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ON SOME ERGODIC IMPULSE CONTROL PROBLEMS WITH
CONSTRAINT∗

J. L. MENALDI† AND M. ROBIN‡

Abstract. This paper studies the impulse control of a general Markov process under the average
(or ergodic) cost when the impulse instants are restricted to be the arrival times of an exogenous
process, and this restriction is referred to as a constraint. A detailed setting is described, a charac-
terization of the optimal cost is obtained as a solution of an HJB equation, and an optimal impulse
control is identified.
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1. Introduction. Since the introduction of impulse control problems by Ben-
soussan and Lions in the seventies, many studies have been devoted to various aspects,
both theoretical and applied, of this subject (see the references in Bensoussan and
Lions [6], Bensoussan [2], Davis [10]). Several of these studies cover the case of the
long term average cost or ergodic control (e.g., see Gatarek and Stettner [14] and
the references therein). In these works, the impulse control is a sequence of stopping
times and random variables acting on the state xt of the system, and the stopping
times can be arbitrary.

In the present paper, we address the ergodic impulse control when the stopping
times must satisfy a constraint, namely, the impulses are allowed only at the jump
times of a given process yt, these times representing the arrival of a signal. This
type of constraint has been treated in [30] for the case of a discounted cost, using
results on the optimal stopping problem with constraints of [29] (which generalizes
the results of Dupuis and Wang [11]). To the best of our knowledge, there are only
a few references related to impulse control with constraint: Brémaud [7], Liang [24],
Liang and Wei [25], and Wang [39]. A different kind of constraint is considered
in Costa, Dufour, and Piunovskiy [8], where the constraints are written as infinite-
horizon expected discounted costs. Nevertheless, we are not aware of any references
in the case of ergodic impulse control with constraint.

In many cases of optimal control, the ergodic control problem is treated via the
asymptotic behavior of the discounted problem, often called the vanishing discount
approach (e.g., see Bensoussan [3], Gatarek and Stettner [14]). We could use this
method for the present problem in the situation where the set of admissible impulses
Γ is independent of the state x; however, it seems more difficult to do the same with
Γ(x). Here, we use a direct approach, based on the study of the ergodic HJB equation.
As for the discounted cost, an auxiliary ergodic control problem in discrete time is
the basis to solve the original problem. The main results concern the solution of the
ergodic HJB equation(s) and the existence of an optimal control.
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ERGODIC IMPULSE CONTROL PROBLEMS WITH CONSTRAINT 2691

The content of the paper is as follows: section 2 includes the statement of the
problem, notations, and assumptions; section 3 is devoted to the heuristic derivation
of the HJB equations which are solved in section 4; section 5 shows the existence
of an optimal control and the characterization of the optimal ergodic cost; section 6
discusses a few extensions.

2. Statement of the problem.

2.1. The uncontrolled process. Let {Ω,F ,Ft, (xt, yt), Pxy} be a homogeneous
Markov process on Ω = D(R+;E × R+), where Ft is the universal completion of the
canonical σ-algebras and Exy denotes the expectation with respect to Pxy. The xt
component is the process to be controlled by impulses. The yt component will define
the constraint on the controls, namely, the controller may apply an impulse on xt only
at the jumps times of yt. These jump times represent the arrival times of a signal
and, actually, yt is the elapsed time since the last arrival of a signal. It is assumed
that

(2.1)

• E is a compact metric space;

• xt is a Feller process with semigroup Φ(t)

and infinitesimal generator Ax,

so that Φ(t) is a continuous semigroup on the space C(E) of real-valued continuous
functions on E;

(2.2)

• yt is a process with values in R
+, which jumps at times

τ1, τ2, . . . , τn → ∞, and such that

yτn = 0, yt = t− τn for τn ≤ t < τn+1, n ≥ 1,

and, conditionally to xt, the intervals

between jumps Tn = τn+1 − τn are

independent identically distributed random

variables with intensity λ(x, y); see [29, 30].

It is also assumed that

(2.3)

• λ(x, y) is a nonnegative, continuous, and bounded function

defined on E × R
+ and there exist positive constants,

0 < a1 < a2, such that a1 ≤ Ex0{τ1} ≤ a2.

For x given, one could consider that the infinitesimal generator of yt is

Ayg =
∂g

∂y
+ λ(x, y)[g(0)− g(y)]

for smooth functions g on R+.
We will assume that the weak infinitesimal generator of (xt, yt) in Cb(E ×R+) is

(2.4) Axyg(x, y) = Axg(x, y) +
∂g

∂y
(x, y) + λ(x, y)[g(x, 0) − g(x, y)].

In addition, we make the following assumption1 for xt: if B(E) denotes the Borel

1(2.6) is sometimes called “Doeblin’s condition.”
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2692 J. L. MENALDI AND M. ROBIN

σ-algebra of E, and

if P (x, U) = Ex0�U (xτ1) ∀U ∈ B(E), then(2.5)

there exists a positive measure m on E such that

0 < m(E) ≤ 1 and P (x, U) ≥ m(U) ∀U ∈ B(E).(2.6)

Remark 2.1. (a) We have

Ex0{τ1} = Ex0

{∫ ∞

0

tλ(xt, t) exp

(
−
∫ t

0

λ(xs, s)ds

)
dt

}
,

so the condition Ex0{τ1} ≤ a2 is satisfied if, for instance, λ(x, y) ≥ k0 > 0 for y ≥ y0,
x ∈ E, then a2 = y0 + 1/k0. Also if λ(x, y) ≤ k1 < ∞ for every y ≥ 0, and x ∈ E,
then Ex0{τ1} ≥ a1 = 1/k1.

(b) Note that

(2.7) P (x, U) = Ex0

{∫ ∞

0

λ(xt, t) exp

(
−
∫ t

0

λ(xs, s)ds

)
�U (xt)dt

}
.

With (2.7) and assuming the same property λ as in (a) above, one can check that
(2.6) is satisfied when the transition probability of xt has a density with respect to a
probability on E satisfying for every ε > 0 there exists k(ε) such that

(2.8) p(x, t, x′) ≥ k(ε) > 0 on E × [ε,∞[×E.
This is the case, for instance, for periodic diffusion processes (see Bensoussan [3]), and
for reflected diffusion processes with jumps; see Garroni and Menaldi [12, 13] (which
is also valid for reflected diffusion processes without jumps).

2.2. Assumptions on costs and impulse values. It is assumed that there
are a running cost f(x, y) and a cost of impulse c(x, ξ) satisfying

(2.9)
f : E × R

+ → R
+ bounded and continuous,

c : E × E → [c0,+∞[, c0 > 0, bounded and continuous.

Moreover, for any x ∈ E, the possible impulses must be in

(2.10)

Γ(x) = {ξ ∈ E : (x, ξ) ∈ Γ},
where Γ is a given analytic set in E × E,

with the following properties:

• Γ(x) �= ∅ ∀x ∈ E,

• ∀x ∈ E ∀ξ ∈ Γ(x), Γ(ξ) ⊂ Γ(x),

• ∀x ∈ E ∀ξ ∈ Γ(x) ∀ξ′ ∈ Γ(ξ) ⊂ Γ(x),

c(x, ξ) + c(ξ, ξ′) ≥ c(x, ξ′).

