202) and 13 non-Ashkenazi 

Jewish populations (n = 1047) defined in Behar et al. (2008). Posterior probability 

calculations were performed for the global sample set, and then individually for 

each of the most common WE-NA haplogroups in Puerto Rico, H, J, and U, which 

together make up 84% of the WE-NA mtDNAs in Puerto Rico (see RESULTS). 

Posterior probability geographic distribution figures were produced in R version 

3.2.4 using the rworldmap package (South 2011). 
 
Principal component analyses.  Principal component analyses (PCA) can 

highlight similarities in subhaplogroup frequency distributions among populations, 

providing another means to assess relationships between populations. PCAs were 

performed comparing Puerto Rican WE-NA mtDNA subhaplogroup frequencies to 

the same set of populations and subcontinental regions used in the posterior 

probability analysis. The Belmonte and Georgian Jew populations (Behar et al. 

2008) were not included because these populations were outliers, providing most 

of the variation within PC1 and reducing resolution. PCAs were also performed 

individually for the three most common WE-NA haplogroups in Puerto Rico (H, J 

and U). All PCAs were conducted using the prcomp() function in R version 3.2.4 

(R Development Core Team 2013). 
 

Results 
WE-NA mtDNA variability in Puerto Rico.  We found a total of 34 WE-NA 
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mtDNA clades in our population sample of 101 unrelated individuals. Samples 

belonging to haplogroup U, initially identified by the HinfI site at nucleotide 

position (np) 12308 when using a mismatched primer (Martínez-Cruzado et al. 

2005), were the most frequent, accounting for 33% of our total sample. Samples 

belonging to haplogroup H were the second most frequent contributing around 

28%of the total sample, and samples belonging to haplogroup J accounted for 23%. 

Thus, whereas haplogroups J and U combined account only for approximately 26.5% 

of the mtDNAs in the region encompassing Europe and the Caucasus, in Puerto 

Rico they account for 56% of all mtDNAs of WE-NA ancestry. More specifically, 

the frequency of haplogroup U averages 18.9%, and varies from 11.9% in Tuscans 

(Achilli et al. 2007) to 24.4% in Georgians (Comas et al. 2000), whereas that of 

haplogroup J averages 7.6% and varies from 4.4% among Georgians to 10.9% in 

Poles (Malyarchuk et al. 2002). Hence, both haplogroups are overly represented in 

the Puerto Rican sample set. The very high proportions of these haplogroups 

suggest a major role of genetic drift in determining maternal lineage frequencies of 

WE-NA ancestry in Puerto Rico. 
 

The obtained RFLP data together with control regions sequences (Table S1) 

were used to further classify the mtDNAs into clades according to the worldwide 

mitochondrial phylogenetic tree (van Oven and Kayser 2009). The obtained control 

region sequence haplotypes, their frequency, and the resulting subhaplogroup 

distribution are shown in Table S2 and Figure 1. Clades J1b1a1 (16%), U5b1b1b 

(10%), U5b2b3a (9%) and H1b (9%) are the most frequent subhaplogroups and 

together account for 44% of the WE-NA sample set.  Other frequent clades were 

H1(xH1b), H3 and T2b with 5% each. Additional mitochondrial lineages were 

found at lower frequencies varying from 1 to 4% (Figure 1).  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Pre-print version. Visit http://digitalcommons.wayne.edu/humbiol/ after publication to acquire 
the final version. 

 

 
Figure 1. WE-NA mtDNA subhaplogroup frequency in Puerto Rico.  
 
Population genetic parameters.  We found equivalent haplotype diversity 

between HVR-I and HVR-II, and a substantial increase when both regions are 

concatenated (Table 3). This suggests that HVR-II haplotypes may be highly 

informative of mtDNA identity and probable origin. However, HVR-II has a higher 

concentration of hypermutable sites (Soares et al. 2009), and probably for this 

reason nucleotide diversity was lower (Table 3). The combination of these results 

suggests that HVR-II sequencing is highly useful but only when in addition to 

HVR-I information. We also find negative Tajima’s D values of -0.8400, -0.9293 

and -0.9256 for HVR-I, HVR-II and HVR-I + II fragments, respectively (Table 3). 

However, p-values for the Tajima’s D test were not significant (p > 0.10).  
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Table 3. Summary Statistics for 101 Puerto Rican MtDNAs of WE-NA Ancestry  

Region Positions No. 

Sites 

S1 H2 Hd3 (SD)4 5 (SD)4 Tajima’s 

D6 

P-

value 

HVR-I 15969-16503 535 37 37 0.9420 

(0.0100) 

0.00972 

(0.0004) 

-0.8400 P>0.10 

HVR-II 33-501 469 28 32 0.9420 

(0.0090) 

0.00826 

(0.0005) 

-0.9293 P>0.10 

HVR-I 

+ -II 

33-

501,15969-

16503 

1004 65 46 0.9610 

(0.0080) 

0.00904 

(0.0004) 

-0.9256 P>0.10 

1S = Number of polymorphic segregating sites. 2H = Number of haplotypes in 

sample.  
3Hd = Haplotype diversity (Nei, 1987). 4SD = Standard deviation. 5 = Nucleotide 

diversity (Nei, 1987). 6Tajima, 1989a,b. 
 
Fisher’s Exact tests.  We conducted Fisher’s Exact tests comparing Puerto Rico 

with each one of 29 populations in Europe, North Africa and the Middle East, 

testing the null hypothesis that the subhaplogroup frequencies in both populations 

were not significantly different. The frequency of subhaplogroup J1b1a1 in Puerto 

Rico was found to be significantly different to 20 of the 29 populations compared, 

whereas the frequency of “Others” (E-G,I,M-Q,S,W-Z), U5b1b1b and U5b2b3a 

subhaplogroups were significantly different in 14, 13, and 12 occasions, 

respectively (Table S8). This observation suggests that the high frequencies of 

J1b1a1, U5b1b1b and U5b2b3a, as well as the absence of some haplogroups 

common in the Middle East, such as haplogroup M, are distinctive traits of the 

Puerto Rican WE-NA mitochondrial pool. We also calculated the power of each 

test via simulation (Table S9), and observed that all comparisons in which 

significant differences were found had > 0.985 statistical power. In total, there were 

100 instances in which the test had a power > 0.985, and significant differences 

were found in 85 of them. Only for two populations was the null hypothesis not 

rejected in half of the times or more in which test power was > 0.985 (Iranian Jews, 

2 non-rejections in 4 tests, and Azeri Jews, 1 non-rejection in 2 tests). Hence, none 

of the populations used in this study produced a pattern fitting the expectations for 

a population contributing strongly to the Puerto Rico WE-NA maternal pool. 
 
Median-joining network analysis.  We constructed a haplotype frequency 

spectrum (Figure 2) from Table S2. A group of haplotypes of very high frequency 

(9-to-11) was easily identified.  Another group of medium frequency (4-to-5) can 

also be separated from the vast majority of haplotypes which are of low-frequency 

(1-to-3). In an effort to identify the origin of the most frequent haplotypes in Puerto 

Rico, we constructed median-joining haplotype networks for the clades they belong 

to (Figures S1 – S5). 
 



Pre-print version. Visit http://digitalcommons.wayne.edu/humbiol/ after publication to acquire 
the final version. 

 

 
 
Figure 2. HVR-I and -II haplotype frequency spectrum of WE-NA mtDNAs in 

Puerto Rico.  
 
J1b1a1.  The three Puerto Rican J1b1a1 haplotypes (Figure S1) form an exclusive 

cluster with the second most frequent J1b1a1 haplotype in Puerto Rico (n = 4, Table 

S2) at a central position, differing from the remainder haplotypes by single 

transitions.  This J1b1a1 haplotype differs from the central node of the network by 

mutations at nps 462 and 489.  These sites were not sequenced in the referenced 

studies and thus it is reasonable to assume that the second most frequent Puerto 

Rican haplotype corresponds to the central node.  The central node is represented 

mostly by samples from Russia and Poland, but also from Italy and Spain, 

suggesting that the most represented WE-NA subclade in Puerto Rico may have its 

origin in a population ancestral to any of these countries.  
 
U5b.  Subhaplogroup U5b shows five control region haplotypes in Puerto Rico. 
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The most frequent haplotype (n = 10), corresponding to the U5b1b1b clade, is one 

mutational step away (np 16320) from a node with equal amount of samples from 

Crete, Austria and Germany (Figure S2). Clade U5b1b1b is regarded as specific to 

West Africa, associated to the Serer, Wolof and Fulani populations from Senegal 

and northern Cameroon (Rando et al. 1998; Achilli et al. 2005; Coia et al. 2005; 

Cerny et al. 2006). The scarcity of HVR-II sequences of samples from these 

populations explains why this most frequent U5b control region haplotype in Puerto 

Rico finds only a match with a Spaniard sample. 

The second most frequent haplotype (n = 9) is separated from its nearest 

node by transitions at nps 16224 and 279, which together define the U5b2b3a clade. 

The nearest node is shared only by Spain, France and Saudi Arabia, and this 

haplotype is thus likely to have originated in Western Europe.  One of the remaining 

Puerto Rican U5b haplotypes shares the central node of the network with Italy, 

Russia, Germany, Crete and France, and another is unique, located one mutation 

away (np 16311) from this central node. The last haplotype is also unique, and is 

separated by another transition at np 16311 from a Bosnian sample, thus suggesting 

a Balkan origin. 
 

H1b.  In the H1b network (Figure S3), two nodes are found distinguished by a single 

transition at np 16362, which groups subclades H1b1a, b, c, d, and h (van Oven and 

Kayser 2009). All Puerto Rico H1b samples lack the 16362 transition. Two of the 

Puerto Rican samples are distinguished by a unique transition at np 199. Six others 

possess a transition at np 152 which is shared only with Polish mtDNAs.  
 
J2a.  The J2a median-joining network is divided into two well-defined clusters 

separated by transitions at nps 16231, 16261 and 152 representing subhaplogroups 

J2a1a1 to the left and J2a2 to the right of the network (Figure S4). Because all 

samples within J2a1a1 lacking the transitions at nps 319 and 489 were not 

sequenced at these sites, it is highly probable that they form a large central node for 

J2a1a1 shared by all Puerto Rican samples that is likely the founder haplotype of 

J2a1a1.  This haplotype is common among non-Ashkenazi Jewish populations: of 

the 11 non-Puerto Rican samples, 7 are known Jewish samples, including four 

Spanish exilers, two Libyan Jews and one Moroccan Jew (Behar et al. 2008).  
 
T-16304.  All haplogroup T samples exhibiting a transition at np 16304 were chosen 

to construct the T2b network (Figure S5).  A transition at np 16304 defines the T2b 

clade (van Oven and Kayser 2009). Although 16304 also defines subclade T1a1n, 

T1 is defined by a transition at np 16186, which appeared in only one sample in the 

network. Thus, the presence of two main nodes separated by a single transition at 

np 16296 (which defines subhaplogroup T2 (van Oven and Kayser 2009)) is the 

result of the instability of the 16296 site in the T background, and not of having 

large numbers of T1 and T2 samples in the network. Indeed, the 16296 transition 

plays a role in numerous reticulations in the network (Figure S5). The transition at 
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np 16344 forms a monophyletic group in the network composed only of Puerto 

Rican and Jewish samples (from Tunisia and from a Spanish exiler in Turkey). In 

addition, the only haplotype different to all other T2b haplotypes in Puerto Rico 

derived from the latter accumulating four additional mutations, suggesting this 

could represent a very old, as yet non-described clade of Jewish origin.  

