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Discrete-time control with non-constant discount factor

Héctor Jasso-Fuentes1, José-Luis Menaldi2, and Tomás Prieto-Rumeau3

March 28, 2021

Abstract

This paper deals with discrete-time Markov decision processes (MDPs) with Borel state
and action spaces, and total expected discounted cost optimality criterion. We assume
that the discount factor is not constant: it may depend on the state and action; moreover,
it can even take the extreme values zero or one. We propose sufficient conditions on the
data of the model ensuring the existence of optimal control policies and allowing the
characterization of the optimal value function as a solution to the dynamic programming
equation. As a particular case of these MDPs with varying discount factor, we study
MDPs with stopping, as well as the corresponding optimal stopping times and contact
set. We show applications to switching MDPs models and, in particular, we study a
pollution accumulation problem.

2010 Mathematics Subject Classification: 93E20, 34A38, 60J05.
Keywords and phrases: Markov decision processes, dynamic programming, optimal stop-
ping problems.

1 Introduction

The study of Markov decision processes (MDPs) has been very active along the past decades.
Many papers and books cover the theory and the applications of this topic: see, among
others, the books by Bertsekas [4], Hernández-Lerma and Lasserre [7, 8], Hinderer et al. [10],
Puterman [22], and Ross [24], to cite just a few. In most of the literature, two main optimality
criteria have prevailed due to a significant number of applications; namely, the discounted
and the average cost/reward criteria.

It is worth noting that the discounted criterion has two appealing features: (a) it allows
to approximate the total (undiscounted) cost when the discount factor is close to one, (b)
it models certain phenomena whose future responses (measured as cost/reward cash flows)
need to be measured at the present time; for example, in mathematical finance, the investor
is interested in optimizing fair values where the discount factor plays the role of an interest
rate.
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1 INTRODUCTION 2

It is also well known that most of the literature on discrete-time discounted MDPs consid-
ers constant discount factors. There exist, however, a few references dealing with non-constant
discount factors, allowing for a dependence on the state-action variables (or even, addition-
ally, a random variable). See, e.g., the references Ilhuicatzi-Roldán [9], Minjárez-Sosa [20],
and Wei and Guo [25]. In all these mentioned references, however, it is assumed that the
discount factor is uniformly bounded away from one. One of the main goals of this paper is
precisely to relax this condition and then allow the discount factor to take values close to
(or even equal to) one. This will be achieved, among other conditions, by using properties
related to small sets, in the terminology of Markov chains.

We apply our main results herein to control problems with stopping; i.e., when the dy-
namic system stops either (a) by some action of the decision-maker or (b) by a natural
transition to some given special state. To this end, we use the varying discount factor feature
of our MDP as a powerful modeling tool: namely, a discount factor equal to one can model
an instantaneous transition, whereas a discount factor equal to zero can be interpreted as
stopping the dynamics. For more details of MDPs with stopping we can quote the books by
Bensoussan [3], Puterman [22], Ross [24], as well as the papers by Rieder [23], Dufour and
Piunovskiy [5], and Horiguchi [11, 12], among others. Interestingly, in all these references,
instantaneous transitions are not allowed, which is a situation that our model can indeed
handle.

The remainder of the paper is organized as follows: in Section 2 we introduce the primitive
data of the model and our main assumptions. Next we define the corresponding dynamic
programming equation and prove existence of solutions to this equation, which allow to obtain
the optimal value of the problem as well as optimal policies. Section 3 is concerned with the
study of MDPs with stopping. Within this section we first analyze the simplest case when the
system is stopped only by the decision-maker and then we study a more general case when
the system can reach an absorbing state by either a natural transition of the system or by
means of a decision-maker’s action. Finally, in Section 4 we introduce a special case of MDPs
with stopping concerned with switching problems and we show an application to a pollution
accumulation problem.

Notation and terminology. Throughout this paper:

• We will write R = R∪ {−∞,∞}. By N = {1, 2, 3, . . .} we will denote the set of natural
numbers, and we define N0 := N ∪ {0}.

• Any metric space Z will be endowed with its Borel σ-algebra B(Z) and measurability
(of sets and functions) will be always referred to the corresponding Borel σ-algebras.
For product spaces, we will consider the taxicab metric and the corresponding product
of Borel σ-algebras.

• A Borel space is a measurable subset of a complete and separable metric space.

• We make the convention that a product of real numbers
∏
i∈S xi over an empty set S

equals one, while a sum
∑

i∈S xi over an empty set S equals zero.

• The notation δx(·) stands for the Dirac probability measure concentrated at the point
x ∈ Z, while 1C(·) will denote the indicator function of a set C ∈ B(Z).

2021 Mar 28 JMP 2



2 THE GENERAL MODEL 3

• Given a transition probability measure Q(·|·) on X given X, we define Q1 = Q and,
recursively for n > 1, we let Qn+1(B|x) =

∫
X Q(B|y)Qn(dy|x) for x ∈ X and B ∈ B(X).

• We say that f : Z → R is lower semicontinuous if the level sets {z ∈ Z : f(z) ≤ β}, for
any β ∈ R, are closed. We will write f ∈ L(Z). If, in addition, f takes values in R, we
will simply write f ∈ L(Z).

• The family of measurable functions f : Z → R and f : Z → R are respectively denoted
by M(Z) and M(Z).

• By C(Z) we will denote the family of continuous functions from Z to R.

• In general, for sets of functions, the superscript + stands for functions taking nonneg-
ative values, and the subscript b stands for bounded functions.

2 The general model

The tuple consisting of the elements

M = (X,A,K, Q, c, α), (2.1)

which are defined next, will be referred to as the Markov decision process (MDP) model.

State-action pairs. The state space X and the action space A are both Borel spaces.
Furthermore, we will consider the family of sets {A(x) : x ∈ X}, where A(x) is regarded as
the set of feasible actions at state x. For each state x ∈ X, the set A(x) ⊆ A is nonempty
and measurable. We will also assume that the graph

K = {(x, a) ∈ X ×A : x ∈ X, a ∈ A(x)}

is a measurable subset of X×A. The family of measurable functions f : X → A which satisfy
f(x) ∈ A(x) for all x ∈ X is supposed to be nonempty. We will denote by F the class of all
such functions.

The dynamic system. The system dynamics is given by the transition kernel

Q : B(X)×K→ [0, 1],

which satisfies the following conditions: for every B ∈ B(X) the function (x, a) 7→ Q(B|x, a)
is measurable on K and, in addition, for every (x, a) ∈ K the mapping B 7→ Q(B|x, a) is a
probability measure on (X,B(X)). Given a measurable function u ∈ M+(X) we define the

function Qu ∈M+
(K) by means of

Qu(x, a) =

∫
X
u(y)Q(dy|x, a) for (x, a) ∈ K.

