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Discrete-Time Hybrid Control in Borel Spaces∗

Héctor Jasso-Fuentes1 José-Luis Menaldi2 Tomás Prieto-Rumeau3

30 May 2018

Abstract

A discrete-time hybrid control model with Borel state and action spaces is introduced. In this type
of models, the dynamic of the system is composed by two sub-dynamics affecting the evolution of the
state; one is of a standard-type that runs almost every time and another is of a special-type that is
active under special circumstances. The controller is able to use two different type of actions, each of
them is applied to each of the two sub-dynamics, and the activations of these sub-dynamics are possible
according to an activation rule that can be handled by the controller. The aim for the controller is
to find a control policy, containing a mix of actions (of either standard- or special-type), with the
purpose of minimizing an infinite-horizon discounted cost criterion whose discount factor is dependent
on the state-action history and may be equal one at some stages. Two different sets of conditions are
proposed to guarantee (i) the finiteness of the cost criterion, (ii) the characterization of the optimal
value function and (iii) the existence of optimal control policies; to do so, we employ the dynamic
programming approach. A useful characterization that signalizes the accurate times between changes
of sub-dynamics in terms of the so-named contact set is also provided. Finally, we introduce two
examples that illustrate our results and also show that control models such as discrete-time impulse
control models and discrete-time switching control models become special cases of our present hybrid
model.

2010 Mathematics Subject Classification: 93E20, 34A38, 60J05
Keywords and phrases: Hybrid control systems, Markov decision processes, dynamic programming.

1 Introduction

The way in which a control may affect the evolution of a dynamic system can be very complex, particularly
when some digital and analogue components interact together. In the past decades, the concept of a
hybrid system has been used to handle the situation where these components (digital and analogue) play
important roles in the problem under study; in fact, in the literature, the same token “hybrid system” has
been used to represent a wide variety of distinct cases, covering almost all possible real situations —see,
for instance, Branicky [12], Goebel et. al. [10], Lygeros [18], Yin & Zhu [30].

The idea behind a hybrid system is a so-called event-driven evolution, i.e., under normal circumstances
a standard -type sub-dynamic is a good description of the real phenomenon, but some events may occur (due
to internal or exogenous causes) and the model becomes invalid, which forces the “modeler” to reconsider
the data of the problem; consequently, the dynamic may undergo structural modifications, i.e., from time

∗This research was funded in part by CONACyT fellowship 266252 “Estancias sabáticas en el extranjero 2015’’, by
CONACyT grant 238045, and by grant MTM2016-75497-P from the Spanish Ministerio de Economía y Competitividad.

1Departmento de Matemáticas, CINVESTAV-IPN, México D.F, 07000, México. hjasso@math.cinvestav.mx
2Department of Mathematics, Wayne State University, Detroit, MI, 48202, USA menaldi@wayne.edu)
3Department of Statistics and Operations Research. UNED, Madrid, Spain. tprieto@ccia.uned.es

1

https://doi.org/10.1007/s00245-018-9503-z
mailto:hjasso@math.cinvestav.mx
mailto:menaldi@wayne.edu)
mailto:tprieto@ccia.uned.es


Discrete-Time Hybrid Control in Borel Spaces 2

to time the law of evolution may suffer deep changes. More specifically, in a hybrid model a standard sub-
dynamic is running under almost any situations, but under some extreme circumstances, a special -type
sub-dynamic becomes active, overruling the standard evolution. A change of sub-dynamic may produce
a structural modification in the system and, at the same time, an opportunity for an instantaneous and
sizeable change in the state of the system.

The way the control is applied to these models is a little subtle. Namely, in a general setting, two
usual-type of controls are considered, each one (and only one) is applied to one sub-dynamic, but there
is another control that can lead the activation of the sub-dynamics; that is, it determines which of them
is active. Such control can be regarded as of an unusual type in the sense that its range is actually the
activation of the sub-dynamics. This control is not always allowed to be triggered arbitrarily; in fact, its
activation depends on the location of state of the system.

Another way to explain the activation of the sub-dynamics is from the point of view of an activation
rule. This rule determines which sub-dynamic must be active based on the location of the state of the
system and also based on the interest of the controller —when it is possible to do it. Indeed, the rule
basically obligates the activation of the standard or the special sub-dynamic when the state is located at
some subset of the state space, but in some other regions, there is a flexibility to change such sub-dynamics
in accordance with the controller’s selection.

On the other hand, the state of the system not only stands for a “usual” description of the phenomenon
under study, but also has a record keeping mechanism. Specifically, the state is represented as a pair, where
the first component describes the standard evolution of the system (fast-type variable) and the second one
acts as a variable that records the structural changes (slow-type variable). The description of the state of
the system as well as the corresponding control will be discussed with more details in later sections.

Summing-up, the system is composed by: (1) a state variable with two components (fast-type or slow-
type); (2) two sub-dynamics, initially independent of each other, that are tied together by an activation
rule (or unusual control) highly dependent on the state position, and (3) a control with two components,
one component applied for each sub-dynamic. With this description, the aim for the controller is to
find a control policy, containing a mix of actions (of either standard- or special-type), with the purpose of
minimizing an infinite-horizon discounted cost criterion with discount factor dependent on the state-action
history and that may equal one at some stages.

Hybrid control systems have been studied in continuous-time models —see, for instance, the works of
Bensoussan & Menaldi [7, 8], Borkar et al. [11], and Branicky et. al. [13]. To the best of our knowledge,
the discrete-time case has been studied in Abate et al. [1, 2] and Summers & Lygeros [28], under the
special case of reachability/avoiding control defined in Euclidian spaces. Recently, these problems have
been studied in Borel spaces with average cost criteria in Jasso-Fuentes, et. al [16]. Finally, there exist
several references focused on special cases of hybrid models in continuous- and discrete-time, e.g., impulsive
control problems —see Bensoussan [4], Bensoussan & Lions [5, 6], Menaldi [19], Robin [24, 25], Stettner
[26, 27], switching control problems —see Bensoussan and Lions [5], Menaldi & Blankenship [20], Zhang
et al. [31] , and standard control problems —see Bensoussan [4], Hernández-Lerma & Lasserre [14, 15],
Puterman [21], and the references therein.

As it is shown in Section 5, hybrid control models include discrete-time “standard” optimal control
models of the type given in Bensoussan [4], Bertsekas & Shreve [9], Hernández-Lerma & Lasserre [14, 15],
and Puterman [21]. Furthermore, even when the hypotheses are similar to the standard models, the way
to analyze optimality is quite different because of the inclusion of the unusual control. It is also important
to say that the nature of these classes of models leads us to work with a state-action dependent discount
factor with values possibly equal one at some stages.

Under our perspective, this paper has further novelties: (1) Our setting includes almost all possible
ways of control (regular control, impulsive and switching-type controls) in a single model, which is defined
in general state-action spaces. (2) Our criterion is set on an infinite horizon (but other cases can be
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accommodated) whose discount factor is non-constant and may depend on the current state and actions.
Perhaps the most remarkable distinction of our model is the fact that the cost associated with transitions
due to the special sub-dynamic are assumed to be occur instantaneously (in time), without any discount
(i.e., with discount factor one); and this situation has not been seen (by us) in other papers. Certainly,
this new possibility produces discontinuities in our model that require to be addressed. Our main result
can be summarized as follows: under suitable assumptions the optimal cost is the unique solution to the
dynamic programming equation and there exists an optimal feedback policy (Theorems 3.7 and 3.13), but
there are several aspects, consequences and details that are expressed in several Propositions within the
text, as required in a mathematical/theoretic paper.

This paper is divided in five sections: In the next section we introduce the dynamics of the model,
the different type of control policies we are dealing with, and the discounted-type optimality criterion
to be optimized. We also give sufficient and necessary conditions that ensure finiteness of this criterion.
In Section 3 we give solution to our control problem through the existence of optimal control policies
under two different sets of hypotheses. Furthermore, we give a characterization of the optimal value
function viewed as the solution of a certain functional equation (the dynamic programming equation).
The last part of the section contains a useful characterization of the unusual control that signalizes the
optimal region to apply a change of sub-dynamics. In Section 4 we provide two useful applications: one is
about a consumption-investment problem with market modes and the other is related to a manufacturing-
production problem. As we shall see, the use of “conventional’’ control models (e.g. impulsive, switching
or standard control models) is not sufficient to give solution to these problems, but by using hybrid control
models this solution is possible. We conclude this work with Section 5, in which well-known control models
such as impulsive, switching, and standard control can be regarded as special cases of our hybrid control
model.

Notation and terminology Throughout this paper:

• Any metric space Z will be endowed with its Borel σ-algebra B(Z) and measurability (of sets and
functions) will be always referred to the corresponding Borel σ-algebras.

• Given some metric space Z, the family of nonnegative measurable functions u : Z → [0,∞) will be
denoted by M+(Z), while the family of nonnegative bounded measurable functions u : Z → [0,∞)
(hence, with ||u|| = supx∈Z |u(z)| <∞) will be denoted by B+(Z).

• A function f : Z → (−∞,+∞] is said to be lower semicontinuous when lim infy→z f(y) ≥ f(z) for
all z ∈ Z. The family of nonnegative lower semicontinuous functions f : Z → [0,∞) is denoted by
L+(Z).