 In summary, only three of the seven most frequent WE-NA haplotypes in 

Puerto Rico, belonging to clades H1b, T2b and U5b1b1b, were shared by a single 

population or ethnic group in the median-joining networks, and we believe that in 

one of these cases (U5b1b1b) a shared haplotype is not a reliable indicator of origin 

because of recent back-migrations (see DISCUSSION). Furthermore, seven of the 

remaining eight, low-frequency, Puerto Rican haplotypes in these networks were 

not shared with any population or ethnicity and the one who did, belonging to U5b, 

was shared with several populations. Median-joining networks are highly 

informative phylogenetic analytical tools that nevertheless require highly 

informative sequences for which the HVR-I region alone is insufficient. Hence, to 

include in our analyses geographic regions for which most sequences available in 

the literature are restricted to HVR-I and are not suitable for median-joining 

network analysis, we employed posterior probability and principal component 

methods. 
 
Posterior probability analysis.  Our posterior probability (Pos) analysis of all 

subhaplogroups combined does not fit the historical expectation of a major 

contribution to the Puerto Rican WE-NA mtDNAs from the Iberian Peninsula 

(Table 4, Figure S6).  Instead, WE-NA mtDNA sequences in Puerto Rico are in 

general more likely to originate in the Canary Islands with a Pos value of 14.23% 

(SD=3.48%), or from the Wolof and Serer from Senegal and the nomad Fulani of 

West Africa (Pos = 10.38%, SD = 3.03%). However, the contribution of these West 

African populations seems to be largely restricted to haplogroup U (Table 4, Figure 

S6), suggesting there exists no population in the database which carries a similarly 

diverse distribution of haplogroups as found in the Puerto Rican WE-NA mtDNAs, 

with the possible exception of the Canary Islands.  

In consistency with this pattern, the most common Puerto Rican WE-NA 

haplogroups present origin probabilities widely different for different haplogroups. 

Whereas haplogroup U has a very strong Northwestern African component, 

including the Canary Islands and the West African populations mentioned 

previously, Puerto Rican haplogroup J mtDNAs are better represented by 

Scandinavia (Pos = 13.10%, SD = 7.03%), Turkey (Pos = 12.23%, SD = 6.83%), 

and Moroccan Jews (Pos = 10.15%, SD = 6.30%), followed by Northern European 

regions such as North Central (Pos = 8.77%, SD = 5.90%), North Eastern (Pos = 

7.62%, SD = 5.53%), and North Western Europe (Pos = 7.11%, SD = 5.36%).  

Haplogroup H, on the other hand shows no region or population with a particularly 

high probability of origin (Table 4). Hence, our posterior probability analysis 
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suggests that WE-NA mtDNAs in Puerto Rico are likely derived from a wide 

geographical range, with the Canary Islands as the largest contributor.  
 

Table 4. Posterior Probability of Origin (Pos) for Puerto Rican WE-NA mtDNAs 
aSample numbers are presented in the order: Global, H, J, U 

 

Principal component analyses.  In our first global PCA the first two principal 

components captured more than half of the genetic variability, PC1 38.54% and 

PC2 24.93%. PC1 seems to have been driven by populations likely having 

undergone genetic drift, separating mostly the Indian Jew populations to the right 

from the bulk of the other populations, from which the Basque protrude to the left 

(Figure S7). PC2 separates the West African populations and the Azeri Jews to the 

bottom of the plot from the Mumbaikar and Libya Jews to the opposite pole. Puerto 

Rico is close to several populations in the PC1-PC2 plot, as well as when PC1 is 

plotted against PC3, which explains 14.02% of the variation (Figure S8). To better 

understand the relationship of Puerto Rico WE-NA mtDNAs to these populations, 

we added the absolute differences between the eigenvalues of Puerto Rico and any 

given population for all 25 PCs calculated, which combined accounted for 100% of 

the variation. The results are shown in Table 5. 

Population na Rank 
Global 

Pos (SD), % 
Rank 

H 

Pos (SD), % 
Rank 

J 

Pos (SD), % 
Rank 

U 

Pos (SD), % 

Canarian 278, 113,   21,   73 1 14.23 (3.48) 2 6.57 (4.68) 17 1.40 (2.45) 1 34.04 (8.25) 
Fulani + Wolof + Serer 27,      1,    7,   18 2 10.38 (3.03) 23 2.12 (2.72) 21 0.56 (1.56) 2 30.11 (7.99) 

North Central European 1147, 528, 106, 174 3 5.19 (2.21) 4 5.77 (4.41) 4 8.77 (5.90) 17 1.18 (1.88) 
Scandinavian 312, 163,   27,   55 4 4.85 (2.14) 15 2.52 (2.96) 1 13.10 (7.03) 15 1.26 (1.94) 

North Western European 661, 309,   74,   80 5 4.61 (2.09) 8 4.35 (3.86) 6 7.11 (5.36) 7 1.92 (2.39) 
North Eastern European 798, 335,   57, 182 6 4.50 (2.06) 5 5.47 (4.30) 5 7.62 (5.53) 9 1.58 (2.17) 

Turk 202,   58,   22,   42 7 4.40 (2.04) 20 2.16 (2.75) 2 12.23 (6.83) 22 0.81 (1.56) 
Moroccan Jew 146,   61,   14,   10 8 3.91 (1.93) 19 2.16 (2.75) 3 10.15 (6.30) 10 1.57 (2.16) 

Alpine 487, 220,   48,   91 9 3.39 (1.80) 7 4.63 (3.97) 15 1.91 (2.85) 14 1.36 (2.02) 

Basque 155,   92,     4,   22 10 3.38 (1.80) 3 5.77 (4.41) 14 2.03 (2.94) 8 1.66 (2.23) 

North Western African 243, 110,   17,   50 11 3.36 (1.79) 22 2.14 (2.73) 18 0.91 (1.98) 4 3.95 (3.39) 
Iraqi Jew 135,   16,   30,   21 12 3.25 (1.77) 23 2.12 (2.72) 10 3.88 (4.03) 18 1.18 (1.88) 

West Mediterranean 783, 390,   56, 122 13 3.23 (1.76) 11 3.12 (3.29) 7 5.35 (4.69) 6 1.98 (2.43) 
Spanish Exile Jew 213,   82,   24,   23 14 3.14 (1.74) 21 2.15 (2.74) 8 4.46 (4.30) 5 2.21 (2.56) 

Algerian Jew 20,   10,     1,     2 15 2.69 (1.61) 18 2.16 (2.75) 21 0.56 (1.56) 3 5.37 (3.92) 
Caucasian 472, 134,   36, 107 16 2.64 (1.59) 12 3.08 (3.27) 9 4.45 (4.30) 16 1.18 (1.88) 

East Mediterranean 590, 249,   55,   92 17 2.55 (1.57) 6 4.90 (4.08) 19 0.78 (1.83) 23 0.80 (1.55) 
Middle Eastern 851, 195,   91, 124 18 2.41 (1.53) 10 4.01 (3.71) 12 2.94 (3.52) 20 1.01 (1.74) 

Kurd 78,   24,     5,   14 19 2.36 (1.51) 9 4.01 (3.71) 13 2.91 (3.51) 11 1.46 (2.09) 
Central Mediterranean 726, 305,   59, 102 20 2.35 (1.51) 14 2.85 (3.14) 16 1.85 (2.81) 13 1.39 (2.04) 

South Eastern European 407, 165,   36,   76 21 2.03 (1.40) 13 2.90 (3.17) 20 0.72 (1.77) 19 1.06 (1.79) 
Azeri Jew 58,     8,   35,     5 22 1.78 (1.32) 1 9.98 (5.66) 21 0.56 (1.56) 25 0.00 (0.00) 

Tunisian Jew 36,   15,     0,     5 23 1.77 (1.31) 17 2.18 (2.76) 28 0.00 (0.00) 12 1.45 (2.08) 
Libyan Jew 80,   27,     4,     4 24 1.44 (1.19) 23 2.12 (2.72) 11 3.50 (3.83) 21 0.88 (1.62) 

Yemeni Jew 139,     5,   30,   14 25 1.36 (1.15) 23 2.12 (2.72) 21 0.56 (1.56) 25 0.00 (0.00) 
Iranian Jew 75,   25,   13,   12 26 1.27 (1.12) 16 2.27 (2.82) 21 0.56 (1.56) 24 0.59 (1.33) 

Georgian Jew 74,     8,     4,     3 27 1.13 (1.05) 23 2.12 (2.72) 21 0.56 (1.56) 25 0.00 (0.00) 

Near & Mid Eastern Jew 34,     8,     7,     2 28 1.08 (1.03) 23 2.12 (2.72) 21 0.56 (1.56) 25 0.00 (0.00) 

Cochin Jew 44,     0,     0,     6 29 0.86 (0.92) 30 0.00 (0.00) 28 0.00 (0.00) 25 0.00 (0.00) 
Mumbaikar Jew 34,     3,     0,     0 30 0.43 (0.65) 23 2.12 (2.72) 28 0.00 (0.00) 25 0.00 (0.00) 
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The composition of Puerto Rico WE-NA mtDNA subhaplogroups resembles more 

closely that of populations 

located in the northeastern 

coast of the Mediterranean 

Sea and further inland. Four 

of the five populations with 

the least absolute differences are 

from this region including 

Caucasians (0.928), Turks 

(0.930), East Mediterraneans 

(0.982) and South East Europe 

(0.984). North Central Europe 

was the only population outside 

of the region with similar total 

eigenvalue differences with 

Puerto Rico (0.984).   

We also performed 

individual principal component 

analyses for haplogroups H, J 

and U. For haplogroup H, PC1 

contained 91.21% of the 

variation, separating several 

Jewish populations to the far left 

of the plot from Near Eastern 

populations at the right pole 

(Figure S7). With the exception 

of Scandinavians, all European 

populations clustered next to 

each other between PC1 values 

0.162 (West Mediterranean) and 

0.267 (North East Europeans). 

Puerto Rico was located very 

close to the cluster at PC1 value 

0.072, and closest within the 

cluster to the West 

Mediterranean population. For 

haplogroup J, PC1 captured 

84.25% of the variation and 

produced a tightly knit cluster at the left of the plot containing, between values -

0.349 and -0.408, all European populations with the exception of Scandinavians 

and Basques, including North Western Africans, Kurds, Caucasians, and Middle 

Population Sum 

Puerto Rico 0 

Caucasian 0.928492535 

Turk 0.930114982 

East Mediterranean 0.982070254 

North Central European 0.984187878 

South East European 0.984365802 

Spanish Exile Jew 0.994187894 

North East European 1.013600768 

Middle Eastern 1.021054132 

Central Mediterranean  1.037297849 

Iranian Jew  1.048964361 

Kurd 1.059468436 

Alpine 1.061142711 

North West European 1.075248659 

Iraqi Jew  1.097384013 

Canarian 1.111158047 

Moroccan Jew  1.128515084 

West Mediterranean 1.146220672 

Scandinavian 1.178065801 

Northwestern African 1.184606213 

Tunisian Jew  1.194190322 

Algerian Jew  1.253456929 

Near and Middle Eastern Jew  1.263396212 

Yemeni Jew  1.355252559 

Basque 1.379198264 

Libyan Jew  1.417913777 

Georgian Jew  1.449869361 

Fulani-Wolof-Serer  1.533771411 

Azeri Jew  1.600948512 

Cochin Jew  1.634802469 

Mumbaikar Jew  1.782730821 

Table 5. Sum of Egenvalues Absolute Differences 

with Puerto Rico for the First 25 PCs 
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Easterners, and excluding all Jewish populations, Turks, Canarians and West 

Africans. The PC1 value of Puerto Rico (-0.320) located it very close to this cluster 

at the PC1 axis; however, most of the variation contained in PC2, which 

encompassed 10.3% of the total variation, separated Puerto Rico away from the rest 

of the populations. The haplogroup U PCA produced another tight cluster of 

populations close to Puerto Rico in principal components one to three, which 

contained 62.14%, 15.51%, and 10.56% of the variation, respectively (Figures S7 

and S8). The cluster was maintained in all three PCs and contained all European 

populations except Scandinavia, Northwestern Africa, Spanish Exile and Yemeni 

Jews, Kurds, Middle Easterners, and Caucasians.  
 

