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Abstract: Methods that leverage the information about population history 

contained within the increasingly abundant genetic sequences of extant and 

extinct Hominid populations are diverse in form and versatile in application. 

Here, we review key methods recently developed to detect and quantify 

admixture and ancestry in modern human populations. We begin with an 

overview of the f- and D-statistics, covering their conceptual principles and 

important applications, as well as any extensions developed for them. We then 

cover a combination of more recent and more complex methods for admixture 

and ancestry inference, discussing tests for direct ancestry between two 

populations, quantification of admixture in large datasets, and determination of 

admixture dates. These methods have revolutionized our understanding of 

human population history and additionally highlighted its complexity. Therefore, 

we emphasize that current methods may not capture this population history in its 

entirety, but nonetheless provide a reasonable picture that is supported by data 

from multiple methods, and from the historical record. 
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The wealth of genome-wide polymorphism data from diverse human 

populations around the world (Cann et al., 2002; Gibbs et al., 2003; Altshuler et al., 

2010; McVean et al., 2012) has allowed researchers to access a record of human 

history unprecedented in its breadth, spanning thousands of years (Patterson et al., 

2012; Jones et al., 2015; Mendez et al., 2015; Lazaridis et al., 2016). With this data, 

new insights into human migration (Rasmussen et al., 2014; Lazaridis et al., 2014; 

Skoglund and Reich, 2016) and interbreeding (Hellenthal et al., 2014) during the 

peopling of the world have emerged. Specifically, the recent publication of 
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genomes from ancient human remains (Rasmussen et al., 2010; Olalde et al., 2014; 

Fu et al., 2014; Lindo et al., 2016, 2017), Neanderthals (Green et al., 2010; Prüfer 

et al., 2014), and the Denisovan (Reich et al., 2010) have further complemented, 

corroborated, and enhanced our understanding of these events, and spurred the 

development of new tools and novel applications to existing ones. Here, we review 

some of the key methods developed to detect and quantify admixture through 

measurements of genetic drift that are currently in use, summarizing the conceptual 

and mathematical principles that underlie them, as well as the significant 

discoveries they have produced. We additionally show the applicability of methods 

across different data types where possible, including the f-statistics (Reich et al., 

2009), DFOIL (Pease and Hahn, 2015), and TreeMix (Pickrell and Pritchard, 2012). 

These developments have thus opened the field to questions that were 

previously difficult or impossible to answer. These include inquiries about the date 

of an admixture event, the admixture proportion of one population in an interacting 

population, whether a population is truly admixed from two selected putative 

progenitor lineages, whether an ancient population is ancestral to a modern one, and 

how a population of interest is related by a graph to other studied populations. In 

addition to disentangling the genetic heritage of modern populations, the answers 

to these questions provide clues about the migration patterns that shaped the 

distribution of modern humans, including the occurrence of multiple migrations 

into certain geographic regions, the order in which these occurred, and the manner 

in which these contributed to the human genetic variation succeeding them. 

Admixture inference from an unrooted phylogeny using f-

statistics 

We begin with the f-statistics, originally introduced by Reich et al. (2009) as tools 

to determine the ancestry of Indian populations, which were found to be heavily 

structured by caste and geographic location. Broadly, these statistics, f2, f3, and f4, 

are interpretable as measures of genetic drift applied to unrooted population 

phylogenies. They require only allele frequency data from each of two, three, or 

four populations, respectively, for computation, and are therefore convenient to use 

in the absence of genome-wide sequence data. Additionally, these methods are 

robust to ascertainment bias outside of extreme cases (Patterson et al., 2012). 

Because the two-population statistic f2 is similar in interpretation to FST as a measure 

of differentiation between a pair of populations (but Patterson et al., 2012, note that 

f2 values, unlike FST, are additive along the branch of a phylogenetic tree, and 

smaller for parts of the tree farther from the root), we will not go into greater detail 

about this statistic here. A recent review by Peter (2016) provides a myriad of 

additional interpretations of the f-statistics, including as coalescence times, pairwise 
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differences, tree topologies, and genealogies, and we briefly cover the major results 

from this work as well. 

A simple admixture test using the f3-statistic 

The f3-statistic emerges from a test of three populations that explicitly asks whether 

a population of interest (say, A), is the result of admixture between two other 

populations (say, B and C). It measures the covariance of the difference in allele 

frequencies between populations A and B and populations A and C across genomic 

loci. It is calculated across J biallelic loci as 

 

𝑓3(𝐴; 𝐵, 𝐶) =
1

𝐽
∑(𝑎𝑗 − 𝑏𝑗)(𝑎𝑗 − 𝑐𝑗)

𝐽

𝑗=1

, (1) 

 
where aj, bj, and cj are the frequencies of derived allele at site j in populations A, B, 

and C, respectively. Because the magnitude of f3 (and the other f-statistics) depends 

highly on the distribution of allele frequencies within the three populations, smaller 

values of the derived allele frequency contribute less to the value of f3. Patterson et 

al. (2012) address this issue by normalizing f3 across J loci such that 

 

𝑓3(𝐴; 𝐵, 𝐶) =
∑ (𝑎𝑗 − 𝑏𝑗)(𝑎𝑗 − 𝑐𝑗)𝐽

𝑗=1

∑ 2𝑎𝑗(1 − 𝑎𝑗)𝐽
𝑗=1

, (2) 

 
where the denominator is the expected heterozygosity of population A summed 

across J loci. 

If the test result is positive, i.e., 𝑓3(𝐴; 𝐵, 𝐶) > 0, then there is no evidence that 

A is descended from an admixture event of B and C. Interpreting this value as 

genetic drift, we can see that 𝑓3(𝐴; 𝐵, 𝐶) is the length of the branch in the unrooted 

three-population phylogeny leading to A from the internal node (Figure 1A). 

Meanwhile, if 𝑓3(𝐴; 𝐵, 𝐶) is significantly negative, then A may be admixed from B 

and C. Significance of results against the null hypothesis of no admixture is 

evaluated by weighted block jackknife to obtain a mean Z-score, which is the 

weighted mean value of the statistic across all blocks of equal length, divided by 

the standard error of the statistic. The length of the blocks is the smallest value for 

which increasing the length does not increase the standard error (the point at which 

estimated standard errors converge; Schaefer et al., 2016). This method assumes a 

normal distribution of the statistic. For M blocks and any test statistic T, this 

computation is 
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𝑍 =
𝑇̅

𝑆𝐸𝑇
=

∑ 𝑊𝑖𝑇𝑖
𝑀
𝑖=1

√∑ 𝑊𝑖[𝑇𝑖 − 𝑇̅]2𝑀
𝑖=1

𝑀

, (3)
 

 

where the weight 𝑊𝑖 = 𝑁𝑖/ ∑ 𝑁𝑗
𝑀
𝑗=1  is the number of informative sites in block i (Ni) 

divided by the total number of informative sites across all blocks. An f3-statistic for 

which 𝑍 < −3 is significantly negative. We can therefore represent the relationship 

of the three populations in this scenario as an admixture graph (Figure 1B). Here, 

we assign the value 𝑝 to represent the proportion of A’s ancestry that is derived 

from an ancestor of B, and the value 1 − 𝑝 to represent the remaining proportion of 

A’s ancestry that is derived from an ancestor of C. Quantities 𝑝 and 1 − 𝑝 are thus 

the probabilities that a randomly-chosen allele at the site under investigation has 

descended from the same lineage as a specific reference population. 

To understand the manner in which genetic drift contributes to the expected 

value of f3, we demonstrate the four ways in which the two alleles drawn at a site 

from an individual in admixed population A (descended from the mixture of the 

ancestors of populations B and C) trace their ancestry to B and C, weighted by 𝑝 or 

1 − 𝑝 (Figure 2A). Tracing ancestry to B with red arrows, and ancestry to C with 

blue arrows, we see that for two alleles descended from the B lineage, the red and 

blue paths overlap a branch length totaling 𝑖 + 𝑖𝑖. Likewise, if both alleles are more 

closely related to the C lineage, then they will only overlap over a branch length 

totaling 𝑖 + 𝑖𝑖𝑖. Two possibilities exist for a pair of alleles in which one allele is 

more closely related to the B lineage and one is more closely related to the C lineage. 

The two paths may only overlap in the same direction over branch length 𝑖, or they 

may overlap in opposite directions over branch length 𝑣 + 𝑣𝑖 , in addition to 

overlapping in the same direction over 𝑖. Overlap in the same direction is weighted 

positively because this is shared drift between the two drawn alleles, while overlap 

in opposite directions is weighted negatively, because this is not shared drift but 

divergence. 

Thus, the expected value of f3 is 

 

𝑓3(𝐴; 𝐵, 𝐶) = 𝑖 + 𝑝2(𝑖𝑖) + (1 − 𝑝)2(𝑖𝑖𝑖) − 𝑝(1 − 𝑝)(𝑣 + 𝑣𝑖). (4) 
 
Therefore, the only term in Equation 4 that contributes negatively to f3 is the final 

term, which is proportional to the length of 𝑣 + 𝑣𝑖. Once again, we can see that if 

A is not admixed from lineages B and C, the value of 𝑝 is zero and the expected 

value of f3 equals 𝑖 + 𝑖𝑖𝑖, the length of the branch between population A and the 

common ancestor of A, B, and C on the unrooted tree. It is important to note, 

however, that a significantly negative value of f3 may not arise even if admixture 

has occurred. Patterson et al. (2012) point out that high population-specific drift in 
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the admixed population, which increases the value of branch length 𝑖, may mask 

the signal of admixture. Additionally, a significantly negative value of f3 can 

emerge in what Patterson et al. (2012) call the outgroup case. Here, a misleading 

signal of admixture emerges for the test 𝑓3(𝐴; 𝐵, 𝑂), where A is admixed from B 

and C as in Figure 1B, but population O, an outgroup that diverged basally to the 

split of B and C, is used as the second reference population. A signal of admixture 

is still detected because the drift paths of the two alleles drawn at that site still 

overlap in opposite directions. Thus, even if the f3-statistic is improperly set up in 

this manner, the admixed population is still identified, though the proper population 

history is not represented. For this reason, a significantly negative f3-statistic should 

be interpreted as evidence that the target population is admixed, but not necessarily 

admixed with the two reference populations. 

This formulation is different from the outgroup f3-statistic presented in 

Raghavan et al. (2014b) to quantify the Western Eurasian-Siberian ancestry of 

modern Native American populations. The outgroup f3-statistic measures the shared 

genetic drift between two populations relative to an outgroup, and the specific 

measurement of only shared genetic drift is the proposed advantage of this method 

over the use of pairwise distance measures such as FST, which are sensitive to 

lineage-specific genetic drift. Because the underlying phylogeny is a three-

population tree (Figure 1A), the outgroup f3 once again represents the length of the 

branch between the outgroup and the internal node. This approach necessarily 

yields a value greater than zero if the outgroup is properly assigned, and this is to 

be expected because it measures a positive branch length (or, an overlap of drift 

paths in the same direction). The quantity 𝑓3(𝑂; 𝑊, 𝑋) increases with increasing 

shared ancestry of populations W and X and can be used to provide evidence of 

recent and exclusive common ancestry provided that W and X are not related by 

admixture (Raghavan et al., 2015). Therefore, typical use of the outgroup f3 involves 

multiple calculations wherein W and O are fixed and X is changed such that 

inferences can be made about the affinity of W to all tested populations X. 

We demonstrate this principle in Figure 3 with microsatellite data rather than 

allele frequencies from biallelic sites. The f3-statistic can accommodate 

microsatellite data by measuring the covariance in mean microsatellite lengths 

between populations across loci. This was first proposed by Pickrell and Pritchard 

(2012) for TreeMix, which also normally uses allele frequency data from biallelic 

sites. For this set of tests, we prepared biplots in which each axis represents the 

shared ancestry between fixed population W and other global human populations X, 

compared with the sub-Saharan Yoruba (genotypes from the dataset assembled by 

Pemberton et al., 2013) as the outgroup: 𝑓3(Yoruba; 𝑊, 𝑋). Using the outgroup f3 

in this manner allows us to resolve clusters within population data and display 

ancestry intuitively, when the two axes are appropriately selected. 
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In Figure 3A, we see that all populations have shared ancestry to the Native 

American Pima and Huilliche populations at approximately equal levels, falling on 

the diagonal line indicating equal affinity. Middle Eastern populations (yellow) 

yielded the lowest levels of shared ancestry with the Pima and Huilliche, and other 

Native American (purple) populations yielded the highest levels. Outgroup f3 

biplots of shared ancestry with two populations from different geographic regions 

provide a greater ability to separate populations in two dimensions, highlighting 

differences in population affinities to one geographic region relative to another. 

Figure 3B compares affinity with the East Asian Han to affinity with the European 

Sardinian population. This test has a greater ability to resolve the Oceanian (green) 

populations from the Central/South Asian (red) populations than does the first 

because it exploits their differing levels of shared ancestry to the European lineage. 

The biplots in Figures 3C and D demonstrate the effect of changing a single axis. 

The East Asian (pink) and Native American populations overlap substantially in 

their affinity to the Han and admixed Australian populations (Figure 3C), but are 

noticeably different in their affinity to the Native American Karitiana population 

and unambiguously cluster separately for this comparison (Figure 3D). 

We conclude our overview of f3 with a proposed redefinition of f3 from 

Peter (2016). Throughout this work, the author emphasizes the usefulness of 

defining the f-statistics using coalescent theory. This redefinition is to alleviate the 

computational difficulty of tracing all allele paths in admixture plots, especially as 

the number of admixture events increases, and to avoid the restriction that admixing 

subpopulations cannot be structured themselves. Thus, the coalescent theory 

perspective does not require a defined admixture graph. The f3-statistic can be 

written in terms of f2 (the measure of drift between two populations; Patterson et al., 

2012) and f2 can be written as the difference of expected coalescence times (Peter, 

2016). We can therefore write f3 in terms of the expected coalescence times of 

lineages drawn from populations A, B, and C as 

 

𝑓3(𝐴; 𝐵, 𝐶) =
𝜃

2
(𝑇𝐴𝐵 + 𝑇𝐴𝐶 − 𝑇𝐵𝐶 − 𝑇𝐴𝐴), (5) 

 

where 𝜃  is the population-scaled mutation rate and 𝑇𝐴𝐵  is the expected time to 

coalescence of lineages from populations A and B. 