Finally, defining the operator M

(2.11) Mg(x) = inf
ξ∈Γ(x)

{
c(x, ξ) + g(ξ)

}
,

it is assumed that

(2.12)

M maps C(E) into C(E), and

there exists a measurable selector ξ̂(x) = ξ̂(x, g)

realizing the infimum in Mg(x) ∀ g ∈ C(E).
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ERGODIC IMPULSE CONTROL PROBLEMS WITH CONSTRAINT 2693

Remark 2.2. (a) The last property in (2.10) implies that it is not optimal to make
simultaneous impulses. (b) Equation (2.12) needs some regularity property of Γ(x):
e.g., see Davis [10]. (c) It is possible (but not necessary) that x belongs to Γ(x),
actually, even Γ(x) = E for some or every x is allowed. However, an impulse occurs
when the system moves from a state x to another state ξ �= x, i.e., it suffices to avoid
(or not to allow) impulses that moves x to itself, since they have a higher cost.

2.3. The controlled process. We briefly describe the controlled process. For
a detailed construction we refer to Bensoussan and Lions [6] (see also Davis [10],
Lepeltier and Marchal [23], Robin [35], Stettner [37]).

Let us consider Ω∞ = [D(R+;E×R+)]∞, and define F0
t = Ft and Fn+1

t = Fn
t ⊗Ft

for n ≥ 0, where Ft is the universal completion of the canonical filtration as previously.
An arbitrary impulse control ν (not necessarily admissible at this stage) is a

sequence (θn, ξn)n≥1, where θn is a stopping time of Fn−1
t , θn ≥ θn−1, and the

impulse ξn is a Fn−1
θn

measurable random variable with values in E.

The coordinate in Ω∞ has the form (x0t , y
0
t , x

1
t , y

1
t , . . . , x

n
t , y

n
t , . . .), and for any

impulse control ν there exists a probability P ν
xy on Ω∞ such that the evolution of

the controlled process (xνt , y
ν
t ) is given by the coordinates (xnt , y

n
t ) of Ω

∞ when θn ≤
t < θn+1, n ≥ 0 (setting θ0 = 0), i.e., (xνt , y

ν
t ) = (xnt , y

n
t ) for θn ≤ t < θn+1.

Note that clearly (xνt , y
ν
t ) is defined for any t ≥ 0, but (xit, y

i
t) is only used for any

t ≥ θi, and (xi−1
θi

, yi−1
θi

) is the state at time θi just before the impulse (or jump) to

(ξi, yi−1
θi

) = (xiθi , y
i
θi
), as long as θi <∞. For the sake of simplicity, we will not always

indicate, in the following, the dependency of (xνt , y
ν
t ) with respect to ν. A Markov

impulse control ν is identified by a closed subset S of E×R+ and a Borel measurable
function (x, y) �→ ξ(x, y) from S into C = E × R+ � S, with the following meaning:
intervene only when the the process (xt, yt) is leaving the continuation region C and
then apply an impulse ξ(x, y) while in the stopping region S, moving back the process
to the continuation region C, i.e., θi+1 = inf{t > θi : (x

i
t, y

i
t) ∈ S}, with the convention

that inf{∅} = ∞ and ξi+1 = ξ(xiθi+1
, yiθi+1

) for any i ≥ 0, as long as θi <∞.
Now, the admissible controls are defined as follows, recalling that τn are the arrival

times of the signal.

Definition 2.3. (i) A stopping time θ is called “admissible” if almost surely there
exists n = η(ω) ≥ 1 such that θ(ω) = τη(ω)(ω) or, equivalently, if θ satisfies θ > 0 and
yθ = 0 a.s.

(ii) An impulse control ν = {(θi, ξi), i ≥ 1} as above is called admissible, if each
θi is admissible (i.e., θi > 0 and yθi = 0), and ξi ∈ Γ(xi−1

θi
). The set of admissible

impulse controls is denoted by V.
(iii) If θ1 = 0 is allowed, then ν is called “zero-admissible.” The set of zero-

admissible impulse controls is denoted by V0.
(iv) An “admissible Markov” impulse control corresponds to a stopping region

S = S0 × {0} with S0 ⊂ E, and an impulse function satisfying ξ(x, 0) = ξ0(x) ∈ Γ(x)
for any x ∈ S0 and, therefore, θi = τ iηi

and ηi+1 = inf{k > ηi : x
i
τ i
k
∈ S0} with τ00 = 0,

τ ik = inf{t > τ ik−1 : yit = 0}, for any k ≥ i ≥ 1.

The discrete time impulse control problem has been considered in Bensoussan [4],
Hernández-Lerma and Lasserre [16, 17], and Stettner [36]. As we will see later, it
will be useful to consider an auxiliary problem in discrete time for the Markov chain
Xn = xτn with the filtration G = {Gn : n ≥ 0}, G0 = F0 and Gn = Fn−1

τn for n ≥ 1.
The impulses occur at the stopping times ηk with values in the set N = {0, 1, 2, . . .}
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2694 J. L. MENALDI AND M. ROBIN

and are related to θk by ηi = inf{k ≥ 1 : θk = τk} for admissible controls {θk} and
similarly for zero-admissible controls. Thus, we have the following.

Definition 2.4. If ν = {(ηi, ξi), i ≥ 1} is a sequence of G-stopping times and
random variables ξi Gηi measurable with ξi ∈ Γ(xτηi ), ηi increasing and ηi → +∞
a.s., then ν is referred to as an “admissible discrete time” impulse control if η1 ≥ 1.
If ηi ≥ 0 is allowed, it is referred as an “zero-admissible discrete time” impulse
control.

One can now define the average cost to be minimized as

(2.13)

JT (0, x, y, ν) = E
ν
xy

{∫ T

0

f(xνs , y
ν
s )ds+

∑
i

�θi≤T c(x
i−1
θi

, ξi)

}
,

J(x, y, ν) = lim inf
T→∞

1

T
JT (0, x, y, ν),

then the problem is to characterize

(2.14) μ(x, y) = inf
ν∈V

J(x, y, ν).

The auxiliary problem is concerned with

(2.15) μ0(x, y) = inf
ν∈V0

J̃(x, y, ν)

with

(2.16) J̃(x, y, ν) = lim inf
n→∞

1

Eν
xy{τn}

Jτn(0, x, y, ν),

and Jτn(0, x, y, ν) as in (2.13) with T = τn.

Remark 2.5. Actually, as seen later, μ(x, y) = μ0(x, y) is a constant.