2021 Mar 28 JMP 3



2 THE GENERAL MODEL 4

Control policies. Define H0 = X and Ht = Kt × X for t ∈ N, and let H∞ = K∞, all
endowed with the corresponding product σ-algebras. The history up to time t is

ht = (x0, a0, . . . , xt−1, at−1, xt) ∈ Ht for t ∈ N.

An admissible policy is a sequence ν = {νt}t≥0 of transition probability measures on A
given Ht such that νt(A(xt)|ht) = 1 for all ht ∈ Ht and t ∈ N0. We denote by Π the set of
admissible control policies.

If there is some f ∈ F such that the policy ν ∈ Π satisfies νt(B|ht) = δf(xt)(B) for every
B ∈ B(X), ht ∈ Ht, and t ∈ N0, then we say that ν is a deterministic stationary policy. In
what follows, we will identify the set of such policies with F. Hence, we have F ⊆ Π.

Construction of the controlled process. By the Ionescu-Tulcea theorem, for any initial
state x ∈ X and any policy ν ∈ Π, there exists a unique probability measure on H∞, denoted
by P νx , which models the controlled dynamic system under ν. Its expectation operator is
denoted by Eνx . From now on, we will use the notation

ω = (x0, a0, . . . , xt, at, . . .) ∈ H∞

to denote a sample path of the state-action process. Slightly abusing the notation, but
without any risk of confusion, we will as well denote by xt and at the projection mappings
which associate to each ω ∈ H∞ the corresponding t-th coordinates.

The expected discounted cost optimality criterion. We will consider a measurable
running cost function c : K → R and a measurable function α : K → [0, 1] that will be
interpreted as the discount factor. Given an initial state x ∈ X and a control policy ν ∈ Π,
we define

J(x, ν) = Eνx

[ ∞∑
t=0

c(xt, at)
t−1∏
j=0

α(xj , aj)

]
(2.2)

(later, we will provide conditions ensuring that the above expectation is well defined). The
optimal discounted cost function is then defined as

J∗(x) = inf
ν∈Π

J(x, ν) for x ∈ X, (2.3)

and we will say that a policy ν∗ ∈ Π is optimal when J∗(x) = J(x, ν∗) for each x ∈ X.
We impose the following conditions on our control model.

Assumption 2.1. (i) The running cost function c is in L+(K) and, in addition, there exists a
constant M > 0 with infa∈A(x) c(x, a) ≤M for every x ∈ X.

(ii) The discount factor function α is in L+(K) (by definition, α takes values in [0, 1]).

(iii) The kernel Q is weakly continuous, i.e, u ∈ Cb(X) implies Qu ∈ Cb(K).

(iv) The correspondence x 7→ A(x) is compact-valued and upper semicontinuous.

(v) The optimal discounted cost J∗(x) is finite for every x ∈ X.

Next we make some comments on our assumptions.

2021 Mar 28 JMP 4



2 THE GENERAL MODEL 5

Remark 2.2. (a) The condition in (i) is equivalent to the existence of some f ∈ F such that
supx∈X c(x, f(x)) < ∞. This assumption does not imply that the cost function c is
bounded. Also, the cost function c being nonnegative, it is clear that J(x, ν) in (2.2) is
well defined.

(b) Conditions (iii)-(iv) in Assumption 2.1 are standard in the literature. Later on we will
provide sufficient conditions for (v) based on the data of the model. �

Given a measurable function u ∈ M+(X), we define the function Tu on X taking values
in [0,∞] as

Tu(x) = inf
a∈A(x)

{
c(x, a) + α(x, a)Qu(x, a)

}
for each x ∈ X,

and we say that T admits a measurable selector at u when there exists some f ∈ F with

Tu(x) = c(x, f(x)) + α(x, f(x))Qu(x, f(x)) for each x ∈ X.

We also say that u ∈M+(X) is a solution of the dynamic programming equation (DPE) if it
satisfies

u(x) = Tu(x) for each x ∈ X. (2.4)

The following lemma ensures the existence of a solution to the DPE (2.4) as well as a regularity
property of this solution.

Lemma 2.3. Under the Assumption 2.1, the following holds:

(i) If u ∈ L+(X) then Tu ∈ L+
(X) and T has a measurable selector at u. If u ∈ L+

b (X)
then Tu ∈ L+

b (X).

(ii) Let v0 = 0 and define vk+1 = Tvk for k ≥ 0. Then {vk} converges pointwise and
monotonically to some v∗ ∈ L+(X) with v∗ ≤ J∗.

(iii) The function v∗ obtained in (ii) is a solution of the DPE (2.4).

Proof. (i). Since u ∈ L+(X), there exists a sequence {uk} in C+
b (X) such that uk ↑ u; see

Hernández-Lerma and Lasserre [7, Proposition A.2] or Aliprantis and Border [1, Theorem
3.13]. It is easy to check that (x, a) 7→ c(x, a) + α(x, a)Quk(x, a) is in L+(K) for each k,
since it is obtained by product and sum of nonnegative lower semicontinuous functions. The
latter functions increase, as k → ∞, to (x, a) 7→ c(x, a) + α(x, a)Qu(x, a) which, therefore,

is in L+
(K) (see, e.g., Aliprantis and Border [1, Lemma 2.41]). The fact that Tu is lower

semicontinuous and that there exists a measurable selector for T at u follows from Proposi-
tion D.5 in Hernández-Lerma and Lasserre [7] (although that reference deals with functions
taking values in R, it can be easily adapted to functions taking values in R ∪ {∞}). Finally,
note that if u is bounded then so is Tu because ||Tu|| ≤M + ||u||.

(ii). The sequence {vk} is in L+
b (X) with ||vk|| ≤ kM . Since v0 ≤ v1 and noting that the

operator T is monotone, we can see that {vk} is monotone nondecreasing. Hence, its pointwise

limit v∗ is a lower semicontinuous function in L+
(X). Let us now prove that v∗ ≤ J∗. For

each k ≥ 0, let fk ∈ F be a measurable selector of T at vk+1, that is,

vk+1(x) = c(x, fk(x)) + α(x, fk(x))Qvk(x, fk(x)) for x ∈ X. (2.5)

2021 Mar 28 JMP 5



2 THE GENERAL MODEL 6

In the sequel, fix some integer n ≥ 0 and consider the decision times {0, . . . , n}. Given
0 ≤ t ≤ n, a policy ν ∈ Π, and a history ht = (x0, a0, . . . , xt) ∈ Ht, define

Jt,n(ht, ν) = Eνx0

[ n∑
k=t

c(xk, ak)
k−1∏
j=t

α(xj , aj) | ht
]
.

Notice that Jt,n(ht, ν) depends on ν only through the decision made at times t, . . . , n; that
is, on {νt, . . . , νn}. Also, let

Jt,n(ht) = inf
ν∈Π

Jt,n(ht, ν) for ht ∈ Ht.