• We recall that a Borel space is a measurable subset of a complete and separable metric space.

• We make the convention that a product of real numbers
∏
i∈S xi over an empty set S equals one,

while a sum
∑

i∈S xi over an empty set S equals zero.

• The notation δx(·) and 1C(·) will mean the Dirac measure concentrated on the point x ∈ Z and the
indicator function of a set C ∈ B(Z), respectively.

• For a given set D, we denote by D̄ its closure and by D̊ its interior.
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2 Model definition

The state and action spaces The state space X of a discrete-time hybrid system is the product
X = Xf × Xs of two Borel spaces, where the components xf ∈ Xf and xs ∈ Xs are called the fast4

and slow5 states, respectively. The action space A is a Borel space and it is the union of two disjoint
measurable subsets: A = V f ∪ V s. The sets V f and V s are referred to as the fast and the slow action
sets, respectively.

State-action pairs The set of feasible state-action pairs is given by a measurable set K ⊆ X ×A with
nonempty X-sections, which are denoted by (xf , xs) 7→ A(xf , xs) ⊆ A for each (xf , xs) ∈ X. We assume
further the existence of two measurable sets

D∧ ⊆ D∨ ⊆ X

such that

(a) A(xf , xs) ∩ V f = ∅ when (xf , xs) ∈ D∧, meaning that when the state of the system is in D∧, the
controller must necessarily choose an action in V s (a slow action); and

(b) A(xf , xs) ∩ V s = ∅ when (xf , xs) ∈ X \D∨, meaning that when the state of the system is outside
D∨, the controller must necessarily choose an action in V f (a fast action).

We assume that K contains the graph of some measurable function from X to A. Hence, the family F of
measurable functions f : X → A such that f(xf , xs) ∈ A(xf , xs) for all (xf , xs) ∈ X is nonempty.

Thus, the sets D∧ and D∨ will partially determine the activation rule of the sub-dynamics, since inside
D∧ and outside D∨ the controller is forced to choose an action of a specific nature (fast or slow). In
contrast, when the state of the system (xf , xs) is in D∨ \ D∧, the controller will not have an a priori
restriction on the nature of his actions.

Dynamic of the system The dynamic is composed by two sub-dynamics: one sub-dynamic is of a
standard type6, and it only affects the fast states xf ∈ Xf through the stochastic transition kernel

Qf : B(Xf )×
(
K ∩ (X × V f )

)
7→ [0, 1],

while the other sub-dynamic is of a special type7 and it produces a transition of both components (xf , xs) ∈
X following the stochastic kernel

Qs : B(X)×
(
K ∩ (X × V s)

)
7→ [0, 1].

Summarizing, the whole dynamic is given by

Q(dyf × dys|xf , xs, a) =

{
Qf (dyf |xf , xs, a)δxs(dy

s) if a ∈ V f ,

Qs(dyf × dys|xf , xs, a) if a ∈ V s.
(2.1)

4a.k.a. continuous or regular
5a.k.a. discrete or impulsive
6so-called usual or traditional sub-dynamic
7so-called impulse-type or event-driven sub-dynamic



Discrete-Time Hybrid Control in Borel Spaces 5

Control policies Define H0 = X and Hk = Kk×X for k ≥ 1, and let H∞ = K∞, all endowed with the
corresponding product σ-algebras. The history up to step k is

hk =
(
xf0 , x

s
0, a0, · · · , xfk−1, x

s
k−1, ak−1, x

f
k , x

s
k

)
∈ Hk.

A control policy is a sequence {νk}k≥0 of transition probability measures on A given Hk such that
νk
(
A(xfk , x

s
k)|hk

)
= 1 for all hk ∈ Hk. In particular, we necessarily have

νk
(
A(xfk , x

s
k) ∩ V s|hk

)
= 1 if (xfk , x

s
k) ∈ D∧, and

νk
(
A(xfk , x

s
k) ∩ V f |hk

)
= 1 if (xfk , x

s
k) ∈ X \D∨.

We denote by Π the set of admissible control policies.
By the Ionescu-Tulcea theorem, for any initial state x = (xf , xs) ∈ X and any policy ν ∈ Π there

exists a unique probability measure on H∞, denoted by P νx , which models the controlled dynamic system
under ν. Its expectation operator is denoted by Eνx .

If there is some f ∈ F such that the policy ν ∈ Π satisfies νk(·|hk) = δ
f(xfk ,x

s
k)

(·) for any hk ∈ Hk and
k ≥ 0, then we say that ν is a deterministic stationary policy. In what follows, we will identify the set of
such policies with F. Hence, we have F ⊆ Π.

Remark 2.1. (a) The dynamic system can be also formulated in an equivalent way by means of two
measurable functions F : X × V f × S → Xf and G : X × V s × S → X, with S a Borel space, where(

xfk+1, x
s
k+1

)
=
(
F (xfk , x

s
k, ak, wk), x

s
k

)︸ ︷︷ ︸
standard sub-dynamic

if ak ∈ V f , (2.2)

or (
xfk+1, x

s
k+1

)
= G

(
xfk , x

s
k, ak, wk

)︸ ︷︷ ︸
special sub-dynamic

if ak ∈ V s, (2.3)

and where {wk} is a sequence of i.i.d. random variables on S; see Proposition 8.6 in Kallenberg [17].

(b) Intuitively, our hybrid dynamic model may be regarded as a two time-scales model, in which the fast
sub-dynamic has an evolution according to Qf in (2.1) —or (2.2)— whereas the slow sub-dynamic
is driven by Qs in (2.1) —or (2.3)—. We warn the reader that our model differs from some other
models also named two time-scales (see for instance Yin & Zhang [29]), in which the attributes fast
and slow are based on a small parameter ε > 0. The study of the latter models is mainly based on
the singular perturbation theory.

Time component We will also consider a sequence {tk : k ≥ 0} of measurable functions on K∞ taking
values in N, that will represent the number of times that, previous to k, an action in V f has been taken.
At this point, we will use the notation

ω =
(
xf0 , x

s
0, a0, · · · , xfk , x

s
k, ak, · · ·

)
for an element of H∞ = K∞. Given arbitrary ω ∈ H∞, we put t0(ω) = 0 and, for each k ≥ 1, we let

tk(ω) =

k−1∑
j=0

1V f (aj). (2.4)
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We assume that when the standard sub-dynamic is used (that is, an action in V f is taken) then the
“natural time” component increases by one; in other words, a time unit passes. On the contrary, when the
special sub-dynamic is used (that is, an action in V s is taken) then the “natural time” does not change,
and this is interpreted as an instantaneous transition. In this manner, tk will represent the “natural time”
when the system is in xk, after k transitions.

Definition 2.2. A sample path ω ∈ H∞ such that limk→∞ tk(ω) <∞ will be called explosive.

The above definition is coherent with the corresponding continuous-time terminology. Hence, a sample
path ω ∈ H∞ is explosive if and only if there exists some k0 such that ak ∈ V s for all k ≥ k0. Equivalently,
a sample path ω ∈ H∞ is non-explosive if and only if ak ∈ V f for infinitely many k ≥ k0.

Optimality criterion We will consider a discounted cost optimality criterion with varying discount
factor. More precisely, we will consider a running cost function c : K→ [0,∞) which will be written

c(xf , xs, a) = c(xf , xs, a)1V f (a) + `(xf , xs, a)1V s(a),

with
c : K ∩ (X × V f ) 7→ [0,∞) and ` : K ∩ (X × V s) 7→ [0,∞)

interpreted as the running cost functions for the standard and the special sub dynamics, respectively. The
discount factor function is α : K→ [0, 1]. We will assume that both c and α are measurable.

Given an initial state (xf , xs) ∈ X and a control policy ν ∈ Π we define

J(xf , xs, ν) = Eνxf ,xs
[ ∞∑
k=0

c(xfk , x
s
k, ak)

k−1∏
i=0

α(xfi , x
s
i , ai)

]
. (2.5)

The optimal discounted cost function is then defined as

J∗(xf , xs) = inf
ν∈Π

J(xf , xs, ν) for (xf , xs) ∈ X, (2.6)

and we will say that a policy ν∗ ∈ Π is optimal when

J(xf , xs, ν∗) = J∗(xf , xs) for all (xf , xs) ∈ X. (2.7)

Observe that the discounted cost function J(·, ν) is well defined but it might be infinite. Furthermore, as
a consequence of the definition of J(xf , xs, ν), it follows that the discount factor applied at step k ≥ 1

depends on the previous history of the process (hk−1, ak−1) = (xf0 , x
s
0, a0, . . . , x

f
k−1, x

s
k−1, ak−1).