Discussion 
The total WE-NA genetic composition of Puerto Rico depends on the 

number of migrants, their geographic origin, and their reproductive success in 

Puerto Rico, which in turn is a function of the number of generations in Puerto Rico 

and the average number of descendants per generation. Moreno-Estrada et al. (2013) 

showed that in spite of the large number of migrants arriving to Puerto Rico from 

Europe during the first half of the 18th century (Cifre de Loubriel 1964, Fernández 

Méndez 1970), migrations from Sub-Saharan Africa produced a larger change in 

the ancestral composition of the Puerto Rican population. This observation can be 

explained by a population expansion produced by an increase in the reproductive 

success of the admixed locals as opposed to migration from Europe. In such a case, 

the WE-NA origins and composition of Puerto Rico may be driven more by the 

small number of early migrants than by the large number of migrants arriving later 

in history.  

However, this study focuses on WE-NA ancestry of Puerto Rico mediated 

by women, whose migrations to Puerto Rico were notably rare in the early centuries 

of European colonization (Fernández Méndez 1970). The colonization of the 

Americas by the Spaniards was characterized predominantly by the migration of 

men, with the result of strong asymmetries between male (Y-DNA) and female 

(mtDNA) ancestries in the admixed populations (Carvalho-Silva et al. 2001; Bryc 

et al. 2010). This has been confirmed for Puerto Rico (Vilar et al. 2014), and also 

the Canary Islands (Pinto et al. 1994, 1996), where a large proportion of mtDNAs, 

but not nuclear markers, were found to be of Guanche origin, in addition to those 

belonging to other subjugated populations such as Berbers or Guineans. 

Thus, the bimodality of the obtained haplotype frequency distribution 

(Figure 2) can be explained by the presence of a few early-arriving haplotypes that 

gained large numbers through population expansion, and a large number of low-

frequency haplotypes representing late arrivals. This very large number of low-

frequency haplotypes may be the reason why a population expansion was not 

detected by the Tajima’s D test (Table 3). However, the very high frequency of a 

low number of haplotypes is outstanding (Figure 2). Drift has played a big role in 
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the make-up of the Puerto Rican WE-NA composition. 

WE-NA mitochondrial ancestry accounts for only 11.5% of maternal 

haplogroups in the modern Puerto Rican population. Most of this maternal ancestry 

has been attributed to Western European sources (Vilar et al. 2014). However, using 

Fisher’s Exact tests, median-joining networks, posterior probability analyses, and 

principal component analyses, we found that the origins of the WE-NA female 

ancestry of modern Puerto Ricans may be varied, with strong contributions from 

Spain, the Canary Islands and populations related to contemporary Fulani, Serer 

and Wolof populations of West Africa. Substantial contributions were also detected 

from elsewhere in the circum-Mediterranean region and inside Europe. Some of 

these inputs may have originated among Jewish populations.  

Because haplotypes shared between populations are strong evidence for 

recent migrations, haplotype networks are powerful tools to highlight such 

processes. Of the 7 major (most frequent) Puerto Rican WE-NA haplotypes (>4), 

two were shared with only one population. The H1b haplotype 16189-16356-152-

263 was shared only with two Polish samples (Malyarchuk et al. 2002), and 

U5b1b1b (16189-16192-16270-16320-73-150-263) was shared only with one 

Spanish sample (Álvarez et al. 2007). The latter connection is likely due to back-

migration. U5b1b1b is common among the nomad Fulani of West Africa and the 

Wolof and Serer populations of Senegambia (Rando et al. 1998, Rosa et al. 2004, 

Achilli et al. 2005, Coia et al. 2005). Its ancestral clade U5b1b (control region motif 

16189-16192-16270-73-150-263), has been proposed together with haplogroups 

H1, H3 and V to represent hunter-gatherer migrations from the Franco-Cantabrian 

refuge to North Africa during the Ice Age (Achilli et al. 2005). The lineage diverged 

in Africa into U5b1b1e, characterized by a transition at np 152 and found almost 

exclusively among Berbers (Achilli et al. 2005), and into U5b1b1b, characterized 

by a transition at np 16320. U5b1b1b thus arose in the African continent, and 

because it is virtually absent north of Senegambia, it probably arose only after a 

coastal migration led to admixture events with Sub-Saharan African populations in 

Senegambia.  

According to documentary sources, Senegambia, where the Wolof, Serer, 

and some Fulani can be found, was the first region of Sub-Saharan Africa to be 

exploited for the African Slave Trade. This region was abandoned by the traders in 

the second half of the 16th century, who moved their trade to the Bight of Biafra 

and nearby coasts (Thomas 1997). It has also been documented that Wolofs were 

among the first enslaved Africans sold in the new colony of San Juan (Puerto Rico) 

early in the 16th century, but were later imported in lower numbers because of their 

renowned resistance to the conditions of slavery (Alegría 1985). In addition, 

molecular and chromosome recombination evidence based on the probability of a 

population of being the source of short vs long chromosomal fragments of Sub-

Saharan African ancestry supports Senegambia as a source of enslaved Africans for 
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Puerto Rico and the Caribbean prior to the Bight of Biafra (Moreno-Estrada et al. 

2013). It is noteworthy that despite its West African origin, U5b1b1b has not been 

found among African-Americans (Just et al. 2008), nor in the English-speaking 

Caribbean (Benn-Torres et al. 2007), Cuba (Mendizabal et al. 2008), or Dominican 

Republic (unpublished results). Thus, it is apparent that the arrival of the U5b1b1b 

haplotype to Puerto Rico was a rare event that occurred in the first decades of the 

Spanish colonization, and that its numbers expanded through the centuries not by 

additional migrations, but by reproduction. Its high frequency in Puerto Rico is 

likely due to genetic drift.  

Another major Puerto Rican WE-NA haplotype was shared by only two 

populations, both Jewish. Haplotype T2b 16126-16294-16296-16304-16344-73-

151-152-263 was shared with a Tunisian Jew and with a Spanish Jew exile in 

Turkey, suggesting migration of Jewish women in the early colonization of Puerto 

Rico. Of the four remaining major Puerto Rican WE-NA haplotypes, two were 

shared with multiple populations and two with none. The J2a1a1 founder haplotype 

(16069-16126-16145-16231-16261-73-150-152-195-215-263-295) was shared 

with four Spanish Jew exiles, two Libyan Jews and one Moroccan Jew, in addition 

to two Poles, one Bosnian and one Spaniard, and is thus likely to be of Jewish 

ancestry. The J1b1a1 haplotype (16069-16126-16145-16172-16222-16261-73-

242-263-295) was shared with three Poles, three Russians, one Spaniard and one 

Italian. The two major Puerto Rican haplotypes that were not shared belonged, 

together with U5b1b1b, to the trio of WE-NA haplotypes most frequent in Puerto 

Rico (Figure 2): the J1b1a1 haplotype (16069-16126-16145-16172-16222-16261-

73-152-242-263-295), and the U5b2b3a haplotype (16224-16270-73-150-263-279). 

In an effort to increase our certainty on the origin of the latter four 

haplotypes, we searched the 1000 Genomes Project phase 3 database for Puerto 

Rico, which contains the complete mtDNA sequence of 104 unrelated samples, but 

found useful information only for both J1b1a1 haplotypes. Although these two 

haplotypes differ by only one transition at np 152, they differ by five transitions in 

their coding region. Specifically, HG01098 and HG01111, who correspond to the 

second most frequent J1b1a1 haplotype in Puerto Rico (n = 4, Table S2), share four 

private transitions at nps 3324, 9438, 14560 and 15740. On the other hand, 

HG01302 and HG01308, with a control region sequence identical to the most 

frequent haplotype in Puerto Rico (n = 11), share a private transition at 13943 

(Table S10). This extensive divergence suggests subhaplogroup J1b1a1 may 

represent a very old lineage that, in spite of its low frequency worldwide, has 

become geographically widespread, having been reported as far east as Iraq, and as 

far west as Spain and Morocco (Behar et al. 2008). Despite their highly similar 

coding region sequences, the two most frequent J1b1a1 haplotypes in Puerto Rico 

could well have originated from far apart regions. 

Three of the four mutations that characterize the second most frequent 
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J1b1a1 haplotype in Puerto Rico (3324, 9438 and 15740) appeared in only one 1000 

Genomes Project sample outside of Puerto Rico: HG01694, from the IBS (Iberian 

populations in Spain) sample set. We believe it is unlikely that this haplotype is 

widespread outside of Spain because its 15740 mutation is predicted by Polyphen-

2 to be probably damaging with a score of 1.00 (Adzhubei et al. 2010). Damaging 

mutations are usually recent and restricted to their respective populations (The 1000 

Genomes Consortium 2012). It is thus likely that the second most frequent J1b1a1 

haplotype in Puerto Rico originated in Spain, which was one of the candidate 

countries suggested by the haplotype network analysis (Figure S1). The network 

contains several Jewish samples, including one Spanish Jew exile sequence located 

one mutational step away from the central haplotype. We conclude that the second 

most frequent J1b1a1 haplotype in Puerto Rico may have originated in Spain, and 

cannot rule out a Spanish Jewish origin. 

On the other hand, none of the remaining 2502 mtDNA samples of the 1000 

Genomes Phase 3 database possesses the np 13943 transition unique to HG01302 

and HG01308.  It is thus apparent that the transition at np 13943 characterizes the 

most frequent J1b1a1 haplotype of Puerto Rico. Furthermore, its absence in the IBS 

sample set increases the likelihood of an origin outside of Spain, more probably 

where its clade exists at higher frequencies and variability. Ancient DNA studies 

have associated J1b1a1 with the diffusion of Proto-Germanic and Proto-Celto-Italic 

speakers, and its frequencies are higher in North-Central Europe (Richards et al. 

1996, 1998, 2000, 2002; Parson et al. 2004). This distribution may explain the large 

posterior probability for this region as one of the likely sources of Puerto Rican J 

mtDNAs (Table 4). However, the posterior probability analysis suggested other 

probable sources such as Moroccan Jews, or Turks. Battles between the Ottoman 

Empire and Spanish-led Catholic coalitions were common during the 16th century, 

and could have led to the introduction of Near Eastern mtDNAs to Spanish colonies 

in the Americas (Crowley 2008).  

A search in the EMPOP Haplogroup Browser Database (empop.online) 

showed that U5b2b3a, defined by transitions at nps 16224 and 279 (van Oven and 

Kayser 2009), is found only in the Iberian Peninsula and in the Americas, with a 

much higher frequency in the Iberian Peninsula. Its derived clade U5b2b3a1 has 

been found only in the Americas and is defined by a transition in the coding region 

that was not tested in this study (np 9494). However, none of the Puerto Rican 

U5b2b3a samples in the 1000 Genomes database possess the transition that defines 

U5b2b3a1 and are thus likely to belong to U5b2b3a. In conclusion, U5b2b3a and 

its derived clades seem to represent a lineage probably restricted to the Iberian 

Peninsula. A substantial group of women settlers carrying these clades may have 

participated in the early decades of the Spanish colonization of the Americas, but 

only U5b2b3a made it to Puerto Rico. 