Define the policy ν∗n as {fn, . . . , f0} on the time horizon 0, . . . , n, with fi as in (2.5), and
arbitrarily from time n+ 1 onwards. Our goal now is to show that we have

Jt,n(ht) = Jt,n(ht, ν
∗
n) = vn+1−t(xt) for every 0 ≤ t ≤ n and ht ∈ Ht. (2.6)

We will prove it by backwards induction on t = n, n − 1, . . . , 0. This equality is obvious for
t = n because for every ν ∈ Π and hn ∈ Hn we have

Jn,n(hn, ν) =

∫
A(xn)

c(xn, a)νn(da|hn),

and so

Jn,n(hn) = min
a∈A(xn)

c(xn, a) = c(xn, f0(xn)) = Jn,n(hn, ν
∗
n) = v1(xn).

Suppose that (2.6) holds for some t+ 1 and let us prove it for t. Given arbitrary ν ∈ Π and
ht ∈ Ht we have that

Jt,n(ht, ν) = Eνx0

[
Eνx0

[ n∑
k=t

c(xk, ak)
k−1∏
j=t

α(xj , aj) | ht+1

]
| ht

]

= Eνx0

[
c(xt, at) + α(xt, at)E

ν
x0

[ n∑
k=t+1

c(xk, ak)

k−1∏
j=t+1

α(xj , aj) | ht+1

]
| ht

]

= Eνx0

[
c(xt, at) + α(xt, at)Jt+1,n(ht+1, ν) | ht

]
≥ Eνx0

[
c(xt, at) + α(xt, at)vn−t(xt+1) | ht

]
=

∫
A(xt)

[c(xt, a) + α(xt, a)Qvn−t(xt, a)]νt(da|ht)

≥ vn+1−t(xt),

with equality when ν = ν∗n. This completes the backward induction argument. Hence, letting
t = 0 (recall (2.6)) we have thus proved that for every n ≥ 0 and x ∈ X

J0,n(x) = J0,n(x, ν∗n) = vn+1(x).

Proceeding with the proof, the non negativity of the cost function implies that, for every
x ∈ X, n ≥ 0, and ν ∈ Π,

vn+1(x) ≤ J0,n(x, ν) ≤ J(x, ν),

2021 Mar 28 JMP 6



2 THE GENERAL MODEL 7

and so vn+1(x) ≤ J∗(x). This shows that the limit function v∗ ≤ J∗.
(iii). The operator T being monotone, it is clear that vk+1 = Tvk ≤ Tv∗, and so v∗ ≤ Tv∗.

To prove the reverse inequality, let fk ∈ F, for each k ≥ 0, be a measurable selector of T at
vk (recall (2.5)); i.e.,

vk+1(x) = c(x, fk(x)) + α(x, fk(x))Qvk(x, fk(x)) for x ∈ X. (2.7)

For fixed x ∈ X, the sequence {fk(x)} in A(x) has a convergent subsequence fkn(x) → a ∈
A(x). Fix some n′ and observe that

lim inf
n→∞

Qvkn(x, fkn(x)) ≥ lim inf
n→∞

Qvkn′ (x, fkn(x)) ≥ Qvkn′ (x, a),

where the first inequality follows by monotonicity of {vk} and the second one by lower semicon-
tinuity of Qvkn′ (recall part (i) of this proof). But n′ being arbitrary, monotone convergence
yields lim infn→∞Qvkn(x, fkn(x)) ≥ Qv∗(x, a). Take now the lim inf in (2.7) through n′ to
obtain that v∗(x) ≥ c(x, a) + α(x, a)Qv∗(x, a) from which the inequality v∗ ≥ Tv∗ follows.
Hence, v∗ is indeed a solution of the DPE (2.4). �

The next theorem relates the solution v∗ of the DPE introduced in Lemma 2.3 with the
optimal cost function J∗ in (2.3). Furthermore, it guarantees the existence of optimal control
policies.

Theorem 2.4. Let Assumption 2.1 be satisfied and let v∗ ∈ L+(X) be as in Lemma 2.3(ii).

(i) The optimal discounted cost J∗ equals v∗, and it is the minimal solution in L+(X) of the
DPE (2.4).

(ii) Any measurable selector of T at J∗ is an optimal deterministic stationary policy.

Proof. (i). Given any solution u ∈ L+(X) of the DPE (2.4), let f ∈ F be a measurable
selector of T at u, that is, with

u(x) = c(x, f(x)) + α(x, f(x))Qu(x, f(x)) for each x ∈ X.

Iteration of this inequality yields

u(x) = Efx

[ n∑
k=0

c(xk, f(xk))
k−1∏
t=0

α(xt, f(xt))
]

+ Efx

[
u(xn+1)

n∏
t=0

α(xt, f(xt))
]

≥ Efx
[ n∑
k=0

c(xk, f(xk))
k−1∏
t=0

α(xt, f(xt))
]

which, letting n→∞ and by monotone convergence, implies u(x) ≥ J(x, f) ≥ J∗(x) for each
x ∈ X. Since v∗ in Lemma 2.3(ii) is indeed a solution of the DPE, we obtain v∗ ≥ J∗, and so
v∗ = J∗. This implies that J∗ is indeed the minimal solution in L+(X) of the DPE.

(ii). Use the argument in (i) replacing u with J∗ to derive that any measurable selector
of T at J∗ is an optimal deterministic stationary policy. �

As discussed in Remark 2.2, all the conditions in Assumption 2.1 are stated in terms of
the basic primitive data of the control model, except item (v). Next we explore some easily
verifiable sufficient conditions for the finiteness of J∗. Our next assumption uses the following
terminology; see Section 5.2 in Meyn and Tweedie [19].

2021 Mar 28 JMP 7



2 THE GENERAL MODEL 8

Definition 2.5. Given f ∈ F, we say that a set C ∈ B(X) is small if there exist t ∈ N and

a nontrivial measure µ on (X,B(X)) with P fx {xt ∈ B} ≥ µ(B) for all B ∈ B(X) and x ∈ C.
We will also say that C is µ-small for f ∈ F at stage t.

We introduce some further notation. For f ∈ F and 0 ≤ β ≤ 1, let

Lf,β = {x ∈ X : α(x, f(x)) ≤ β} and Uf,β = {x ∈ X : α(x, f(x)) > β},

be the lower and upper sections of the discount factor function. We then impose the following
assumption.

Assumption 2.6. (i) There exists f ∈ F such that supx∈X c(x, f(x)) = c <∞ and such that,
for some 0 ≤ β < 1 and some nontrivial measure µ on (X,B(X)), the set Uf,β is µ-small
for f at some stage n with, in addition, µ(Lf,β) > 0.