3. Dynamic programming. To introduce the HJB equation(s) corresponding
to this problem, we consider the dynamic programming argument in a heuristic way.
Define the finite horizon cost as

(3.1) JT (t, x, y, ν;h) = E
ν
xy

{∫ T−t

0

f(xνs , y
ν
s )ds

+
∑
i

�θi<T−tc(x
i−1
θi

, ξi) + h(xT−t, yT−t)

}
,

where h is a bounded terminal cost and the corresponding optimal costs

(3.2) uT (t, x, y) = inf
{
JT (t, x, y, ν) : ν ∈ V}

and

(3.3) uT0 (t, x, y) = inf
{
JT (t, x, y, ν) : ν ∈ V0

}
.

Note that, from the definitions, uT (t, x, y) = uT0 (t, x, y) if y > 0.
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If θ is a stopping time, then

(3.4)

JT (t, x, y, ν;h)

= E
ν
xy

{∫ θ∧(T−t)

0

f(xνs , y
ν
s )ds+

∑
i

�θi<θ∧(T−t)c(x
i−1
θi

, ξi)

}

+ E
ν
xy

{∫ (T−t)

θ∧(T−t)

f(xνs , y
ν
s )ds

+
∑
i

�θ∧(T−t)≤θi<T−tc(x
i−1
θi

, ξi) + h(xT−t, yT−t)

}
.

Considering now uT0 (t, x, y), assuming that one can apply the Markov property and
minimizing separately on [0, θ[ and [θ, T − t[, we deduce

(3.5)

uT0 (t, x, y) = inf
ν∈V0

{
E
ν
xy

{∫ θ∧(T−t)

0

f(xνs , y
ν
s )ds

+
∑
i

�θi<θ∧(T−t)c(x
i−1
θi

, ξi)ds

+ �θ<T−tu
T
0 (θ, xθ, yθ) + �θ≥T−th(xT−t, yT−t)

}}
.

At time t, if y = 0, either one applies an impulse, i.e., θ1 = 0 or θ1 ≥ τ1, therefore,

(3.6) uT0 (t, x, 0) = min

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

inf
ξ∈Γ(x)

{
c(x, ξ) + uT0 (t, ξ, 0)

}
=MuT0 (t, x, 0),

Ex0

{∫ τ1∧(T−t)

0

f(xs, ys)ds

+ uT0 (τ1 ∧ (T − t), xτ1∧(T−t), yτ1∧(T−t))

}
.

If y > 0, no impulse is allowed before τ1, therefore,

(3.7)

uT0 (t, x, y) = Exy

{∫ τ1∧(T−t)

0

f(xs, ys)ds

+ uT0 (τ1 ∧ (T − t), xτ1∧(T−t), yτ1∧(T−t))

}
.

Let us now make the assumption

(3.8)

there exists a bounded measurable function w0(x, y)

and a constant μ0 ≥ 0 such that, as T → ∞,

ε(t, x, y, T ) := uT0 (t, x, y)− (T − t)μ0 − w0(x, y) → 0,

locally uniformly in (x, y) for each fixed t,

which is similar to properties showed in Markov decision processes, e.g., Prieto-
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Rumeau and Hernández-Lerma [33, Thm 3.6]. Then, using (3.8) in (3.5), one obtains

(T − t)μ0 + w0(x, y) + ε(T )

= inf
ν∈V0

{
E
ν
xy

{∫ θ∧(T−t)

0

f(xνs , y
ν
s )ds+

∑
i

�θi<θ∧(T−t)c(x
i−1
θi

, ξi)

+ �θ<T−t

[
(T − θ)μ0 + w0(xθ , yθ) + ε(T )

]
+ �θ>T−th(xT−t, yT−t)

}}
,

and when T → ∞, we deduce (for any θ almost surely finite)

w0(x, y) = inf
ν∈V0

{
E
ν
xy

{∫ θ

0

[
f(xνs , y

ν
s )− μ0

]
ds

+
∑
i

�θi<θc(x
i−1
θi

, ξi) + �θ<∞w0(xθ, yθ)

}}
.

Arguing as for (3.6), we get

w0(x, 0) = min

{
Mw0(x, 0),E

ν
x0

{∫ τ1

0

[f(xνs , y
ν
s )− μ0]ds

+ �τ1<∞w0(xτ1 , 0)

}}
,

and the factor �τ1<∞ is not needed since the assumptions in section 2.1 imply Ex0{τ1}
<∞. Finally, we obtain the HJB equation for (μ0, w0),

(3.9) w0(x, 0) = min

{
Mw0(x, 0),Ex0

{∫ τ1

0

[f(xs, ys)− μ0]ds+ w0(xτ1 , 0)

}}
,

(3.10) w0(x, y) = Exy

{∫ τ1

0

[f(xs, ys)− μ0]ds+ w0(xτ1 , 0)

}
.

Now, let us apply similar arguments to uT . Assuming θ ≥ τ1 in (3.4), one minimizes
separately on [0, θ[ and [θ, T − t[. Either θ is an arrival time of the signal and an
impulse may be applied or θ is not and no impulse is allowed. In any case, the
possible actions on [θ, T − t[ are the same as for the impulse control in V0. Therefore,
we obtain

(3.11)

uT (t, x, y) = inf
ν∈V

{
E
ν
xy

{∫ θ∧(T−t)

0

f(xνs , y
ν
s )ds

+
∑
i

�θi<θ∧(T−t)c(x
i−1
θi

, ξi)

+ �θ<T−tu
T
0 (θ, xθ, yθ) + �θ>T−th(xT−t, yT−t)

}}
.

Taking θ = τ1 and, since no impulse is allowed before τ1, this gives

(3.12)

uT (t, x, y) = Exy

{∫ τ1∧(T−t)

0

f(xs, ys)ds

+ �τ1<T−tu
T
0 (xτ1 , 0) + �τ1≥T−th(xT−t, yT−t)

}
.

D
ow

nl
oa

de
d 

08
/0

6/
18

 to
 1

41
.2

17
.1

56
.5

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ERGODIC IMPULSE CONTROL PROBLEMS WITH CONSTRAINT 2697

Remark 3.1. Since uT (t, x, y) = uT0 (t, x, y) ∀y > 0 it is sufficient to obtain
uT0 (t, x, 0) and u

T (t, x, 0) to get the values for y > 0.

Let us assume that (similarly to the case of w0)

(3.13)

there exists a bounded measurable function w(x, y)

such that for the same constant μ0 ≥ 0 as in (3.8),

ε(t, x, y, T ) := uT (t, x, y)− (T − t)μ0 − w(x, y) → 0,

as T → ∞, locally uniformly in (x, y), for each fixed t.

Then the same arguments give

(3.14) w(x, y) = inf
ν∈V

{
E
ν
xy

{∫ θ

0

[
f(xνs , y

ν
s )− μ0

]
ds

+
∑
i

�θi<θc(x
i
θi−, ξi) + �θ<∞w0(xθ, yθ)

}}
,

and since no control can take place before τ1, one obtains

(3.15) w(x, y) = Exy

{∫ τ1

0

[f(xs, ys)− μ0]ds+ w0(xτ1 , 0)

}
.