Remark 2.3. (a) We can incorporate a “current” discount factor α(xfk , x
s
k, ak) at time k by simply con-

sidering the cost function c = cα, with

Eνxf ,xs
[ ∞∑
k=0

c(xfk , x
s
k, ak)

k∏
i=0

α(xfi , x
s
i , ai)

]
= Eνxf ,xs

[ ∞∑
k=0

c(xfk , x
s
k, ak)

k−1∏
i=0

α(xfi , x
s
i , ai)

]
.
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(b) Using suitable transformations, the functional (2.5) can be also regarded as of an undiscounted type.
Namely, including the dynamics in our model

ck+1 = ck + c(xfk , x
s
k, ak)dk, dk+1 = dkα(xfk , x

s
k, ak)

where the only initial values of interest are c0 = 0 and d0 = 1, it is easy to see that J becomes

J(xf , xs, ν) = lim inf
k→∞

E[ck]

or without using c,

J(xf , xs, ν) = E
[ ∞∑
k=0

c(xfk , x
s
k, ak)dk

]
.

We now impose the following conditions.

Assumption 2.4. (i) The cost function c is in B+(K). There exists a constant `0 > 0 with `(xf , xs, a) ≥
`0 for all (xf , xs, a) ∈ K ∩ (X × V s).

(ii) The discount factor α belongs to B+(K), and for every (xf , xs) ∈ X it satisfies:

α(xf , xs, a) = 1, when a ∈ V s

α(xf , xs, a) ≤ α0 < 1,when a ∈ V f ,
(2.8)

for some given constant 0 < α0 < 1.

Remark 2.5. (a) Observe that the discount factor applied in (2.5) to the cost c(xfk , x
s
k, ak) is

k−1∏
i=0

α(xfi , x
s
i , ai).

Assumption 2.4(ii) implies that this discounting equals the product of the α(xfi , x
s
i , ai) corresponding

to actions ai ∈ V f , and so it incorporates exactly tk factors which are less than or equal to α0. This
is exactly the discounting corresponding to the “natural time” tk. Now, if ak ∈ V f then a further
discounting α(xfk , x

s
k, ak) ≤ α0 is applied to the forthcoming costs, while if ak ∈ V s then no further

discounting is applied at the present step: α(xfk , x
s
k, ak) = 1. This is consistent with the interpretation

of hybrid control models: transitions of the special sub-dynamic occur instantaneously, and so in this
case there is no further discounting. Besides, each transition according to the special sub-dynamic
implies a positive cost, assumed to be bounded away from 0. In contrast, when the standard sub-
dynamic is used, we indeed apply a discount factor, which is less than or equal to α0 < 1.

(b) Intuitively, the condition in Assumption 2.4(i) that the cost function ` is positive and bounded away
from zero is intended to make that explosive sample paths have an associated total discounted which
is infinite. Indeed, given an explosive sample path ω ∈ H∞ there is some k0 such that ak ∈ V s for
all k ≥ k0. In particular, for all k ≥ k0 we have

c(xfk , x
s
k, ak)

k−1∏
i=0

α(xfi , x
s
i , ai) = `(xfk , x

s
k, ak)

k0−1∏
i=0

α(xfi , x
s
i , ai) ≥ `0

k0−1∏
i=0

α(xfi , x
s
i , ai).

Therefore, except for the somehow degenerate case that there would be some zero discountings, that
is with α(xfi , x

s
i , ai) = 0, the total discounted cost of this sample path would be

∞∑
k=0

c(xfk , x
s
k, ak)

k−1∏
i=0

α(xfi , x
s
i , ai) =∞.
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Consequently, a finite expected discounted cost J(xf , xs, ν) < ∞ would imply that explosive sample
paths would have P ν

xf ,xs
-probability zero.

Our next assumption imposes finiteness of the optimal discounted cost function.

Assumption 2.6. There exists a policy ν ∈ Π with J(xf , xs, ν) <∞ for all (xf , xs) ∈ X.

Sufficient and necessary conditions for Assumption 2.6 are given in Propositions 2.7 and 2.8 below.
Obviously, Assumption 2.6 implies that the optimal cost J∗(xf , xs) is finite for any (xf , xs) ∈ X.

Sometimes we will need the stronger condition saying that there exists a policy ν ∈ Π such that
||J(·, ν)|| < ∞, in which case we will have ||J∗|| < ∞. This statement will be explicitly mentioned when
needed.

The hybrid control model. Summarizing the previous paragraphs, a discrete-time Markov hybrid
model can be seen as a tuple

M = (Xf ×Xs, V f ∪ V s,K, Qf , Qs, α, c, `),

whose elements have been defined throughout this section.

Conditions for finiteness of J We conclude this section with some useful facts. Our next result gives
a necessary condition for Assumption 2.6.

Proposition 2.7. Suppose that Assumption 2.4 holds. If (xf , xs) ∈ X and ν ∈ Π are such that J(xf , xs, ν)
is finite, then

lim
k→∞

Eνxf ,xs
[ k∏
i=0

α(xfi , x
s
i , ai)

]
= 0.

Proof. To simplify the notation, we will write xi = (xfi , x
s
i ) ∈ X for i ≥ 0, with the initial state being

x0 = (xf0 , x
s
0) = (xf , xs).

On the set H∞ of all histories, consider the following measurable sets

Ak = {(x0, a0, x1, a1, . . .) ∈ H∞ : ak ∈ V s} for k ≥ 0,

B = {(x0, a0, x1, a1, . . .) ∈ H∞ : α(xk, ak) > 0 for all k ≥ 0}.

Choose a history
(x0, a0, x1, a1, . . .) ∈ B ∩ lim inf Ak.

There is some k0 such that ak ∈ V s for all k ≥ k0 and so, from Assumption 2.4, we have α(xk, ak) = 1
and c(xk, ak) = `(xk, ak) ≥ `0 for all k ≥ k0. Therefore, since (x0, a0, . . .) ∈ B, for every k ≥ k0

k−1∏
i=0

α(xi, ai) =

k0−1∏
i=0

α(xi, ai) > 0,

and so
∞∑
k=0

c(xk, ak)
k−1∏
i=0

α(xi, ai) =∞.



Discrete-Time Hybrid Control in Borel Spaces 9

This yields that the total discounted cost of the sample paths in B ∩ lim inf Ak is infinite. The total
expected discounted cost of ν being finite (this is precisely the hypothesis of this proposition), we must
necessarily have P νx

(
B ∩ lim inf Ak

)
= 0 or, equivalently,

P νx
(
Bc ∪ lim supAck

)
= 1.

Now, take a history (x0, a0, . . .) ∈ Bc. We have that
∏k
i=0 α(xi, ai) converges to 0 because at least one

discount factor vanishes. On the other hand, take a history (x0, a0, . . .) ∈ lim supAck. This means that
ak ∈ V f infinitely often, and so

∏k
i=0 α(xi, ai) also converges to 0 because α(xk, ak) ≤ α0 infinitely often.

Summarizing, we have shown that
∏k
i=0 α(xi, ai) converges with P νx -probability one to 0. By dominated

convergence, we conclude that

lim
k→∞

Eνx

[ k∏
i=0

α(xi, ai)
]

= 0,

which completes the proof.

We propose now a sufficient condition for Assumption 2.6. It uses the following notation. Given a
transition probability measure Q(·|·) on X given X, define Q1 = Q and recursively for n ≥ 1

Qn+1(B|x) =

∫
X
Q(B|y)Qn(dy|x) for B ∈ B(X) and x ∈ X,

which are the successive compositions of Q with itself. We will also use the following notation. Given
f ∈ F, the kernel on X given X defined by Q(B|x, f(x)) for x ∈ X and B ∈ B(X) (recall (2.1)) will be
denoted by Q(·|·, f).

Proposition 2.8. Suppose that Assumption 2.4 is satisfied and also that there exist f ∈ F, n ≥ 1, and
ε > 0 such that, for all x = (xf , xs) ∈ X,

Qn(D|x, f) ≤ 1− ε,

where D = {x ∈ X : f(x) ∈ V s}. Then there exists m0 > 0 such that 0 ≤ J∗(x) ≤ J(x, f) ≤ m0 for all
x ∈ X. In particular, Assumption 2.6 holds.

Proof. We will prove first the next preliminary result: Suppose that the initial state x is in D. Define
T = min{k : xk /∈ D} as the exit time from D. Let us show that

P f
x{T > kn} ≤ (1− ε)k for all k ≥ 0. (2.9)

Obviously, the inequality is true for k = 0, and for k = 1 because

P f
x{T > n} = P f

x{x1, x2, . . . , xn ∈ D} ≤ P f
x{xn ∈ D} = Qn(D|x, f) ≤ 1− ε. (2.10)

Suppose now (2.9) holds for some k ≥ 1. We have

P f
x{T > (k + 1)n} = P f

x{x1, x2, . . . , x(k+1)n ∈ D}
= Ef

x

[
Ef
x[1{x1,x2,...,x(k+1)n∈D} | hkn]

]
= Ef

x

[
1{x1,x2,...,xkn∈D}E

f
x[1{xkn+1,...,x(k+1)n∈D} | hkn]

]
≤ Ef

x[1{x1,x2,...,xkn∈D}(1− ε)] ≤ (1− ε)k+1,
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where we use (2.10) to bound the inner conditional expectation. Therefore, for every x ∈ D,

Ef
x[T ] =

∞∑
k=0

P f
x{T > k} ≤ n

∞∑
k=0

(1− ε)k = n/ε. (2.11)

We proceed with the proof of the proposition. We define the random variables Tr and Sr as the
successive exit times from D and Dc, respectively. More specifically, define T1 = T and S1 = min{k >
T1 : xk ∈ D} and, for r ≥ 2,

Tr = min{k > Sr−1 : xk /∈ D} and Sr = min{k > Tr : xk ∈ D}. (2.12)

When the initial state x is in D then T1 > 0, while if the initial state x /∈ D, then T1 = 0. If for some r
we have Sr <∞, then the arguments at the beginning of this proposition show that Tr+1 is finite almost
surely. Note that we may have Sr =∞ for some r ≥ 1 if the state process does not return to D.