Interestingly, Peter (2016) demonstrated that the use of the mean pairwise 

sequence difference 𝜋𝐵𝐶  between populations B and C has a stronger correlation 

with the divergence time of B and C than does 𝑓3(𝐴; 𝐵, 𝐶). To illustrate this result, 

the author considers the outgroup f3-statistic in terms of expected coalescence times. 

In determining the affinity of a test population, B, to a series of known populations, 

each taken as C in a separate test, the only term in Equation 5 that changes across 

tests is 𝑇𝐵𝐶 . Therefore, measurement of 𝜋𝐵𝐶  alone is sufficient to compare the 
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difference in affinity between population B and all populations C. Because the 

measurement of 𝜋𝐵𝐶  has a smaller variance than the measurement of 𝑓3(𝐴; 𝐵, 𝐶), 

we can see that the correlation of the former with the time of divergence between B 

and C is greater than that of the latter. For this reason, the author suggests that 𝜋𝐵𝐶  

should supplant 𝑓3(𝐴; 𝐵, 𝐶) as a measure of affinity between populations. 

A model-based test of treeness with the f4-statistic 

Reich et al. (2009) additionally used measurements of shared drift as a method of 

validating a proposed tree topology, and we therefore refer to the f4-statistic as a 

test of treeness. That is, it tests whether a particular unrooted, four-population 

phylogeny (of which there are three; see Felsenstein, 2004) accurately describes the 

relationship between the tested populations. Similarly to f3, the formula for f4 is 

based on the difference in allele frequencies at biallelic loci (but the difference in 

mean microsatellite lengths is also compatible here, as with f3; see Pickrell and 

Pritchard, 2012). Here, the f4-statistic represents the covariance of allele frequency 

differences between populations A and B and populations C and D, and is calculated 

across all J loci as 

 

𝑓4(𝐴, 𝐵; 𝐶, 𝐷) =
1

𝐽
∑(𝑎𝑗 − 𝑏𝑗)(𝑐𝑗 − 𝑑𝑗)

𝐽

𝑗=1

, (6) 

 

where 𝑎𝑗 , 𝑏𝑗 , 𝑐𝑗 , and 𝑑𝑗  are the frequencies of a reference allele at site j in 

populations A, B, C, and D, respectively. The particular test in Equation 6 is a test 

of whether an unrooted tree wherein populations A and B form a cluster, and C and 

D form a cluster, is correct (Figure 1C). Because the f4-statistic is based on the 

difference of allele frequencies, normalizing the statistic may be required, as with 

f3. The authors suggest a normalized f4-statistic of the form 

 

𝑓4(𝐴, 𝐵; 𝐶, 𝐷) =
∑ (𝑎𝑗 − 𝑏𝑗)(𝑐𝑗 − 𝑑𝑗)𝐽

𝑗=1

∑ 𝑥𝑗(1 − 𝑥𝑗)𝐽
𝑗=1

. (7) 

 

Here, the choice of denominator is flexible, and so population X, whose derived 

allele frequency at site j is denoted by 𝑥𝑗, can be any of the four populations (A, B, 

C, or D) incorporated into the test. The authors explain that in principle, 

normalizing by the most diverged population (e.g., an African population such as 

Yoruba or San, whose diversity encompasses most of the diversity other human 

populations; see Rosenberg, 2011) is a reasonable choice. However, if one is 

interested in measuring the drift specific to a branch of the tree highly diverged 
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from an African outgroup, then normalizing f4 using a population more closely 

related to the branch of interest may be more appropriate. The authors suggest, for 

example, normalizing using Han allele frequencies for a set of East Asian ingroup 

populations. In this way, the value of the denominator is reduced and misleadingly 

small f4 values are avoided (Reich et al., 2009). 

Interpreting the value of the f4-statistic requires visualizing the shared drift of 

the two paths defined in the test. For 𝑓4(𝐴, 𝐵; 𝐶, 𝐷), the two defined paths are from 

A to B and from C to D. It is evident from the first tree of Figure 2B that 

𝑓4(𝐴, 𝐵; 𝐶, 𝐷) = 0 for a phylogeny in which A and B form a cluster, and in which 

C and D form a cluster. This is because there is no overlap (no correlation) in drift 

between members of the two clusters, indicating that they do not share a recent or 

significant population history. If, however, the true relationship between these four 

populations at the site under investigation is ((A,C), (B,D)), then 𝑓4(𝐴, 𝐵; 𝐶, 𝐷) is 

equal to the length of the internal branch of the tree, and positive because the drift 

paths overlap in the same direction (Figure 2B, second tree). Conversely, if the 

correct relationship is ((A,D), (B,C)), then the drift paths overlap in the opposite 

direction and 𝑓4(𝐴, 𝐵; 𝐶, 𝐷) is again equal in magnitude to the length of the internal 

branch, but negative. (Figure 2B, third tree). The f4-statistic can therefore be used 

to calculate the length of the internal branch for a phylogeny concordant with the 

test. This value is simply 𝑓4(𝐴, 𝐶; 𝐵, 𝐷) for cases in which the true tree is ((A,B), 

(C,D)) (Peter, 2016). As with the f3-statistic, the significance of the f4-statistic is 

based on a Z-score calculated by block jackknife (Equation 3), with significantly 

positive (𝑍 > 3) and significantly negative (𝑍 < −3) values rejecting the null 

hypothesis of correct tree topology ((A,B),(C,D)). 

The properties of the f4-statistic make it a powerful tool for inferring admixture, 

especially in conjunction with an f3 test. The result of a discordant tree topology (a 

significantly nonzero value for 𝑓4(𝐴, 𝐵; 𝐶, 𝐷) across all sites), is alone enough to 

suggest significant common ancestry between clusters, which traverses their 

divergence on the tree. The f4-statistic does not, though, indicate the direction of 

admixture. If the goal of the tests is to determine whether population D is admixed 

from populations B and C, with A as a verified outgroup, an appropriate subsequent 

test is 𝑓3(𝐷; 𝐵, 𝐶) . A significantly negative result here would represent strong 

evidence for admixture between B and C to produce D. A caveat, however unlikely, 

to the result of the f4-statistic is that it may yield a false result of no admixture if D 

is admixed from B and C in equal proportions across the genome. This phenomenon 

occurs because the signal of discordance from each source of ancestry is equal in 

magnitude, opposite in direction, and weighed by admixture proportion 

(represented as 𝑝 and 1 − 𝑝 in Figures 1B and 2A). This does not affect the value 

of the f3-statistic, which would remain significantly negative in this scenario (Reich 

et al., 2009). 
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Two other important applications of the f4-statistic exist, the f4-ratio, and the f4-

rank test (Reich et al., 2009, 2012; Patterson et al., 2012; Peter, 2016). The f4-ratio, 

introduced by Reich et al. (2009) as f4 ancestry estimation, quantifies the proportion 

of ancestry that an admixed population derives from its progenitor lineages. The f4-

ratio is calculated from the quotient of two f4-statistics generated from five 

populations wherein one is the result of admixture between two others, neither of 

which is the outgroup (Figure 1D). If the proportion of admixture of lineage C into 

A is defined as 𝑝, and the proportion of admixture of lineage D into A is 1 − 𝑝, then 

𝑓4(𝐵, 𝑂; 𝐴, 𝐷) = 𝑝𝑓4(𝐵, 𝑂; 𝐶, 𝐷) . Therefore, the proportion of ancestry deriving 

from C in admixed population A is 

 

𝑝 =
𝑓4(𝐵, 𝑂; 𝐴, 𝐷)

𝑓4(𝐵, 𝑂; 𝐶, 𝐷)
. (8) 

 

The theory underlying the f4-rank test, implemented in qpWave (see Reich et al., 

2012, and Skoglund et al., 2015) is founded in linear algebra, and we will not 

discuss the mathematical details further here. The principle of the f4-rank test is that 

by measuring the rank of a matrix of f4-statistics, we can infer the number of 

admixture events in the history of a population of interest. Briefly, the matrix of f4-

statistics is of dimension 𝑚 × 𝑛  where 𝑚  is the number of putatively admixed 

sampled populations to test (drawn from set A, containing admixed and unadmixed 

populations), and 𝑛 is the number of sampled outgroup populations (e.g., more 

recently diverged than African lineages for analyses not involving African 

individuals, drawn from set B of unadmixed populations). Each entry in the matrix 

is an f4-statistic tested for a particular combination of admixed population 𝑗 

(denoted Aj) drawn from the set of 𝑚 populations in A and unadmixed outgroup 

population 𝑘 (denoted Bk) drawn from the set of 𝑛 populations in B. The jth row 

and kth column of the f4 matrix is the f4-statistic of the form 𝑓4(𝑌, 𝐴𝑗 ; 𝑍, 𝐵𝑘), where 

Y is a non-admixed sister population to the test population Aj and is drawn from set 

A, and Z is a fixed other outgroup (unadmixed) that is a sister population to Bk and 

is drawn from set B. The rank of the matrix increases by one for each additional 

admixture event that occurred in the shared ancestry of the sampled populations, 

and is zero for population histories with no admixture. From this result, Reich et al. 

(2012) determined that Native American population history was consistent with at 

least three migrations from East Asia. 

We finally note that f4, similarly to f3, has interpretations in terms of both f2 and 

expected coalescence times and that this simplifies the estimation of ancestry 

proportion (Peter, 2016). First, f4 can be written as the combination of the four 

possible f2 drift values for all pairs of populations A, B, C, and D (Patterson et al., 

2012). Because f2 can be written in terms of expected coalescence times, the f4-

statistic for populations A, B, C, and D can be formulated as 
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𝑓4(𝐴, 𝐵; 𝐶, 𝐷) =  𝜃(𝑇𝐴𝐷 + 𝑇𝐵𝐶 − 𝑇𝐴𝐶 − 𝑇𝐵𝐷)/2. From this notation, it is possible 

now to redefine the formula for the f4-ratio estimator of the admixture proportion. 

Because the expected coalescence times for any ingroup with the outgroup will be 

equal, f4-ratio simplifies to 𝑝 = (𝑇𝐵𝐷 − 𝑇𝐵𝐴)/(𝑇𝐵𝐷 − 𝑇𝐵𝐶). Lastly, Peter (2016) 

points out that substituting expected coalescence times for pairwise differences 

yields the admixture proportion 𝑝 = (𝜋𝐵𝐷 − 𝜋𝐵𝐴)/(𝜋𝐵𝐷 − 𝜋𝐵𝐶), and obviates the 

need for an outgroup in the f4-ratio test. 

To conclude our discussion of four-population tests, we highlight another 

powerful tool, known as the h4-statistic, which uses differences in linkage 

disequilibrium (LD) rather than in allele frequencies to measure treeness (Skoglund 

et al., 2015). Specifically, the statistic is of the form ℎ4(𝐴, 𝐵; 𝐶, 𝐷) and tests the 

null hypothesis that the unrooted topology is of the form ((A,B),(C,D)), with 

populations A and B forming a cluster and C and D forming a cluster. Under no 

admixture, h4 is zero, and the interpretation of significant deviations from zero 

(computed with weighted block jackknife) is analogous to f4. Based on haplotype 

frequencies, the h4-statistic can be employed to provide evidence of shared ancestry 

independent of the f4-statistic, which only uses allele frequencies. However, 

Skoglund et al. (2015) indicated that h4 may be biased by demographic history such 

that the length of the region to consider for calculation of LD needs to be determined 

in advance in order to incorporate sufficient polymorphism. Further, the need for 

haplotype data may limit the application of h4 to well-studied organisms such as 

humans, but may be more difficult to apply to other, less-studied primates. 

Testing for introgression using D-statistics 

First formulated for a three-taxon case by Huson et al. (2005) and reapplied to four-

taxon Drosophila data by Kulathinal et al. (2009), then proposed in its most well-

known form by Green et al. (2010) and since expanded by Eaton and Ree (2013) 

and Pease and Hahn (2015), the D-statistics represent a model-based approach for 

detecting gene flow between candidate populations using sequence data. As with 

the f-statistics, the D-statistics are robust to ascertainment bias (Patterson et al., 

2012). For each type of test, an outgroup is selected (for applications to human data, 

this is typically a chimpanzee sequence), as well as three to four ingroup taxa of 

which two may have hybridized. Two of the ingroup taxa must be from sister 

lineages, only one of which has admixed with another (non-sister) ingroup lineage. 

The D-statistics therefore examine whether the frequency of apparent incomplete 

lineage sorting (ILS) between each sister lineage and the other ingroup lineage is 

significantly different. This is because while introgression and ILS both produce 

gene trees that are discordant with the species tree, in the absence of hybridization, 

it is expected that the frequency of ILS between each sister population and any other 

population is equal (or not significantly different). For this reason, the value of the 
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D-statistics in the absence of admixture will be zero. Admixture between only one 

of the sister lineages and another ingroup lineage would increase the number of 

observations in which the two share the same allele while other populations have a 

different allele, significantly deviating the value of the statistics from zero. The D-

statistics are for this reason a test of treeness, but for a proposed outgroup-rooted 

topology. 

Testing for gene flow using Patterson’s D-statistic 

Testing for introgression with the D-statistic is distinguished from testing with f3 

because it requires the user to provide a rooted, asymmetric, four-population tree 

for which incomplete lineage sorting events are defined as deviations from the 

proposed topology. The original application of this method was to detect signatures 

of gene flow between Neanderthals and modern humans (Green et al., 2010). These 

periods of gene flow may have occurred on multiple occasions across Western Asia 

and Europe between 37,000 and 86,000 years ago, though apparently more so in 

the lineage leading to East Asians and Native Americans (Vernot and Akey, 2015; 

Fu et al., 2015). Thus, the phylogeny describing this history is of the form 

(((African,non-African),Neanderthal),Chimpanzee), where the two modern human 

populations are sisters, the Neanderthal has putatively admixed with the non-

African population, and the chimpanzee is the outgroup to all species in the genus 

Homo (Figure 1E). 