4. Solutions of the HJB equations. It is clear from (3.15) that knowledge
of (μ0, w0(x, 0)) will give w(x, y), and also w0(x, y) for y > 0. Therefore the key step
is to solve (3.9) for (μ0, w0(x, 0)). For this purpose, we consider a discrete time HJB
equation equivalent to (3.9) as follows: Let us define

(4.1) �(x) = E
ν
x0

{∫ τ1

0

f(xs, ys)ds

}
.

Recall that under the assumptions of section 2.1, we have

(4.2) 0 < a1 ≤ Ex0{τ1} ≤ a2

and, therefore,

(4.3) 0 ≤ �(x) ≤ a2‖f‖.

Moreover, �(x) is continuous (from the Feller property of xt and the law of τ1). From
(2.5), define also the operator P on C(E) by

(4.4) Pg(x) = Ex0{g(xτ1)} = Ex0{g(X1)},

where Xn is the Markov chain Xn = xτn . The Feller property of xt and the regularity
of λ yield

(4.5) Pg(x) maps C(E) into itself

and, from (2.12), it is also the case of M , as defined by (2.11). In this section, we
denote

(4.6) τ(x) = Ex0{τ1}.
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2698 J. L. MENALDI AND M. ROBIN

With the previous notation, (3.9) is written as (with w0(x) = w0(x, 0))

(4.7) w0(x) = min

{
inf

ξ∈Γ(x)

{
c(x, ξ) + w0(ξ)

}
, �(x)− μ0τ(x) + Pw0(x)

}
.

This expresses the fact that either there is an immediate impulse (when w0(x) =
Mw0(x)) or the chain evolves with the kernel P and a running cost �(x) − μ0τ(x) is
incurred. We will need the following lemma.

Lemma 4.1. Under the assumption (2.6), there exist a positive measure γ on E
and a constant 0 < β < 1 such that

(4.8) P (x,B) ≥ τ(x)γ(B) ∀B ∈ B(E) ∀x ∈ E, and γ(E) >
1− β

τ(x)
.

Proof. Recall that the assumptions on λ imply

0 < a1 ≤ τ(x) ≤ a2.

Thus, to satisfy the first inequality in (4.8) it is sufficient to take

γ(B) =
1

a2
m(B) ∀B ∈ B(E),

where m is the measure in (2.6).
For the second inequality it is sufficient to take β ∈]0, 1[ such that

m(E)

a2
>

1− β

a1
≥ 1− β

τ(x)
∀x ∈ E,

i.e., 1− β < m(E)a1/a2.

Theorem 4.2. Under the assumptions of section 2.1, there exists a solution
(μ0, w0) in R+ × C(E) of (4.7) and, therefore, of (3.9).

Proof. For the sake of simplicity, in this proof, we drop the index 0.
We first transform (4.7): The assumptions on c(x, ξ) imply that multiple si-

multaneous impulses are not optimal (see Remark 2.2), so we restrict the controls
to those without multiple simultaneous impulses. Therefore, in (4.7), after an im-
pulse ξ, the chain evolves without control until the next transition, i.e., w0(ξ) =
�(ξ)− μτ(ξ) + Pw(ξ). This gives

(4.9) w(x) = inf
ξ∈Γ(x)∪{x}

{
�(ξ) + �x �=ξc(x, ξ) − μτ(ξ) + Pw(ξ)

}
.

Denote
L(x, ξ) = �(ξ) + �x �=ξc(x, ξ)

and, for v ∈ B(E),

T (x, ξ; v) = L(x, ξ) + Pv(ξ) − τ(ξ)

∫
E

v(z)γ(dz)

and
Rv(x) = inf

ξ∈Γ(x)∪{x}
T (x, ξ; v).
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Define also
P ′(x, dz) = P (x, dz)− τ(x)γ(dz) ∀x ∈ E,

which is a positive measure on E for each x in E, in view of Lemma 4.1. Denote

P ′(x, v) =
∫
E

v(z)P ′(x, dz).

Letting v1, v2 be two bounded measurable functions, we have

(4.10)
∣∣T (x, ξ; v1)− T (x, ξ; v2)

∣∣ = ∣∣P ′(ξ, v1 − v2)
∣∣.

Moreover, from Lemma 4.1, we have

P ′(x,E) < β ∀x ∈ E.

Therefore from (4.10) we deduce that R is a contraction on B(E) and has a unique
fixed point w = Rw.

If we define

μ =

∫
E

w(z)γ(dz),

then (μ,w) is a solution of (4.9) and (4.7). Moreover, since

Rv(x) = min
{
�(x) + P ′(x, v), inf

ξ∈Γ(x)

{
�(ξ) + c(x, ξ) + P ′(ξ, v)

}}
,

it is clear that Rv ∈ C(E) if v ∈ C(E) and, therefore, w ∈ C(E).
In addition, since �(x) ≥ 0 and c(x, ξ) > 0, we deduce that the fixed point w ≥ 0,

which also implies μ ≥ 0.

As a corollary, w(x, y) in (3.15) is well defined with w0(x, 0) = w0(x) from Theo-
rem 4.2.

Remark 4.3. The assumption (4.8) is used in Kurano [21, 22], in the context of
semi-Markov decision processes.

Remark 4.4. In the case where τ(x) is constant, which corresponds to an intensity
λ(y) independent of x, (4.7) is the HJB equation of a standard discrete time impulse
control as studied in Stettner [36] for Γ(x) = Γ fixed.

5. Existence of an optimal control. We make the following additional as-
sumptions:

(5.1)

for the process (xt, yt) as defined in section 2.1,

there exists a unique invariant measure ζ on E × R
+

and there exists a continuous function h(x, y) such

that, for any stopping time τ with Exy{τ} <∞,

Exy

{
h(xτ , yτ )

}
= h(x, y)− Exy

{∫ τ

0

(
f(xt, yt)− f̄

)
dt

}
,

where f̄ =

∫
E×R+

f(x, y)ζ(dx, dy).

Note that h plus a constant also satisfies this equation.
For the auxiliary problem, we state the following.
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2700 J. L. MENALDI AND M. ROBIN

Theorem 5.1. Under the assumptions of section 2.1, and (5.1),

(5.2) μ0 = inf
ν∈V0

J̃(x, 0, ν),

where μ0 is given by Theorem 4.2 and J̃ is defined by (2.16). Moreover, there exists
an optimal feedback control.

Proof. Let us first show that

(5.3) J̃(x, y, 0) = f̄ ,

where ν = 0 means “no control,” that is,

J̃(x, y, 0) = lim inf
n→∞

1

Exy{τn}Exy

{∫ τn

0

f(xt, yt)dt

}
.

Indeed, from (5.1), we have

(5.4) Exy

{
h(xτn , yτn)

}
= h(x, y)− Exy

{∫ τn

0

[
f(xt, yt)− f̄

]
dt

}

(note that E{τn} <∞ and yτn = 0), which gives

1

Exy{τn}Exy

{∫ τn

0

f(xt, yt)dt

}
= f̄ +

1

Exy{τn}Exy

{
h(x, y)− h(xτn , yτn)

}
.