(ii) There exist 0 < δ < 1 and c0 > 0 such that

∀(x, a) ∈ K, α(x, a) ≥ 1− δ implies c(x, a) ≥ c0.

Remark 2.7. (a) Under Assumption 2.6(i), the statement infa∈A(x) c(x, a) ≤M for x ∈ X in
Assumption 2.1(i) is necessarily satisfied (recall Remark 2.2(a)).

(b) The second part of Assumption 2.6(i) means that there exist f ∈ F, 0 ≤ β < 1, t ∈ N,
and a non-trivial measure µ (which may depend on all these parameters) such that
µ(Lf,β) = µ(X r Uf,β) > 0 and

P fx {xt ∈ B} ≥ µ(B) for every B ∈ B(X) and every x ∈ Uf,β . (2.8)

(c) The condition (ii) means, roughly speaking, that discount factors close to one imply a
positive cost. It is a generalization of previous hypotheses existing in the literature; see,
e.g., Assumption 2.4 in Jasso-Fuentes et al. [14].

Proposition 2.8. (i) If Assumption 2.6(i) holds then supx∈X J(x, f) < ∞. In particular,
Assumption 2.1(v) is satisfied.

(ii) Under Assumption 2.6(ii), if x ∈ X and ν ∈ Π are such that J(x, ν) < ∞ then∏k
i=0 α(xi, ai) converges to 0 with P νx -probability one as k →∞.

Proof. (i). We first prove a preliminary fact. By hypothesis, we can choose 0 < ε < 1 such
that µ(Lf,β) ≥ ε. Suppose that the initial state x is in Uf,β and let S = min{k > 0 : xk ∈
Lf,β}. We have {S > n} ⊆ {xn ∈ Uf,β} and so, for any x ∈ Uf,β ,

P fx {S > n} ≤ P fx {xn ∈ Uf,β} = 1− P fx {xn ∈ Lf,β} ≤ 1− µ(Lf,β) ≤ 1− ε.

By iteration of this argument, for each r ≥ 1 we have

P fx {S > rn} ≤ (1− ε)r, and so Efx [S] ≤ n/ε. (2.9)

Hence, the exit time from Uf,β has finite expectation.
Suppose now that the initial state x is in Lf,β and observe that

J(x, f) ≤ c Efx

[ ∞∑
k=0

k−1∏
j=0

α(xj , f(xj))

]
.

2021 Mar 28 JMP 8



2 THE GENERAL MODEL 9

Define, for each r ≥ 1,

Tr = min{k > Sr−1 : xk ∈ Uf,β} and Sr = min{k > Tr : xk ∈ Lf,β}

with the convention that S0 = 0. Hence, the state xk is in Lf,β for k in the following union
of intervals

[S0, T1) ∪ [S1, T2) ∪ [S2, T3) ∪ . . . ,

while the state xk is in Uf,β for k in

[T1, S1) ∪ [T2, S2) ∪ [T3, S3) ∪ . . . .

Observe now the following. Suppose that r ≥ 0 is given:

• If j ≥ 1 is such that Sr < j ≤ Tr+1, then xj−1 ∈ Lf,β and so the current discount factor
α(xj−1, f(xj−1)) is less than β.

• If j ≥ 1 is such that Tr < j ≤ Sr, then xj−1 ∈ Uf,β and so the current discount factor
α(xj−1, f(xj−1)) is larger than β, but bounded above by one.

Bearing this in mind, if j ≥ 1 satisfies Sr < j ≤ Tr+1 for some r ≥ 0, then the accumulated
(multiplicative) discount factor

∏j−1
m=0 α(xm, f(xm)) is less than or equal to

r−1∏
n=0

[ Tn+1∏
m=Sn+1

α(xm−1, f(xm−1))

Sn+1∏
m=Tn+1+1

α(xm−1, f(xm−1))
] j∏
m=Sr+1

α(xm−1, f(xm−1))

≤
r−1∏
n=0

[
βTn+1−Sn · 1Sn+1−Tn+1

]
· βj−Sr ≤ βj−Sr+

∑r−1
n=0(Tn+1−Sn). (2.10)

Arguing similarly, if j ≥ 1 satisfies Tr < j ≤ Sr for some r ≥ 1 then the accumulated
(multiplicative) discount factor

∏j−1
m=0 α(xm, f(xm)) is less than or equal to

Tr∏
m=1

α(xm−1, f(xm−1))

j∏
m=Tr+1

α(xm−1, f(xm−1)) ≤ β
∑r−1

n=0(Tn+1−Sn),

where the first product has been bounded using (2.10) and the second product is bounded
by the trivial bound 1. Hence, splitting the time horizon {1, 2, . . .} in the intervals (Sr, Tr+1]
and (Tr, Sr] and noting that the discount factor at the initial stage is 1, we can write

J(x, f) ≤ c+ cEfx

[ ∞∑
r=0

Tr+1∑
j=Sr+1

βj−Sr+
∑r−1

n=0(Tn+1−Sn)
]

+ c

∞∑
r=1

Efx

[
(Sr−Tr)β

∑r−1
n=0(Tn+1−Sn)

]
.

Note that

∞∑
r=0

Tr+1∑
j=Sr+1

βj−Sr+
∑r−1

n=0(Tn+1−Sn) =
∞∑
k=1

βk =
β

1− β
.

Due to the stationarity of the process, together with (2.9) and
∑r−1

n=0(Tn+1−Sn) ≥ r, we can
deduce

Efx

[
(Sr − Tr)β

∑r−1
n=0(Tn+1−Sn)

]
≤ βrEfx

[
E
[
(Sr − Tr)|hTr

]]
≤ βr(n/ε).
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2 THE GENERAL MODEL 10

This shows that whenever x ∈ Lf,β we have

J(x, f) ≤ cβ
1 + n/ε

1− β
.

Arguing similarly, it can be shown that the same bound holds for an initial state x ∈ Uf,β .
This completes the proof that supx∈X J(x, f) is finite. In particular, it follows that J∗ is
bounded.

(ii). Observe that, for each fixed ω ∈ H∞, the sequence
∏k−1
i=0 α(xi, ai) is monotone

non-increasing and, hence, it converges to some η(ω) ∈ [0, 1]. Our goal now is to prove that

η(ω) > 0 =⇒
∞∑
k=0

c(xk, ak)
k−1∏
i=0

α(xi, ai) =∞.

Taking 0 < δ < 1 as in Assumption 2.6(ii), if α(xk, ak) < 1 − δ for infinitely many k then
the limit η(ω) is necessarily 0. Hence, if η(ω) > 0 then there exists some k0 such that k ≥ k0

implies α(xk, ak) ≥ 1− δ and, hence, by Assumption 2.6(ii), c(xk, ak) ≥ c0. So,

∞∑
k=0

c(xk, ak)
k−1∏
i=0

α(xi, ai) ≥
∞∑

k=k0

c(xk, ak)
k−1∏
i=0

α(xi, ai) ≥
∞∑

k=k0

c0η =∞.