Assume first that the initial state x is in D and make the convention that S0 = 0. For any k ≥ 1
and any sample path ω ∈ H∞, define nk(ω) as the number of times the state process has been outside D
during the first k − 1 periods:

nk(ω) =
k−1∑
j=0

1Dc(xj).

Since α(y, f(y)) = 1 when y ∈ D and α(y, f(y)) ≤ α0 when y /∈ D, observe that

J(x, f) ≤ ||c|| · Ef
x

[ ∞∑
k=0

αnk
0

]
= ||c||+ ||c||

∞∑
r=1

(
Ef
x

[ ∑
Sr−1<k≤Tr

αnk
0

]
+ Ef

x

[ ∑
Tr<k≤Sr

αnk
0

])
.

When Tr < k ≤ Sr the terms nk increase by one. Grouping all such terms (plus the leftmost term) we get
the whole series ||c||

∑
αk0 . When Sr−1 < k ≤ Tr the term nk remains constant and equal to

nk =
r−1∑
j=1

(Sj − Tj) ≥ r − 1

and so αnk
0 ≤ α

r−1
0 . Hence,

J(x, f) ≤ ||c||
1− α0

+ ||c||
∞∑
r=1

αr−1
0 Ef

x[Tr − Sr−1].

By the Markov property, at time Sr−1 the process is in D and so the expected exit time from D is bounded
by n/ε (recall (2.11)), and therefore

J∗(x) ≤ J(x, f) ≤ ||c|| · (1 + n/ε)

1− α0
.

When the initial state x /∈ D then the same arguments may be used to show that the above inequality
remains true.

Observe that Proposition 2.8 proves a result much stronger than Assumption 2.6. It shows that there
exists f ∈ F with bounded discounted cost and, hence, the optimal discounted cost function J∗ is bounded
as well.
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3 Optimality results

In this section we study the solution to the hybrid control problem defined in (2.6). Our approach is the
well-known dynamic programming method.

Dynamic programming equations. Given a function u ∈M+(X) we define the dynamic programming
operator T u on X as follows:

T u(x) = inf
a∈A(x)

{
c(x, a) + α(x, a)

∫
X
u(y)Q(dy |x, a)

}
for x ∈ X.

Taking into account the nature of the hybrid control model, we can define two associated operatorsMu
and Hu on X as

Mu(xf , xs) = inf
a∈A(xf ,xs)∩V s

{
`(xf , xs, a) +

∫
X
u(yf , ys)Qs(dyf × dys |xf , xs, a)

}
, (3.1)

and

Hu(xf , xs) =

inf
a∈A(xf ,xs)∩V f

{
c(xf , xs, a) + α(xf , xs, a)

∫
Xf

u(yf , xs)Qf (dyf |xf , xs, a)

}
. (3.2)

Therefore, the dynamic programming operator T can be written, for u ∈M+(X) and (xf , xs) ∈ X, as

T u(xf , xs) =


Mu(xf , xs), if (xf , xs) ∈ D∧,
min

{
Mu(xf , xs),Hu(xf , xs)

}
, if (xf , xs) ∈ D∨ \D∧,

Hu(xf , xs), if (xf , xs) ∈ X \D∨.

We define the so-named dynamic programming equation

u(xf , xs) = T u(xf , xs) for all (xf , xs) ∈ X, (3.3)

which will be written, in short, by u = T u.
Our next results will establish that the optimal discounted cost function J∗—recall (2.6)— is a solution

of the dynamic programming equation, and we will show how to obtain an optimal policy from the fixed
point equation J∗ = T J∗.

In addition to Assumptions 2.4 and 2.6, we will impose additional conditions on the control model.
Namely, we will consider two alternative settings of hypotheses. One of them, see Assumption 3.1 below,
will impose among other conditions that the transition kernel Q is strongly continuous (also referred to
as strong Feller) and so we will refer to this case as to the strongly continuous case. On the other hand,
Assumption 3.9 below will suppose that the transition kernel Q is weakly continuous (also referred to as
weak Feller) and it will be referred to as the weakly continuous case. The terms strong and weak should
not mislead the reader since both conditions are of a different nature, and Assumption 3.1 does not imply,
in general, Assumption 3.9.
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3.1 The strongly continuous case

The condition below states the hypotheses for the “strongly continuous” case.

Assumption 3.1. For each (xf , xs) ∈ X we have:

(i) The action set A(xf , xs) is compact.

(ii) Given a bounded and measurable function u : X → R, the function

a 7→
∫
X
u(yf , ys)Q(dyf × dys|xf , xs, a)

is continuous in a ∈ A(xf , xs).

(iii) The functions a 7→ c(xf , xs, a) and a 7→ α(xf , xs, a) are lower semicontinuous on A(xf , xs).

We begin with a basic property about lower semicontinuity. For further details, see for instance,
Proposition B.1 in Puterman [21].

Lemma 3.2. Let Y be a complete and separable metric space, and u : Y → (0,∞) and v : Y → [0,∞] be
lower semicontinuous functions. Then the sum u+ v and product u · v are lower semicontinuous functions
on Y .

In the sequel, to simplify the notation, the states of the system will be denoted simply by x = (xf , xs) ∈
X. The notation dy = dyf × dys will be used as well.

Lemma 3.3. Under Assumptions 3.1(ii)–(iii), given u ∈ M+(X) and x ∈ X, the function a 7→ c(x, a) +
α(x, a)

∫
X u(y)Q(dy|x, a) is lower semicontinuous on A(x).

Proof. Fix u ∈M+(X) and x ∈ X. We first prove that a 7→
∫
X u(y)Q(dy|x, a) is lower semicontinuous on

A(x). Given a ∈ A(x), suppose that the sequence {an} in A(x) converges to a. For all k ≥ 1 define the
function uk = min{k, u}. For each k ≥ 1 we have

lim inf
n→∞

∫
X
u(y)Q(dy|x, an) ≥ lim inf

n→∞

∫
X
uk(y)Q(dy|x, an) =

∫
X
uk(y)Q(dy|x, a),

where the last equality follows from Assumption 3.1(ii) because uk is bounded. Since this holds for all
k ≥ 1, by monotone convergence we get

lim inf
n→∞

∫
X
u(y)Q(dy|x, an) ≥

∫
X
u(y)Q(dy|x, a),

thus proving lower semicontinuity. The stated result now follows from Lemma 3.2.

Note that, in this lemma, we are not excluding the possibility that∫
X
u(y)Q(dy|x, a)

is infinite. In what follows, suppose that Assumption 3.1 holds. For u ∈M+(X) we recall that T u : X →
[0,∞] is defined as

T u(x) = min
a∈A(x)

{
c(x, a) + α(x, a)

∫
X
u(y)Q(dy|x, a)

}
for every x ∈ X. (3.4)
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The fact that the minimum is attained follows because we are minimizing a lower semicontinuous function
(Lemma 3.3) on the compact set A(x) (Assumption 3.1(i)). Once again, we are not excluding the possibility
that T u(x) is infinite. Observe that the operator T is monotone, meaning that given u, v ∈M+(X) such
that u ≤ v, we have T u ≤ T v.

Our next result is a consequence of Proposition D.5 in [14] or Corollary 4.3 in [23].

Lemma 3.4. Under Assumption 3.1, for every u ∈M+(X) the function T u is measurable and there exists
f ∈ F such that

T u(x) = min
a∈A(x)

{
c(x, a) + α(x, a)

∫
X
u(y)Q(dy|x, a)

}
= c(x, f(x)) + α(x, f(x))

∫
X
u(y)Q(dy|x, f)

for each x ∈ X.

Now we define recursively the functions uk for k ≥ 0. Let u0 := 0 be the zero function on X and, for
any k ≥ 0, let uk+1 := T uk. Our next result explores some properties of the sequence {uk}k≥0.

Proposition 3.5. Suppose that Assumptions 2.4, 2.6, and 3.1 hold.

(i) For each k ≥ 0, the function uk is in B+(X).

(ii) The sequence {uk} converges monotonically to some u∗ ∈M+(X) with u∗ ≤ J∗.

(iii) The function u∗ satisfies u∗ = T u∗.

Proof. (i). If uk ∈ B+(X) for some k ≥ 0, then it is easily seen that ||T uk|| ≤ ||c||+ ||uk||. It follows that
each uk+1 := T uk is nonnegative, measurable (Lemma 3.4), and bounded. Hence uk+1 ∈ B+(X).

(ii). Due that the cost function c is nonnegative, we have u0 ≤ u1. Assuming, inductively, that
uk−1 ≤ uk, by monotonicity of T we obtain uk ≤ uk+1. Therefore, {uk}k≥0 converges monotonically to
some nonnegative and measurable u∗. It remains to show that u∗(x) is finite for every x ∈ X.