Taking the limit when n → ∞, since yτn = 0 and h(x, 0) is bounded (since h is
continuous and E compact), (5.3) is obtained.

As a consequence, one can restrict the set of controls to those such that

(5.5) J̃(x, y, ν) ≤ J̃(x, y, 0) = f̄ .

Next let us show that

(5.6) μ0 ≤ J̃(x, 0, ν) ∀v ∈ V0.

Rewrite the HJB equation (4.7) as

w0(x) = min
{
Mw0(x), L(x) + Pw0(x)

}
with L(x) = �(x)− τ(x)μ0.

From this equation, for any discrete impulse control {(ηi, ξi) : i ≥ 1}, we deduce

w0(x, 0) ≤ E
ν
x0

{ n−1∑
i=0

L(Xi) +
∑
j

�ηj≤nc(Xηj , ξj) + w0(Xn)

}
,

where, here, Xi denotes the controlled discrete time process.
Denoting ν = {(θi, ξi) : i ≥ 1} as the impulse control corresponding to

{(ηi, ξi) : i ≥ 1}, i.e., with θi = τηi , we obtain

w0(x) ≤ E
ν
x0

{∫ τn

0

[
f(xt, yt)− μ0

]
dt+

∑
j

�θj≤τnc(x
j−1
θj

, ξj) + w0(xτn)
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and, therefore,

μ0 ≤ 1

Eν
x0{τn}

E
ν
x0

{∫ τn

0

f(xt, yt)dt+
∑
j

�θj≤τnc(x
j−1
θj

, ξj) + w0(xτn)− w0(x)

}
,

and since w is bounded and Eν
x0{τn} → ∞, we obtain (5.6).

Therefore, with (5.5),

μ0 ≤ inf
ν∈V0

{
J̃(x, 0, ν)

} ≤ J̃(x, 0, 0) = f̄ .

Consequently, if μ0 = f̄ then

μ0 = inf
ν∈V0

{
J̃(x, 0, ν)

}
= J̃(x, 0, 0),

and “do nothing” (i.e., the control without any impulse) is optimal.
Let us now consider the case μ0 < f̄ . Using (5.4) for n = 1, the HJB equation

(3.9) for (μ0, w0) can be rewritten, dropping again the index 0 for simplicity and with
ψ =Mw,

(w − h)(x) = min
{
(ψ − h)(x), (f̄ − μ)Ex0{τ1}+ Ex0{(w − h)(xτ1)}

}
,

where, here, h = h(x, 0). Moreover, since h is defined up to an additive constant and
is bounded, one can assume h ≤ 0, and rewrite it as

(5.7) w̃(x) = min
{
ψ̃(x), �̃(x) + Pw̃(x)

}
with w̃ = w − h, ψ̃ = ψ − h, and �̃(x) = (f̄ − μ)Ex0{τ1}.

For the Markov chain Xn = xτn , this (5.7) is the HJB equation of a stopping
time problem as studied in Bensoussan [4, Chapter 7, pp. 67–77], with the conditions
stated herein, namely, ψ̃ ≥ 0, �(x) ≥ �0 > 0. Therefore, we have

w̃(x) = inf

{
Ex

{
η−1∑
j=1

�̃(Xj) + ψ̃(Xη)

}}
,

where the infimum is taken over the G-stopping times η (with values in N), and there
is an optimal control η̂ given by

η̂ = inf
{
n ≥ 0 : w̃(Xn) = ψ̃(Xn)

}
with Ex{η̂} <∞.

Going back to w, the same result holds, with the same η̂, namely,

w(x) = inf
η

{
Ex

{
η−1∑
j=1

�(Xj) + ψ(Xη)

}}
,

with

�(x) = Ex0

∫ τ1

0

[f(xt, yt)− μ]dt

and

w(x) = inf
η

{
Ex

{
η−1∑
j=1

�(Xj) +Mw(Xη)

}}
.
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By the standard results on the optimal stopping time problems,

Mn = Ex

{
n−1∑
j=1

�(Xj) + w(Xn)

}
is a Gn submartingale

and

M̂n = Ex

{
(η−1)∧(n−1)∑

j=1

�(Xj) + w(Xη∧n)

}
is a Gn martingale.

From this, for the zero-admissible (discrete) impulse control ν = {(ηi, ξi) : i ≥ 1} one
can compute

w(x) ≤ E
ν
x0

{
n−1∑
i=1

�(Xi) +
∑
i

�ηi≤nc(Xηi , ξi) + w(Xn)

}

which means

w(x) ≤ E
ν
x0

{∫ τn

0

[
f(xνt , y

ν
t )− μ

]
dt+

∑
i

�θηi≤τnc(x
i−1
θηi

, ξi) + w(xn−1
τn )

}

and, therefore, since w is bounded and Ex0{τn)} → ∞ we deduce

(5.8) μ ≤ J̃(x, 0, ν) ∀ν ∈ V0.

Then, defining ν̂ = {(η̂i, ξ̂i) : i ≥ 1} by

η̂i = inf
{
n ≥ η̂i−1 : w(Xn) =Mw(Xn)

}
, ξ̂i = ξ̂(Xη̂i), i ≥ 1,

where η̂0 = 0 and ξ̂(x) is a Borel measurable selector realizing the infimum inMw(x),
we obtain the equality in (5.8) using the martingale property of M̃n.

Remark 5.2. (1) When λ(x, y) = λ(y), yt is independent of xt and under the
assumptions of section 2.1, yt has a unique invariant measure given by

ζ1(B) =
1

E{τ}E
{∫ τ

0

�B(yt)dt

}
∀B ∈ B(R+)

with τ = inf
{
t ≥ 0 : yt = 0

}
,

(e.g., see Davis [10, pp. 130–131]); actually, in this case, yt is a simple example of
a piecewise deterministic Markov process. Therefore, if xt has a unique invariant
probability ζ2 on E, then the couple (xt, yt) has the invariant probability ζ = ζ2 ⊗ ζ1.

(2) If f(x, y) = f(x) then it is sufficient to assume that Poisson’s equation for xt
alone, i.e., −Axh(x) = f(x)− f̄ , has a continuous solution.

(3) In the general case (namely, λ(x, y) and f(x, y)), it seems necessary to have an
explicit knowledge of xt to verify directly assumption (5.1), which is clearly satisfied
if there exists a continuous bounded solution of Poisson’s equation −Axyh(x, y) =
f(x, y) − f̄ , but this assumption is too restrictive in our case because of yt. This
would not be the case if the signal yt belongs to a bounded interval [0, b] instead of the
whole R+, however, some new difficulties arrive with the corresponding infinitesimal
generator Axy.

D
ow

nl
oa

de
d 

08
/0

6/
18

 to
 1

41
.2

17
.1

56
.5

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ERGODIC IMPULSE CONTROL PROBLEMS WITH CONSTRAINT 2703

Corollary 5.3. Under the assumptions of section 2.1 and (5.1),

(5.9) μ0 = inf
ν∈V

J̃(x, y, ν),

where μ0 is given by Theorem 4.2 and J̃ is defined by (2.16).