Therefore, if

J(x, ν) = Eνx

[ ∞∑
k=0

c(xk, ak)
k−1∏
i=0

α(xi, ai)
]

is finite for some policy ν ∈ Π, then the set of ω for which the limit η(ω) is positive must
necessarily have P νx -probability zero (otherwise, J(x, ν) would be infinite); hence, with P νx -
probability one, limk→∞

∏k−1
i=0 α(xi, ai) = 0. �

The next theorem shows an important regularity property of the value function J∗ along
with uniqueness of the solution of the DPE (2.4).

Theorem 2.9. If Assumptions 2.1 and 2.6 hold then J∗ ∈ L+
b (X). Furthermore it is the

unique solution in L+
b (X) of the DPE (2.4).

Proof. We know from Proposition 2.8(i) and Theorem 2.4 that J∗ ∈ L+
b (X). Suppose now

that u is a nonnegative and bounded solution of the DPE (2.4). By Theorem 2.4(i) we have
u ≥ J∗. For each (x, a) ∈ K we have u(x) ≤ c(x, a)+α(x, a)Qu(x, a) and, in particular, given
ν ∈ Π, an initial state x ∈ X, and n ≥ 0, we have, for any hn ∈ Hn and an ∈ A(xn),

Eνx

[
u(xn+1)

n∏
i=0

α(xi, ai) | hn, an
]

= Qu(xn, an)

n∏
i=0

α(xi, ai)

=

n−1∏
i=0

α(xi, ai)
[
c(xn, an) + α(xn, an)Qu(xn, an)− c(xn, an)

]
≥

n−1∏
i=0

α(xi, ai)
[
u(xn)− c(xn, an)

]
.
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3 MARKOV DECISION PROCESSES WITH STOPPING 11

Taking expectation yields

Eνx

[
c(xn, an)

n−1∏
i=0

α(xi, ai)
]
≥ Eνx

[
u(xn)

n−1∏
i=0

α(xi, ai)− u(xn+1)
n∏
i=0

α(xi, ai)
]
.

Summing up these inequalities over the indexes 0, . . . , k gives

Eνx

[ k∑
n=0

c(xn, an)
n−1∏
i=0

α(xi, ai)
]
≥ u(x)− Eνx

[
u(xk+1)

k∏
i=0

α(xi, ai)
]
. (2.11)

Suppose now that ν = f ∈ F is a measurable selector of T at J∗, in the DPE J∗ = TJ∗.
We can apply Proposition 2.8(ii) because J(x, f) = J∗(x) < ∞, together with dominated
convergence, to establish that

lim
k→∞

Efx

[
u(xk+1)

k∏
i=0

α(xi, ai)
]

= 0

(here, we also use the fact that u is bounded). It follows from (2.11) by taking the limit as
k →∞ that J∗(x) = J(x, f) ≥ u(x). This completes the proof that u = J∗. �

3 Markov decision processes with stopping

In this section we describe control models which incorporate some kind of “stopping”, either
by means of an action that stops (or kills) the process, or by a natural extinction of the
process. Such stopping models are relevant in applications (we can quote the references:
Bensoussan [3], Puterman [22], Ross [24], as well as the papers: Rieder [23], Dufour and
Piunovskiy [5], Horiguchi [11, 12], among others). Interestingly, such stopping models fit in
the previously described framework of MDPs with varying discount factor, as we shall see.

A simplified version of a stopping MDP with constant discount factor is as follows. Con-
sider a control model M as in (2.1) with constant discount factor 0 < α < 1. In addition to the
control policy ν ∈ Π, the decision-maker is allowed to stop the process. This is modeled by a
random variable τ : Ω → {0, 1, 2, . . . ,∞} such that {τ = t} is (x0, a0, . . . , xt, at)-measurable.
The corresponding total expected discounted cost is

J(x, ν, τ) = Eνx

[ τ−1∑
t=0

αtc(xt, at) + ατ `(xτ )
]
, (3.1)

with ` some measurable stopping cost function on X (if τ = ∞ then the righthand term
vanishes and the lefthand term is an infinite sum). The objective of the decision-maker is to
minimize the performance criterion (3.1) in ν and τ . As we shall see later, the criterion (3.1)
is a particular case of the control model introduced in Section 2.

Moreover, since our model allows the discount factor to be equal to one at some stages,
we can handle further generalizations of MDPs by considering the larger class of so-named
hybrid control models (which allow for instantaneous transitions; see, e.g., Jasso-Fuentes et
al. [14, 15]) combined with stopping. To the best of our knowledge, this issue has not been
studied in the literature (indeed, the above cited references have studied different versions
of stopping problems but none of them allows for instantaneous transitions, i.e., a hybrid
dynamics).

In what follows, we shall distinguish two “sources” of stopping: by means of a stopping
action or by means of absorption.

2021 Mar 28 JMP 11



3 MARKOV DECISION PROCESSES WITH STOPPING 12

Stopping action. We give the following definition of a stopping action in the context of
our MDP model M.

Definition 3.1. Let M = (X,A,K, Q, c, α) be the general control model described in (2.1).
Given x ∈ X, we say that a ∈ A(x) is a stopping action (at the state x) when α(x, a) = 0.

With this definition in mind, it is clear that, for x ∈ X and ν ∈ Π, the total expected
discounted reward can be written

J(x, ν) = Eνx

[ ∞∑
t=0

c(xt, at)
t−1∏
j=0

α(xj , aj)
]

= Eνx

[ τ∑
t=0

c(xt, at)
t−1∏
j=0

α(xj , aj)
]

where we define τ on H∞ as the time a stopping action is taken, that is,

τ(ω) = min{t ≥ 0 : α(xt, at) = 0}.

Note that, in the context of our control model M, although the policy ν chosen by the decision-
maker does not formally kill the process (in fact, the state process continues its evolution),
all the costs from time τ + 1 onwards are irrelevant: the discount factor that vanishes has
indeed produced the effect of stopping the process.

In case that α(x, a) > 0 for all (x, a) ∈ K we can artificially add a stopping action a to
the action set, so that the augmented set of available actions at x ∈ X are A(x) ∪ {a} with
corresponding discount factor α(x, a) = 0 and cost function given by the stopping cost `, that
is, c(x, a) = `(x) for each x ∈ X. In this case, the decision-maker can stop the process at any
point in time by taking the stopping action a. Letting τ(ω) = min{t ≥ 0 : at = a} we have

J(x, ν) = Eνx

[ τ−1∑
t=0

c(xt, at)

t−1∏
j=0

α(xj , aj) + `(xτ )

τ−1∏
j=0

α(xj , aj)
]
.