We also searched the 1000 Genome Project Puerto Rico database for the 
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T2b, U5b1b1b and H1b Puerto Rican haplotypes of high frequency but found only 

the H1b haplotype. HG01167 lacked all transitions that define H1b subclades, 

suggesting that the most common H1b haplotype in Puerto Rico is basal in its 

phylogeny. Subhaplogroup H1b is widespread across Europe and present in very 

low frequencies in North African populations (Ennafaa et al. 2009; Richards et al. 

2000). Since all H1b mtDNAs found in the North-Central Caucasus possess the 

transition at np 3796 that defines H1b1 (Roostalu et al. 2007), it is reasonable to 

conclude that the most common H1b haplotype of Puerto Rico does not originate 

in the North-Central Caucasus. In the H1b median network (Figure S3) the most 

common H1b Puerto Rican haplotype is shared only with Polish samples, differing 

from the central node of the network only by a transition at np 152, which is the 

most unstable site in the whole mitochondrial genome after np 16519 (Soares et al. 

2009). The central node of this network is shared only by Eastern European or 

Eastern Mediterranean samples (Poland, Finland, Russia, Bosnia and Crete). On 

the other hand, two H1b samples sharing their HVR-I haplotype with the most 

common H1b haplotype in Puerto Rico have been described among Moroccan 

Berbers (Ennafaa et al. 2009). Thus, the most common H1b haplotype in Puerto 

Rico may originate from Eastern Europe, the Eastern Mediterranean, or Moroccan 

Berbers. On its way to Puerto Rico, it could have passed by the Canary Islands, as 

its HVR-I haplotype is found there (see below). Other minor H1b Puerto Rican 

haplotypes may have arrived through the Canary Islands as well, such as the H1b 

sample carrying the 16257 transition found only in this population (Rando et al. 

1999).  

In summary, for the three haplotypes with the highest frequencies in Puerto 

Rico, the likeliest origins include Sub-Saharan Africa (U5b1b1b), Spain (U5b2b3a), 

and other regions sharing a coast to the Mediterranean Sea or in North Central 

Europe (J1b1a1). Of the remaining four Puerto Rican haplotypes with frequencies > 

4, the J1b1a1 haplotype differed by only one coding region transition from a 

Spanish sample, H1b is likely from Eastern Europe, the Eastern Mediterranean, or 

Moroccan Berbers, and the T2b and J2a1a1 haplotypes are likely of Jewish origin, 

especially T2b. Sephardic Jews are known to have been among the ethnic groups 

engaging in migrations to the Puerto Rico (Fernández Méndez 1970), and their 

imprint is probably present as well among the less frequent haplotypes on the island. 

For instance, three Puerto Rican samples possess the transition at np 497 in a K1a 

lineage that has been found in high frequencies in Ashkenazi Jewish populations 

(Table S2, Behar et al. 2006). 

It is noteworthy that the Posterior Probability and PCA analyses gave very 

different results despite using the exact same data (Table S11). Whereas PCA 

identifies the variables and covariants that are responsible for most of the variation 

among all populations in the database, the posterior probability analysis estimates 

the relative probability of origin for each Puerto Rican subhaplogroup among the 
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populations in the database, and is therefore heavily influenced by subhaplogroups 

that are highly frequent in Puerto Rico. For example, the West African group in the 

reference database (Fulani + Wolf + Serer) was the only metapopulation with more 

than one U5b1b1b mtDNA (15 of its 27 WE-NA samples). Hence, it is highly 

probable that U5b1b1b mtDNAs in Puerto Rico originated from that population. 

Thus, even though other subhaplogroups highly frequent in Puerto Rico, such as 

J1b1a1, H1b and U5b2b3a, were absent in this West African population, the very 

high frequency of U5b1b1b in Puerto Rico gave weight to its West African 

connection to the point that this population obtained the second highest overall 

probability of origin (Table 4). Its 10.4% value is very close to the frequency of 

U5b1b1b in Puerto Rico (9.9%), and implies that approximately 10.4% of the 

Puerto Rican WE-NA mtDNAs originate from West Africa. By contrast, in the 

combination of the 25 principal components of the global PCA analysis, the West 

African population was not closer to Puerto Rico relative to other populations 

(Table 5). 

Our posterior probability analyses show that WE-NA mtDNA sequences in 

Puerto Rico are generally more likely to originate in the Canary Islands with a 

probability of 14.2%. This is not surprising as U6b1a and the haplogroup H HVR-

I haplotype 16260 found in Puerto Rico (Table S2) are considered founders of the 

Guanche population. In addition, two samples bearing the North African Berber 

motif (16172-16189-16219-16278), corresponding to U6a1 and found in the 

Canary Islands (Rando et al. 1999; Maca-Meyer et al. 2004), were also identified 

in Puerto Rico. Several HVR-I sequences found in modern admixed Canary 

Islanders are also present in Puerto Ricans (Pinto et al. 1996; Rando et al. 1999; 

Maca-Meyer et al. 2004; Martínez-Cruzado et al. 2005; Fregel et al. 2009). More 

specifically, 14 of our 37 Puerto Rican HVR-I haplotypes are shared with some 

Canarian samples from Rando et al. (1999), represented by 38 of our 101 WE-NA 

samples. These findings are consistent with historical sources describing multiple 

migration events from the Canary Islands to Puerto Rico after the 16th century, and 

especially at the beginning of the 18th century. Unlike migrations from other 

European sources, which consisted largely of single men, many groups migrating 

from the Canary Islands were composed of complete, farmer families (Cifre de 

Loubriel 1964; Fernández Méndez 1970; Borges Jacinto del Castillo 1969; 

Rodríguez Mendoza 2004). Hence, the data as a whole suggests that migrations of 

women under different conditions from Spain and elsewhere (including North 

Africa and Eastern Europe or the Eastern Mediterranean) to the Canary Islands 

eventually gave rise to women who extended their migration further to the 

Caribbean as part of whole families. 

Regarding haplogroup H mtDNA sequences, H1 and H3 Iberian samples 

encompass most of the haplogroups H1 and H3 diversity (Pereira et al. 2006; 

Roostalu et al. 2007), and our PCA analysis for haplogroup H in Puerto Rico 
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supports a predominantly Iberian origin (Figure S7).  The diversity within these 

haplogroups in Puerto Rico, 3 haplotypes in 5 samples in H1(xH1b) and 5 samples 

with different haplotypes in H3, is in stark contrast with the diversity in J1b1a1 (3 

haplotypes in 16 samples), U5b1b1b (1 haplotype in 10 samples) and U5b2b3a (1 

haplotype in 9 samples), suggesting they mostly represent later migrations to Puerto 

Rico such as those occurring during the 19th century, which reportedly entailed 

mostly the migration of families from Western Europe (Cifre de Loubriel 1964).  

In conclusion, the Canary Islands seem to have been a major source of WE-

NA mtDNAs to Puerto Rico. However, most of the WE-NA mtDNAs arriving to 

Puerto Rico from the Canary Islands were not native to the Canary Islands. 

Furthermore, most of the Puerto Rican WE-NA haplotypes may not have arrived to 

Puerto Rico through the Canary Islands, as they are not found there today. It appears 

there are multiple ulterior origins for the Puerto Rican mtDNA haplotypes. Specific 

examples are U5b1b1b (n =10) from Senegambia, U5b2b3a (n = 9) from the Iberian 

Peninsula, T2b (n = 4) from Jews residing in Tunisia or exiled from Spain, and 

U6a1 (n = 2) from North Africa. As suggested from haplotypes belonging to J2a1a 

and K1a in addition to T2b, Jewish populations from diverse geographic regions 

are probably one of the main contributors to the mtDNA variation of admixed 

Puerto Ricans. As suggested by the H1b network and the global PCA results (Table 

5), other contributors could have been from Eastern Europe or the northeastern 

coasts of the Mediterranean Sea. It is noteworthy that Turkey and Jews from 

Morocco in addition to North Central Europe are among the likeliest sources for 

the most frequent WE-NA haplotype in Puerto Rico, belonging to J1b1a1. The 

likely geographic origins of WE-NA mtDNAs in Puerto Rico span coasts north and 

south of the Mediterranean Sea. 
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Table S1. HVR-I and HVR-II Haplotypes in 101 Samples from Modern Puerto Ricans 

 

Subhaplogroup HVR-I HVR-II Frequency 

H 16260, 16519 263 1 
H1 CRS 263 1 
H1 16519 263 1 
H1 CRS 152, 199, 263 1 
H1 16296, 16519 263 1 
H1b 16189, 16356 152, 263 4 

H1b 16356a1
 152, 263 1 

H1b 16189, 16356 73, 152, 263 1 
H1b 16189, 16356 199, 263 2 
H1b 16189, 16257, 

16356 
73, 263 1 

H1h2 CRS 263 1 
H2a 16519 263 2 
H2a 16218, 16362 263, 292 1 
H3 CRS 263 1 
H3 16519 152, 263 1 
H3 16093, 16362, 

16519 
263 1 

H3 16093, 16362 73, 263 1 
H3 16192, 16320, 

16519 
152, 263 1 

H3c2 16176 195, 263 1 
H3c2 16176 195, 242, 263 1 
H6a1 16192, 16362 239, 263 1 
H7 16519 263 1 
H7b 16519 73, 263 1 
HV 16209, 16223, 

16278, 16362, 

16519 

73, 195, 263, 497 1 

J1b1a 16222, 16261a2 73, 242, 263, 295, 

462, 489 

2 

J1b1a1 16069, 16126, 
16145, 16172, 
16222, 16261 

73, 152, 242, 263, 
295, 462, 489 

11 

J1b1a1 16069, 16126, 
16145, 16172, 
16222, 16261 

73, 242, 263, 295, 
462, 489 

2 

J1b1a1 16069, 16126, 

16145, 16189, 

16172, 16222, 

16261 

73, 242, 263a3
 1 

J1c1 16069, 16126 64, 73, 185, 228, 
263, 295, 462, 482, 
489 

1 
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J1c1 Did not amplify 64, 73, 185, 228, 
263, 295, 462, 482, 
489 

1 

J1c2e 16069, 16126, 
16366 

73, 185, 188, 228, 
263, 295, 462, 489 

1 

J2a1a1 16069, 16126, 
16145, 16231, 
16261 

73, 150, 152, 195, 
215, 263, 295, 319, 
489 

3 

J2a1a1 16069,16126, 

16145,16231, 16261 

73, 150, 152, 195, 

215, 263, 295a4 

1 

K1 16189, 16224, 

16311 

73, 263b1
 1 

K1a 16224, 16311, 
16519 

73, 263, 497 1 

K1a 15930, 16224, 
16311, 16519 

73, 263, 497 1 

K1a 16093, 16224, 
16311, 16519 

73, 152, 263, 497 1 

K1c1 15928, 16311, 
16519 

73, 146, 152, 263 1 

R0a 16126, 16189, 
16362 

64, 150, 263 1 

R1a 16288, 16311, 
16519 

73, 150, 185, 189, 
263, C295A 

1 

R2 CRS 73, 152, 195, 263 1 
T2b 15928, 16126, 

16294, 16296, 
16304, 16344, 
16519 

73, 151, 152, 263 4 

T2b 15928, 16126, 
16294, 16296, 
16304, 16344 

73, 185, 228, 263 1 

T2c1 16126, 16292, 
16294, 16296, 
16519b2 

73, 146, 247, 263, 
466 

1 

Pre-T2f 16126, 16189, 
16294, 16296, 
16304 

73, 146, 263 1 

U2e1 16362, 16519 73, 152, 195, 217, 
263, 340 

1 

U2e1 16051, 16129C, 
16189, 16362 

73, 152, 217, 263, 
340 

1 

U5a 16256, 16270 73, 146, 263 2 

U5b 16192b3
 73, 150, 263 1 

U5b 16189, 16270, 
16311 

73, 150, 263 1 

U5b 16189, 16270 Did not amplify 1 
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U5b1b1b 16189, 16192, 
16270, 16320 