For every k ≥ 0 define fk ∈ F as the measurable selector (recall Lemma 3.4) such that

uk+1(x) = c(x, fk(x)) + α(x, fk(x))

∫
X
uk(y)Q(dy|x, fk) for x ∈ X. (3.5)

Now fix a N ∈ N. Since we will be only concerned with the decision epochs {0, . . . , N}, we can assume
without loss of generality that policies ν ∈ Π are restricted to the corresponding time horizon; hence, we will
let ν = {ν0, . . . , νN} ∈ Π. Fix now 0 ≤ t ≤ N and ν ∈ Π and, for each history ht = (x0, a0, . . . , xt) ∈ Ht

up to time t, define

Jt,N (ht, ν) = Eνx0

[ N∑
k=t

c(xk, ak)
k−1∏
j=t

α(xj , aj) | ht
]
.

Notice that Jt,N (ht, ν) depends on ν only through the decision made at times t, . . . , N , that is, on
{νt, . . . , νN}. Also, let

Jt,N (ht) = inf
ν∈Π

Jt,N (ht, ν) for ht ∈ Ht.

Define the policy ν∗N = {fN , . . . , f0} ∈ Π on the time horizon 0, . . . , N , with fi (i = 0, · · ·N) obtained as
in (3.5). Our goal now is to show that, for fixed N ≥ 0, we have

Jt,N (ht) = Jt,N (ht, ν
∗
N ) = uN+1−t(xt) for every 0 ≤ t ≤ N and ht ∈ Ht. (3.6)
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We will prove it by backwards induction on t. This equality is obvious for t = N because for every ν ∈ Π
and hN ∈ HN we have

JN,N (hN , ν) =

∫
A(xN )

c(xN , a)νN (da|hN ),

and so
JN,N (hN ) = min

a∈A(xN )
c(xN , a) = c(xN , f0(xN )) = JN,N (hN , ν

∗
N ) = u1(xN ).

Suppose that (3.6) holds for some t + 1 and let us prove it for t. Given arbitrary ν ∈ Π and ht ∈ Ht we
have that

Jt,N (ht, ν) = Eνx0

[
Eνx0

[ N∑
k=t

c(xk, ak)
k−1∏
j=t

α(xj , aj) | ht+1

]
| ht

]

= Eνx0

[
c(xt, at) + α(xt, at)E

ν
x0

[ N∑
k=t+1

c(xk, ak)
k−1∏
j=t+1

α(xj , aj) | ht+1

]
| ht

]

= Eνx0

[
c(xt, at) + α(xt, at)Jt+1,N (ν, ht+1) | ht

]
≥ Eνx0

[
c(xt, at) + α(xt, at)uN−t(xt+1) | ht

]
=

∫
A(xt)

[c(xt, a) + α(xt, a)

∫
X
uN−t(y)Q(dy|xt, a)]νt(da|ht)

≥ uN+1−t(xt),

with equality when ν = ν∗N . This completes the backward induction argument. Hence, letting t = 0 (recall
(3.6)) we have thus proved that for every N ≥ 0 and x ∈ X

J0,N (x) = J0,N (x0, ν
∗
N ) = uN+1(x).

Proceeding with the proof, the non negativity of the cost function implies that, for every x ∈ X,
N ≥ 0, and ν ∈ Π,

uN+1(x) ≤ J0,N (x, ν) ≤ J(x, ν),

and so uN+1(x) ≤ J∗(x) which, by Assumption 2.6, is finite. This shows that the limit function u∗ ≤ J∗

is finite on X, and we conclude that u∗ ∈M+(X), which completes the proof of (ii).
(iii). Now that we know that u∗ ∈ M+(X), it turns out that T u∗ is well defined. For all k ≥ 0 we

have uk+1 = T uk ≤ T u∗, by monotonicity of T . Therefore, u∗ ≤ T u∗.
To prove the reverse inequality, recall the definition of fk ∈ F given in (3.5). Fix x ∈ X and, A(x)

being compact (Assumption 3.1(i)), there exists a subsequence {kn}n≥0 with fkn(x) = akn → a∗ for some
a∗ ∈ A(x). Fix some n0 and suppose that n ≥ n0. We have the following inequality∫

X
ukn(y)Q(dy|x, akn) ≥

∫
X
ukn0

(y)Q(dy|x, akn).

Take now the lim inf as n→∞ and use Assumption 3.1(ii) together with the fact that ukn0
∈ B+(X), to

obtain
lim inf
n→∞

∫
X
ukn(y)Q(dy|x, akn) ≥

∫
X
ukn0

(y)Q(dy|x, a∗).

But n0 being arbitrary, monotone convergence yields

lim inf
n→∞

∫
X
ukn(y)Q(dy|x, akn) ≥

∫
X
u∗(y)Q(dy|x, a∗). (3.7)
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Now, by lower semicontinuity of c and α (Assumption 3.1(iii)), and using (3.7), we obtain

u∗(x) = lim inf
n

ukn+1(x)

≥ lim inf
n

c(x, akn) + lim inf
n

[
α(x, akn)

∫
X
ukn(y)Q(dy|x, akn)

]
≥ c(x, a∗) + α(x, a∗)

∫
X
u∗(y)Q(dy|x, a∗) ≥ T u∗(x).

This completes the proof that u∗ = T u∗.

Hence, Proposition 3.5 shows that the operator T indeed has a fixed point in M+(X). In Theorem
3.7 below we will see that, in fact, u∗ equals J∗, the optimal discounted cost. We make the following
comments regarding the inequality proved in (3.7).

Remark 3.6. The inequality (3.7) is similar to the inequality given in the extension of Fatou’s lemma in
[15]. In our context, however, we cannot use that results because the norm of the uk is not bounded in k.
Here, in the proof of (3.7) we take advantage of the fact that we are dealing with nonnegative functions,
and so we obtain the extended Fatou lemma dropping the uniformly bounded condition

Theorem 3.7. Suppose that Assumptions 2.4, 2.6, and 3.1 hold.

(i) The optimal discounted cost function J∗ equals the limiting function u∗ obtained in Proposition 3.5,
and it is the minimal solution in M+(X) of the dynamic programming optimality equation (3.3).

(ii) Any f ∈ F attaining the minimum in the equation J∗ = T J∗, that is,

J∗(x) = c(x, f(x)) + α(x, f(x))

∫
X
J∗(y)Q(dy|x, f) for all x ∈ X

is optimal, and such f ∈ F indeed exists.

(iii) If, in addition, J∗ ∈ B+(X) then J∗ is the unique solution in B+(X) of the dynamic programming
optimality equation.

Proof. (i). Let v ∈M+(X) be a solution of v = T v. By Lemma 3.4, there exists f ∈ F with

v(x) = c(x, f(x)) + α(x, f(x))

∫
X
v(y)Q(dy|x, f) for every x ∈ X.

Iterating this equation we obtain that, for every N ≥ 0 and x ∈ X

v(x) = Ef
x

[ N∑
k=0

c(xk, f(xk))
k−1∏
i=0

α(xi, f(xi))
]

+ Ef
x

[
v(xN+1)

N∏
i=0

α(xi, f(xi))
]

≥ Ef
x

[ N∑
k=0

c(xk, f(xk))
k−1∏
i=0

α(xi, f(xi))
]
.

Letting N →∞ and using monotone convergence shows that that

v(x) ≥ J(x, f) ≥ J∗(x). (3.8)

We have thus established that if v ∈M+(X) is a solution of the dynamic programming optimality equation
then v ≥ J∗. On the other hand, in Proposition 3.5 we showed that u∗ ∈ M+(X) is a solution of the
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optimality equation with u∗ ≤ J∗. Thus u∗ = J∗, which indeed solves the optimality equation and it is
its minimal solution in M+(X). This completes the proof of part (i).

(ii). To prove this statement, repeat the proof of (i) for v = J∗ to obtain (3.8). We necessarily have
that f is optimal.

(iii). Suppose that v ∈ B+(X) solves v = T v. We know that, necessarily, v ≥ J∗. Let us now show
that v ≤ J∗. Fix x ∈ X and ν ∈ Π. Obviously, if J(x, ν) = ∞ we have v(x) ≤ J(x, ν). Hence, in what
follows we will suppose that J(x, ν) <∞. Using the inequality

v(x) ≤ c(x, a) + α(x, a)

∫
X
v(y)Q(dy|x, a) for all (x, a) ∈ K,

for all n ≥ 0 we have

Eνx

[
v(xn+1)

n∏
i=0

α(xi, ai) | hn, an
]

=
n∏
i=0

α(xi, ai)

∫
X
v(y)Q(dy|xn, an)

=

n−1∏
i=0

α(xi, ai) ·
[
c(xn, an) + α(xn, an)

∫
X
v(y)Q(dy|xn, an)− c(xn, an)

]
≥

n−1∏
i=0

α(xi, ai) ·
[
v(xn)− c(xn, an)

]
.

This implies, taking Eνx-expectation and rearranging terms,

Eνx [c(xn, an)
n−1∏
i=0

α(xi, ai)] ≥ Eνx [v(xn)
n−1∏
i=0

α(xi, ai)]− Eνx [v(xn+1)
n∏
i=0

α(xi, ai)].