In this case, the DPE equation (2.4) J∗ = TJ∗ becomes

J∗(x) = `(x) ∧ min
a∈A(x)

{
c(x, a) + α(x, a)

∫
X
J∗(y)Q(dy|x, a)

}
for x ∈ X.

It is clear now that the criterion in (3.1) is indeed a particular case of our control model with
varying discount factor.

We define the contact set as

D∗ = {x ∈ X : `(x) = J∗(x)}.

It is the subset of the state space X on which it is optimal for the decision-maker to stop
the dynamics; that is, when xt ∈ D∗ (the process hits D∗) then the optimal action is a and
the process is stopped; otherwise, when xt /∈ D∗, the optimal action is an action in A(x)
for which the natural dynamics of the process continues. The optimal stopping time is then
τ∗ = min{t ≥ 0 : xt ∈ D∗}.
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3 MARKOV DECISION PROCESSES WITH STOPPING 13

Absorption state and absorption action. Since the previous “stopping action” is not
possible when the discount factor is kept constant, we explore a different source of stopping,
which is produced when the process reaches some special states, but not necessarily when the
decision-maker stops the process, as seen before.

Definition 3.2. Consider the general control model M = (X,A,K, Q, c, α) as in (2.1).

(i) We say that ∂ ∈ X is an absorption state when Q(·|∂, a) = δ∂(·), for any a ∈ A(∂).

(ii) If ∂ is an absorption state and x ∈ X is not, then we say that a ∈ A(x) is a possible ab-
sorption action when Q({∂}|x, a) > 0, and a full absorption action (or simply absorption
action) when Q({∂}|x, a) = 1, and in this case, the absorption action a is denoted by
a∂ , without ambiguity. Moreover, this absorption action a∂ is called absorption-stopping
action whenever c(∂, a) = 0, for any a ∈ A(∂).

We make some remarks on this definition.

Remark 3.3. (a) Note that absorption states and (possible) absorption actions can be part of
the model M itself or, alternatively, they can be artificially added for modeling purposes.

(b) The notion of an absorption action is closely related to a stopping action in the previous
paragraph. Indeed, for any absorption state ∂ it may be convenient (but not necessary)
to add the condition c(∂, a) = 0 for every a ∈ A(∂), so that “absorption action” and
“absorption-stopping action” are the same concepts; otherwise, the cost may become
infinite. In this case, the absorption(-stopping) action a∂ effectively produces a stopping
action, i.e., transitions are stopped (in the sense that the state remains constant) and
costs cease (in the sense that costs vanish) immediately after applying a∂ . In this case,
for any policy ν ∈ Π, the stopping time τ = inf{t ≥ 0 : at = a∂} plays the role of
τ in (3.1). Also note that absorption states have to do with all the transitions there-
after, while (possible) absorption actions have to do only with the immediate transition
following the current state.

For instance, assuming that there exists only one absorption state ∂, we can define the
random variable τ on H∞ as the lifetime of the process, namely,

τ∂ = inf{t ≥ 0 : xt = ∂}.

Hence, if the decision-maker uses a policy ν ∈ Π and the process reaches state ∂, the process
gets trapped thereafter in ∂ with no subsequent cost, assuming c(∂, a) = 0 for every a ∈ A(∂).
In this context, stopping of the process occurs as a natural phenomenon, which is not forced by
the decision-maker. Indeed, when taking an absorption action there is a possibility of killing
the process, but it is not necessarily killed with certainty. In this case, the corresponding
total expected discounted cost becomes

J(x, ν) = Eνx

[ ∞∑
t=0

c(xt, at)
t−1∏
j=0

α(xj , aj)
]

= Eνx

[ τ∂−1∑
t=0

c(xt, at)
t−1∏
j=0

α(xj , aj)
]
,

and the corresponding optimality equation reads

J∗(x) = min
a∈A(x)

{
c(x, a) + α(x, a)

∫
X
J∗(y)Q(dy|x, a)

}
for x ∈ X r {∂},

and J∗(∂) = 0. Once again, we see that our general model M can handle situations when
natural absorption (or killing) of a controlled process occurs.
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4 APPLICATIONS AND EXAMPLES 14

4 Applications and examples

In this section we describe how a switching MDP with stopping can be described as a partic-
ular case of our model in this paper. We also make a detailed analysis of a practical example:
a stock pollution control problem.

Switching MDPs with stopping. We consider here a switching control model with stop-
ping, and we show how it fits into the framework of our MDPs with varying discount factor
studied so far.

In switching control models with stopping, the dynamic system is subject to changes
of modes, or configurations. The decision-maker can choose the times when the dynamics
switches from one mode to another, while between switching times the dynamics behaves as a
usual Markov decision process. Such models have been studied for different type of dynamics
(mostly in continuous-time) when control is only applied to switching between modes; see,
for instance, Bensoussan and Lions [6], and Menaldi and Blankenship [18] among others.

In our context, there are N controlled Markov chains, labeled i = 1, . . . , N , all taking
values in the state space Y and with common action space V ; both Y and V are assumed to
be Borel spaces. The corresponding transition kernels are written Qi(B | y, a), for B ∈ B(Y )
and (y, a) ∈ Y ×A, for each i = 1, . . . , N .

The controlled switching model with stopping is then defined by the following elements.
The state space is

X = Y × {1, . . . , N} ∪ {∂},
where ∂ is an isolated absorption state. In the pair (y, k) ∈ X, we interpret y ∈ Y as the
fast variable, representing the state of the system and k ∈ {1, . . . , N} as the slow variable
indicating the current mode of the system. The action space consists of V ∪{a∂}∪{1, . . . , N},
the latter being N + 1 isolated points. The set of available actions are

A(y, k) = V ∪ {a∂} ∪ {1, . . . , k − 1, k + 1, . . . , N}

for a state (y, k) ∈ Y × {1, . . . , N} and A(∂) = {a∂}, i.e., a∂ is an absorption(-stopping)
action. The interpretation is that, in state (y, k) ∈ X, the decision-maker can take either a
usual action a ∈ V , or switch to a mode 1 ≤ a ≤ N different from the current mode k, or
stop the process through the action a = a∂ .

The dynamics of the model is defined as follows. Starting from a state (y, k) ∈ X we have

Q(dz × dm | (y, k), a) =


Qk(dz × dm | y, a) if a ∈ V
δ(y,a)(dz × dm) if 1 ≤ a ≤ N with a 6= k.