Proof. Recall the definition of w0(x, y) in (3.10):

w0(x, y) = Exy

{∫ τ1

0

[
f(xt, yt)− μ0

]
dt+ w0(xτ1 , 0)

}
,

where w0(x, 0) = w0(x) is (with μ0) the solution obtained in Theorem 4.2.
If ν = {(τi, ξi) : i ≥ 1} is an admissible impulse control, then θ1 ≥ τ1. Therefore,

θ1 can be written as θ1 = τ1 + θ̃1, where θ̃1 is a stopping time with respect to Fτ1+t,
and similarly with τ2 = τ1 + τ̃2. From the properties of w0, we have

w0(xτ1) ≤ E
ν
xτ10

{∫ τ̃2

0

[
f(xt, yt)− μ0

]
dt+ �θ̃1≤τ̃2

c(x0
θ̃1
, ξ1) + w0(xτ̃2 , 0)

}
,

which gives

w0(x, y) ≤ E
ν
xy

{∫ τ1

0

[
f(xt, yt)− μ0

]
dt+

∫ τ2

τ1

[
f(xt, yt)− μ0

]
dt

+ �θ1≤τ2c(x
0
θ1 , ξ1) + w0(xτ2 , 0)

}

or, equivalently,

w0(x, y) ≤ E
ν
xy

{∫ τ2

0

[
f(xt, yt)− μ0

]
dt+ �θ1≤τ2c(x

0
θ1 , ξ1) + w0(xτ2 , 0)

}
.

Iterating this argument we obtain

μ0 ≤ J̃(x, y, ν) ∀ν ∈ V .
Using the optimal control defined in Theorem 5.1, we get the equality for the control
ν̂1 translated by τ1, i.e., with θ̂i = τ1 + τ̃η̂i , i ≥ 1.

Remark 5.4. As mentioned in Arapostathis et al. [1, p. 287], our definition, either
(2.13) or (2.16), of our cost with “lim inf” gives a rather “optimistic” measure of
performance; however, the inequality just before (5.8) shows that essentially there are
no changes if lim inf is replaced by lim sup in the definition, either (2.13) or (2.16), of
the cost, either J(x, y, ν) or J̃(x, y, ν). Moreover, the minimization with either lim inf
or lim sup yields the same value μ = μ0.

Proposition 5.5. If (μ0, w0) is a solution of (3.9) provided by Theorem 4.2,
then w(x, y), defined by (3.15), is the solution of the equation

(5.10) −Axyw(x) + λ(x, y)
[
w(x, 0)−Mw(x, 0)

]+
= f(x, y)− μ0.

Proof. The first step is to show the following lemma.

Lemma 5.6. Under the assumptions of section 2.1, we have

(5.11) w0(x) = min
{
w(x, 0),Mw(x, 0)

}
.
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Proof of lemma. Note that

w(x, 0) = Ex0

{∫ τ1

0

[
f(xt, yt)− μ0

]
dt+ w0(xτ1)

}
:= Tw0(x).

Therefore
min{Mw0(x), w(x, 0)} = min{Mw0(x), Tw0(x)} = w0,

where the last equality comes from (3.9) for (μ0, w0).
So the point is now to show

(5.12) Mw0(x) =Mw(x, 0).

Observe also that, by definition,

(5.13) w0(x) ≤ Tw0(x) = w(x, 0)

and, therefore,

(5.14) Mw0(x) ≤Mw(x, 0).

For a fixed x, let ξ̂ satisfy the infimum in Mw0(x), i.e., Mw0(x) = c(x, ξ̂) + w0(ξ̂).

Let us check that ξ̂ is also a minimizer for Mw(x, 0). Indeed, the equality

w0(x) = min{Mw0(x), w(x, 0)}
yields

Mw0(x) = c(x, ξ̂) + min{w(ξ̂, 0),Mw0(ξ̂)}.
Now, if Mw0(ξ̂) < w(ξ̂, 0), then

Mw0(x) = c(x, ξ̂) +Mw0(ξ̂) = c(x, ξ̂) + c(ξ̂, ξ′) + w0(ξ
′, 0),

where ξ′ realizes the infimum in Mw0(ξ̂).
However, if we assume that the strict inequality holds in assumption (2.10) on c,

then one gets
Mw0(x) > c(x, ξ′) + w0(ξ

′, 0) ≥Mw0(x),

which is impossible. Therefore,

Mw0(ξ̂) ≥ w(ξ̂, 0)

and
Mw0(x) = c(x, ξ̂) + w(ξ̂, 0) ≥Mw(x, 0).

Coming back to the assumption (2.10) on c, let us replace c with cε(x, ξ) =
�x �=ξε+ c(x, ξ) (where the strict inequality holds in assumption (2.10) on cε), and as
ε→ 0, we also get Mw0(x) ≥Mw(x, 0). Hence, this together with (5.14) gives (5.12)
and, therefore, (5.11).

Continuing with the proof, the equality (5.11) obtained in the above Lemma 5.6
in (3.15) gives

(5.15) w(x, y) = Exy

{∫ τ1

0

[
f(xt, yt)− μ0

]
dt+min

{
w(xτ1 , 0),Mw(xτ1 , 0)

}}
.

Note that, yt = y + t on [0, τ1[ under Pxy.
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Using the law of τ1, one can write

w(x, y) = Exy

{∫ ∞

0

λ(xt, y + t) exp

(
−
∫ t

0

λ(xr , y + r)dr

)
dt

×
∫ t

0

[
f(xs, y + s)− μ0

]
ds

}
+ Exy

{∫ ∞

0

λ(xt, y + t)

× exp

(
−
∫ t

0

λ(xr , y + r)dr

)
min

{
w(xt, 0),Mw(xt, 0)

}
dt

}
= (1) + (2).

After integrating by parts, the first term (1) becomes

(1) = Exy

{∫ ∞

0

exp

(
−
∫ t

0

λ(xr, y + r)dr

)[
f(xt, y + t)− μ0

]
dt

}
,

therefore,

w(x, y) = Exy

{∫ ∞

0

exp

(
−
∫ t

0

λ(xr, y + r)dr

)

×
[
f(xt, y + t)− μ0 + λ(xt, y + t)min

{
w(xt, 0),Mw(xt, 0)

}]
dt

}
.

Since

min
{
w(x, 0),Mw(x, 0)

}
= w(x, 0)− [

w(x, 0)−Mw(x, 0)
]+
,

one gets

(5.16) w(x, y) = Exy

{∫ ∞

0

exp

(
−
∫ t

0

λ(xr , y + r)dr

)
ϕ(xt, y + t)dt

}
,

with

(5.17) ϕ(x, y) = f(x, y) − μ0 + λ(x, y)w(x, 0) − λ(x, y)
[
w(x, 0) − Mw(x, 0)

]+
.