The theoretical basis of the D-statistic is quite straightforward. Across the 

genome, sites at which the two sister populations exhibit a different allele, but for 

which one of the two shares an allele with the putatively introgressing population, 

are identified. Additionally, the outgroup population must share the same allele as 

the non-admixed sister population. Labeling the ancestral allele as a and the derived 

allele as b for a biallelic locus, the only sites informative for calculation of the D-

statistic are abba- and baba-sites. For the tree in Figure 1E, abba-sites are those for 

which the non-African and Neanderthal populations share the derived allele, and 

the African and chimpanzee populations share the ancestral allele, whereas baba-

sites are those for which the African and Neanderthal populations share the derived 

allele, while the non-African and chimpanzee share the ancestral. The D-statistic is 

then calculated as 

 

𝐷 =
𝑛𝑎𝑏𝑏𝑎 − 𝑛𝑏𝑎𝑏𝑎

𝑛𝑎𝑏𝑏𝑎 + 𝑛𝑏𝑎𝑏𝑎
, (9) 

 

where nabba and nbaba are the numbers of abba and baba sites across the genome. 

The value of the D-statistic lies between −1 and 1. When the number of abba-

sites is equal to the number of baba-sites, the value of the statistic is 0. An excess 
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of alleles shared between the second sister population and the admixing population 

(non-Africans and Neanderthals, respectively, in Figure 1E) yields a positive D-

statistic, whereas an excess of alleles shared between the first sister population and 

the admixing population (Africans and Neanderthals) yields a negative D-statistic. 

As with the f-statistics, significance of the D-statistic is inferred by the weighted 

block jackknife method against the null hypothesis that the proposed tree topology 

is correct, wherein 𝑍 > 3 and 𝑍 < −3 are considered statistically significant. 

Since the D-statistic is calculated across all sequenced sites, a primary practical 

limitation of the method is sequencing depth. This limitation may not apply when 

all samples are from modern whole genomes, but for ancient DNA studies, where 

coverage may be too low to call genotypes (Skoglund et al., 2012; Fu et al., 2013; 

Lazaridis et al., 2014; Olalde et al., 2014; Skoglund et al., 2014a; Raghavan et al., 

2014a,b; Seguin-Orlando et al., 2014; Fu et al., 2015; Raghavan et al., 2015; 

Rasmussen et al., 2015; Moorjani et al., 2016), and cytosine deamination in 

conjunction with overall DNA fragmentation further reduces the number of 

informative sites available (Dabney et al., 2013), statistically significant relatedness 

between two populations may go unnoticed. To emphasize this, we display the 

distribution of D-statistics for three different population histories (Figure 4). In the 

first scenario, ancient DNA is collected from an individual belonging to an ancestral 

population A that is the direct ancestor of modern population 1 (Figure 4A, first 

tree). In the second, A is equally related to modern populations 1 and 2, having 

diverged from their common ancestor 13,000 years before the present (Figure 4A, 

second tree). For the third scenario, A and modern population 1 share a common 

ancestor more recently than do modern populations 1 and 2 (Figure 4A, third tree). 

Whereas the first of these scenarios should produce a significantly nonzero D-

statistic, and the second should produce a D-statistic not significantly different from 

zero (with the third scenario between these), neither shows significant deviation 

from zero at “low coverage” (Figure 4B). Even at tenfold higher coverage 

(Figure 4C), the distributions for both the first and third scenarios are mostly below 

the significance threshold. It is only at 100-fold higher coverage that the low 

coverage scenario (Figure 4D) that the null hypothesis may be consistently rejected 

for the first scenario, and rejected at a rate of more than 50% for the third. 

Furthermore, studies subsequent to Green et al. (2010) have indicated that the D-

statistic is not robust to ancestral population structure such that instantaneous 

unidirectional admixture produces the same signal as ancestral structure, and the D-

statistic cannot distinguish these (Durand et al., 2011). That is, the data used to 

support the hypothesis of Neanderthal admixture into non-African anatomically-

modern humans also supports a model in which ancient humans were deeply 

structured, but received no gene flow from Neanderthal lineages (Eriksson and 

Manica, 2012). We note, though, that other approaches, such as the doubly-

conditioned frequency spectrum, have been proposed to distinguish between these 
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two scenarios (Yang et al., 2012; Eriksson and Manica, 2014). Additionally, other 

lines of evidence suggest that admixture has occurred, but that there was no 

extensive human ancestral population structure in Africa (Lohse and Frantz, 2014). 

Although the standard application of the D-statistic is with sequence data 

(calculating across all sites), various authors have demonstrated the compatibility 

of the D-statistic with allele frequency data (Durand et al., 2011; Patterson et al., 

2012; Raghavan et al., 2014b). Reformulated for this purpose, the D-statistic can 

be computed across J loci as 

 

𝐷(𝐴, 𝐵, 𝐶, 𝐷) =
∑ (𝑎𝑗 − 𝑏𝑗)(𝑑𝑗 − 𝑐𝑗)𝐽

𝑗=1

∑ (𝑎𝑗 + 𝑏𝑗 − 2𝑎𝑗𝑏𝑗)(𝑐𝑗 + 𝑑𝑗 − 2𝑐𝑗𝑑𝑗)𝐽
𝑗=1

, (10) 

 

where aj, bj, cj, and dj are the frequencies of a derived allele at the site j for 

populations A, B, C, and D, respectively. This formula can be obtained by sampling 

a single allele from each of the four populations (A, B, C, and D) uniformly at 

random according to the allele frequencies within the populations to create the abba 

and baba site patterns. Note that the numerator of the frequency-based D statistic is 

equal to −𝑓4(𝐴, 𝐵; 𝐶, 𝐷). This makes sense considering that the two statistics are 

four-population tests whose purpose is to determine whether a particular population 

phylogeny is valid. Consequently, similar inferences emerge from both methods, 

though we emphasize that the D-statistic was designed as an explicit test of 

admixture given a proposed rooted phylogeny, while f4 does not make the starting 

assumption of a rooted treelike relationship between populations. Furthermore, the 

value of the D-statistic is normalized to lie between −1 and 1, whereas f4 does not 

have this attribute. 

Raghavan et al. (2014b) also demonstrate that sample contamination can be 

corrected within the D-statistic framework, and this is a necessary consideration as 

contamination can leave similar signatures as introgression and can obscure 

population relationships. To illustrate this point, it is helpful to consider a plausible 

population history for which this application of the D-statistic can identify incorrect 

inferences (Figure 5). With a chimpanzee (Chimp) sequence as the outgroup, we 

define an ancient human (Ancient) as basal to modern Native Americans (NA), 

having diverged with the ancestors of Native Americans from the lineage leading 

to East Asian (EA) populations (Figure 5A). However, following contamination 

from a European (Eur) sequence into the Ancient sequence, the true relationship of 

Ancient to modern Native Americans may not be recovered, and 

𝐷(EA, NA, Ancient, Chimp) may instead suggest the topology in Figure 5B (that is, 

D is not significantly different from zero). To determine whether such an 

observation could be the result of contamination, Raghavan et al. (2014b) 



Pre-print version. Visit http://digitalcommons.wayne.edu/humbiol/ after publication to acquire 
the final version. 

considered that both the true signal of admixture and modern contamination 

contribute to the observed value of the D-statistic. Therefore, 

 

𝐷obs = 𝛾𝐷Eur + (1 − 𝛾)𝐷cor , (11) 

 

where Dobs is the observed D-statistic, DEur is 𝐷(EA, NA, Eur, Chimp), Dcor is the 

pre-contamination (or corrected) value of 𝐷(EA, NA, Ancient, Chimp), and 𝛾 is the 

proportion of contamination from modern European sources handling the ancient 

sample. A contamination-corrected D-statistic (Dcor) can then be computed as 

 

𝐷cor =
𝐷obs − 𝛾𝐷Eur

1 − 𝛾
. (12) 

 

An estimate of the contamination rate is necessary for this D-statistic correction, 

and can be obtained from a number of different methods. Raghavan et al. (2014b) 

discuss measuring the proportion of sites in ancient mtDNA (haploid) and on male 

X-chromosomes (hemizygous) for which two different alleles are detected. In the 

case of mitochondria, though heteroplasmy may exist (Ye et al., 2014; Stewart and 

Chinnery, 2015; Rensch et al., 2016), deviations from the rare variants specific to 

the ancient population are highly unlikely and interpreted as contamination. 

Skoglund et al. (2014b) distinguish ancient from modern DNA by its characteristic 

pattern of degradation. Racimo et al. (2016b) have developed a Markov chain 

Monte Carlo method of inferring the rate of modern DNA contamination into 

ancient samples. 

Contamination can make it difficult to reject the null hypothesis of a D-statistic 

of the form 𝐷(𝐴, 𝐵, 𝐶, 𝐷) if C is contaminated. This issue can arise if population B 

is more closely related to population C than is population A, for example. 

Contamination into C from a distant population would make B look more distantly 

related to C than it truly is, and may lead to C having similar affinity to both A and 

B. Therefore, under this scenario, the null hypothesis may only be rejected after 

correcting for potential contamination in C. Similarly, the null hypothesis may be 

erroneously rejected if C is contaminated such that it incorrectly appears more 

closely related to B. 

Determining the direction of gene flow using partitioned D-

statistics and DFOIL 

While the D-statistic is a powerful method for detecting a signal of gene flow in the 

absence of confounding ancestral structure between two populations, it does not 

detect the direction in which admixture has occurred. Consequently, inferences 

based on the D-statistic require an understanding of the population history 
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underlying selected taxa in order to gain an understanding of directionality. For the 

partitioned D-statistic (Eaton and Ree, 2013) and the DFOIL-statistics (Pease and 

Hahn, 2015), this requirement is relaxed because as each possible tree topology 

input is assessed, the methods return a specific signature that indicates not only 

evidence of introgression, but its direction as well. 

The strength of these methods is undercut, however, by two constraints. First, 

data from four ingroup taxa are required for computation of these statistics, as well 

as an outgroup for the partitioned D-statistics. This requirement likely limits the 

amount of informative sites available for analysis compared to the D-statistic 

because once again, particular configurations of ancestral and derived states 

between the five taxa are needed, just as the particular configurations abba and 

baba are needed for the D-statistic. Further, these methods are necessarily unusable 

in the absence of a fourth ingroup population. This underscores the second 

limitation, which is that the four ingroup taxa must be related as a symmetric rooted 

tree with the two clades having different divergence times (Figure 1F). We 

nonetheless emphasize that methods for polarizing introgression represent an 

important update to the original D-statistic framework, and have the potential to 

provide important inferences in the population histories of humans and other 

organisms. 

In particular, the partitioned D-statistic focuses on an aspect of admixture 

unavoidably overlooked by Patterson’s D-statistic. Given a set of four populations 

and an outgroup, called A, B, C, D, and O, it may appear as if introgression from a 

donor (say, C) into a recipient (either A or B) has occurred, even though it was the 

sister lineage (D) to the presumed donor rather than the C lineage itself, which 

introgressed into the recipient (Figure 6A). Because the sequences of C and D are 

highly similar, the D-statistic computed from four taxa, 𝐷(𝐴, 𝐵, 𝐶, 𝑂)  or 

𝐷(𝐴, 𝐵, 𝐷, 𝑂), cannot distinguish between these events (both of these would detect 

significant admixture). In contrast, the partitioned D-statistic incorporates 

information from five taxa, including both of the potential donors C and D, which 

have not admixed with each other. Therefore, sites polymorphic among the four 

ingroup taxa, yielding five-population patterns such as babaa and abbaa, are 

informative here. Further, only sites for which the outgroup has the ancestral allele 

are considered. 

The partitioned D-statistic is so named because inferences using this method are 

based on the combined results of three separate five-population tests—D1, D2, and 

D12—each of which reports part of the whole history of the studied populations. D1 

measures the deviation from zero between the frequency of abbaa-sites and babaa-

sites, whereas D2 measures the deviation of ababa-sites and baaba sites, and D12 

measures the deviation of abbba-sites and babba sites. Thus, 

 



Pre-print version. Visit http://digitalcommons.wayne.edu/humbiol/ after publication to acquire 
the final version. 

𝐷1 =
𝑛𝑎𝑏𝑏𝑎𝑎 − 𝑛𝑏𝑎𝑏𝑎𝑎

𝑛𝑎𝑏𝑏𝑎𝑎 + 𝑛𝑏𝑎𝑏𝑎𝑎

(13) 

𝐷2 =
𝑛𝑎𝑏𝑎𝑏𝑎 − 𝑛𝑏𝑎𝑎𝑏𝑎

𝑛𝑎𝑏𝑎𝑏𝑎 + 𝑛𝑏𝑎𝑎𝑏𝑎

(14) 

𝐷12 =
𝑛𝑎𝑏𝑏𝑏𝑎 − 𝑛𝑏𝑎𝑏𝑏𝑎

𝑛𝑎𝑏𝑏𝑏𝑎 + 𝑛𝑏𝑎𝑏𝑏𝑎
. (15) 

 

As with Patterson’s D-statistic, the partitioned D-statistics take values between −1 

and 1, and a significant Z-score for D1 or D2 (inferred once again by block jackknife) 

indicates introgression between one of the two putative recipient taxa, and either C 

or D, respectively. 

In addition to an equivalent interpretation, the value of D12 indicates the 

direction in which gene flow has occurred. The value of D12 is significantly nonzero 

only when the putative recipient population (either A or B) shares excess alleles in 

common with the putative donor lineage (that is, sites for which C and D both carry 

the derived allele) compared to its sister population. This suggests that these alleles 

came from the putative donor defined from the D1 and D2 admixture tests. If, 

however, introgression with D1 or D2 has been detected, but D12 is not significantly 

different from zero, then introgression occurred in the other direction, from A or B 

into either C or D, because the presumed recipient population is the true donor, and 

does not share an excess of alleles common to both C and D, but rather to one or 

the other. 

Pease and Hahn (2015) expand the concept of a specialized D-statistic profile 

with DFOIL, a method that classifies the 16 possible introgressions available to a 

four-population symmetric tree with an outgroup (Figure 6B). For this method, the 

tree is not set up to imply a particular hypothesis (such as lineages B and C being 

admixed, or determining whether C or its sister have admixed with A), and the tests 

are more exploratory than Patterson’s D-statistic and the partitioned D-statistic. 

Detected gene flow is classified as inter-group, intra-group, or ancestral. Inter-

group introgression is the standard model, wherein one lineage from one clade 

admixes with one lineage from the other clade. Intra-group introgression is between 

sister lineages of the same clade. Ancestral introgression occurs only when the 

divergence times of the two clades are different. Here, the ancestor to the more 

recently diverged populations has admixed with one lineage of the more ancestrally 

diverged clade. 

The four DFOIL statistics are DFO, DIL, DFI, and DOL. The subscripts of these 

statistics refer to the pairs of populations under comparison for a particular statistic. 