Summing these inequalities for n = 0, 1, . . . , N gives

Eνx

[ N∑
n=0

c(xn, an)
n−1∏
i=0

α(xi, ai)
]
≥ v(x)− Eνx

[
v(xN+1)

N∏
i=0

α(xi, ai)
]
.

By monotone convergence, the lefthand term converges to J(x, ν), whereas the rightmost term converges
to 0 as a consequence of Proposition 2.7 and the fact that v is bounded. Therefore, J(x, ν) ≥ v(x), yielding
that J∗ ≥ v. Hence, J∗ is the unique solution of v = T v in B+(X).

We recall that a sufficient condition for J∗ ∈ B+(X) was given in Proposition 2.8.

Remark 3.8. We have assumed that the running cost function c is nonnegative. This hypothesis is
used, particularly, in Lemma 3.3 to ensure that application of the dynamic programming operator yields
lower semi-continuous functions. This is based directly on Lemma 3.2, which indeed needs to deal with
nonnegative functions.

Typically, in the theory of discounted Markov decision processes with a constant discount factor 0 ≤
α0 < 1, it is straightforward to generalize the dynamic programming results from a nonnegative running
cost function to a bounded below running cost function c ≥ −M for some M > 0. Namely, one considers
the nonnegative cost function c + M ≥ 0 and then transforms the MDP with bounded below running cost
function c into an equivalent MDP with nonnegative cost function:

Eνx

[∑
k

αk0(c(xk, ak) +M)
]

= Eνx

[∑
k

αk0c(xk, ak)
]

+
M

1− α0
,
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and minimization of both expectations is equivalent.
In our context, however, such an approach to extend our hypotheses to the case of a bounded below cost

function c (the running cost function under the standard sub-dynamic) is not possible. Indeed,

Eνxf ,xs
[ ∞∑
k=0

(c(xfk , x
s
k, ak) +MIV f (ak))

k−1∏
i=0

α(xfi , x
s
i , ai)

]
= Eνxf ,xs

[ ∞∑
k=0

c(xfk , x
s
k, ak)

k−1∏
i=0

α(xfi , x
s
i , ai)

]
+M ·

∞∑
k=0

Eνxf ,xs
[
IV f (ak)

k−1∏
i=0

α(xfi , x
s
i , ai)

]
,

and note that the rightmost term is not constant and depends on the policy used by the controller. This is
because the discount factor is not constant and depends on the history of the state-action process. Hence,
the problems with bounded below and nonnegative running cost function c are not necessarily equivalent.

3.2 The weakly continuous case

In the “weakly continuous” setting we will impose the next condition.

Assumption 3.9. (i) The multifunction x 7→ A(x) is compact-valued and upper semicontinuous.

(ii) Given bounded and continuous u : X → R, the function

(x, a) 7→
∫
X
u(y)Q(dy|x, a)

is continuous on K

(iii) The functions c and α are lower semicontinuous on K.

The proofs in this section somehow mimic the proofs in Section 3.1 and we will skip some details.

Lemma 3.10. Under Assumptions 3.9(ii)–(iii), for every u ∈ L+(X) the function (x, a) 7→ c(x, a) +
α(x, a)

∫
X u(y)Q(dy|x, a) is lower semicontinuous on K.

Proof. The function u is the pointwise limit of a monotone nondecreasing sequence of nonnegative, bounded
and continuous functions un ↑ u (see, e.g., Theorem 3.13 in [3]). Given (x, a) ∈ K, suppose that the
sequence (xn, an) in K converges to (x, a). For each k ≥ 1 we have

lim inf
n→∞

∫
X
u(y)Q(dy|xn, an) ≥ lim inf

n→∞

∫
X
uk(y)Q(dy|xn, an) =

∫
X
uk(y)Q(dy|x, a),

where the last equality follows from Assumption 3.9(ii) because uk is bounded and continuous. By mono-
tone convergence we get

lim inf
n→∞

∫
X
u(y)Q(dy|xn, an) ≥

∫
X
u(y)Q(dy|x, a).

This proves that (x, a) 7→
∫
X u(y)Q(dy|x, a) is lower semicontinuous on K. The rest of the proof is similar

to that of Lemma 3.3.

At this point, recall the definition of the operator T given in (3.4). Our next follows from Proposition
D.6 in [14] or Lemma 17.30 in [3].
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Lemma 3.11. Under Assumption 3.9, for every u ∈ L+(X) the function T u is lower semicontinuous and
there exists f ∈ F such that

T u(x) = min
a∈A(x)

{
c(x, a) + α(x, a)

∫
X
u(y)Q(dy|x, a)

}
= c(x, f(x)) + α(x, f(x))

∫
X
u(y)Q(dy|x, f)

for each x ∈ X.

Recall that in Section 3.1 we defined u0 := 0 on X and uk+1 := T uk for any k ≥ 0.

Proposition 3.12. Suppose that Assumptions 2.4, 2.6, and 3.9 hold.

(i) For each k ≥ 0, the function uk is in L+(X).

(ii) The sequence {uk} converges monotonically to some u∗ ∈ L+(X) with u∗ ≤ J∗.

(iii) The function u∗ satisfies u∗ = T u∗.

Proof. (i). For every k ≥ 0 we have that uk is bounded and so, by Lemma 3.11 and the fact of that c ≥ 0,
uk+1 := T uk becomes nonegative, lower semicontinuous, and finite on X. That is, we have uk+1 ∈ L+(X).

(ii). The sequence {uk} is monotone nondecreasing and so it converges to some lower semicontinuous
function u∗ on X. Proceeding as in the proof of Proposition 3.5(ii), we obtain that u∗ ≤ J∗, and so we
indeed have u∗ ∈ L+(X).

(iii). For all k ≥ 0 we have uk+1 = T uk ≤ T u∗, and so u∗ ≤ T u∗.
For the reverse inequality, let fk ∈ F for k ≥ 0 be such that (recall Lemma 3.11)

uk+1(x) = c(x, fk(x)) + α(x, fk(x))

∫
X
uk(y)Q(dy|x, fk) for x ∈ X.

Fix arbitrary x ∈ X. Since A(x) is compact, there exists a subsequence {kn}n≥0 with fkn(x) = akn →
a∗ for some a∗ ∈ A(x). Fix some n0 and suppose that n ≥ n0. We have the following inequality∫

X
ukn(y)Q(dy|x, akn) ≥

∫
X
ukn0

(y)Q(dy|x, akn).

The function ukn0
is in L+(X) and so, as in the proof of Lemma 3.10, we have that

∫
X ukn0

(y)Q(dy|·, ·)
is lower semicontinuous on K. Hence,

lim inf
n→∞

∫
X
ukn(y)Q(dy|x, akn) ≥

∫
X
ukn0

(y)Q(dy|x, a∗).

Use now monotone convergence as n0 →∞ to show that

lim inf
n→∞

∫
X
ukn(y)Q(dy|x, akn) ≥

∫
X
u∗(y)Q(dy|x, a∗).

The rest of the proof is similar to that of Proposition

The proof of our main result in this section is similar to that of Theorem 3.7 and we omit it.

Theorem 3.13. Suppose that Assumptions 2.4, 2.6, and 3.9 hold.

(i) The optimal discounted cost function J∗ equals the limiting function u∗ obtained in Proposition 3.12,
and it is the minimal solution in L+(X) of the dynamic programming optimality equation (3.3).
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(ii) There exists f ∈ F attaining the minimum in the optimality equation J∗ = T J∗, and this policy is
optimal.

(iii) If, in addition, J∗ ∈ B+(X) then J∗ is the unique solution in L+(X) ∩ B+(X) of the dynamic
programming optimality equation.

The same comments as in Remark 3.8 on the possibility to extend Theorem 3.13 to a bounded below
cost function c are in order.

3.3 Contact set and continuation region

Our previous results, Theorems 3.7 and 3.13, give sufficient conditions ensuring that the optimal discounted
cost function (2.6) is a solution of the dynamic programming equation (3.3), and show how to obtain an
optimal deterministic stationary policy from the fixed point equation J∗ = T J∗. With the notation
introduced in (3.1) and (3.2), by letting x := (xf , xs), equation (3.3) reads

J∗(x) =


MJ∗(x), if x ∈ D∧,
min

{
MJ∗(x),HJ∗(x)

}
, if x ∈ D∨ \D∧,

HJ∗(x), if x ∈ X \D∨.

Moreover, let f ∈ F be such that it attains the minimum in the fixed point equation J∗ = T J∗. We have
that f is an optimal policy and, besides, given a state x ∈ D∨ \D∧, we have the following situations:

• ifMJ∗(x) > HJ∗(x) then the optimal action f(x) is in V f ; (3.9)
• IfMJ∗(x) < HJ∗(x) then the optimal action f(x) is in V s;

• IfMJ∗(x) = HJ∗(x) then the optimal action f(x) can be taken either in V s

or in V f .

Obviously, when the state is in D∧ or in X \ D∨, then optimal actions are necessarily in V s or in V f ,
respectively.