73, 150, 263 9 

U5b1b1b 16189, 16192, 
16270, 16320 

Did not amplify 1 

U5b2b3a 16224, 16270 73, 150, 263, 279 5 
U5b2b3a 15905, 16224, 

16270 
73, 150, 263, 279 3 

U5b2b3a 16270a5
 73, 150, 263, 279 1 

U6a1 16172, 16189, 
16219, 16278 

73, 263 1 

U6a1 16219, 16278a6
 73, 263 1 

U6b1a 16163, 16172, 
16219, 16311 

73, 263 2 

U8b1 16172, 16189, 
16234, 16311 

73, 195, 263 2 

U8b1 16234, 16311, 

16519a7
 

73, 195, 263 1 

V 16298 72, 263 1 

 
aTransitions expected could not be confirmed due to low-quality sequences: (1) 16189; (2) 

16069, 16126, 16145, 16172; (3) 295, 462, 489; (4) 319, 489; (5) 16224; (6) 16172, 16189; 

(7) 16172, 16189. 

bPhylogenetically probable or expected transitions were confirmed not to be present: (1) 

497; (2) 15928; (3) 16270. 
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Table S2. MtDNA Haplotypes Used for Population Parameters, Posterior Probability of 

Origins and PC Analyses 

Subhaplogroups HVR-I HVR-II Frequency 

H 16260 263 1 

H1, H2a, H3, H7 CRS 263 7 

H1 CRS 152, 199, 263 1 

H1 16296 263 1 

H1b 16189, 16356 152, 263 5* 

H1b 16189, 16356 73, 152, 263 1 

H1b 16189, 16356 199, 263 2 

H1b 16189, 16257, 

16356 

73, 263 1 

H2a 16218, 16362 263, 292 1 

H3 CRS 152, 263 1 

H3 16093, 16362 263 1 

H3 16093, 16362 73, 263 1 

H3 16192, 16320 152, 263 1 

H3c2 16176 195, 263 1 

H3c2 16176 195, 242, 263 1 

H6a1 16192, 16362 239, 263 1 

H7b CRS 73, 263 1 

HV 16209, 16223, 

16278, 16362 

73, 195, 263, 497 1 

J1b1a1 16069, 16126, 

16145, 16172, 

16222, 16261 

73, 242, 263, 295, 

462, 489 

4* 

J1b1a1 16069, 16126, 

16145, 16172, 

16222, 16261 

73, 152, 242, 263, 

295, 462, 489 

11* 

J1b1a1 16069, 16126, 

16145, 16172, 

16189, 16222, 

16261 

73, 242, 263, 295, 

462, 489 

1* 

J1c1 16069, 16126 64, 73, 185, 228, 

263, 295, 462, 482, 

489 

2* 

J1c2e 16069, 16126, 

16366 

73, 185, 188, 228, 

263, 295, 462, 489 

1 
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J2a1a1 16069, 16126, 

16145, 16231, 

16261 

73, 150, 152, 195, 

215, 263, 295, 319, 

489  

4* 

K1 16189, 16224, 

16311 

73, 263 1 

K1a 16224, 16311 73, 263, 497 2 

K1a 16093, 16224, 

16311 

73, 152, 263, 497 1 

K1c1 16311 73, 146, 152, 263 1 

R0a 16126, 16189, 

16362 

64, 150, 263 1 

R1a 16288, 16311 73, 150, 185, 189, 

263, C295A 

1 

R2 CRS 73, 152, 195, 263 1 

T2b 16126, 16294, 

16296, 16304, 

16344 

73, 151, 152, 263 4 

T2b 16126, 16294, 

16296, 16304, 

16344 

73, 185, 228, 263 1 

T2c1 16126, 16292, 

16294, 16296 

73, 146, 247, 263, 

466 

1 

Pre-T2f 16126, 16189, 

16294, 16296, 

16304 

73, 146, 263 1 

U2e1 16362 73, 152, 195, 217, 

263, 340 

1 

U2e1 16051, 16129C, 

16189, 16362 

73, 152, 217, 263, 

340 

1 

U5a 16256, 16270 73, 146, 263 2 

U5b 16192 73, 150, 263 1 

U5b 16189, 16270, 

16311 

73, 150, 263 1 
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U5b 16189, 16270 73, 150, 263 1* 

U5b1b1b 16189, 16192, 

16270, 16320 

73, 150, 263 10* 

U5b2b3a 16224, 16270 73, 150, 263, 279 9* 

U6a1 16172, 16189, 

16219, 16278 

73, 263 2* 

U6b1a 16163, 16172, 

16219, 16311 

73, 263 2 

U8b1 16172, 16189, 

16234, 16311 

73, 195, 263 3* 

V 16298 72, 263  1 

 
*Includes imputed sequences. 
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Table S3. Motifs and Frequency of MtDNA Clades in Puerto Rico 

 

 

  

Clade Motifs Frequency (%) 

H -AluI 7025, -MseI 14766 1 (0.9) 

H1 3010 4 (3.9) 

H1b 3010-16189-16356 9 (8.9) 

H1h2 3010-2851 1 (0.9) 

H2a 4769 3 (2.9) 

H3 6776 5 (4.9) 

H3c2 6776-16176-195 2 (1.9) 

H6a1 239-3915-4727-16362 1 (0.9) 

H7 4793 1 (0.9) 

H7b 4793-5348 1 (0.9) 

HV -MseI 14766, 73 1 (0.9) 

V -NlaIII 4577, 72-16298 1 (0.9) 

J1b1a 16222-16261 2 (1.9) 

J1b1a1 16069-16126-16145-16172-16222-16261 14 (13.8) 

J1c1 64-73-185-228-263-295-462-482-489 2 (1.9) 

J1c2e 16069-16126-16366 1 (0.9) 

J2a1a 16069-16126-16145-16231-16261 4 (3.9) 

T2b 16126-16294-16296-16304-16344 5 (4.9) 

T2c1 16126-16292-16294-16296-16519 1 (0.9) 

Pre-T2f 8281-8289 del, 16126-16189-16294-16296-16304 1(0.9) 

U2e1 16051-16129C-16189-16362 2 (1.9) 

U5a 146-16256-16270 2 (1.9) 

U5b 150-16189-16270 3 (2.9) 

U5b2b3a 150-279-16224-16270 9 (8.9) 

U5b1b1b 150-16189-16192-16270-16320 10 (9.9) 

U6a1 16172-16189-16219-16278 2 (1.9) 

U6b1a 16163-16172-16219-16311 2 (1.9) 

U8b1 16172-16189-16234-16311 3 (2.9) 

K1 -HaeII 9052, -DdeI 10394 1 (0.9) 

K1a -HaeII 9052, -DdeI 10394, 497 3 (2.9) 

K1c1 -HaeII 9052, -DdeI 10394, 9093 1 (0.9) 

R0a 64-16126-16189-16362 1 (0.9) 

R1a 73-150-185-189-263-C295A-16288-16311 1 (0.9) 

R2 73-152-195-263 1 (0.9) 

N, total samples  101 
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Table S4. Published HVR-I and –II Sequence Data Used for Fisher’s Exact Tests and to 

Construct Phylogenetic Networks  

Ethnicity Geographic origin 

Total # of 

samples Reference 

Puerto Ricans Puerto Rico 101 Present study 

Austrians Austria 273 

Brandstätter et al. 

(2007) 

Bedouins Israel 58 Behar et al. (2008) 

Bosnians Bosnia-Herzegovina 144 

Malyarchuk et al. 

(2003) 

Cherkess Israel 8 Behar et al. (2008) 

Cretans Eastern Crete 283 Martínez et al. (2008) 

Czech Czech Republic 179 

Malyarchuk et al. 

(2006) 

Druze Israel 77 Behar et al. (2008) 

Dubaians Dubai 249 Alshamali et al. (2008) 

Finns Finland 200 Hedman et al. (2007) 

French France 210 Dubut et al. (2004) 

Northeast Germans Mecklenburg 213 Tetzlaff et al. 2007 

North Italians North Central Italy 395 Turchi et al. (2008) 

Malian Mali 124 González et al.(2006) 

Maure Mauritania 64 González et al.(2006) 

Non-Ashkenazi 

Jews 

Dispersed (see ref. 

Table 1) 1142 Behar et al. (2008) 

Palestinians Israel 110 Behar et al. (2008) 

Poles 

Poland (Pomerania-

Kujawy) 436 

Malyarchuk et al. 

(2002) 

Russians European Russia 201 

Malyarchuk et al. 

(2002) 

Saudi Arabs Saudi Arabia 546 

Abu-Amero et al. 

(2008) 

Slovenians Slovenia 104 

Malyarchuk et al. 

(2003) 

Spaniards Spain 312 Álvarez et al. (2007) 

Tuscans Italy 322 Achilli et al. (2007) 
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Table S5. Diagnostic Motifs for Subhaplogroup Characterization Using HVR-I and –II 

Sequences 

                                      

Clade 

 

Coding region state 

 

Control region signature 

H1b -7025 AluI 16189-16356 

H3c2 -7025 AluI 16176-195 

H6 -7025 AluI 16362-239 

H(xH1b, H3c2, H6) -7025 AluI --- 

HV (includes V) -14766 MseI --- 

R0a +7025 AluI, -14766 MseI 16126-16362 

R1a +7025 AluI, -14766 MseI 16311-C295A 

R2 +7025 AluI, -14766 MseI 

+4216 NlaIII 
152 (lack of 16126) 

R +7025 AluI, -14766 MseI --- 

J1b1a1 +4216 NlaIII 16069-16126-16145-16172-16261-242-

295 

J1c +4216 NlaIII 16069-16126-185-228-295 

J1c2 +4216 NlaIII 16069-16126-185-188-228-295 

J2a1a1 +4216 NlaIII 16069-16126-16145-16231-16261-150-

152-195-215-295 

J(xJ1b1a1, J1c, J2a1a1) +4216 NlaIII 16069-16126-295 

T2b +4216 NlaIII 16126-16294-16296-16304 

T2c1 +4216 NlaIII 16126-16292-16294-16296 

Pre-T2f +4216 NlaIII 16126-16189-16294-16296 

T(xT2b, T2c1, Pre-T2f) +4216 NlaIII 16126-16294 

U2e1’2’3 +12308 HinfIa 16051-G16129C-16189-16362-152-217 

U5a +12308 HinfIa 16256-16270 

U5b +12308 HinfIa 16270-150 

U5b1b1b +12308 HinfIa 16189-16192-16270-16320-150 

U5b2b3a +12308 HinfIa 16224-16279-150-279 

U6a1 +12308 HinfIa 16172-16219-16278 

U6b1a +12308 HinfIa 16163-16172-16219-16311 

U8b1 +12308 HinfIa 16189-16234-195 

U(xU2e1’2’3, U5a ,U5b, 

U6a1, U6b1a, U8b1) 
+12308 HinfIa --- 

K1c +12308 HinfIa 16224-16311-146-152 

K2 +12308 HinfIa 16224-16311-146 

K3 +12308 HinfIa 16093-16148-16153-16224-16311-150-

195-235 

K(xK1c, K2 ,K3) +12308 HinfIa 16224-16311 

Others(E-G,I,M-Q,S,W-

Z)b 
  

aUsing a degenerate primer. 
bFor coding and control region signatures see (van Oven and Kayser, 2009).  