This principle is analogous to that of Patterson’s D-statistic in that it measures the 

difference in the counts of two equally probable gene tree scenarios, where a 

significant deviation from the expected value of zero indicates admixture. Pease 
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and Hahn (2015) point out that this constraint of equal probability prevents DFOIL 

from applying to an asymmetric ingroup phylogeny. For an asymmetric rooted 

phylogeny (((A,B),C),D), A and B are more closely related to C than to D and 

therefore share more alleles with C. 

For ingroup taxa with a symmetric topology ((A,B),(C,D)), DFO tests whether 

there is a differing count of identical sites between the “first” (F) pair of A and C 

and the “outer” (O) pair of A and D. Similarly, DIL tests whether there is a differing 

count of identical sites between the “inner” (I) pair of B and C and the “last” (L) 

pair of B and D. Each of these statistics tests for gene flow between an ingroup 

population in one clade and both of the ingroup populations in the other clade. 

Because multiple equally probable discordant site tree pairs underlie a symmetric 

ingroup population phylogeny, the computation of these statistics requires more 

terms than for Patterson’s D-statistic and the partitioned D-statistic. The structure 

of the equations is still familiar, such that 

 

𝐷FO =
(𝑛𝑏𝑎𝑏𝑎𝑎 + 𝑛𝑏𝑏𝑏𝑎𝑎 + 𝑛𝑎𝑏𝑎𝑏𝑎 + 𝑛𝑎𝑎𝑎𝑏𝑎) − (𝑛𝑏𝑎𝑎𝑏𝑎 + 𝑛𝑏𝑏𝑎𝑏𝑎 + 𝑛𝑎𝑏𝑏𝑎𝑎 + 𝑛𝑎𝑎𝑏𝑎𝑎)

(𝑛𝑏𝑎𝑏𝑎𝑎 + 𝑛𝑏𝑏𝑏𝑎𝑎 + 𝑛𝑎𝑏𝑎𝑏𝑎 + 𝑛𝑎𝑎𝑎𝑏𝑎) + (𝑛𝑏𝑎𝑎𝑏𝑎 + 𝑛𝑏𝑏𝑎𝑏𝑎 + 𝑛𝑎𝑏𝑏𝑎𝑎 + 𝑛𝑎𝑎𝑏𝑎𝑎)
(16) 

𝐷IL =
(𝑛𝑎𝑏𝑏𝑎𝑎 + 𝑛𝑏𝑏𝑏𝑎𝑎 + 𝑛𝑏𝑎𝑎𝑏𝑎 + 𝑛𝑎𝑎𝑎𝑏𝑎) − (𝑛𝑎𝑏𝑎𝑏𝑎 + 𝑛𝑏𝑏𝑎𝑏𝑎 + 𝑛𝑏𝑎𝑏𝑎𝑎 + 𝑛𝑎𝑎𝑏𝑎𝑎)

(𝑛𝑎𝑏𝑏𝑎𝑎 + 𝑛𝑏𝑏𝑏𝑎𝑎 + 𝑛𝑏𝑎𝑎𝑏𝑎 + 𝑛𝑎𝑎𝑎𝑏𝑎) + (𝑛𝑎𝑏𝑎𝑏𝑎 + 𝑛𝑏𝑏𝑎𝑏𝑎 + 𝑛𝑏𝑎𝑏𝑎𝑎 + 𝑛𝑎𝑎𝑏𝑎𝑎)
(17) 

𝐷FI =
(𝑛𝑏𝑎𝑏𝑎𝑎 + 𝑛𝑏𝑎𝑏𝑏𝑎 + 𝑛𝑎𝑏𝑎𝑏𝑎 + 𝑛𝑎𝑏𝑎𝑎𝑎) − (𝑛𝑎𝑏𝑏𝑎𝑎 + 𝑛𝑎𝑏𝑏𝑏𝑎 + 𝑛𝑏𝑎𝑎𝑏𝑎 + 𝑛𝑏𝑎𝑎𝑎𝑎)

(𝑛𝑏𝑎𝑏𝑎𝑎 + 𝑛𝑏𝑎𝑏𝑏𝑎 + 𝑛𝑎𝑏𝑎𝑏𝑎 + 𝑛𝑎𝑏𝑎𝑎𝑎) + (𝑛𝑎𝑏𝑏𝑎𝑎 + 𝑛𝑎𝑏𝑏𝑏𝑎 + 𝑛𝑏𝑎𝑎𝑏𝑎 + 𝑛𝑏𝑎𝑎𝑎𝑎)
(18) 

𝐷OL =
(𝑛𝑏𝑎𝑎𝑏𝑎 + 𝑛𝑏𝑎𝑏𝑏𝑎 + 𝑛𝑎𝑏𝑏𝑎𝑎 + 𝑛𝑎𝑏𝑎𝑎𝑎) − (𝑛𝑎𝑏𝑎𝑏𝑎 + 𝑛𝑎𝑏𝑏𝑏𝑎 + 𝑛𝑏𝑎𝑏𝑎𝑎 + 𝑛𝑏𝑎𝑎𝑎𝑎)

(𝑛𝑏𝑎𝑎𝑏𝑎 + 𝑛𝑏𝑎𝑏𝑏𝑎 + 𝑛𝑎𝑏𝑏𝑎𝑎 + 𝑛𝑎𝑏𝑎𝑎𝑎) + (𝑛𝑎𝑏𝑎𝑏𝑎 + 𝑛𝑎𝑏𝑏𝑏𝑎 + 𝑛𝑏𝑎𝑏𝑎𝑎 + 𝑛𝑏𝑎𝑎𝑎𝑎)
(19) 

 

with each of the four statistics taking values between −1 and 1. It is important to 

note from these equations that a major deviation from other methods is that DFOIL 

considers both shared derived states, and shared ancestral states between tested 

populations. For example, sites contributing positively to DFO include babaa and 

bbbaa (for which the first and third population share the derived state) as well as 

ababa and aaaba (for which they share the ancestral state). While Pease and Hahn 

(2015) propose that the significance of a DFOIL-statistic be determined by a simple 

goodness-of-fit (𝜒2) test which takes the form 𝜒2 = (𝑛𝐿 − 𝑛𝑅)2/(𝑛𝐿 + 𝑛𝑅), it is 

also possible to perform a block jackknife inference of significance. This is because 

the expectation of each statistic is zero in the absence of gene flow. 

From each unique valid combination of significantly positive, significantly 

negative, and non-significant DFOIL-statistics for ancestral and inter-group 

introgressions, it is possible to detect the direction of gene flow. As an example, 

consider gene flow from population B into population C. DFO will be significantly 

positive because many alleles identical by descent between A and B flow into C, 
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creating what would be a confounding situation for Patterson’s D-statistic (this 

situation is also addressed by the partitioned D-statistic). DIL is significantly 

positive because it directly detects the introgression we defined. DFI, meanwhile, is 

significantly negative because there will be more alleles in common between B and 

C than between A and C because B admixed into C. Finally, DOL is expected to be 

zero because neither A nor B admixed with D, and therefore the occurrence of 

sequence identity between A and D should match that of B and D. Because there is 

no significant excess of shared alleles between clades in the case of intragroup 

introgression, these cannot be polarized and all DFOIL-statistics are non-significant 

(see Table 1 of Pease and Hahn, 2015, for complete interpretation of possible valid 

results). 

We conclude our discussion of the DFOIL method by redefining its statistics in 

terms of population allele frequencies, as Patterson et al. (2012) did with Patterson’s 

D-statistic. The most consequential result that emerges from this is mathematical 

support to show that a fifth population—the outgroup—is not necessary for the 

computation of the frequency-based DFOIL-statistics. That is, any non-concordant 

ingroup site pattern is usable with DFOIL, regardless of outgroup population chosen, 

as long as the ingroup taxa can be related as a symmetric rooted tree. Pease and 

Hahn (2015) also indicate the outgroup is ultimately unnecessary, but that from an 

experimental perspective its inclusion may be useful for determining the relative 

substitution rates on each branch and determining the phylogeny. We can derive 

frequency-based DFOIL-statistics by sampling alleles uniformly at random according 

to the frequencies in each of the five populations to define the probabilities of each 

site pattern (analogous to the derivation of the frequency-based D-statistic). Based 

on these probabilities, we can formulate the four DFOIL-statistics in terms of allele 

frequencies across J loci as 

 

𝐷FO =
∑ (1 − 2𝑎𝑗)(𝑑𝑗 − 𝑐𝑗)𝐽

𝑗=1

∑ (𝑐𝑗 + 𝑑𝑗 − 2𝑐𝑗𝑑𝑗)
𝐽
𝑗=1

(20) 

𝐷IL =
∑ (1 − 2𝑏𝑗)(𝑑𝑗 − 𝑐𝑗)𝐽

𝑗=1

∑ (𝑐𝑗 + 𝑑𝑗 − 2𝑐𝑗𝑑𝑗)𝐽
𝑗=1

(21) 

𝐷FI =
∑ (1 − 2𝑐𝑗)(𝑏𝑗 − 𝑎𝑗)

𝐽
𝑗=1

∑ (𝑎𝑗 + 𝑏𝑗 − 2𝑎𝑗𝑏𝑗)𝐽
𝑗=1

(22) 

𝐷OL =
∑ (1 − 2𝑑𝑗)(𝑏𝑗 − 𝑎𝑗)𝐽

𝑗=1

∑ (𝑎𝑗 + 𝑏𝑗 − 2𝑎𝑗𝑏𝑗)𝐽
𝑗=1

, (23) 
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where aj, bj, cj, and dj are the derived allele frequencies at site j in populations A, B, 

C, and D, respectively. The partitioned D-statistic could also be represented in terms 

of allele frequencies (for which the frequency for the outgroup is mathematically 

required), however due to its limitations relative to the DFOIL-statistics, most notably 

its lower resolution in detecting all introgression types (discussed further in Pease 

and Hahn, 2015), we have chosen not to present analogous frequency-based 

formulas for the partitioned D-statistics. 

Other prominent tools for ancestry and admixture 

analyses 

Although the f- and D-statistics alone can resolve a variety of population histories 

and lend support to hypotheses concerning migration, admixture, and divergence, 

additional questions may emerge from the data that require methods tailored to 

detect and quantify specific attributes of these histories that the aforementioned 

methods either do not address or cannot distinguish. Among these are the direct 

ancestry test (Rasmussen et al., 2014), ROLLOFF (Moorjani et al., 2011; Patterson 

et al., 2012) and ALDER (Loh et al., 2013), and graph construction methods 

(Pickrell and Pritchard, 2012; Patterson et al., 2012; Lipson et al., 2013). These 

methods fit complex models to the data and provide estimates of drift, dates of 

admixture, and the most likely number of admixture events, implied by the 

covariance and correlation of alleles across sampled lineages. 

Direct ancestry test 

The direct ancestry test (Rasmussen et al., 2014) is a likelihood-based approach that 

quantifies the genetic drift separately along each branch since a pair of populations 

diverged. It was developed for a scenario in which data consist of two diploid 

whole-genome sequences, one of which is sampled from an ancestral population as 

would occur when using DNA from ancient remains. This method assumes that the 

two samples are representative of their populations, and tests whether the drift along 

the branch leading to the ancient sample is significantly different from zero. The 

use of a single diploid individual to represent a population is reasonable if the 

sample is non-inbred, as the two haplotypes within the individual should represent 

random draws from the population in which it was sampled. 

The model underlying the direct ancestry test requires five parameters: the 

probability of coalescence of a pair of alleles in the first population (c1) and the 

second (c2), as well as probabilities of the three possible allelic configurations 

existing for four alleles sampled two each from both ancestral populations at 
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biallelic sites at the time of divergence (k1,3, k2,2, and k4,0, such that the subscripts 

represent the count of one type of allele and the other, making no distinction 

between ancestral and derived alleles). These parameters are sufficient to describe 

the counts of the five configurations of sites across sampled genomes—both 

samples homozygous for the same allele, both homozygous for different alleles 

(called a fixed difference), both heterozygous (called a shared polymorphism), only 

the first heterozygous, or only the second heterozygous. The counts of these site 

configurations are denoted by 𝑛𝐴𝐴𝐴𝐴, 𝑛𝐴𝐴𝑎𝑎, 𝑛𝐴𝑎𝐴𝑎, 𝑛𝐴𝑎𝐴𝐴, and 𝑛𝐴𝐴𝐴𝑎, respectively. 

Defining the vector of parameters as 𝜃 = (𝑐1, 𝑐2, 𝑘1,3, 𝑘2,2, 𝑘4,0) , as do 

Rasmussen et al. (2014), the likelihood function for the direct ancestry test is 

defined as 

 

ℒ(𝜃) = ℙ(𝐴𝐴𝐴𝐴|𝜃)𝑛𝐴𝐴𝐴𝐴 

                 ×ℙ(𝐴𝐴𝑎𝑎|𝜃)𝑛𝐴𝐴𝑎𝑎 

                 ×ℙ(𝐴𝑎𝐴𝑎|𝜃)𝑛𝐴𝑎𝐴𝑎 

                 ×ℙ(𝐴𝑎𝐴𝐴|𝜃)𝑛𝐴𝑎𝐴𝐴 

                 ×ℙ(𝐴𝐴𝐴𝑎|𝜃)𝑛𝐴𝐴𝐴𝑎 (24) 

 

where ℙ(𝑋|𝜃) is the probability of site configuration 𝑋 given model parameters 𝜃. 

While this likelihood is independent of demography in the ancestral populations, 

Rasmussen et al. (2014) indicate that divergence times can be inferred by coalescent 

theory if assumptions are made about the population size. 

With the first sample from an ancestral population and the second from a 

descendant population, the null hypothesis of the direct ancestry test that this 

relationship is correct has the constraint 𝑐1 = 0, and can be tested by likelihood 

ratio. Rasmussen et al. (2014) suggest increasing the power of this test by ignoring 

C/T and G/A polymorphisms, which may be the result of post-mortem deamination 

events in the ancient sample (Dabney et al., 2013). Additionally, the power of the 

method increases when only sites that are polymorphic across strict outgroup 

populations are analyzed because the model assumes no new mutations since the 

divergence of the tested lineages. A visual representation of a result consistent with 

the null hypothesis of 𝑐1 = 0 is featured in Figure 7. In both of these graphs, the 

Ancient North American sample shows no genetic drift with the common ancestor 

of the modern Central and South American populations. Thus, the length of the 

branch between this divergence event and the Ancient North American is zero, 

consistent with an expected coalescence time between the two Ancient North 

American lineages of zero. 
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Graph construction methods 

As we have described, statistics that measure genetic drift provide significant 

information about the relationships between populations. With the power afforded 

by these statistics, the graph construction methods assemble large phylogenies with 

topologies more complex than what the f- and D-statistics alone can produce. Using 

allele frequency data, TreeMix (Pickrell and Pritchard, 2012) and MixMapper 

(Lipson et al., 2013)—two widely-used graph construction approaches—create 

best-fit admixture graphs to explain relationships among sampled populations. With 

these methods, it is possible to visualize the networks of migration and gene flow 

that underlie global human diversity in an efficient and intelligible manner. 