It is clear that (xt, y + t) is a homogeneous Markov process and we can consider
probabilities P̃xy such that

Ẽxy

{
g(xt, yt)

}
= Φ(t)g(x, y + t)

and write (5.16) as

(5.18) w(x, y) = Ẽxy

{∫ ∞

0

exp

(
−
∫ t

0

λ(xr, yr)dr

)
ϕ(xt, yt)dt

}
.

By the Markov property, (5.18) gives

(5.19) w(x, y) = Ẽxy

{∫ t

0

exp

(
−

∫ s

0

λ(xr , yr)dr

)
ϕ(xs, ys)ds

}

+ Ẽxy

{
exp

(
−
∫ t

0

λ(xr , yr)dr

)
w(xt, yt)

}
.
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From (5.19) one can check that the process
(5.20)

Mt =

∫ t

0

exp

(
−
∫ s

0

λ(xr , yr)dr

)
ϕ(xs, ys)ds+ exp

(
−
∫ t

0

λ(xr , yr)dr

)
w(xt, yt)

is a martingale for the probability P̃xy.
Then we use the following lemma, which is a slight modification of Lemma 3.3 in

Bensoussan and Lions [5, p. 354] so we skip its proof.

Lemma 5.7. Let ψt, ζt, and vt be bounded adapted processes. If

Mt =

∫ t

0

ψsds+ ζt ∀t ≥ 0

is a martingale, then the process

ρt = ζt exp

(∫ t

0

vsds

)
+

∫ t

0

(
ψs − vsζs

)
exp

(∫ s

0

vrdr

)
ds

is also a martingale.

Now, let us apply the previous lemma to

ζt = exp

(
−

∫ t

0

λ(xr , yr)dr

)
w(xt, yt),

ψt = λ(xt, yt) exp

(
−
∫ t

0

λ(xr , yr)dr

)
ϕ(xt, yt)

with vt = λ(xt, yt)− α, α > 0.
From (5.20) we deduce that

ρ(t) = e−αtw(xt, yt) +

∫ t

0

e−αs
[
λ(xs, ys)ϕ(xs, ys) +

(
α− λ(xs, ys)

)
w(xs, ys)

]
ds

is a martingale and, therefore,

w(x, y) = Ẽxy

{
e−αtw(xt, yt)

+

∫ t

0

e−αs
[
λ(xs, ys)ϕ(xs, ys) +

(
α− λ(xs, ys)

)
w(xs, ys)

]
ds

}

and

(5.21) w(x, y) = Ẽxy

{∫ +∞

0

e−αt
[
f(xt, yt)− μ0 + λ(xs, ys)

(
w(xt, 0)− w(xt, yt)

)
+ αw(xt, yt)− λ(xs, ys)

(
w(xs, 0)−Mw(xt, 0)

)+]
dt

}

with the definition of ϕ in (5.17).
But since w is a bounded and continuous function, as well as f , the expression

(5.21) gives the resolvent of process (xt, y + t), the generator of which is

Ax +
∂

∂y
,
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therefore, we can write

(5.22) −Axw(x, y)− ∂w(x, y)

∂y
+ αw(x, y) = f(x, y)− μ0 + αw(x, y)

+ λ(x, y)
[
w(x, 0) − w(x, y)

] − λ(x, y)
[
w(x, 0)−Mw(x, 0)

]+
.

Rearranging the terms, and recalling the expression (2.4) for Axy, we deduce (5.10).

We can now state the following theorem.

Theorem 5.8. Under the assumptions of section 2.1, and (5.1), we have

(5.23) μ0 = inf
ν∈V

J(x, y, ν) = J(x, y, ν̂),

where μ0 is given by Theorem 4.2 and J is defined by (2.13), and ν̂ is defined as

in Corollary 5.3, i.e., ν̂ = {θ̂i, ξ̂i : i ≥ 1} is the admissible Markov impulse control
corresponding to the stopping region S0 = {x ∈ E : w0(x) = Mw0(x)} and impulse

function ξ0(x) = ξ̂(x), which is a Borel measurable optimal selector of Mw0(x); see
Definition 2.3 and assumption (2.12).

Proof. From (5.22), we have

(5.24) −Axyw(x, y) + αw(x, y) = f(x, y)− μ0 + αw(x, y)

− λ(x, y)
[
w(x, 0) −Mw(x, 0)

]+
which implies, in particular, that

Mα
T =

∫ T

0

(
f(xt, yt)− μ0 + αw(xt, yt)

)
e−αtdt+ w(xT , yT )e

−αT

is a submartingale.
Since w is bounded, one can let α→ 0 in Mα

T to deduce that

MT =

∫ T

0

(
f(xt, yt)− μ0

)
dt+ w(xT , yT )

is a submartingale.
For an arbitrary impulse control ν = {(θi, ξi) : i ≥ 1} in V , we have

w(x, y) ≤ E
ν
xy

∫ θ1∧T

0

(
f(xt, yt)− μ0

)
dt+ w(xθ1∧T , yθ1∧T ),

i.e.,

w(x, y) ≤ E
ν
xy

∫ T

0

(
f(xt, yt)− μ0

)
dt− �θ1≤T

∫ T

θ1

(
f(xt, yt)− μ0

)
dt

+ �θ1≤Tw(xθ1 , 0) + �θ1>Tw(xT , yT ).

Moreover, note that even if we do not have, in general, w ≤Mw, we do have

w(xθ1 , 0) ≤ c(xθ1 , ξ1) + w(ξ1, 0)

at the times of the impulses.
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So we have

w(x, y) ≤ E
ν
xy

{∫ T

0

(
f(xt, yt)− μ0

)
dt+ �θ1≤T c(xθ1 , ξ1) + �θ1≤Tw(ξ1, 0)

− �θ1≤T

∫ T

θ1

(
f(xt, yt)− μ0

)
dt+ w(xT , yT )− �θ1≤Tw(xT , yT )

}

and since (by the submartingale property)

E
ν
xy

{
�θ1≤T

[
w(ξ1, 0)−

∫ T

θ1

(
f(xt, yt)− μ0

)
dt− w(xT , yT )

]}
≤ 0,

we obtain

w(x, y) ≤ E
ν
xy

{∫ T

0

(
f(xt, yt)− μ0

)
dt+ �θ1≤T c(xθ1 , ξ1) + w(xT , yT )

}
;

iterating this argument, we deduce

w(x, y) ≤ E
ν
xy

{∫ T

0

(
f(xt, yt)− μ0

)
dt+

∞∑
i=1

�θi≤T c(x
i−1
θi

, ξi) + w(xT , yT )

}
,

which implies that
μ0 ≤ J(x, y, ν) ∀ν ∈ V .

Next using the control ν̂ as defined in Corollary 5.3, we also have μ0 = J(x, y, ν̂), and
equality (5.23) follows.

6. Extensions. For instances, we reconsider our assumptions on the space E
and on the signal process.

6.1. Locally compact. When E is locally compact, we take C(E) = Cb(E),
and we replace (2.1) by the assumption Φ(t)C0 ⊂ C0, C0 being the space of functions
vanishing at infinity (from Palczewski and Stettner [32, Corollary 2.2], then Φ(t)C ⊂
C and limt→0 Φ(t)g(x) = g(x) uniformly on every compact of E).