Pre-print version. Visit http://digitalcommons.wayne.edu/humbiol/ after publication to acquire the final 
version. 

Table S6. Populations with Published HVR-I Sequence Data Used for Posterior Probability 

of Origin and PC Analyses 

Ethnicity Geographic origin  # of samples  Reference 

Puerto Ricans Puerto Rico 101 Present study 

Armenians Armenia 190 Richards et al. (2000) 

Austrians Austria 272 

Brandstätter et al. 

(2007) 

Azeri Azerbaijan 46 Richards et al. (2000) 

Basques Spain 155 Richards et al. (2000) 

Bedouins 

Israel and Saudi 

Arabia 73 

Behar et al. (2008); 

Richards et al. (2000) 

Berbers Morocco 53 Rando et al. (1998) 

 Tunisia 26 Cherni et al. (2005) 

Bosnians Bosnia-Herzegovina 142 

Malyarchuk et al. 

(2003) 

Canarians Canary Islands 278 Rando et al. (1999) 

Cretans Eastern Crete 283 Martínez et al. (2008) 

Czech Czech Republic 177 

Malyarchuk et al. 

(2006) 

Druze Israel 120 

Behar et al. (2008); 

Richards et al. (2000) 

Dubaians Dubai 193 Alshamali et al. (2008) 

Egyptians Egypt 54 Richards et al. (2000) 

Europeans Alps 215 Richards et al. (2000) 

 

Mediterranean 

(Central) 296 Richards et al. (2000) 

 Mediterranean (East) 165 Richards et al. (2000) 

 Mediterranean (West) 209 Richards et al. (2000) 

 North Central 328 Richards et al. (2000) 

 North East 398 Richards et al. (2000) 

 North West 453 Richards et al. (2000) 

 Scandinavia 312 Richards et al. (2000) 

 Southeast 229 Richards et al. (2000) 

Finns Finland 200 Hedman et al. (2007) 

French France 210 Dubut et al. (2004) 

Fulani, Wolofs and 

Serers 

Senegal and 

Cameroon 25 

Rando et al. (1998); 

Coia et al. (2005); 

Cerny et al. 2006) 

Georgians Georgia 45 Comas et al. (2000) 

Hungarians Hungary 73 

Bogacsi-Szabo et al. 

(2005) 

Iranians Iran 12 Richards et al. (2000) 

Iraqis Iraq 105 Richards et al. (2000) 

Jews Algeria 20 Behar et al. (2008) 
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 Azerbaijan 58 Behar et al. (2008) 

 India (Cochin) 44 Behar et al. (2008) 

 India (Mumbai) 34 Behar et al. (2008) 

 Iran 75 Behar et al. (2008) 

 Iraq 135 Behar et al. (2008) 

 Georgia 74 Behar et al. (2008) 

 Libya 80 Behar et al. (2008) 

 Morocco 146 Behar et al. (2008) 

 

Near and Middle East 

(Afghan, Kurdish 

(Iraq), Uzbek, Syrian) 34 

Behar et al. (2008) 

 

 

 Spanish Exiles 213 Behar et al. (2008) 

 Tunisia 36 Behar et al. (2008) 

 Yemen 98 Behar et al. (2008) 

Kurds Kurdistan 78 

Comas et al. 2000; 

Richards et al. 2000) 

Maure Mauritania 47 

Rando et al. (1998); 

González et al.(2006) 

Moroccans Morocco 61 

Rando et al. (1998); 

Brakez et al. (2001) 

North Caucasians North Caucasus 191 Richards et al. (2000) 

Northeast Germans Mecklenburg 212 Telzlaff et al. 2007 

North Italians North Central Italy 388 Turchi et al. (2008) 

Nubians Nile River 34 Richards et al. (2000) 

Palestinians Israel 198 

Behar et al. (2008); 

Richards et al. (2000) 

Poles 

Poland (Pomerania-

Kujawy) 430 

Malyarchuk et al. 

(2002) 

Portuguese Portugal 273 González et al. (2003) 

Russians European Russia 200 

Malyarchuk et al. 

(2002) 

Sardinians Sardinia 42 Fraumene et al. (2003) 

Slovenians Slovenia 104 

Malyarchuk et al. 

(2003) 

Spaniards Spain 301 Álvarez et al. (2007) 

Syrians Syria 62 Richards et al. (2000) 

Tunisians Tunisia 46 Cherni et al. (2005) 

Turks Turkey 200 Richards et al. (2000) 

West Saharans West Sahara 14 Rando et al. (1998) 
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Table S7. Diagnostic Motifs for Subhaplogroup Characterization Using HVR-I Sequences 

                                         

Clade 

Coding region 

state 

 

HVR-I signature 

H1b -7025 AluI 16189-16356 

H3c2 -7025 AluI 16176 

H6 -7025 AluI 16362 

H(xH1b, H3c2, H6) -7025 AluI --- 

HV (includes V) -14766 MseI --- 

R0a +7025 AluI 

-14766 MseI 
16126-16362 

R(xR0a) +7025 AluI 

-14766 MseI 
--- 

J1b1a1 +4216 NlaIII 16069-16126-16145-16172-16261 

J2a1a1 +4216 NlaIII 16069-16126-16145-16231-16261 

J(xJ1b1a1, J2a1a1) +4216 NlaIII 16069-16126 

T2b +4216 NlaIII 16126-16294-16296-16304 

T2c1 +4216 NlaIII 16126-16292-16294-16296 

Pre-T2f +4216 NlaIII 16126-16189-16294-16296 

T(xT2b, T2c1, Pre-T2f) +4216 NlaIII 16126-16294 

U2e1’2’3 +12308 HinfIa 16051-G16129C-16189-16362-152-217 

U5(xU5a, U5b1b1b, 

U5b2b3a) 
+12308 HinfIa 16270 

U5a +12308 HinfIa 16256-16270 

U5b1b1b +12308 HinfIa 16189-16192-16270-16320 

U5b2b3a +12308 HinfIa 16224-16279 

U6a1 +12308 HinfIa 16172-16219-16278 

U6b1a +12308 HinfIa 16163-16172-16219-16311 

U8b1 +12308 HinfIa 16189-16234 

U(xU2e1’2’3, U5 

U6a1, U6b1a, U8b1) 
+12308 HinfIa --- 

K +12308 HinfIa 16224-16311 

Others(E-G,I,M-Q,S,W-

Z)b 
  

aUsing a degenerate primer. 
bFor coding and control region signatures see (van Oven and Kayser, 2009). 
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Table S8. P-Values from Fisher’s Exact Test Pairwise Comparisons of Subhaplogroup Frequencies 

Comparison: 

Puerto Rico vs 

X 

H1b H3c2 H6 H HV R0a R1a R2 R J1b1a1 J1c J1c2 J2a1a1 J T2b T2c1 Pre.T2f T U2e U5a U5b U5b1b1b U5b2b3a U6a1 U6b1a U8b1 U K1c K2 K3 K Others 

Spaniard  0.01 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0.003 0.001 1 1 1 1 1 1 1 1 0.171 

North Italian  0 1 1 0.003 1 1 1 1 1 0 1 1 1 1 1 1 1 0.086 1 1 1 0 0 1 1 1 1 1 1 1 1 1 

Cretan  1 1 1 0.04 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0 0.002 1 1 1 0.052 1 1 1 1 0.002 

French  0.054 1 1 0.066 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0.002 0.007 1 1 1 1 1 1 1 1 0 

Bosnian  1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0.051 0.13 1 1 1 1 1 1 1 1 1 

Austrian  1 1 1 0.009 1 1 1 1 1 0 1 1 1 1 1 1 1 0.721 1 1 1 0.001 0.003 1 1 1 0.244 1 1 1 1 1 

Slovenian  0.589 1 1 0.007 1 1 1 1 1 0.003 1 1 1 1 1 1 1 1 1 1 1 0.275 0.589 1 1 1 0.688 1 1 1 1 1 

Czech  1 1 1 0.032 1 1 1 1 1 0.001 1 1 1 1 1 1 1 1 1 1 1 0.013 0.038 1 1 1 1 1 1 1 1 0.62 

Northeast 

German  

0.093 1 1 0.007 1 1 1 1 1 0.001 1 1 1 1 1 1 1 1 1 1 1 0.004 0.013 1 1 1 0.882 1 1 1 1 1 

Pole 1 1 1 0.001 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 0.293 

Finn 0.518 1 1 0.018 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0.043 0.006 0.018 1 1 1 1 1 1 1 1 0.436 

Russian  1 1 1 0.074 1 1 1 1 1 0.006 1 1 1 1 1 1 1 1 1 1 1 0.006 0.018 1 1 1 1 1 1 1 1 0.254 

Dubaian  0.023 1 1 1 1 1 1 1 1 0.001 1 1 1 0.003 1 1 1 1 1 1 1 0.007 0.023 1 1 1 0.001 1 1 1 1 0 

Palestinian  1 1 1 1 1 1 1 1 1 0.069 1 1 1 1 1 1 1 0.286 1 1 1 0.677 1 1 1 1 0.61 1 1 1 1 0 

Bedouin  1 1 1 1 1 0.25 1 1 1 0.642 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 

Druze  1 1 1 0.361 1 1 1 1 1 0.04 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.001 1 

Ethiopian Jew  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 

Algerian Jew  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

Libyan Jew  1 1 1 1 1 1 1 1 1 0.031 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 

Moroccan 

Jew  

0.112 1 1 0.081 1 1 1 1 1 0.008 1 1 1 1 1 1 1 1 1 1 1 0.043 0.112 1 1 1 1 1 1 1 1 0.015 

Tunisian Jew  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.005 

Azeri Jew 1 1 1 1 1 1 1 1 1 0.259 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

Cochin Jew 

India  

1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.264 1 1 1 1 0 

Mumbaikaran 

Jew  

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 

Irani Jew  1 1 0.971 1 1 1 1 1 1 0.04 1 1 1 0.06 1 1 1 0.378 1 1 1 1 1 1 1 1 0.023 1 1 1 1 0.151 

Iraqi Jew  0.169 1 1 1 1 1 1 1 1 0.003 1 1 1 0.639 1 0.002 1 1 1 1 1 0.069 0.169 1 1 1 0.012 1 1 1 1 0 

Near-Middle 

Eastern Jew 

1 1 1 1 1 1 1 1 1 1 1 1 1 0.349 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.001 

Yemeni Jew  1 1 1 1 0.004 0.013 1 0.121 1 0.007 1 1 1 0.001 1 1 1 1 1 1 1 0.677 1 1 1 1 0.286 1 1 1 1 1 

Spanish Exile 

Jew  

0.012 1 1 0.133 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0.004 0.012 1 1 1 1 1 1 1 1 0.027 
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Table S9. Power Estimates for Multiple Fisher Pairwise Comparisons of Subhaplogroup Frequencies