TreeMix 

TreeMix is a maximum-likelihood method introduced by Pickrell and Pritchard 

(2012) that infers the phylogenetic relationship between taxa in the form of a 

directed acyclic graph (Figure 7) for a set of study populations. However, the 

method does not provide divergence times in years or generations and instead 

focuses on building the network with branch lengths that best fit the data (thereby 

outputting inferred drift measurements for branch lengths). This method may be 

applied to allele frequency data at biallelic loci, and has been extended to 

microsatellite data (Pickrell and Pritchard, 2012) using the same framework as for 

the f-statistics to which we alluded in previous sections. The power of TreeMix in 

the study of ancient admixture lies in its ability to corroborate the results of other 

methods, providing a visual representation of the histories suggested by analysis 

with the f- and D-statistics while adding complementary evidence for these 

inferences as well. Additionally, TreeMix allows users to explore various 

alternative admixture scenarios by evaluating the fit of the data to graphs without 

migration events, as well as with a user-specified number of admixture events. 

Assuming neutral evolution (i.e., absence of selection), TreeMix models allele 

frequencies at biallelic loci across a set of populations according to a multivariate 

normal distribution. Descendant populations have the same mean allele frequencies 

as their ancestor, and the covariance in allele frequency between sampled pairs of 

descendant populations increases proportionally to the genetic drift that they share 

relative to their ancestor. For n sampled populations, TreeMix stores these values 

as a 𝑛 × 𝑛 matrix. For microsatellite data, the assumption is that the population 

mean lengths of microsatellites are distributed as a multivariate normal, also with a 

covariance matrix whose entries are the shared genetic drift between pairs of 

populations. Treating allele frequencies and mean microsatellite lengths in the same 

manner, the computations underlying both applications of TreeMix are identical, 

and so we will continue to refer to allele frequencies in our discussion of this 

method. 
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The population covariance matrix under a particular model relating the set of 

populations is fit to the sample covariance matrix using maximum likelihood 

through an iterative approach. That is, the population covariance matrix is not 

directly estimated from the data. Each iteration of TreeMix begins with the creation 

of a maximum-likelihood tree formed from three randomly-selected populations, to 

which each remaining population is randomly added. The fit of the proposed 

population covariance matrix given user data is evaluated for various 

rearrangements of the tree following a greedy approach. The population covariance 

matrix is additionally fit for the number of migration edges that minimizes the 

magnitude of the residuals, which are assembled as the residual covariance matrix. 

We have provided examples of what TreeMix output may look like in Figure 7. 

For these graphs, we illustrate a global human phylogeny featuring samples from 

one African, five western European, two east Asian, two northwestern Native 

American (ancient unadmixed and modern admixed), two southern Native 

American, one ancient Siberian, and one ancient Native American populations. In 

Figure 7A, we display the relationship among these populations that may have been 

inferred for a history in which no migration has occurred between any of the 

lineages. While the residual covariance matrix (not depicted) would indicate that 

an edge between the European and the admixed Northwest American lineages 

would improve the fit of this graph, it is clear as well from the position of the 

admixed Northwest American population that the tree is incorrect. This population 

derives most of its ancestry from the American lineage, but its sequence identity 

with the European lineage is large enough that it appears ancestral to all other 

American groups. 

We contrast this graph and Figure 7B, which provides an example of the most 

likely history for these populations, wherein gene flow has occurred from Europe 

to the admixed Northwest American population, which is a sister lineage to the 

unadmixed Northwest American population. We note that it is also possible to 

perform a likelihood ratio test between the admixture and non-admixture scenarios 

to assess whether adding a particular number of admixture edges produces a 

significantly better fit to the data, because the former model is nested within the 

latter. 

For high quality modern samples, TreeMix graphs are generally easy to interpret 

as measures of population differentiation. In the case of ancient samples, this is 

moderately more nuanced. When an ancient sample of high quality is included 

among modern samples for analysis, the ancient sample may appear at the end of a 

vertical branch in the graph, as is the case with the ancient North American sample 

in Figure 7. In conjunction with the direct ancestry test, this result indicates that the 

sampled population may be a direct ancestor to the descendants of the lineage in 

which it appears, since it has not drifted from that branch (alternatively, it may be 

so closely related to the true ancestor that it has not appreciably diverged from it). 
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In contrast, branch lengths may appear inflated in low quality ancient samples 

(as with the low coverage ancient Siberian in Figure 7), for which only a single 

allele (rather than a diploid genotype) is called at each genomic site. Due to the 

abundance of sites for which only one allele is called, it appears as if there is excess 

homozygosity in the branch leading to this population, and it appears greatly 

diverged from the closest internal node, though it is still assigned to the proper 

branch. Therefore, the length of the branch should not be interpreted when 

including low-coverage samples in this manner, but the placement relative to other 

populations remains informative. 

MixMapper 

The other commonly-encountered tools for graph construction in admixture 

inference and quantification are qpGraph (Patterson et al., 2012) and its extension 

MixMapper (Lipson et al., 2013, 2014). While similar insights emerge from both 

MixMapper and TreeMix (Pickrell and Pritchard, 2012), the mathematical 

architecture of each method is unique. Broadly, MixMapper (designed as a 

generalization of qpGraph, introduced in Patterson et al., 2012) first builds a tree 

relating unadmixed populations to one another, and then incorporates admixed 

populations onto this tree. Admixed and unadmixed populations must be defined a 

priori, whereas this is not the case for TreeMix. For this reason, the authors 

recommend applying MixMapper to a set of specific study populations, and 

TreeMix to the construction of larger admixture graphs. 

MixMapper uses genotype data to generate allele frequency values across all 

sites (though formulations for microsatellite data should be possible due to its 

reliance on f-statistics; see Pickrell and Pritchard, 2012). From these frequencies, 

the f2-statistic (Patterson et al., 2012) can be calculated and used to infer branch 

lengths and proportions of admixture for a graph relating sampled populations. The 

graph is prepared in two stages. First, a neighbor-joining tree of unadmixed 

populations is prepared according to the values of all paired f2-statistics for these 

populations. Valid subtrees for the neighbor-joining tree have branch lengths that 

are additive, indicating no admixture. The admixed populations are determined by 

testing with f3, wherein population A is considered admixed from B and C if 

𝑓3(𝐴; 𝐵, 𝐶) < 0. Second, the most optimal placements for admixed populations is 

determined, along with the proportion of admixture from each contributing lineage. 

In addition to detecting admixture between two lineages, MixMapper detects three-

way admixture by fitting gene flow events between an admixed population and 

another (non-admixed) population. As with TreeMix, branch lengths are calculated 

in drift units, and this allows MixMapper to display the point of admixture between 

lineages in the output graph. 
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Because the computations performed by MixMapper rely on the theory of the f-

statistics (which Lipson et al., 2013, call the allele frequency moment statistics), 

this method can be understood as an extension of the f-statistics to more populations. 

Consequently, MixMapper analysis reduces to the f4 ratio for five populations 

arranged as in Figure 1D. MixMapper also supplants qpGraph for ancestry 

inference in large datasets because unlike qpGraph, MixMapper does not require a 

proposed graph topology as input, or any prior knowledge of population 

relationships except for assignment as admixed or unadmixed (though the authors 

point out that the output of qpGraph may be more precise). MixMapper may also 

provide more accurate admixture graphs than TreeMix because it requires this 

additional level of user input. TreeMix starts with a maximum-likelihood tree of 

three populations from the dataset without considering whether any of these three 

populations is related to the others in a treelike manner, and therefore the most 

likely topology inferred from multiple iterations of this process can be incorrect. 

Lipson et al. (2013) found this to occur especially frequently for cases of three-way 

admixture, and therefore caution that each graph construction method may be most 

appropriate in a particular situation. Ultimately, the choice of graph construction 

method is most likely to depend on the level of user prior knowledge, and 

assumptions about the complexity of the demography underlying populations of 

interest. 

Dating the time of admixture 

So far, we have discussed a number of approaches for detecting admixture, 

measuring levels of admixture, determining the number of admixture events, and 

identifying sets of source populations contributing to admixed populations. 

However, to obtain a complete picture of the admixture history of a population, it 

is equally important to also know when such admixture occurred. In this section, 

we discuss two related approaches, ROLLOFF (Moorjani et al., 2011) and ALDER 

(Loh et al., 2013), which leverage measures of genetic drift and linkage 

disequilibrium to make inferences about the timings and levels of admixture events. 

ROLLOFF 

Both ROLLOFF (Moorjani et al., 2011) and ALDER (Loh et al., 2013) are able to 

infer the date of gene flow into a population by modeling the signature of decay in 

linkage disequilibrium between a pair of sites located on the same chromosome as 

the distance between these sites increases. The occurrence of LD decreases between 

more distant sites because the genetic recombination events that occur each 

generation result in the disassociation of specific alleles with one another, and the 

occurrence of at least one recombination event is more likely for a larger genomic 
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region. Thus, genomic tracts in which a pair of selectively neutral markers are found 

together within a haplotype reduce in size over time since admixture and can be 

used to determine the date of admixture. Therefore, LD-based inference methods 

are most powerful for dating recent admixture, on the order of 104 years, though 

this power increases for increasing sample sizes and accordingly decreases 

(yielding biased estimates) for smaller sample sizes (Moorjani et al., 2011; 

Patterson et al., 2012; Loh et al., 2013). 

ROLLOFF (Moorjani et al., 2011) is the original application of LD inference to 

estimate the date at which two populations mixed. Each test requires data from three 

populations—the product of this admixture (A, the target of the test), and a 

population from each of its progenitor lineages (B and C)—forming a relationship 

as in Figure 1B. This method assumes that the signature of admixture is 

homogenous in population A and that the admixture event occurred in a single pulse. 

ROLLOFF works with unphased diploid genotype data and fits the decay of LD for 

sites X and Y separated by a genetic distance d to a model of exponential decay by 

least-squares. 

For two alleles 𝑋𝑎  and 𝑌𝑎  drawn from an individual in population A at sites 𝑋 

and 𝑌, the probability after 𝑛 generations that 𝑋𝑎  and 𝑌𝑎  originated from the same 

haplotype is 𝑒−𝑛𝑑, and the observed correlation of alleles as a function of their 

genetic distance, the weighted LD statistic 𝐴(𝑑), is approximately the result of 

decay from the initial state 𝐴0 such that 𝐴(𝑑) ≈ 𝐴0𝑒−𝑛𝑑. Here, the value of 𝐴(𝑑) 

depends on the weight of the polymorphic site (positive if the frequency of a 

reference allele is greater in population B than C, and negative if the frequency is 

greater in C than B) and an LD-based score resulting from Fisher’s z-transformation 

of the Pearson correlation in reference allele counts between sites 𝑋 and 𝑌 (see 

Patterson et al., 2012 for relevant equations). The LD-based score is also used to 

normalize 𝐴(𝑑). The stability of the estimated mixture date is conservatively tested 

by jackknife with chromosome-sized blocks, with each replicate weighted by the 

number of excluded SNPs. 

We note that while fitting decay in LD to an exponential function yields results 

that are concordant with the historical record (Moorjani et al., 2011; Patterson et al., 

2012), a single-exponential model is likely too simple to adequately resolve more 

complex admixture histories (Liang and Nielsen, 2016). This is also the case for the 

assumption of a single admixture pulse, although the authors have shown that the 

inferred date of admixture lies within the true period of admixture for multiple or 

continuous mixing between populations (Patterson et al., 2012). However, the 

robustness of ROLLOFF in non-ideal scenarios means that this method is still 

widely applicable. Patterson et al. (2012) indicate that ROLLOFF is accurate for 

mixture up to 500 generations old, assuming a generation time of 29 years (this 

result was obtained for 20 individuals genotyped at 378,000 SNPs). Additionally, 

if populations appropriately representative of the two admixing lineages B and C 
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are unavailable, even populations highly divergent from their admixing ancestors 

are usable for ROLLOFF computations. In general, genetic drift of populations A, 

B, and C since admixture has little effect on the accuracy of ROLLOFF. 

ALDER 

The concept of LD-based inference, introduced in ROLLOFF and expanded by 

Pickrell et al. (2012), was extended to a variety of different applications as ALDER 

(Loh et al., 2013). Broadly, ALDER begins from the same theoretical framework 

as ROLLOFF, but further derives the formula for the expectation of 𝐴(𝑑) into a 

form dependent on the mixture proportions (𝑝 and 1 − 𝑝) of each admixing lineage 

and the square of 𝑓2(𝐵, 𝐶), as well as the scaling factor 𝑒−𝑛𝑑. Additionally, it is 

orders of magnitude faster than ROLLOFF due to the implementation of a fast 

Fourier transform to calculate 𝐴(𝑑). Furthermore, because this formulation is not 

normalized by the LD-based score as is ROLLOFF, it does not risk introducing bias 

for samples from populations that are large, recently admixed, or experienced a 

strong bottleneck (Loh et al., 2013). 

Another advantage of ALDER over ROLLOFF is that it can compute dates of 

admixture from a single reference (B or C) and the admixed population (A) when 

one admixing population is unavailable or unknown, by simply changing the 

weights assigned to 𝑝 and 1 − 𝑝 in the calculation. ALDER is also able to fit the 

data to an inferred weighted LD curve that does not tend to zero with increasing 

distance between sites. This feature is required in cases for which nonrandom 

mating violates the basic model assumption of homogeneity in the sampled 

populations. ALDER must also correct for background levels of LD that would 

otherwise confound inference, and so the weighted LD curve is fitted for pairs of 

loci far enough apart from one another that the signal of background LD shared 

between the target and references is negligible. 