δ∂(dz) if a = a∂ ,

and note that Q({∂}|(y, k), a) = 0 for any (y, k) ∈ Y × {1, . . . , N} and a ∈ A(y, k), while
Q({∂}|∂, a∂) = 1. The dynamics can be as well stated in terms of an explicit transition
function: starting from the state (yt, kt) at time t ≥ 0 and taking an action at yields:

(yt+1, kt+1) = F (yt, kt, at, wt)︸ ︷︷ ︸
standard sub-dynamic

when at ∈ V , or

(
yt+1, kt+1

)
=
(
yt, at

)︸ ︷︷ ︸
switching sub-dynamic

when 1 ≤ at ≤ N with a 6= kt,
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and yt+1 = ∂ whenever at = a∂ ; here, {wt} is a sequence of i.i.d. random variables. This
characterization of the dynamics of an MDP can be proved in a general setting, as for instance
in Proposition 8.6 in Kallenberg [17]. A typical or common situation is when modes remain
constant except when a switching is applied, namely, when

Q(dz × dm | (y, k), a) = Qk(dz | y, a) δ{k}(dm) if a ∈ V

or equivalently

(yt+1, kt+1) =
(
F (yt, kt, at, wt), kt

)︸ ︷︷ ︸
standard sub-dynamic

when at ∈ V

are satisfied.
We consider the following running cost functions: the cost functions `i : Y × V → R+ are

the cost functions under each of the N controlled Markov chains, for i = 1, . . . , N . There is
a cost for switching given by l : {1, . . . , N} × {1, . . . , N} 7→ R+ and, finally, a terminal cost
function `0 : Y → R+. Each of these functions satisfies Assumptions 2.1(i) in their respective
domains. The cost function c for a state (y, k) ∈ Y × {1, . . . , N} is given by

c(y, k, a) = `k(y, a)1V (a) + l(k, a)1{1,...,N}(a) + `0(y)1{a∂}(a),

and c(∂, a∂) = 0. On the other hand, the discount factor is given by

α(y, k, a) = %k(y)1V (a) + 1{1,...,N}(a)

for (y, k) ∈ Y × {1, . . . , N} and α(·, a∂) = 0, where %k : Y → (0, 1), for 1 ≤ k ≤ N , are the
discount functions of each of the N controlled Markov chains. They are supposed to satisfy
Assumption 2.1(ii).

Finally, the set of admissible control policies is the same as Π (see Section 2), but using
A(x) introduced in previous paragraphs.

Remark 4.1. Observe that, once the state ∂ is reached, the process remains in this state
thereafter, without any further cost. Essentially, the process has been stopped. Note also
that the discount factor of an action in {1, . . . , N} equals one: this last fact can be interpreted
as an undiscounted instantaneous transition.

The function u : Y ×{1, . . . , N} → R+ is a solution of the dynamic programming equation
if for (y, k) ∈ Y × {1, . . . , N} we have

u(y, k) = min
{
Mu(y, k),Hu(y, k), `0(y)

}
where the operators H and M are defined as

Hu(y, k) := inf
a∈V

{
`k(y, a) + %k(y)

∫
X
u(z, k)Qk(dz|y, k, a)

}
,

Mu(y, k) := min
a∈{1,...,N}r{k}

{
l(k, a) + u(y, a)

}
.

We put u(∂) = 0.

We conclude this section by illustrating how switching MDPs can be applied to a control
problem of practical interest.
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A pollution accumulation problem. This problem has been studied for both discrete-
time and continuous-time models; see, for instance, Morimoto [21], Jasso-Fuentes and Yin
[16], Jasso-Fuentes and López-Barrientos [13], among others. With our varying discount factor
control models, we can consider an additional feature in such problems, namely, the level of
environmental contingency (implemented by the government) can be seen as an action taken
by the decision-maker. Such an approach has not been considered so far in the literature.

Suppose that an economy consumes a specific good and that, as a byproduct of this
consumption, it generates pollution. The pollution stock at time t ≥ 0 is yt, while kt, taking
values in {1, 2, . . . , N}, denotes the level or mode of environmental contingency decided by
the government at time t. They obey the following recurrent equation: for a fixed initial
condition (y0, k0) we have

yt+1 = yt − g(kt)yt + p(ct) + ζt for t ≥ 0

where (yt, kt) is the state, and kt is also the switching control with ct being the usual control.
The interpretation is that the stock of pollution yt+1 ≥ 0 is obtained from:

• The stock yt ∈ R+ of pollution at the previous time.

• The decay rate of pollution associated to the mode i ∈ {1, 2, . . . , N} is given by 0 ≤
g(i) < 1. Such a rate represents, e.g., any governmental actions leading to a decrease
of pollution (related to the level of environmental contingency), natural cleaning of
pollution (winds, rains), etc. At time t ≥ 0, the corresponding rate is given by g(kt).

• The quantity ct ≥ 0 denotes the consumption rate at time t, with range in [0, γ(kt)],
where the upper bound of the interval is given by a constant γ(i), for 1 ≤ i ≤ N , depend-
ing on the contingency level. Usually, such bound is imposed by national or worldwide
protocols. Finally, p(ct) is the amount of pollution derived from a consumption equal
to ct, for some function p : R+ → R+.

• The random variables ζt, assumed to be nonnegative and i.i.d., are random disturbances
modeling external or unpredictable events. Let Fζ : R+ → [0, 1] be the corresponding
distribution function.

A pollution stock of y in mode k, combined with a level of consumption equal to c, produces
a disutility of `k(y, c). It is natural, hence, to assume that the functions `k : R+×R+ → R+,
for 1 ≤ k ≤ N , are increasing in y (for fixed c) and decreasing in c (for fixed y). The
government is allowed to switch the modes of environmental contingency: such changes are
instantaneous in time and they produce a cost equal to l(j, k) > 0 when switching from
mode j to mode k. Concerning the discounting, each mode k ∈ {1, . . . , N} is associated to
a discount factor 0 < ρk < 1. The fact that discounting varies with k can be interpreted
as follows: a strict environmental protocol may have a positive future impact, modeled by
a small discount factor ρk, meaning that future disutility will be smaller; on the contrary, a
permissive environmental protocol can have a negative future impact, thus corresponding to
a discount factor ρk closer to 1, meaning a lesser diminution of future disutility.

Formally, the control model is given by the following elements. The state space is X =
R+ × {1, . . . , N} and the action space is A = R+ ∪ {1, . . . , N}. Here, we should interpret
1, . . . , N as (isolated) labels, rather than real numbers. The admissible actions at state
(y, k) ∈ X are

A(y, k) =
[
0, γ(k)

]
∪ {1, . . . , k − 1, k + 1, . . . , N},
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modeling either a consumption level in the interval [0, γ(k)] or a change in the environmental
protocol from k to a different one.

The dynamic equations are, starting from the state (yt, kt) at time t ≥ 0,(
yt+1, kt+1

)
=
(
yt − g(kt)yt + p(at) + ζt, kt

)︸ ︷︷ ︸
standard sub-dynamic

when at ∈ [0, γ(kt)]

(
yt+1, kt+1

)
=
(
yt, at

)︸ ︷︷ ︸
switching sub-dynamic

when at ∈ {1, . . . , N} with at 6= kt.