Comparis

on: PR vs 

X 

H1b H3c

2 

H6 H HV R0a R1a R2 R J1b1

a1 

J1c J1c2 J2a1

a1 

J T2b T2c

1 

Pre.T

2f 

T U2e U5a U5b U5b1b

1b 

U5b2b

3a 

U6a

1 

U6b

1a 

U8b

1 

U K1c K2 K

3 

K Othe

rs 

Spaniard  0.98

65 

0.21

57 

0.01

31 

0.99

91 

0.35

54 

0.07

77 

0.08

06 

0.04

29 

0 0.999

9 

0.04

11 

0.01

86 

0.522

8 

0.01

88 

0.14

45 

0.01

3 

0.079

9 

0.75

46 

0.06

15 

0.04

28 

0.16

24 

0.9928 0.9956 0.06

5 

0.33

53 

0.31

48 

0.96

82 

0.01

94 

1.00

E-04 

0 0.04

97 

0.99

99 

North 

Italian  

0.99

88 

0.59

59 

0.00

76 

0.99

78 

0.42

06 

0.03

26 

0.27

52 

0.26

35 

0 1 0.05

03 

0.02

27 

0.746

5 

0.27

03 

0.28

6 

0.01

05 

0.070

9 

1 0.34

9 

0.06

87 

0.15

42 

0.9999 0.9986 0.35

73 

0.60

08 

0.33

26 

0.83

9 

0.03

04 

0.16

52 

0 0.09

4 

0.99

44 

Cretan  0.83

13 

0.32

39 

0.08

06 

0.98

5 

0.31

48 

0.00

81 

0.07

91 

0.02

01 

0 1 0.01

89 

0.02

37 

0.608

8 

0.82

34 

0.12

65 

0.01

06 

0.081

5 

0.98

33 

0.33

07 

0.05

95 

0.21

61 

0.9978 0.9962 0.32

95 

0.32

83 

0.58

78 

0.99

99 

0.08

36 

0 0 0.03

14 

1 

French  0.97

28 

0.09

35 

0.03

92 

0.97

41 

0.10

74 

0.01

67 

0.08

04 

0.08

33 

0 1 0.33

02 

0.08

46 

0.400

1 

0.42

05 

0.04

67 

0.08

84 

0.082

1 

0.94

4 

0.01

67 

0.25

93 

0.09

21 

0.9975 0.9959 0.09

85 

0.33

77 

0.58

51 

0.66

01 

0.01

44 

0.03

79 

0 0.07

77 

1 

Bosnian  0.49

21 

0.14

99 

0.02

03 

0.99

93 

0.41 0.00

72 

0.01

69 

0.02

06 

0 0.999

9 

0.06

78 

0.03

18 

0.316

9 

0 0.28

75 

0.01

68 

0.018

6 

0.38

15 

0.14

14 

0.40

78 

0.08

27 

0.9921 0.9827 0.14

4 

0.14

92 

0.36

63 

0.96

79 

0.02

05 

0.01

39 

0 0.05

38 

0.96

71 

Austrian  0.83

14 

0.33

3 

0.06

26 

0.99

52 

0.02

19 

0.08

1 

0.08

35 

0.08

34 

0 1 0.08

69 

0.01

01 

0.395

2 

0.04

05 

0.04

01 

0.08

57 

0.020

3 

0.99

5 

0.02

31 

0.26

36 

0.06

75 

0.9977 0.9954 0.32

95 

0.32

92 

0.57

94 

0.99

93 

0.17

23 

2.00

E-04 

0 0.04

01 

0.65

94 

Slovenian  0.95

15 

0.05

44 

0.03

52 

0.99

18 

0.26

42 

0.00

43 

0.00

34 

0.00

31 

0 1 0.01

8 

0.03

47 

0.372

8 

0.38

55 

0.04

61 

0.00

31 

0.003 0.01

63 

0.01

75 

0.37

19 

0.08

06 

0.9756 0.9536 0.05

32 

0.05

46 

0.18

94 

0.93

93 

0.00

16 

0 0 0.04

25 

0.81

42 

Czech  0.27

34 

0.33

11 

0.00

67 

0.98

13 

0.05

15 

0.08

07 

0.08

03 

0.08

21 

0 0.997

6 

0.02

6 

0.01

05 

0.294

6 

0.28

21 

0.05

04 

0.03

04 

0.031

4 

0.90

61 

0.13

79 

0.14

04 

0.02

2 

0.9981 0.9949 0.33

3 

0.32

48 

0.58

75 

0.66

67 

0.01

1 

0 0 0.17

7 

0.96

86 

Northeast 

German  

0.97

08 

0.33

42 

0.13

03 

0.99

38 

0.03

03 

0.08

75 

0.07

99 

0.08

65 

0 0.997

4 

0.19

11 

0.01

86 

0.182

6 

0 0.03

37 

0.03

41 

0.005

7 

0.66

73 

0.17

86 

0.17

86 

0.03

17 

0.9983 0.9952 0.32

83 

0.33

31 

0.59

35 

0.95

83 

0.00

57 

7.00

E-04 

0 0.05

01 

0.93

65 

Pole 0.52

66 

0.60

68 

0.00

6 

0.99

8 

0.28

99 

0.26

83 

0.27

17 

0.28

03 

0 0.998

7 

0.03

67 

0.00

43 

0.622

7 

4.00

E-04 

0.07

4 

0.15

46 

0.077

3 

0.46

01 

0.16

37 

0.18

97 

0.02

5 

0.9996 0.9992 0.60

53 

0.60

72 

0.81

03 

0.99

56 

0.05

22 

0 0 0.12

2 

0.99

99 

Finn 0.90

8 

0.32 0.03

6 

0.98

53 

0.10

71 

0.08

2 

0.07

97 

0.03

59 

0.01

84 

1 0.18

37 

0.00

9 

0.775

4 

0.06

14 

0.40

44 

0.03

7 

0.016

9 

0.15

11 

0.17

86 

0.33

19 

0.98

58 

0.9981 0.9946 0.33

38 

0.32

3 

0.58

87 

0.06

83 

0.00

96 

0.14

77 

0 0.25

44 

0.98

89 

Russian  0.64

98 

0.18

03 

0.06

04 

0.97

62 

0.47

43 

0.03

91 

0.08

3 

0.03

85 

0 0.991

2 

0.03

21 

0.02

63 

0.768 0.00

37 

0.04

09 

0.01

83 

0.080

4 

0.4 0.05

33 

0.47

49 

0.03

45 

0.9985 0.9949 0.32

11 

0.32

67 

0.58

64 

0.85

26 

0.02

78 

0 0 0.57

59 

0.99

4 

Dubaian  0.99

59 

0.33

3 

0.01

82 

0.16

71 

0.69

68 

0.61

61 

0.08

1 

0.02

61 

0.00

55 

0.998 0.33

08 

0.07

88 

0.778

1 

1 0.73

37 

0.02

15 

0.082

3 

0.06

83 

0.02

07 

0.33

35 

0.59

03 

0.9974 0.9957 0.32

43 

0.32

89 

0.58

14 

1 0.01

2 

0.00

41 

0 0.14

71 

1 

Palestinia

n  

0.90

07 

0.01

55 

0.00

13 

0.06

27 

0.76

23 

0.68

78 

1.00

E-04 

7.00

E-04 

0 0.984

8 

0.01

45 

2.00

E-04 

0.219

8 

0.56

91 

0.20

63 

8.00

E-04 

4.00E

-04 

0.97

43 

0.01

45 

0.08

51 

0.01

93 

0.9434 0.8977 0.00

82 

0.01

41 

0.03

46 

0.95

27 

8.00

E-04 

0.04

79 

0 0.13

9 

1 

Bedouin  0.54

72 

2.00

E-04 

0 0.05

62 

0.22

04 

0.94

26 

0 0 0 0.984

3 

0.01

63 

0 0.010

6 

0.07

18 

0.02

6 

0.37

45 

0 0.58

34 

2.00

E-04 

4.00

E-04 

0.00

4 

0.678 0.5536 1.00

E-04 

2.00

E-04 

0.00

22 

0.77

23 

0 0.07

51 

0 0.02

52 

1 

Druze  0.06

2 

0.01

89 

0.16

12 

0.91

97 

0.02

75 

8.00

E-04 

5.00

E-04 

6.00

E-04 

0.01

74 

0.999

3 

0.01

03 

0.00

11 

0.219

6 

0.13

95 

0.39

05 

9.00

E-04 

4.00E

-04 

0.01

72 

0.01

66 

0.01

64 

0.08

13 

0.9432 0.8979 0.01

68 

0.01

75 

0.08

17 

0.75

17 

9.00

E-04 

0.01

59 

0 0.99

82 

0.34

96 

Ethiopian 

Jew  

0.11

52 

0 0 0.83

03 

0 0.59

8 

0 0 0 0.828 0 0 2.00

E-04 

0 0.00

21 

0 0 0 0 0 0 0.1935 0.113 0.05

84 

0 0 0.60

28 

0 0 0 2.00

E-04 

1 

Algerian 

Jew  

0.00

35 

0 0.13

14 

0.75

4 

0.07

71 

0 0 0 0 0.325 0.08

34 

0 0 0 0 0 0 0.26

67 

0 0 0.04

88 

0.0096 0.0035 0 0 0.04

59 

0 0.66

83 

0 0 0 0.60

54 

Libyan 

Jew  

0.89

4 

0.01

42 

0.00

1 

0.78

56 

0.08

18 

0.31

15 

9.00

E-04 

9.00

E-04 

0 0.999

5 

0.00

79 

8.00

E-04 

0.041

1 

0.01

52 

0.39

66 

4.00

E-04 

0.005

4 

0.01

59 

0.01

7 

0.00

87 

0.03

62 

0.9381 0.8931 0.01

84 

0.01

57 

0.08

6 

0.13

91 

2.00

E-04 

0 0 0.08

66 

1 

Moroccan 

Jew  

0.98

2 

0.14

88 

0.17

43 

0.96

88 

0.74

21 

0.00

74 

0.01

75 

0.00

72 

0 0.991

3 

0.03

6 

0.02

03 

0.365 0.39

36 

0.51

92 

0.00

68 

0.018

3 

0 0.14

42 

0.03

59 

0.19

99 

0.9923 0.9833 0.03

72 

0.14

37 

0.35

32 

0.22

5 

0.38 0.00

53 

0 0.26

57 

0.99

98 

Tunisian 

Jew  

0.18

73 

0 0.19

41 

0.68

31 

0.30

22 

0.41

77 

0 0 0 0.894

1 

0 0 8.00

E-04 

0 0.00

46 

0 0 0 0 0 0.01

11 

0.3069 0.1808 0.02

12 

0 0 0.58

42 

0 0 0 0.00

47 

0.99

27 

Azeri Jew 0.38

03 

0.00

42 

1.00

E-04 

0.07

28 

0.00

64 

2.00

E-04 

0 1.00

E-04 

0 0.997

2 

0.00

57 

0 0.117

7 

1 0.24

19 

0.02

73 

1.00E

-04 

0.77

53 

0.00

49 

0.00

41 

0.03

34 

0.8832 0.8134 0.00

38 

0.00

53 

0.03

32 

0.88

51 

0.02

87 

0 0 0.10

91 

0.77

19 

Cochin 

Jew India  

0.40

74 

1.00

E-04 

0 0.96

92 

1.00

E-04 

0 0 0.03

52 

0.99

96 

0.966

6 

0 0 0.006

8 

0 0.03

23 

0 0 0 0 0 0.00

11 

0.5435 0.4153 1.00

E-04 

0 7.00

E-04 

0.94

68 

0 0 0 0.00

59 

1 

Mumbaik

aran Jew  

0.18

97 

0 0 0.11

78 

0 0 0 0 0.57

32 

0.887

8 

0 0 0.001

3 

0 0.00

44 

0 0 0 0 0 0 0.3009 0.189 0 0 0 0 0 0 0 7.00

E-04 

1 

Irani Jew  0.89

44 

0.01

77 

0.88

35 

0.12

98 

0.01

64 

0.00

71 

2.00

E-04 

3.00

E-04 

0 0.999

1 

0.07

63 

4.00

E-04 

0.224

5 

0.99

16 

0.17

86 

0.59

74 

5.00E

-04 

0.96

28 

0.00

85 

0.01

62 

0.07

83 

0.9408 0.8966 0.01

83 

0.01

57 

0.08

84 

0.99

77 

2.00

E-04 

0 0 0.21

66 

0.98

64 

Iraqi Jew  0.98

37 

0.14

68 

0.02

14 

0.11

46 

0.12

1 

0.01

92 

0.01

79 

0.02

99 

0 0.998

6 

0.52

52 

0.01

69 

0.040

9 

0.98

59 

0.75

15 

0.99

92 

0.021

3 

0.21

83 

0.06

22 

0.15

09 

0.36

13 

0.9931 0.9816 0.14

19 

0.14

81 

0.07

99 

0.99