Since the formulation of 𝐴(𝑑)  in ALDER directly contains a measure of 

mixture proportion from each admixing lineage, it is possible to solve for one of 

these values using the amplitude (𝐴0) of 𝐴(𝑑), which is the point at which the LD 

curve 𝐴(𝑑)  intersects the y-axis (i.e., A(0)). This takes the form 

𝐴0 =  2𝑝(1 −  𝑝)𝑓2(𝐵′, 𝐶′)2 for an admixture scenario as in Figure 1B (Loh et al., 

2013), where 𝐵′ and 𝐶′ represent populations ancestral to present-day populations 

B and C, respectively. The value of 𝑓2(𝐵′, 𝐶′) can be determined from an admixture 

graph (see section Graph Construction Methods). The weighted LD statistic also 

provides information as to whether population A is truly admixed from B and C, 

similarly to the function 𝑓3(𝐴; 𝐵, 𝐶). Loh et al. (2013) point out that weighted LD 

interestingly complements the application of f3. Unlike f3, 𝐴(𝑑)  still detects 

admixture even if the admixed population has experienced extensive drift 

(measures relating to this drift are not part of the computation). The f3-statistic does, 
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in contrast, maintain greater power to detect more ancient admixture events because 

it does not detect a quantity whose signal decreases in intensity over time. 

Although the detection of a positive weighted LD signal for population A 

computed from B and C generally indicates that A is admixed (once again, 

confounding demographic events in A are not considered here), shared confounding 

demography between A and one of the references (say, B) such as a bottleneck can 

lead to incorrect inference that A is admixed for the computation of 𝐴(𝑑) from B 

and C, and from A and C. However, 𝐴(𝑑) computed with references A and B will 

properly yield no positive weighted LD signal and indicate that A is not admixed 

(Loh et al., 2013). 

Finally, ALDER can infer phylogenetic relationships underlying the weighted 

LD curve generated from modern populations A, B, and C. If A is admixed from a 

pair of populations 𝐵′′ and 𝐶′′, which are respectively descendants of 𝐵′ and 𝐶′ 

(Figure 1B, not directly labeled), then it is possible to set up computations for 𝐴(𝑑) 

using fixed modern reference B and multiple test references C and examine changes 

in curve amplitude. Larger amplitudes imply a closer branch point 𝐶′ (Loh et al., 

2013). In the absence of more sophisticated models of ancient admixture, we expect 

that the inferences emerging from ALDER analysis will continue to provide 

insights that enhance both the broad perspectives afforded by the graph construction 

methods, and the specific perspectives afforded by test statistics such as f3, f4, and 

D. 

A brief summary of major results and conclusions 

emerging from these genetic drift measurement methods 

We conclude our review by illustrating the advances that the admixture and 

ancestry inference methods we discussed have made. Using the resolution afforded 

by these tools, as well as the emergence of myriad ancient and modern human 

genomic data, researchers have uncovered and characterized the mixtures and 

movements of ancient humans. We highlight here discoveries of gene flow between 

anatomically-modern humans and archaic hominins, and of the complex and 

unexpected patterns of worldwide migration that ancient humans undertook, and 

the signatures of these events that remains in the genomes of their descendants. 

Following extensive speculation about the likelihood of admixture between the 

ancestors to modern humans and Neanderthals (Plagnol and Wall, 2006; Wall and 

Hammer, 2006; Noonan et al., 2006; Wall and Kim, 2007; Hodgson and Disotell, 

2008; Wall et al., 2009), Green et al. (2010) applied the D-statistic to this question 

and found convincing evidence that these two populations did interbreed outside of 

Africa at least once (but see Kim and Lohmueller, 2015, and Vernot and Akey, 

2015, for a discussion of more complex models to describe this admixture). This 
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interbreeding left a significant trace of Neanderthal-specific variants in the genomes 

of non-African humans that initially may have been selectively disadvantageous, 

which is why these variants are especially found in non-coding regions (Harris and 

Nielsen, 2016; Juric et al., 2016). Since the initial emergence of the D-statistic as 

an answer to the question of admixture between modern humans and Neanderthals, 

further evidence has emerged to support this hypothesis. The estimated time of 

interbreeding between humans and Neanderthals is between 37,000 and 86,000 

years ago (Sankararaman et al., 2012), and the discovery of an ancient human living 

in Romania during this period with a recent Neanderthal ancestor (Fu et al., 2015) 

fits well within this framework. Additionally, the complete genome of a female 

Neanderthal individual (Prüfer et al., 2014) once again indicated a significantly 

elevated relatedness between modern humans and Neanderthals. 

Modern humans have also admixed with the archaic human population whose 

remains were found in Denisova Cave (Reich et al., 2010). With evidence from the 

D-statistic, the authors discovered that only Melanesians retain significantly 

elevated Denisovan ancestry. Subsequent studies showed that Denisovan ancestry 

exists outside of Melanesian populations as well, with signatures of Denisovan 

introgression found in the Philippines (Reich et al., 2011) as well as South Asia 

(Sankararaman et al., 2016). This indicates that despite their status as a sister 

population to Neanderthals, the population history of Denisovans with 

anatomically-modern humans may be quite different. 

However, overlap in Denisovan- and Neanderthal-depleted tracts in the 

genomes of non-African human populations suggest that the introgression of 

Denisovan genes was similarly deleterious to the recipients of this gene flow 

(Vernot et al., 2016). Interestingly, though, there are examples of adaptive 

introgression between Denisovans and humans. Huerta-Sánchez et al. (2014) 

identified an EPAS1 haplotype private to Denisovans and Tibetans associated with 

high-altitude adaptation in the latter population. Racimo et al. (2015) additionally 

review adaptive introgression and present functions of introgressed Neanderthal 

and Denisovan genomic segments including immunity, skin pigmentation, and 

metabolism. Racimo et al. (2016a) further expand upon these examples and name 

specific genes historically under selection. The relationship between ancient human, 

Denisovan, and Neanderthal populations is likely quite complex and may feature 

more currently undiscovered admixing hominins (Prüfer et al., 2014) and may not 

be resolved without more complex models from which to make inferences. 

The population history of humans after the extinction of Neanderthals is 

complex as well, indicating that modern populations are the result of various 

admixture events following the migration and colonization of new territory. 

Applications of the f3-, f4-, and D-statistics to the genomes of modern and ancient 

Native American populations have demonstrated that the New World was colonized 

by Asian populations on multiple occasions, and that these groups certainly 
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admixed with one another. Around 23,000 years ago at most, and possibly as late 

as 16,000 years ago, the ancestor to Native Americans arrived to North America 

from Siberia via Beringia, and diverged into a lineage ancestral to only North 

American populations (including the PRH ancients of Lindo et al., 2016), and to a 

lineage ancestral to both North and South American populations, to which 

Anzick- 1 (Rasmussen et al., 2014) belonged (Raghavan et al., 2015; Llamas et al., 

2016). The discovery and analysis of a genome for a 24,000-year ancient Siberian 

(MA-1) suggests, however, that the ancestor to Native Americans was admixed 

from both East Asian and Eurasian sources, explaining the presence of pre-

Columbian signatures of European ancestry in these populations (Raghavan et al., 

2014a). An additional population closely related to Australasians has been proposed 

as an ancestor to Amazonian Native Americans specifically (Skoglund et al., 2015). 

Raghavan et al. (2015) also detected this ancestry in Native Americans, and suggest 

that it arrived to the New World through Beringia as well. 

The population history of Western Eurasia appears no less complex than that of 

the Americas. The first wave of humans into Europe arrived approximately 45,000 

years before the present, though these populations did not contribute to the genomes 

of modern Europeans. Rather, two subsequent migrations into Europe comprise the 

majority of the genetic constitutions of modern Europeans (Fu et al., 2016). Results 

from Lazaridis et al. (2014) indicate that modern Europeans descend from the 

mixture of western European hunter-gatherers, northern Eurasians closely related 

to MA-1, and eastern European farmers of Near Eastern ancestry. The Near East 

itself was appreciably heterogeneous upon initial colonization by modern humans. 

The first farming civilizations in this region displayed strong genetic differentiation 

that dissipated after a period of mixture (Lazaridis et al., 2016). 

Although the complex histories of human populations both locally and globally 

suggest that current methods may miss important differentiating signatures between 

sampled lineages, ignoring complexity is less likely to bias results than is ignoring 

contamination. This is because the signature of contamination is analogous to the 

signal of admixture, thus making two lineages appear genetically more related to 

one another than they actually are. Furthermore, some of the statistics which we 

have reviewed are more robust to contamination than others. For example, an 

outgroup f3-statistic of the form 𝑓3(𝑂; 𝐴, 𝐵) yields the correct relationship between 

tested populations as long as contamination into the ingroup taxa does not increase 

their apparent pairwise distance to a value greater than their pairwise distance with 

the outgroup. This result is illustrated in Figure 8, in which the contamination rate 

𝛾 in an ancient sample needs to be prohibitively high to mislead the outgroup f3-

statistics. In addition, graph construction methods may be able to account for 

contamination by directly modeling an admixture edge between the source of the 

contamination and the recipient. Further, their outputs may show clearly misleading 

branch points in the presence of uncorrected contamination (similar to unmasked 
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admixture), as in Figure 7. Ultimately, the increasing availability of high-quality 

ancient genomes means that measures of population genetic drift will continue to 

play a central role in characterizing our rich history, and foster an increasingly 

complete view of the networks that shaped it. 

Acknowledgments 

This work was supported by Pennsylvania State University startup funds from the 

Eberly College of Science. We additionally thank two anonymous reviewers and 

the editor for their helpful comments in improving the content of this review. 

References 

Altshuler, D. M., R. A. Gibbs, L. Peltonen et al. 2010. Integrating common and rare 

genetic variation in diverse human populations. Nature 467:52–58. 

Cann, H. M., C. de Toma, L. Cazes et al. 2002. A Human Genome Diversity Cell 

Line Panel. Science 296:261–262. 

Dabney, J., M. Meyer, and S. Pääbo. 2013. Ancient DNA Damage. Cold Spring 

Harb. Perspect. Biol., 5:a012567.. 

Durand, E. Y., N. Patterson, D. Reich et al. 2011. Testing for Ancient Admixture 

between Closely Related Populations. Mol. Biol. Evol. 28:2239–2252. 

Eaton, D. A. R. and R. H. Ree. 2013. Inferring Phylogeny and Introgression using 

RADseq Data: An Example from Flowering Plants (Pedicularis: Orobanchaceae). 

Syst. Biol. 62:689–706. 

Eriksson, A. and A. Manica. 2012. Effect of ancient population structure on the 

degree of polymorphism shared between modern human populations and ancient 

hominins. Proc. Natl. Acad. Sci. U.S.A. 109:13956–13960. 

Eriksson, A. and A. Manica. 2012. The Doubly Conditioned Frequency Spectrum 

Does Not Distinguish between Ancient Population Structure and Hybridization. 

Mol. Biol. Evol. 31:1618–1621. 

Excoffier, L., L. Dupanloup, E. Huerta-Sánchezet al. 2013. Robust Demographic 

Inference from Genomic and SNP Data. PLoS Genet. 9:e1003905. 

Felsenstein, J. Inferring Phylogenies. Sinauer Associates, Inc., Sunderland MA, 1st 

edition, 2004. 



Pre-print version. Visit http://digitalcommons.wayne.edu/humbiol/ after publication to acquire 
the final version. 

Fontaine, M. C., J. B. Pease, A. Steele et al. 2015. Extensive introgression in a 

malaria vector species complex revealed by phylogenomics. Science 

347:1258524. 

Fu, Q., M. Meyer, X. Gao et al. 2013. DNA analysis of an early modern human 

from Tianyuan Cave, China. Proc. Natl. Acad. Sci. U.S.A. 110:2223–2227. 

Fu, Q., M. Hajdinjak, O. Moldovan et al. 2015. An early modern human from 

Romania with a recent Neanderthal ancestor. Nature 524:216–219. 

Fu, Q., C. Posth, M. Hajdinjak et al. 2016. The genetic history of Ice Age Europe. 

Nature 534:200–205.  

Fu, X., H. Li, P. Moorjani et al. 2014. Genome sequence of a 45,000-year-old 

modern human from western Siberia. Nature 514:445–449. 

Gibbs, R. A., J. W. Belmont, P. Hardenbol et al. 2003. The International HapMap 

Project. Nature 426:789–796. 

Green, R. E., J. Krause, A. W. Briggs et al. 2010. A Draft Sequence of the 

Neandertal Genome. Science 328:710–722. 

Harris, K. and R. Nielsen. 2016. The Genetic Cost of Neanderthal Introgression. 

Genet. 203:881–891. 

Hellenthal, G., G. B. J. Busby, G. Band et al. 2014. A Genetic Atlas of Human 

Admixture History. Science 343:747–751. 

Hodgson, J. A. and T. R. Disotell. 2008. No evidence of a Neanderthal contribution 

to modern human diversity. Genome Biol. 9:206. 

Huerta-Sánchez, E., X. Jin, X., Asan et al. 2014. Altitude adaptation in Tibetans 

caused by introgression of Denisovan-like DNA. Nature 512:194–197. 

Huson, D. H., T. Klöpper, P. J. Lockhart et al. 2005. Reconstruction of reticulate 

networks from gene trees. In Recomb, pages 233–249. Springer. 

Jones, E. R., G. Gonzales-Fortes, S. Connell et al. 2015. Upper Palaeolithic 

genomes reveal deep roots of modern Eurasians. Nat. Commun. 6:8912. 

Juric, I., S. Aeschbacher, and G. Coop, G. 2016. The Strength of Selection against 

Neanderthal Introgression. PLoS Genet. 12:e1006340. 

Kim, B. Y. and K. E. Lohmueller. 2015. Selection and reduced population size 

cannot explain higher amounts of Neandertal ancestry in East Asian than in 

European human populations. Am. J. Hum. Genet. 96:454–461. 



Pre-print version. Visit http://digitalcommons.wayne.edu/humbiol/ after publication to acquire 
the final version. 

Kulathinal, R. J., L. S. Stevison, and M. A. F. Noor. 2009. The Genomics of 

Speciation in Drosophila: Diversity, Divergence, and Introgression Estimated 

Using Low Coverage Genome Sequencing. PLoS Genet. 5:e1000550. 

Lazaridis, I., D. Patterson, A. Mittnik et al. 2014. Ancient human genomes suggest 

three ancestral populations for present-day Europeans. Nature 513:409–413. 