We introduce the set D∗ defined as:

D∗ =
{
x ∈ D∨ : J∗(x) =MJ∗(x)

}
,

This set is so-named contact set and it can be regarded as an optimal region, in the sense that outside its
closure, the optimal choice is to apply a fast action in V f , and as a consequence the standard sub-dynamic
is activated, and once the state of the system reaches the interior of D∗, an optimal rule is to apply an
action in V s and thus the special sub-dynamic is turned on. This fact can be summarized as follows.

Proposition 3.14. An optimal rule outside D̄∗ must be necessarily on V f , while in D̊∗, the optimal rule
can be taken on V s.

Proof. First note that the admissibility condition of control policies on the region X \D∨, is to apply an
action a ∈ V f . Also, the dynamic programming equation (3.3) shows that when x ∈ D∨ but x /∈ D̄∗, we
have

J∗(x) = min
{
MJ∗(x),HJ∗(x)

}
. (3.10)

and necessarily the next cases hold: (a) J∗(x) >MJ∗(x) or (b) J∗(x) <MJ∗(x). We will show that the
optimal rule should be to apply an action in V f . Indeed, by (3.10) and considering case (a) first, we deduce
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min
{
MJ∗(x),HJ∗(x)

}
>MJ∗(x), which produces a contradiction. On the other hand, combining case

(b) with (3.10), we obtain min
{
MJ∗(x),HJ∗(x)

}
<MJ∗(x), which gives HJ∗(x) <MJ∗(x). Then, in

virtue of (3.9), the optimal rule is to apply the control f(x) ∈ V f .
Likewise, if x ∈ D̊∗, we have again two cases: (a) x ∈ D∧ or (b) x ∈ D∨ \D∧. Case (a) directly follows

from the definition of admissible policies. Now, for case (b), we have that equation (3.10) holds true and,
on D̊∗, we deduce that

min
{
MJ∗(x),HJ∗(x)

}
=MJ∗(x) ≤ HJ∗(x).

Then, using again (3.9), we see that an optimal rule must necessarily satisfy f(x) ∈ V s whenMJ∗(x) <
HJ∗(x) or to (optionally) choose as optimal rule f(x) ∈ V s whenMJ∗(x) = HJ∗(x).

The previous rule on how to apply optimal actions is clear when the state is located on the regions inside
and outside D∗; however, our present hypotheses are insufficient to see what happens on the boundary
∂D∗ of D∗. A sufficient condition that extends Proposition 3.14 over all X is to assume that the set D∗

is closed (or even open); another sufficient condition can be given in the spirit of the continuity of J∗ and
MJ∗. For instance, we can assert the following result:

Proposition 3.15. Assume that J∗ andMJ∗ are continuous functions on X. Then, the contact set D∗

is closed, implying that the optimal action on ∂D∗ must be taken in V s.

Proof. Take a sequence {xk} in D∗ so that xk → x, for some x ∈ X. Then, for each k, we have

J∗(xk) =MJ∗(xk), k ≥ 1.

Taking lim in both sides of the above expression, and using the continuity of J∗ and MJ∗, we obtain
J∗(x) =MJ∗(x), which implies that D∗ is closed.

The fact that the optimal action on ∂D∗ must be taken in the set V s, follows by applying the same
arguments of Proposition 3.14.

The well-posedness of the contact set D∗ allows us to define the so-named continuation region that
is very common in impulsive and switching control problems. The continuation region is simply the
complement of the contact set D∗ and, as the name suggests, the optimal rule signalizes to continue
applying the standard sub-dynamic as long as the state is located outside the contact set D∗.

Time-interface set. The time-interface set consists of real positive numbers that signalize the times
when the special sub-dynamic must be activated in an optimal way. It can be obtained in terms of the
contact set D∗ as follows: let

ω =
(
x0, a0, · · · , xk, ak, · · ·

)
be an element of H∞ = K∞, with xk := (xfk , x

s
k), we recursively define:

ki ≡ k(ω, i) = inf{k ≥ k(ω, i− 1) + 1 : J∗(xk) =MJ∗(xk)} ∀ i ≥ 0, (3.11)

with k(ω,−1) = −1, which is regarded as a stopping time relative to the history, i.e., k(ω, i) is a random
variable with values in {0, 1, 2, · · · ,∞}. These random variables must satisfy the following conditions:

k∧(ω, i) ≤ k(ω, i) ≤ k∨(ω, i), ∀i ≥ 0, with

k∧(ω, i) = inf
{
k ≥ i : (xfk , x

s
k, ak) ∈ D∨ × V s

}
,

k∨(ω, i) = inf
{
k ≥ i : (xfk , x

s
k, ak) ∈ D∧ × V s

}
.

Remark 3.16. Observe that the elements of the time-interface-set can be also interpreted in terms of the
first exit times from the continuation region of the process {xk}.
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4 Examples

This section is devoted to show simple applications that illustrate our results herein. We want to clarify
that these examples are presented only for illustrative purposes, so we will not explicitly develop here all
the previous optimality results.

A consumption-investment problem with market modes Suppose that a small agent (or investor)
wishes to allocate his investment among various assets with different return rates and, in turn, he is able
to change his investment into different market modes at some specific times. To simplify our model, we
will consider only two market modes, denoted by m1 and m2. We shall assume that the agent can invest
his wealth in only two assets: a risk-free asset (e.g. a bond) with a fixed interest rate denoted by r(mj),
j = 1, 2 and a risky asset (e.g. stock or commodity) with a stochastic return rate ξk(mj), j = 1, 2 at time k.
We shall assume that, for each j = 1, 2, the random variables {ξk(mj)}k are independent and identically
distributed with common distribution µj . Note that these rates are different depending on market mode
the agent is trading. We define a consumption-investment strategy denoted by ν = {(ck, ik), k ≥ 0}
representing the investment (portfolio) process {ik} and the consumption process {ck}. In this case, at
any time k, ik represents the fraction of wealth invested in the risky stock, (1− ik) is the portion invested
in the risk-free asset, and ck the amount of wealth to be consumed. We assume that

0 ≤ ik ≤ 1, 0 ≤ ck ≤ xfk ∀ k ≥ 0,

where xfk denotes the investor’s wealth at time k. Assuming that the market is self-financing, a suitable
model for the investor’s wealth is

xfk+1 =
[
(1− ik)(1 + r(xsk)) + ikξk(x

s
k)
]
(xfk − ck) k ≥ 0,

with a given initial wealth xf0 = x > 0, initial mode xf0 = mi (for some fixed i = 1, 2). In this last
equation, the (slow) variable xsk means the market mode at time k ≥ 0, with values in Xs := {m1,m2}.
It can be verified (use Example C.7 in Hernández-Lerma & Lasserre [14]) that the transition kernels Qf

and Qs defined in (2.1) become weakly continuous.
A typical choice of reward c is a given utility function u(·) dependent of the investor’s consumption c.

That is:
c(xf , xs, c, i) := u(c).

Now, we take into account the fact that the investor can decide at some times τk ∈ N if his investment is
subject to change from a modem1 tom2 and vice versa. Each mode change is supposed to be instantaneous
in time and it may generate a positive penalty `, that may also depend on the configuration to be selected
(e.g. `(m1,m2) or `(m2,m1)). We can assume that such a penalty is bounded away from zero by some
constant that may represent a predetermined minimum fee for changing between market modes.

The control model is given as follows: The state space X = R+ × {m1,m2}, the action space A :=
R+ × [0, 1] ∪ {m1,m2}, and the admissible action space A(xf , xs) := [0, xf ] × [0, 1] ∪ {m1,m2}. Usually,
the investor has no restrictions to change of configuration at any moment, then we may assume D∨ = X
and D∧ = ∅. The times τk can be regarded as stopping times representing the instants when the action a
is chosen on Xs = {m1,m2}. We also have that the cost rate becomes

c(xf , xs, a) = u(a)1{R+×[0,1]}(a) + `(xs, a)1{m1,m2}(a).
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and the joint wealth (dynamic) is given by(
xfk+1, x

s
k+1

)
=
([

(1− ik)(1 + r(xsk)) + ikξk(x
s
k)
]
(xfk − ck), x

s
k

)︸ ︷︷ ︸
standard sub-dynamic

if ak ∈ [0, xfk ]× [0, 1],

or (
xfk+1, x

s
k+1

)
=
(
xfk , [x

s
k]
c
)︸ ︷︷ ︸

special sub-dynamic

if ak ∈ {m1,m2},

where [xsk]
c represents the complement of xsk.

Using the payoff function (2.5) as our optimality criterion, the control problem is then is to find an
optimal consumption-investment-configuration strategy a ∈ R+ × [0, xf ] ∪ {m1,m2} that maximizes the
total discounted wealth (2.5).

Remark 4.1. (i) Observe that this optimal control model can be regarded as a composed control problem
formed by a Markov decision process8 (MDP) together with a switching control model.

(ii) The context of this example leads to maximize a given reward or revenue function. This problem can
be easily posed in a minimization context; in this sense, our present theory does apply.

(iii) The assumptions imposed in this example do not contradict the hypotheses given in previous sections.
In fact, we open the possibility to work with a specific model like this in order to obtain specific
optimal consumption-invested control policies over different market modes.