98 

0.02

21 

8.00

E-04 

0 0.16

87 

1 

Near-

Middle 

Eastern 

Jew 

0.19

04 

0 0 0.16

46 

0 0 0 0 0 0.894

8 

0.18

08 

0 7.00

E-04 

0.89

29 

0.00

46 

0.26

31 

0 0.31

92 

0 0 0 0.3002 0.1833 0 0 1.00

E-04 

0.32

52 

0 0 0 0.34

42 

0.99

76 

Yemeni 

Jew  

0.89

04 

0.01

38 

8.00

E-04 

0.77

15 

0.99

76 

0.99

57 

9.00

E-04 

0.97

69 

0.00

31 

0.999

6 

0.01

6 

2.00

E-04 

0.228

2 

0.99

99 

0.39

91 

0.00

17 

4.00E

-04 

0.00

32 

0.01

47 

0.01

48 

0.08

19 

0.9479 0.8949 0.01

79 

0.01

51 

0.08

71 

0.97

39 

7.00

E-04 

0.04

56 

0 0.02

82 

0.57

13 

Spanish 

Exile Jew  

0.99

59 

0.33

51 

0.03

08 

0.96

66 

0.08

43 

0.01

91 

0.07

45 

0.07

85 

0 0.999

8 

0.10

66 

0.03

78 

0.126

8 

0.93

47 

0.29

99 

0.00

91 

0.018

4 

0.93

29 

0.32

66 

0.05

84 

0.25

4 

0.9972 0.9949 0.05

68 

0.32

61 

0.14

91 

0.76

22 

0.03

43 

0 0 0.29

33 

0.99

99 
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Table S10. Unique Coding Region Mutations in the Two Main J1b1a1 Lineages in Puerto 

Rico 

 Position Gene Mutation type 

J1b1a1 with 152 

(n=11) 

13943 ND5 ACA->ATA (Thr->Met) 

J1b1a1 without 152 

(n=4) 

3324 ND1 CTC->CTT (Leu->Leu) 

9438 COX3 GGC->AGC (Gly->Ser) 

14560 ND6 GTC->GTT (Val->Val) 

15740 CYTB CTC->TTC (Leu->Phe) 
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Table S11. HVR-I-Based Sample Categorization Used for Posterior Probability of Origin and PCA Analyses 

Subhaplogroup H1b H3c2 H6 H(xH1b,H

3c2,H6) 

HV 

(includesV) 

R0a R(xR0a,

R1a,R2) 

J1b1a1 J2a1a

1 

J(xJ1b1a1,

J1c,J1c2,J2

a1a1) 

T2

b 

T2c

1 

Pre-

T2f 

T(xT2b,T2

c1,Pre-T2f) 

U2e1'2'

3 

U5

a 

U5(xU5

a) 

U5b1b1

b 

U5b2b3

a 

U6a

1 

U6b1

a 

U8b1 U(xU2e1'2'3,U

5a,U5b,U6a1,

U6b1a,U8b1) 

K(xK2,K

3) 

Others(E-

G,I,M-Q,S,W-

Z)            Total 

Puerto Rican 9 2 1 16 2 1 2 16 4 3 5 1 1 0 2 2 3 10 9 2 2 3 0 5 0 101 

Middle Eastern 5 1 20 169 60 57 15 3 4 84 9 10 3 59 8 6 4 0 0 8 0 1 97 73 155 851 

Turk 0 0 5 53 14 2 3 4 0 18 2 1 1 22 3 0 2 0 0 0 0 1 36 12 23 202 

Caucasian 2 0 8 124 30 1 12 2 2 32 8 3 3 47 5 26 3 0 0 0 0 5 68 28 63 472 

East 

Mediterranean 

11 0 3 235 36 10 2 0 2 53 13 4 0 32 1 24 15 0 0 0 0 0 52 27 70 590 

South Eastern 

European 

2 0 8 155 29 4 1 0 1 33 10 2 1 26 2 24 15 0 0 0 0 0 35 22 35 407 

Central 

Mediterranean  

2 2 12 289 50 3 2 1 2 56 18 11 3 58 3 20 25 0 0 1 0 4 49 61 54 726 

Alpine 8 1 8 203 16 1 0 0 11 37 20 0 4 30 8 28 12 0 0 0 0 0 43 35 22 487 

North Central 

European 

29 2 27 470 59 0 3 12 17 77 58 7 7 60 6 58 37 0 0 0 0 0 73 56 89 1147 

West 

Mediterranean 

4 3 5 378 41 3 1 4 2 50 24 6 0 38 5 18 23 1 0 11 2 2 60 46 56 783 

North Western 

European 

8 4 14 283 39 3 0 7 6 61 23 0 1 34 7 29 20 0 0 2 0 1 23 59 39 661 

Scandinavian 1 0 7 155 13 0 0 5 3 19 14 1 0 11 0 17 22 0 0 0 0 0 16 15 13 312 

North Eastern 

European 

17 1 16 301 43 1 7 6 3 48 31 5 3 26 10 58 65 0 0 0 0 0 49 38 70 798 

Basque 1 6 2 83 17 0 3 0 1 3 1 1 0 6 0 0 19 0 0 0 0 0 3 7 2 155 

North Western 

African 

0 0 4 106 26 2 0 0 1 16 5 5 2 5 0 3 11 0 0 19 0 8 9 12 9 243 

Canarian  8 0 0 105 6 0 0 0 3 18 9 1 0 28 2 5 14 0 1 3 39 0 9 12 15 278 

Fulani + Wolof + 

Serer  

0 0 0 1 1 0 0 0 0 7 0 0 0 0 0 0 1 15 0 0 0 0 2 0 0 27 

Kurd 0 1 0 23 4 1 1 0 2 3 0 0 0 6 2 4 0 0 0 0 0 0 8 10 13 78 

Algerian Jew  0 0 1 9 1 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 1 0 3 2 20 

Libyan Jew  0 0 0 27 3 4 0 0 2 2 0 0 1 1 0 1 1 0 0 0 0 0 2 1 35 80 

Moroccan Jew  0 0 6 55 15 1 1 2 1 11 1 1 0 0 0 2 1 0 0 2 0 0 5 23 19 146 

Tunisian Jew  0 0 2 13 3 3 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 3 1 8 36 

Azeri Jew  1 0 0 7 0 0 0 0 0 35 0 1 0 4 0 0 0 0 0 0 0 0 5 1 4 58 

Georgian Jew  0 0 0 8 48 0 0 0 0 4 0 0 2 5 0 0 0 0 0 0 0 0 3 1 3 74 

Cochin Jew  0 0 0 0 0 0 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0 26 44 

Mumbaikar Jew  0 0 0 3 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 28 34 

Iranian Jew  0 0 9 16 0 1 0 0 0 13 1 6 0 8 1 0 0 0 0 0 0 0 11 0 9 75 

Iraqi Jew  0 0 0 16 6 0 3 1 6 23 0 25 0 4 1 0 0 0 0 0 0 2 18 3 27 135 

Near & Mid 

Eastern Jew  

0 0 0 8 0 0 0 0 0 7 0 2 0 2 0 0 0 0 0 0 0 0 2 4 9 34 

Yemeni Jew  0 0 0 5 29 28 16 0 0 30 0 1 0 1 0 0 0 0 0 0 0 0 14 6 9 139 

Spanish Exile 

Jew 

0 0 6 76 9 2 2 1 5 18 4 3 2 15 0 3 2 0 0 3 0 3 12 22 25 213 
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Figure Captions 

 
Supplementary Figure S1: J1b1a1 median-joining network constructed with haplogroup J 

control region sequences containing a transition at 16172. Only the sequences from Dubai 

covered nps 462 and 489 and the lack of these transitions in all other samples is thus 

artifactual. Node size is proportional to number of samples sharing the haplotype.  

Supplementary Figure S2: U5b median-joining network constructed with haplogroup U 

control region sequences with transitions at 16270 and 150, or otherwise characterized by the 

authors as belonging to subhaplogroup U5b through coding region genotyping (Malyarchuk 

et al. 2002, 2003, Turchi et al. 2008). Node size is proportional to number of samples sharing 

the haplotype.   

Supplementary Figure S3: H1b median-joining network constructed with haplogroup H 

samples containing a transition at 16356. Node size is proportional to number of samples 

sharing the haplotype. HVR-II sequences in the French samples in this network spanned up 

to position 222, and their lack of the transition at np 263 is thus artifactual. 

Supplementary Figure S4: J2a median-joining network constructed with control region 

sequences containing the transition at np 195, at least two of transitions 16069, 16126 and 

295, and at least one of transitions 150 and 152 relative to the rCRS. All differences between 

the three major haplotypes within J2a1a1, 319 and 489, are artifacts created by the lack of 

sequencing of the region containing those sites in the studies from which the sequences were 

obtained.   

Supplementary Figure S5: Median-joining network of haplogroup T control region 

sequences containing a transition at 16304 that defines subhaplogroup T2b. Node size is 

proportional to number of samples sharing the haplotype.   

Supplementary Figure S6. Geographic representation of posterior probability values (%) 

distribution across Western Eurasia, North Africa, Senegal and Cameroon of WE-NA 

mtDNAs in Puerto Rico using the HVR-I-based classification scheme in Table S7 and the 

resulting data in Table S11. Posterior probability representations for dispersed Jewish 

populations are shown separately in squares. Probability values were represented for: A) 

global mtDNA sequences; B) haplogroup J sequences; C) haplogroup U sequences.  

Supplementary Figure S7: PC plot of WE-NA populations and Puerto Rico based on 

mtDNA subhaplogroup frequencies (Table S11). PC1 vs PC2 was performed for: A) global 

mtDNA subhaplogroups; B) subhaplogroups H; C) subhaplogroups J; and D) 

subhaplogroups U. 

Supplementary Figure S8: PC plot of WE-NA populations and Puerto Rico based on 

mtDNA subhaplogroup frequencies (Tables S10). PC1 vs PC3 was performed for: A) global 

mtDNA subhaplogroups; B) subhaplogroups H; C) subhaplogroups J; and D) 

subhaplogroups U. 
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Figure S1. 
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Figure S2. 
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Figure S3. 
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Figure S4. 
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Figure S5. 
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Figure S6. 
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Figure S7.  
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Figure S8. 
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