The cost function is given by

c(y, k, a) = `k(y, a)1R+(a) + l(k, a)1{1,...,N}(a)

and the discount factor function is

α(y, k, a) = ρk1R+(a) + 1{1,...,N}(a)

for any (y, k) ∈ X and a ∈ A(y, k).
Given a control policy ν ∈ Π, its total expected discounted disutility is (recall (2.2))

J((y, k), ν) = Eν(y,k)

[ ∞∑
t=0

c(yt, kt, at)
t−1∏
j=0

α(xj , kj , aj)

]

for an initial state (y, k) ∈ X. The objective is to find an optimal ν ∈ Π prescribing a
consumption-switching policy yielding the minimal total expected discounted disutility:

J∗(y, k) = inf
ν∈Π

J((y, k), ν) for (y, k) ∈ X.

The dynamic programming equation takes the form

J(y, k) = min
0≤a≤γ(k)

{
`k(y, a)+ρk

∫ ∞
0

J
(
y−g(k)y+p(a)+z, k

)
Fζ(dz)

}
∧min
j 6=k

{
l(k, j)+J(y, j)

}
.

We suppose that the pollution accumulation model satisfies the following conditions.

Assumption 4.2. (a) The mappings p and `k, for 1 ≤ k ≤ N , are continuous on their respec-
tive domains.

(b) The functions y 7→ `k(y, 0) have sub-linear growth, i.e., for some constants A,B > 0

`k(y, 0) ≤ Ay +B for each y ≥ 0 and 1 ≤ k ≤ N,

and the random variables ζt have finite first moment:
∫
zFζ(dz) <∞.

(c) For each k ∈ {1, . . . , N} the function y 7→ `k(y, γ(k)) is bounded on R+.

We have the next result.

Proposition 4.3. (i) Under Assumptions 4.2(a) and (b), the optimal discounted cost func-
tion J∗ is the minimal solution in L+(X) of the dynamic programming equation.
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(ii) Under Assumptions 4.2(a) and (c), the optimal discounted cost function J∗ is the unique
solution in L+

b (X) of the dynamic programming equation.
In either case, there exists an optimal deterministic stationary policy in F and it can be

obtained as a measurable selector of the DP equation at J∗.

Proof. (i). We make the proof under Assumptions 4.2(a)-(b). Clearly, Assumptions 2.1(i)–
(iv) hold (in particular, a policy that switches mode at any time, i.e., takes actions in
{1, . . . , N}, satisfies the condition in 2.1(i)). Also, note that item (iii) in Assumption 2.1
directly follows from the dominated convergence theorem. It remains to verify (v) in this
same assumption. Let f0 ∈ F be the policy that prescribes a consumption equal to 0 at each
stage. Starting from the initial state (y0, k0), it is clear by an induction argument that

yt+1 = yt − g(k0)yt + p(0) + ζt

≤ yt + p(0) + ζt

≤ y0 + (t+ 1)p(0) +
t∑

j=0

ζj .

Hence, for each t ≥ 0 we have

Ef0(y0,k0)[yt] ≤ y0 + t
(
p(0) + E[ζ]

)
,

where E[ζ] represents the finite expectation of the random disturbances. Using the sub-linear
growth condition on y 7→ `k0(y, 0) we obtain

Ef0(y0,k0)[`k0(yt, 0)] ≤ Ef0(y0,k0)[Ayt +B] ≤ Ay0 +B +At
(
p(0) + E[ζ]

)
.

The discount factor being equal to ρk0 at each stage t ≥ 0, it follows that

J((y0, k0), f0) =

∞∑
t=0

ρtk0E
f0
(y0,k0)[`k0(yt, 0)] ≤ Ay0 +B

1− ρk0
+
Aρk0

(
p(0) + E[ζ]

)
(1− ρk0)2

.

Hence, for any initial state (y0, k0) ∈ X we have that J∗(y0, k0) is indeed finite. The stated
result is now a consequence of Theorem 2.4.

(ii). We now make the proof under Assumptions 4.2(a) and (c). Clearly, Assumptions
2.1(i)–(iv) hold, and we are going to show that Assumption 2.6 is verified. Consider the
following policy f∗ ∈ F: if the state (y, k) is such that:

• k = N or y > 0 then let f∗(y, k) = γ(k) (i.e., the maximal consumption);

• if y = 0 and 1 ≤ k < N then f∗(0, k) = N (i.e, switch to mode N).

Note that when k = N or y > 0 we have c((y, k), f∗(y, k)) = `k(y, γ(k)) which is bounded by
hypothesis, and thus supx∈X c(x, f

∗(x)) is indeed finite. Now, let

β = max
1≤k≤N

ρk < 1 so that Uf∗,β = {0} × {1, . . . , N − 1}.

If the initial state of the system is (y0, k0) = (0, k0) ∈ Uf∗,β then, after one transition, the
state of the system is (y1, k1) = (0, N). Consider the measure µ on X given by µ = δ(0,N). It
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is clear that µ is the probability distribution of (y1, k1) under P f
∗

(y0,k0). So, it is indeed true

that for every (y0, k0) ∈ Uf∗,β and every B ∈ B(X) we have that (cf. (2.8))

P f
∗

(y0,k0){(y1, k1) ∈ B} ≥ µ(B),

that is, the set Uf∗,β is µ-small for f∗ at stage t = 1. In addition, we also have that
µ(Lf∗,β) = 1 because (0, N) ∈ Lf∗,β. Hence, the condition in Assumption 2.6(i) holds,
while it is straightforward to check Assumption 2.6(ii). The stated result is now a direct
consequence of Theorem 2.9. �

It is worth noting that our hypotheses in Assumption 4.2 are not restrictive, in general,
and they allow for unbounded cost functions c. Under Assumption 4.2(b), the optimal cost
J∗ is not necessarily bounded, but we know that it is, at most, of linear growth: for some
constants A,B > 0 we have

J∗(y, k) ≤ Ay + B

for every y ≥ 0 and 1 ≤ k ≤ N . An example of an unbounded cost function satifying our
conditions would be

`k(y, c) = εk +Dk log(1 + y)Fk(c)

for some constants εk, Dk > 0 and some positive decreasing function Fk of c.
On the other hand, Assumption 4.2(c) imposes that the disutility for the maximal con-

sumption is bounded when the level of pollution varies. In that case, we can prove that
the value function J∗ is bounded. An example of an unbounded cost function for which our
conditions hold would be

`k(y, c) = εk +Dk log(1 + y)(γ(k)− c)

for some constants εk, Dk > 0. The above cost functions, in accordance with the discussion
at the beginning of the example, are increasing in y for fixed c and decreasing in c for fixed y.
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