Lazaridis, I., D. Nadel, G. Rollefson et al. 2016. Genomic insights into the origin 

of farming in the ancient Near East. Nature 536:419–424. 

Liang, M. and R. Nielsen. 2016. Estimating the timing of multiple admixture events 

using 3-locus Linkage Disequilibrium. bioRxiv, page 078378. 

Lindo, J., E. Huerta-Sánchez, S. Nakagome et al. 2016. A time transect of exomes 

from a Native American population before and after European contact. Nat. 

Commun. 7:13175. 

Lindo, J., A. Achilli, U.  Perego et al. 2017. Ancient individuals from the North 

American Northwest Coast reveal 10,000 years of regional genetic continuity. 

Proc. Natl. Acad. Sci. U.S.A. 114:4093–4098. 

Lipson, M., P. Loh, A. Levin et al. 2013. Efficient Moment-Based Inference of 

Admixture Parameters and Sources of Gene Flow. Mol. Biol. Evol. 30:1788–

1802. 

Lipson, M., P. Loh, N. Patterson et al. 2014. Reconstructing Austronesian 

population history in Island Southeast Asia. Nature Commun. 5:4689. 

Llamas, B., L. Fehren-Schmitz, G. Valverde et al. 2016. Ancient mitochondrial 

DNA provides high-resolution time scale of the peopling of the Americas. Sci. 

Adv. 2:e1501385. 

Loh, P., M. Lipson, N. Patterson et al. 2013. Inferring Admixture Histories of 

Human Populations Using Linkage Disequilibrium. Genet. 193:1233–1254. 

Lohse, K. and L. A. F. Frantz. 2014. Neandertal Admixture in Eurasia Confirmed 

by Maximum-Likelihood Analysis of Three Genomes. Genet. 196:1241–1251. 

McVean, G. A., D. M. Altshuler, R. M.  Durbin et al. 2012. An integrated map of 

genetic variation from 1,092 human genomes. Nature 491:56–65. 

Mendez, F. L., G. D. Poznik, S. Castellando et al. 2015. The Divergence of 

Neandertal and Modern Human Y Chromosomes. Am. J. Hum. Genet. 98:728–

734. 

Moorjani, P., N. Patterson, J. Hirschhorn et al. 2011. The History of African Gene 

Flow into Southern Europeans, Levantines, and Jews. PLoS Genet. 7:e1001373. 



Pre-print version. Visit http://digitalcommons.wayne.edu/humbiol/ after publication to acquire 
the final version. 

Moorjani, P., S. Sankararaman, Q. Fu et al. 2016. A genetic method for dating 

ancient genomes provides a direct estimate of human generation interval in the 

last 45,000 years. Proc. Natl. Acad. Sci. U.S.A. 113:5652–5657. 

Noonan, J. P., G. Coop, S. Kudaravalli et al. 2006. Sequencing and Analysis of 

Neanderthal Genomic DNA. Science 314:1113–1118. 

Olalde, I., M. E. Allentoft, F. Sánchez-Quinto et al. 2014. Derived immune and 

ancestral pigmentation alleles in a 7,000-year-old Mesolithic European. Nature 

507:225–228. 

Patterson, N., P. Moorjani, Y. Luo et al. 2012. Ancient Admixture in Human 

History. Genet. 192:1065–1093. 

Pease, J. B. and M. W. Hahn. 2015. Detection and Polarization of Introgression in 

a Five-Taxon Phylogeny. Syst. Biol. 64:651–662. 

Pemberton, T. J., M. DeGiorgio, and N. A. Rosenberg. 2013. Population structure 

in a comprehensive data set on human microsatellite variation. G3 (Bethesda), 

3:909–916. 

Peter, B. M. 2016. Admixture, Population Structure, and F-Statistics. Genet. 

202:1485–1501. 

Pickrell, J. K. and J. K. Pritchard. 2012. Inference of Population Splits and Mixtures 

from Genome-Wide Allele Frequency Data. PLoS Genet. 8:e1002967. 

Pickrell, J. K., N. Patterson, C. Barbieri et al. 2012. The genetic prehistory of 

southern Africa. Nat. Commun. 3:1143. 

Plagnol, V. and J. D. Wall. 2006. Possible Ancestral Structure in Human 

Populations. PLoS Genet. 2:e105. 

Prüfer, K., F. Racimo, N. Patterson et al. 2014. The complete genome sequence of 

a Neanderthal from the Altai Mountains. Nature 505: 43–49. 

Racimo, F., S. Sankararaman, R. Nielsen et al. 2015. Evidence for archaic adaptive 

introgression in humans. Nature Rev. Genet. 16:359–371. 

Racimo, F., D. Marnetto, and E. Huerta-Sánchez. 2017. Signatures of archaic 

adaptive introgression in present-day human populations. Mol. Biol. Evol. 34: 

296-317. doi: 10.1093/molbev/msw216. 

Racimo, F., G. Renaud, and M. Slatkin. 2016. Joint Estimation of Contamination, 

Error and Demography for Nuclear DNA from Ancient Humans. PLoS Genet., 

12:e1005972. 



Pre-print version. Visit http://digitalcommons.wayne.edu/humbiol/ after publication to acquire 
the final version. 

Raghavan, M., M. DeGiorgio, A. Albrechtsen et al. 2014a. The genetic prehistory 

of the New World Arctic. Science 345:1255832. 

Raghavan, M., P. Skoglund, K. E. Graf et al. 2014b. Upper Palaeolithic Siberian 

genome reveals dual ancestry of Native Americans. Nature 505:87–91. 

Raghavan, M., M. Steinrücken, K. Harris et al. 2015. Genomic evidence for the 

Pleistocene and recent population history of Native Americans. Science 349: 

aab3884. 

Rasmussen, M., Y. Li, S. Lindgreen et al. 2010. Ancient human genome sequence 

of an extinct Palaeo-Eskimo. Nature 463:757–762. 

Rasmussen, M., S. A. Anzick, M. R. Waters. 2014. The genome of a Late 

Pleistocene human from a Clovis burial site in western Montana. Nature 

506:225–229. 

Rasmussen, M., M. Sikora, A. Albrechtsen et al. 2015. The ancestry and affiliations 

of Kennewick Man. Nature 523:455–458. 

Reich, D., K. Thangaraj, N. Patterson et al. 2009. Reconstructing Indian population 

history. Nature 461:489–495. 

Reich, D., R. E. Green, M. Kircher et al. 2010. Genetic history of an archaic 

hominin group from Denisova Cave in Siberia. Nature 468:1053–1060. 

Reich, D., N. Patterson, M. Kircher et al. 2011. Denisova Admixture and the First 

Modern Human Dispersals into Southeast Asia and Oceania. Am. J. Hum. Genet. 

89:516–528. 

Reich, D., N. Patterson, D. Campbell et al. 2012. Reconstructing Native American 

population history. Nature 488:370–374. 

Rensch, T., D. Villar, J. Horvath et al. 2016. Mitochondrial heteroplasmy in 

vertebrates using ChIP-sequencing data. Genome Biol. 17: 139. 

Rosenberg, N. A. 2011. Population-Genetic Perspective on the Similarities and 

Differences Among Worldwide Human Populations. Hum. Biol. 83:659–684.  

Sankararaman, S., N. Patterson, H. Li et al. 2012. The Date of Interbreeding 

between Neandertals and Modern Humans. PLoS Genet. 8:e1002947. 

Sankararaman, S., S. Mallick, N. Patterson et al. 2016. The Combined Landscape 

of Denisovan and Neanderthal Ancestry in Present-Day Humans. Curr. Biol. 

26:1241–1247. 



Pre-print version. Visit http://digitalcommons.wayne.edu/humbiol/ after publication to acquire 
the final version. 

Schaefer, N. K., B. Shapiro, and R. E. Green. 2016. Detecting hybridization using 

ancient DNA. Mol. Ecol. 25:2398–2412. 

Seguin-Orlando, A., T. S. Korneliussen, M. Sikora et al. 2014. Genomic structure 

in Europeans dating back at least 36,200 years. Science 346:1113–1118. 

Skoglund, P. and D. Reich. 2016. A genomic view of the peopling of the Americas. 

Curr. Opin. Genet. Dev. 41:27–35. 

Skoglund, P., H. Malmström, M. Raghavan et al. 2012. Origins and Genetic Legacy 

of Neolithic Farmers and Hunter-Gatherers in Europe. Science 336: 466–469. 

Skoglund, P., H. Malmström, A. Omrak et al. 2014a. Genomic Diversity and 

Admixture Differs for Stone-Age Scandinavian Foragers and Farmers. Science 

344:747–750. 

Skoglund, P., B. H. Northoff, M. V. Shunkov et al. 2014b. Separating endogenous 

ancient DNA from modern day contamination in a Siberian Neandertal. Proc. 

Natl. Acad. Sci. U.S.A., 111:2229–2234. 

Skoglund, P., S. Mallick, M. C. Bortolini et al. 2015. Genetic evidence for two 

founding populations of the Americas. Nature 525:104–108. 

Stewart, J. B. and P. F. Chinnery. 2015. The dynamics of mitochondrial DNA 

heteroplasmy: implications for human health and disease. Nature Rev. Genet. 

16:530–542. 

Vernot, B. and J. M. Akey. 2015. Complex History of Admixture between Modern 

Humans and Neandertals. Am. J. Hum. Genet. 96:448–453. 

Vernot, B., S. Tucci, J. Kelso et al. 2016. Excavating Neandertal and Denisovan 

DNA from the genomes of Melanesian individuals. Science 352:235–239. 

Wall, J. D. and M. F. Hammer. 2006. Archaic admixture in the human genome. 

Curr. Opin. Genet. Dev. 16:606–610. 

Wall, J. D. and S. K. Kim. 2007. Inconsistencies in Neanderthal Genomic DNA 

Sequences. PLoS Genet. 3:e175. 

Wall, J. D., K. E. Lohmueller, and V. Plagnol. 2009. Detecting Ancient Admixture 

and Estimating Demographic Parameters in Multiple Human Populations. Mol. 

Biol. Evol. 26:1823–1827. 

Yang, M. A., A. Malaspinas, E. Y. Durand et al. 2012. Ancient Structure in Africa 

Unlikely to Explain Neanderthal and Non-African Genetic Similarity. Mol. Biol. 

Evol. 29:2987–2995. 



Pre-print version. Visit http://digitalcommons.wayne.edu/humbiol/ after publication to acquire 
the final version. 

Ye, K., J. Lu, F. Ma et al. 2014. Extensive pathogenicity of mitochondrial 

heteroplasmy in healthy human individuals. Proc. Natl. Acad. Sci. U.S.A. 

111:10654–1065



Pre-print version. Visit http://digitalcommons.wayne.edu/humbiol/ after publication to acquire the final version. 

 

Table 1: Summary of methods for inferring admixture and ancestry from measures of genetic drift 

Method Application Test of significance Limitations Reference 

𝑓3  Test of whether a target 

population is admixed; 

measurement of shared 

ancestry in two populations; 

allele frequencies or 

sequence data 

Weighted block jackknife Large drift in the admixed 

population may mask the 

signal of its admixture; 

putative genetic donor 

population may be 

incorrectly identified if it is 

closely related to the true 

donor 

Reich et al. (2009) applied 

𝑓3 to characterize admixture 

in Indian populations; 

Raghavan et al. (2014) 

used outgroup 𝑓3 to 

quantify the Western 

Eurasian-Siberian ancestry 

of Native Americans; Peter 

(2016) redefined 𝑓3 in terms 

of coalescence times 

𝑓4  Test of treeness of 4 

species; quantification of 

admixture proportion; 

inferring the number of 

admixture events; allele 

frequencies or sequence 

data 

Weighted block jackknife 𝑓4 can be zero, suggesting 

no admixture, if the target 

admixed population 

descends equally from two 

donors 

Reich et al. (2009) used 𝑓4 

to identify and quantify 

admixture proportions in 

Indian populations; Reich 

et al. (2012) demonstrated 

that Native American 

population history is 

consistent with at least 3 

migrations from East Asia 

using 𝑓4 (as qpWave) 

ℎ4  Test of treeness; phased 

haplotype frequencies 

Weighted block jackknife Length of blocks needs to 

be determined a priori to 

incorporate sufficient 

polymorphism (in addition 

to limitations of 𝑓4) 

Applied in Skoglund et al. 

(2015) to quantify the 

relatedness of various 

global human populations 
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Table 1: Summary of methods for inferring admixture and ancestry from measures of genetic drift (continued) 

Method Application Test of significance Limitations Reference 

Patterson’s D Model-based test for 

introgression between 

candidate populations; 

sequence data or allele 

frequencies 

Weighted block jackknife Results do not imply a 

direction of gene flow; 

method cannot distinguish 

between ancestral 

population structure and 

introgression; ability to 

infer significance depends 

on the number of 

informative sites available; 

can be misled by 

contamination (also applies 

to 𝑓4 and other D-statistics) 

Used by Green et al. 

(2010) to support the 

hypothesis that 

Neanderthals interbred with 

non-African humans 

Partitioned D Test for introgression with 

polarized direction of gene 

flow; sequence data (and 

implicitly, allele 

frequencies) 

Weighted block jackknife Detects few introgression 

types compared to DFOIL; 

the number of informative 

sites available for this test is 

smaller than for D (also 

applies to DFOIL); requires 4 

ingroup taxa related as a 

symmetric tree (as does 

DFOIL) 

Applied by Eaton and Ree 

(2013) to show extensive 

introgression in the plant 

family Orobanchaceae 

DFOIL Improved polarized test for 

introgression across more 

gene flow types than the 

partitioned D-statistic; 

sequence and allele 

frequency data 

Weighted block jackknife 

or 𝜒2 

More complex to calculate 

than other D-statistics; 

intragroup introgressions 

not detectable; invalid 

combinations of DFOIL 

statistics cannot be 

interpreted 

Pease and Hahn (2015) 

develop DFOIL with 

simulated data, and apply it 

to mosquito population 

genetic data in Fontaine et 

al. (2015) 
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Table 1: Summary of methods for inferring admixture and ancestry from measures of genetic drift (continued) 

Method Application Test of significance Limitations Reference 

Direct ancestry test Measurement of genetic 

drift separating two 

lineages; diploid whole-

genome sequence data 

Likelihood ratio test C/T and G/A 

polymorphisms should be 

filtered out; only sites that 

are polymorphic across 

strict outgroup populations 

should be tested 

First used by Rasmussen et 

al. (2014) to demonstrate 

that Anzick-1 belonged to 

the population ancestral to 

modern Central and South 

Americans, or to a closely-

related population 

TreeMix Inference of phylogenetic 

relationships between 

populations, of which some 

may be admixed (better 

suited for exploratory 

investigations); allele 

frequency data, biallelic 

and microsatellite loci 

Measurement of residual 

covariance or likelihood 

ratio 

Low-quality samples are 

assigned a spuriously longer 

branch length on the graph; 

user must specify number 

of admixture events to fit to 

the data 

Pickrell and Pritchard 

(2012) develop and applied 

TreeMix to canine and 

human data, uncovering 

new admixture networks 

MixMapper Inference of phylogenetic 

relationships between 

populations, of which some 

may be admixed (better 

suited for classifying a 

specific, known set of study 

populations); allele 

frequency data (biallelic 

loci, and implicitly 

microsatellites) 

Weighted block jackknife 

or measurement of residual 

covariance 

User must know a priori 

whether populations are 

admixed or not 

First applied to genome-

wide single-nucleotide 

polymorphism data from 

worldwide human 

populations in Lipson et al. 