A manufacturing-production problem Consider a manufacturing-production system in which a
given company produces a single item. The production is made by means of m machines, each of them has
two different modes: in operation or closed, represented by the quantities 1 and 0, respectively. The state
variables xfk will represent the inventory of the items at time k ≥ 0 with values in N, whereas xsk is the state
of the machines configurations with values in the set Xs = {(a1, · · · , am) : ai ∈ {0, 1}, i = 1, · · · ,m}. At
each period of time k, the control variable ak can be the quantity produced (and immediately supplied)
by the company or either a quantity to be bought to external competitors or the change of a different
machine mode. Assuming a finite storage capacity, say, C, the action and admissible action sets become
A = [0, C] ∪ [0, C] ∪Xs and A(xf , xs) = [0, C − xf ] ∪ [0, C − xf ] ∪Xs, respectively. The reason why we
are repeating the set [0, C] (resp. [0, C − xf ]) is to distinguish the items to be produced by the company
and the items that are bought to the competitors. These two sets are assumed to be different from each
other.

On the other hand, let us allow negative inventory levels by assuming that excess of demand is back-
logged and filled when additional inventory enters the company. Then, the changes of the inventory and
machine configurations can be modeled by means of the following dynamic.

8or conventional control model
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(
xfk+1, x

s
k+1

)
=
(
xfk + ak − ξk, xsk

)︸ ︷︷ ︸
standard sub-dynamic

if ak ∈
[
0, C − xfk

]
,

or (
xfk+1, x

s
k+1

)
=
(
ak + ηk, x

s
k

)︸ ︷︷ ︸
special sub-dynamic

if ak ∈
[
0, C − xfk

]
,

or (
xfk+1, x

s
k+1

)
=
(
xfk , G(xsk)

)︸ ︷︷ ︸
special sub-dynamic

if ak ∈ Xs,

where {ξk}k and {ηk}k are two independent sequence of i.i.d. random variables representing the demand
of the product and the shipping loses or defective pieces when the purchase is carried out, each of them
defined on R. Actually, we may assume that such sequences have densities ρξ and ρη that are continuous
on R. Then, according to Example C8 in Hernández-Lerma & Lasserre [14], the transition kernels Qf and
Qs given in (2.1) are strongly continuous, provided that the function G : Xs 7→ Xs is continuous as well.

Finally, suppose that we want to minimize an expected operator cost (2.5), in which the elements of
c(·) are defined as follows: we have an inventory-production cost c given by

c(xf , xs, a) := c1a+ c2 max(0, xf ) + c3 max(0,−xf ),

where c1 is the unit production cost, c2 the unit holding cost for excess of inventory and c3 the penalization
cost for the unfilled demand. Furthermore, we have another cost

`(xf , xs, a) = `1(a)1{a∈[0,C−xf ]} + `2(xs, a)1{a∈Xs},

with elements `1(a) := c4a representing the cost of purchasing a items at the price c4 > 0, and `2(xs, a) a
given continuous function representing the cost of changes between configuration machines.

The optimal (hybrid) control problem is then to find an optimal control policy a∗ that consists in a
series of production, purchases and configuration decisions in such a way that it minimizes a payoff (2.5).

As a last comment, it is worth mentioning that the two costs `1 and `2, were attached to a single cost
` because they are involved in the special dynamic, whose transitions are instantaneous in time.

Remark 4.2. (i) This example becomes a composed control problem, formed by a conventional control
model MDP, an impulsive control problem, and a switching control problem; all of them in a unified
model.

(ii) Similarly to the previous example, the assumptions imposed in this example do not contradict the
hypotheses given in previous sections. In fact, we open a way to study this specific model by using
the theoretical results provided in previous pages.

5 Special cases

In this section we present some important particular cases of hybrid systems.

Impulse control A simple case of a hybrid model is the so-called optimal impulse control problem. In
this model, the dynamic system follows its “natural” random evolution and the controller selects the times
at which he acts on the dynamic system. This model can be interpreted as a Markov chain with controlled
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discontinuities. This type of models is comprehensively studied in Bensoussan [4], Bensoussan & Lions
[5, 6], Menaldi [19], Robin [25], Stettner [26, 27], among others.

Impulse-type models become special classes of hybrid models studied in the past sections. Indeed,
consider Xs as a singleton, so that we may identify the state space X with Xf only. We shall assume that
Xf is a subset of a vectorial space with sum and scalar product well defined on it (for instance Xf ⊂ R).

As for the available actions for the controller, we define V f = {∆}, so that, A(x) = A = {∆}∪V s ∀ x ∈
X, and finally, assume D∧ = ∅ and D∨ = X. In this case ∆ is interpreted as the absence of controller’s
standard actions.

The dynamic follows the rule

Q(dy|x, a) =

{
Qf (dy|x) if a = ∆

δ{x+a}(dy) if a ∈ V s ⊂ Xf ,

which can be also expressed as

xk+1 = F (xk,∆, wk)︸ ︷︷ ︸
standard sub-dynamic

if ak = ∆ or xk+1 = xk + ak︸ ︷︷ ︸
special sub-dynamic

if ak ∈ V s, (5.1)

where {wk} is a sequence of i.i.d. random variables (recall Remark 2.1). The running cost and the discount
factor functions are usually of the type

c(x, a) = c(x)1{∆}(a) + `(x, a)1V s(a), γ > 0 and α(x, a) = α̂(x)1{∆}(a) + 1V s(a)

for some discount function α̂ on X, satisfying conditions similar to those in Assumptions 2.4 and 3.1 (or
3.9). The dynamic programming equation is

u(x) = min
{
Mu(x),Hu(x)

}
for x ∈ X,

where

Hu(x) = c(x) + α̂(x)

∫
X
u(y)Qf (dy|x)

Mu(x) = inf
a∈V s

{
`(x, a) + u(x+ a)

}
.

Switching control Another class of hybrid model is the switching control problem. The dynamic system
can operate under several modes or configurations, and the controller decides the times when the dynamics
switches from one mode to another one. Typically, running and switching costs are incurred. Here, the
fast variable indicates the state of the system, whereas the slow variable gives the current mode. Related
works in continuous-time models are, for instance, Bensoussan & Lions [5], Menaldi & Blankenship [20],
Zhang et. al. [31] and the references therein.

In order to describe the switching problem in our context, we let:

• V s = Xs, so that the mode is seen both as an action and a state (or label);

• V f = {∆} and A = {∆}∪Xs, where as before, ∆ denotes the absence of actions from the controller;

• D∧ = ∅ and D∨ = Xf ×Xs.



Discrete-Time Hybrid Control in Borel Spaces 25

The particular feature of the dynamic is that changing the mode does not affect the fast state. More
precisely,

Q(dyf × dys|xf , xs, a) =

{
Qf (dyf |xf , xs)δ{xs}(dys) if a = ∆

δ{xf}(dy
f ) · δ{a}(dys) if a ∈ V s,

or it can be expressed in terms of an explicit dynamic by

(xfk+1, x
s
k+1) =

(
F (xfk , x

s
k, wk), x

s
k

)︸ ︷︷ ︸
standard sub-dynamic

, ak ∈ ∆ or
(
xfk+1, x

s
k+1

)
=
(
xfk , ak

)︸ ︷︷ ︸
special sub-dynamic

, ak ∈ V s = Xs,

where, as before, {wk} represents a sequence of i.i.d. random variables.
The one-stage cost function c(·) incorporates the running cost c and the switching cost `:

c(xf , xs, a) = c(xf , xs)1{∆}(a) + `(xf , xs, a)1V s(a),

whereas the discount factor is given by

α(xf , xs, a) = α̂(xf , xs)1{∆}(a) + 1V s(a),

for some function 0 < α̂ < 1 satisfying Assumptions 2.4 and 3.1 (or 3.9).
The dynamic programming equation, in this case, is given by:

u(xf , xs) = min
{
Mu(xf , xs),Hu(xf , xs)

}
for (xf , xs) ∈ X,

where H andM satisfy

Hu(xf ) := c(xf , xs) + α̂(xf , xs)

∫
Xf

u(yf , xs)Qf (dyf |xf , xs),

Mu(xf ) := inf
a∈Xs

{
`(xf , xs, a) + u(xf , a)

}
.

Standard or conventional control problem It should be clear that a standard control problem with
varying discount factor can also be analyzed with the techniques herein, just by only considering the
regular sub-dynamic. This class of models have been exhaustively studied and, for discrete-time models,
we can quote Bensoussan [4], Hernández-Lerma & Lasserre [14, 15], Puterman [21] and the references
therein. To do so, we consider Xs to be a singleton, so that we identify Xf with the state space X,
and we let V s and D∨ to be empty. The dynamic system follows the stochastic kernel Qf (dy|x, a), or,
equivalently, the dynamic

xk+1 = F (xk, ak, wk)︸ ︷︷ ︸
standard sub-dynamic

a ∈ V f ,

where, as in previous cases, {wk} denotes a sequence of i.i.d. random variables.
As in the previous cases, c and α are the running and discount functions introduced in Section 2. In

this case the dynamic programming equations is the standard one:

u(x) = Hu(x) for x ∈ Xf

where
Hu(x) = inf

a∈A(x)

{
c(x, a) + α(x, a)

∫
X
u(dy)Qf (dy|x, a)

}
.
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