(2013), revealing that 

previously-unknown gene 

flow between southern 

Europe and northern 

Eurasia 
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Table 1: Summary of methods for inferring admixture and ancestry from measures of genetic drift (continued) 

Method Application Test of significance Limitations Reference 

ROLLOFF and 

ALDER 

Approximating date of 

admixture; estimating 

admixture proportion; 

unphased diploid 

genotype sequence data 

Weighted block jackknife 

(test of estimate stability) 

Reduced power to detect 

older admixture events; 

demographic events shared 

between a subset of tested 

populations can lead to 

spurious inference of 

admixture 

First used in Moorjani et 

al. (2011) (ROLLOFF) to 

demonstrate recent 

admixture from Africa into 

Eurasia and Loh et al. 

(2013) (ALDER) to 

uncover new details about 

the admixture history of 

various global populations 
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Figure 1: Phylogenetic tree and admixture graph topologies representing important 

theoretical and practical scenarios for f- and D-statistic applications. (A) Unrooted 

three-population phylogeny showing the relationship between populations A, B, and 

C wherein A descends from the common ancestor of A, B, and C. The f3-statistic 

traces the marked paths and measures only the overlap of these paths, which is the 

length of the branch connecting A to the internal node. (B) Three-population 

admixture graph showing the relationship between populations A, B, and C wherein 

population A derives a proportion 𝑝 of its ancestry from the lineage of population 

B (specifically population 𝐵′ ) and a proportion 1 − 𝑝  of its ancestry from the 

lineage of population C (specifically 𝐶′). Branch lengths 𝑖  through 𝑣𝑖𝑖  represent 

drift between ancestral and descendant nodes. (C) Unrooted four-population 

phylogeny showing the relationship between populations A, B, C, and D wherein 

the former pair represent a cluster, and the latter pair represent a cluster. This tree 

is consistent with the result 𝑓4(𝐴, 𝐵; 𝐶, 𝐷) = 0 . (D) Five-population admixture 

graph to which the f4-ratio test is applied. Population A derives a proportion 𝑝 of its 

ancestry from population 𝐶′  and 1 − 𝑝  of its ancestry from population 𝐷′ , 

belonging to the lineages of populations C and D, respectively. (E) Asymmetric 

four-population tree rooted to chimpanzee outgroup, to which the D-statistic was 

originally applied in Green et al. (2010). (F) Outgroup-rooted five-population tree 

with symmetrically-related ingroups and a different divergence time for A and B 

than for C and D. The partitioned D-statistics (Eaton and Ree, 2013) and DFOIL 

(Pease and Hahn, 2015) apply to this topology. Adapted from Reich et al. (2009), 

Patterson et al. (2012), Green et al. (2010), Eaton and Ree (2013), and Pease and 

Hahn (2015).  



Pre-print version. Visit http://digitalcommons.wayne.edu/humbiol/ after publication to acquire 
the final version. 

 

Figure 2: Practical visualizations of the f3- and f4-statistics. (A) Representation of 

the four allele drift trajectories available to a three-population admixture graph. 

Two alleles are drawn for a locus in population A and their overlap in each 

configuration additively contributes to the value of 𝑓3(𝐴; 𝐵, 𝐶). The path colored in 

red traces the drift between the first drawn allele of A and population B, while the 

path colored in blue traces the drift between second drawn allele of A and population 

C. (B) Unrooted four-population trees showing the traced drift paths for 

𝑓4(𝐴, 𝐵; 𝐶, 𝐷) for the three possible topologies. The red arrow traces the genetic 

drift between A and B and can also be interpreted as 𝑓2(𝐴, 𝐵), while the blue arrow 

traces the genetic drift between C and D and can be interpreted as 𝑓2(𝐶, 𝐷). The 

value of 𝑓4(𝐴, 𝐵; 𝐶, 𝐷) is zero for the first tree, positive for the second, and negative 

for the third. In the case of the latter two trees, the magnitude of 𝑓4(𝐴, 𝐵; 𝐶, 𝐷) is 

equivalent to the length of the internal branch. (C) Five-population admixture graph 

indicating drift paths underlying the computation of 𝑓4(𝐵, 𝑂; 𝐴, 𝐷) . Note that 

𝑓4(𝐵, 𝑂; 𝐴, 𝐷) = 𝑝𝑓4(𝐵, 𝑂; 𝐶, 𝐷)  because the drift path tracing the 𝐶′ -derived 

ancestry of A with D (red) overlaps with the drift path between B and O, while the 

drift path tracing the 𝐷′-derived ancestry of A with D (blue) does not. Adapted from 

Reich et al. (2009) and Patterson et al. (2012).  
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Figure 3: f3 biplots demonstrating an application of the outgroup f3-statistic to global 

human microsatellite data (Pemberton et al., 2013). Each axis of each plot is set up 

as 𝑓3(Yoruba; 𝑊, 𝑋) and measures the divergence of populations W and X with the 

outgroup Yoruba population (YRI). Population W is fixed for each axis of each plot, 

while population X is one of various European (blue), Middle Eastern (yellow), 

Central/South Asian (red), Oceanian (green), East Asian (pink), Native American 

of any latitude (purple), or admixed (gray) samples. Larger values of 

𝑓3(Yoruba; 𝑊, 𝑋) reflect greater proportions of shared ancestry between W and X. 

(A) Measures common ancestry between population X and the Pima against the 

common ancestry of population X and the Huilliche, both Central American 

populations. (B) Measures common ancestry with Han (East Asian) against 

Sardinian (European). (C) Measures common ancestry with Han against Australian 

(admixed). (D) Measures common ancestry with Karitiana (South American) 

against Australian. Each of these plots yields a unique clustering of global human 

populations from which their affinity may be inferred. 
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Figure 4: Simulations demonstrating the increasing power of the D-statistic to reject 

the null hypothesis that the tree topology is correct, as the number of available 

informative sites increases. (A) Three scenarios relating an ancient sample to a pair 

of modern samples and a sequence from an outgroup species (e.g., chimpanzee). 

The scenarios represent situations in which the ancient sample is a direct ancestor 

of modern population 2 (Scenario 1), is equally related to modern populations 1 and 

2 (Scenario 2), or is a member of a population related to modern population 2 

(Scenario 3). We use 𝐷(Modern1, Modern2, Ancient, Chimp)  to test the null 

hypothesis that the ancient sample is equally related to the two modern populations 

(Scenario 2), and we are specifically interested in the ability of Scenarios 1 and 3 

to reject the null hypothesis with a positive D-statistic. Each of the following 

distributions is based on 103 simulated replicates. (B) With a small number of D-

statistic informative sites (across 2 × 102 sequences of 100 kilobases in length), the 

null hypothesis was erroneously rejected with a positive D for Scenario 2 in only 4 

times, and Scenarios 1 and 3 rejected the null with a positive D only 16 and 13 

times, respectively. (C) Increasing the number of informative sites by an order of 

magnitude (across 2 × 103 100 kilobase sequences), the distributions of Scenarios 

1 and 3 are shifted to higher Z scores, as expected based on the placement of the 

ancient sample. However, the majority of the distributions fall within |𝑍| < 3. 

Scenarios 1 and 3 only reject the null with a positive D 195 and 53 times, 

respectively, and therefore the null hypothesis is often still not rejected. (D) Further 

increasing the number of informative sites by an order of magnitude (across 

2 × 104 100 kilobase sequences) shifts the majority of the distribution for Scenario 

3 (712 replicates) and almost all the distribution of Scenario 1 (999 replicates) past 

the significance threshold 𝑍 ≥ 3. These results show that if the relationships among 

populations are close enough, then it may be difficult to reject the null hypothesis 

of the D statistic with low-coverage ancient samples, for which there may be few 
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D-statistic informative sites. Simulations were performed using FastSimCoal2 

(Excoffier et al., 2013), with a single sequence sampled from each of the four 

populations. 
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Figure 5: Representation of a contamination scenario similar to the one addressed 

in Raghavan et al. (2014b). (A) When an ancient DNA sample (Ancient) is 

contaminated during handling by researchers (European) such that a proportion 𝛾 

of the inferred genetic sequence of the ancient sample is actually from the 

researchers, the observed magnitude of 

𝐷(East Asian, American, Ancient, Chimpanzee)  may be smaller than the true 

value. This contamination results from the reduction of abba-sites as a proportion 

of total informative sites (𝑛𝑎𝑏𝑏𝑎 + 𝑛𝑏𝑎𝑏𝑎) across the sampled genomes. (B) After 

contamination, the apparent topology of the tree relating these populations now 

supports the Ancient sample as basal to East Asians and Native Americans, due to 

an increased presence of European-specific variants in the Ancient sample. 
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Figure 6: Illustration of the introgression which can be detected by the partitioned 

D-statistic and DFOIL. (A) The partitioned D-statistic is able to resolve whether a 

signal of gene flow between populations B and C (black) is real, or due to gene flow 

between populations B and D (gray); the inference can be made regardless of the 

direction of gene flow. Patterson’s D-statistic may spuriously infer admixture if 

only one of populations C and D is sampled, due to their shared ancestry which is 

necessarily shared by B if it is a recipient of gene flow from their lineage. (B) The 

DFOIL-statistics can distinguish between ancestral (blue) and intergroup (red) 

introgression events for any direction of gene flow between populations A, B, C, 

and D (and for this phylogeny, the ancestor to A and B with either the C or D 

lineage), and additionally identify intragroup introgression (gray), though without 

polarizing it. 
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Figure 7: Schematic illustrating the behavior of TreeMix for various global human 

populations. Important samples are located on the branch diverging from the East 

Asian lineage. These are the low-coverage ancient Siberian sample (MA-1 from 

Raghavan et al. (2014b), for which only a single allele is sampled at each site), the 

high-coverage ancient North American sample (Anzick-1 from Rasmussen et al. 

(2014), for which genotypes have been called), and the unadmixed and admixed 

Northwest American samples (ancient and modern, respectively, from Lindo et al. 

(2016), for which genotypes have been called). (A) Example assuming no migration 

events in TreeMix. The low-coverage ancient sample exhibits a long branch, 

indicating extensive genetic drift because all sites are called as homozygous, and so 

the sample appears completely inbred. This branch length should not be interpreted, 

but the position in which it has diverged relative to the tree is correct. The high-

coverage ancient North American sample exhibits no genetic drift because it is 

either the direct ancestor of the Central and South American populations, or a 

member of a population closely-related to a direct ancestor of the Central/South 

American populations. This result can be used to support findings from the direct 

ancestry test. The admixed Northwest American population also has no genetic drift 

along its branch, which appears to indicate direct ancestry. (B) Accounting for a 

single admixture (migration) event with Europeans, the admixed Northwest 

American population shifts from being ancestral to all samples from the Americas 

to a sister population to the unadmixed Northwest American population. This result 

suggests that the lack of genetic drift along the branch leading to the admixed 

Northwest American population was likely due its genetic profile lying 

intermediate between the unadmixed Northwest American population the 

Europeans. 
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Figure 8: Robustness of outgroup f3-statistics to contamination. This tree relates an 

outgroup population (O) and four ingroup populations A, B, C, and D. Population 

A is admixed, and derives a fraction 𝑝 of its ancestry from the ancestral lineage of 

D. In addition, an ancient sample belonging to a population directly ancestral to B 

is contaminated by modern population D, with a fraction 𝛾 of its genome sequence 

deriving from this contamination. Branch lengths 𝑖 through 𝑣 represent lengths in 

drift units. If outgroup f3-statistics are robust to contamination, then it is important 

that they indicate that the ancient sample has higher affinity to population B than 

populations to A, C, and D. This situation occurs if 𝑓3(𝑂; Ancient, 𝐵) is greater 

than 𝑓3(𝑂; Ancient, 𝐴) , 𝑓3(𝑂; Ancient, 𝐶) , and 𝑓3(𝑂; Ancient, 𝐷) , which 

occurs when 𝑖 + 𝑖𝑖 > 0 , 𝛾 <  (𝑖 +  𝑖𝑖 +  𝑖𝑖𝑖)/ (𝑖 +  𝑖𝑖 + 𝑖𝑖𝑖 + 𝑖𝑣 + 𝑣) , and 

𝛾 <  [𝑖 +  𝑝(𝑖𝑖 +  𝑖𝑖𝑖)]/ [𝑖 +  𝑝(𝑖𝑖 + 𝑖𝑖𝑖 + 𝑖𝑣)] . The first constraint should hold 

under most situations. Under situations in which population A is not admixed 

(𝑝 =  0), the third constraint is trivial as it implies that the contamination rate must 

be less than 1. The second constraint will be satisfied in almost all practical 

applications, as it requires prohibitively large contamination rates for it not to hold. 

For example, consider a situation in which 2(𝑖 + 𝑖𝑖 + 𝑖𝑖𝑖) = (𝑖𝑣 + 𝑣). That is, the 

branch length leading from the ancestor of B and D is at least twice as long leading 

to D as it is leading to B. Under such a scenario, the second constraint implies that 

we need a contamination rate less than 1/3 for the outgroup-f3 statistic to not be 
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misled by contamination. Further, if population A were indeed admixed, say at rate 

𝑝 = 0.5, then the branch length (𝑖𝑣) leading to population D must be extremely 

long or the contamination rate must be enormous for the outgroup f3-statistic to 

again be misled. 
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