The rest of the assumptions of sections 2.1 and 2.2 remain the same. Then there is
no difficulty in extending the result of section 4, but the assumption (5.1) is no longer
sufficient to extend the results of section 5. One possible additional assumption is
to require that h(x, 0) be bounded. This is the case when the Poisson equation
−Axyh = f − f̄ has a bounded solution (see Stettner [38] for conditions giving this
property), but the extension of the results under more general assumptions would
require further work. Note that in the particular case when λ is independent of x
and f depends only on x, we can adapt the proof of Theorem 5.1 by using only h(x)
defined as the solution of the discrete time Poisson equation −(P − İ)h = �− �̄, which
has a bounded solution under (2.6) with �̄ being the integral of � with respect to the
invariant measure of P , which is (in this case) the same as the invariant measure of
Φ(t).

Let us mention that the assumption (2.6) is also relatively restrictive when E is
locally compact; actually, considering, for instance, a nondegenerate diffusion process
in R

d, one cannot assume (2.8). A less restrictive assumption is to replace (2.6) by

(6.1)

there exist a recurrent set K, a positive

measure m, and 0 < α < 1 such that

P (x,B) ≥ α�K(x)m(B) ∀B ∈ B(E)

with 0 < m(K) ≤ 1.
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As shown in Höpfner and Löcherbach [18], if, for instance, xt is a diffusion process
which is Harris recurrent, then, in particular, there exists K, α′, m as in (6.1) such
that

k1

∫ ∞

0

e−k1t
(
Φ(t)�B

)
(x)dt ≥ α′

�K(x)m(B),

from which we deduce

P (x,B) ≥ k0
k1
α′
�K(x)m(B);

this is (6.1) with α = k0α
′/k1.

Note that, for example, nondegenerate diffusions for which there exists an ade-
quate Liapunov function are Harris recurrent; see Löecherbach [26] for details. Now, to
obtain a solution of (4.9), one can adapt the results of Luque-Vásquez and Hernández-
Lerma [27], which has an ergodicity assumption of the type (6.1). Then, the results
of section 5 can be extended with (6.1), at least when h(x, 0) is bounded.

6.2. Infinite dimension. If {xt : t ≥ 0} takes values in an infinite dimensional
space, then the prototype could be given by a stochastic partial differential equation,
where E is a Banach or Hilbert space (e.g., Menaldi and Sritharan [31]). Several
techniques are available to treat optimal stopping and impulse control problems in this
context (e.g., see [28], Priola [34], and the discussion in [29, section 5.1.2]). Moreover,
see the book by Da Prato and Zabczyk [9] for some results of ergodicity in infinite
dimensions.

Actually, this includes a weak Cb-semigroup, but calculations are harder, even
under suitable assumptions. However, further works are needed to fully analyze and
to really include infinite dimensions.

6.3. Other signal processes. The signal admit several generalizations, e.g.,
sticky signal, i.e., when the process yt may remain for a positive time at 0 so that
the controller has a positive continuous-time interval where impulses can be applied.
Indeed, this can regarded as signals “on/off” by simply assuming that the process yt
takes values in R and only while y ≤ 0 are impulses allowed or admissible.

Even more general is the case where the process giving the signals is a semi-
Markov process (which cover both the independent and identically distributed case
and the pure jump Markov processes) conditioned to the initial Markov process xt.
Assume that {y1t : t ≥ 0} is a semi-Markov process with values in a space E1 (with
the discrete topology and the Borel σ-algebra) and {yt = (y1t , y

2
t ) : t ≥ 0} is the

appropriated Markov process where {y2t : t ≥ 0} is the elapsed time since the last
jump of {y1t : t ≥ 0}; e.g., see Davis [10, Appendix, pp. 256–279], Gikhman and
Skorokhod [15, section III.3, pp. 226–249], Jacod [19], and Robin [35], among others.
If we are given λ : E1 × [0,∞[−→ [0,∞[ satisfying

0 ≤ λ(x, y1, y2) ≤M, (x, y1, y2) �→ λ(y1, y2) continuous

and a transition probability q(x, y1, y2,Γ) with

(x, y2) �→
∫
E1

q(x, y1, y2, dz)ϕ(z) continuous,

for every ϕ bounded measurable on E1, one can show that {yt : t ≥ 0} can be
constructed as a Markov process with infinitesimal generator (for a given x in E)

Ay(x)f(y
1, y2) =

∂f(y1, y2)

∂y2
+ λ(x, y1, y2)

[ ∫
E1

q(x, y1, y2, dz)f(z, 0)− f(y1, y2)

]
,

D
ow

nl
oa

de
d 

08
/0

6/
18

 to
 1

41
.2

17
.1

56
.5

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2710 J. L. MENALDI AND M. ROBIN

and Axy = Ax+Ay is the infinitesimal generator of the Markov–Feller process (xt, yt).
In this case, a given (proper or not) subsetD of the spaceE1 determines whether or not
impulses are allowed. Calculations are complicated, but perhaps not insurmountable.
These types of models are particular cases of general hybrid control models, which
are considered in more details in a coming book by Jasso-Fuentes, Menaldi, and
Robin [20].
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[7] P. Brémaud, Optimal thinning of a point process, SIAM J. Control Optim., 17 (1979), pp. 222–

230.
[8] O. L. V. Costa, F. Dufour, and A. B. Piunovskiy, Constrained and unconstrained optimal

discounted control of piecewise deterministic Markov processes, SIAM J. Control Optim.,
54 (2016), pp. 1444–1474.

[9] G. Da Prato and J. Zabczyk, Ergodicity for Infinite-Dimensional Systems, Cambridge Uni-
versity Press, Cambridge, 1996.

[10] M. H. A. Davis, Markov Models and Optimization, Chapman & Hall, London, 1993.
[11] P. Dupuis and H. Wang, Optimal stopping with random intervention times, Adv. Appl.

Probab., 34 (2002), pp. 141–157.
[12] M. Garroni and J. Menaldi, Green Functions for Second Order Parabolic Integro-Differential

Problems, Longman Scientific & Technical, Harlow, 1992.
[13] M. G. Garroni and J. L. Menaldi, Second Order Elliptic Integro-Differential Problems,

Chapman & Hall/CRC, Boca Raton, FL, 2002.
[14] D. Gatarek and L. Stettner, On the compactness method in general ergodic impulsive con-

trol of Markov processes, Stoch. Stoch. Rep., 31 (1990), pp. 15–25.
[15] I. Gikhman and A. Skorokhod, The Theory of Stochastic Processes. II, Springer, Berlin,

2004.
[16] O. Hernández-Lerma and J. Lasserre, Discrete-time Markov Control Processes, Springer,

New York, 1996.
[17] O. Hernández-Lerma and J. Lasserre, Further Topics on Discrete-Time Markov Control

Processes, Springer, New York, 1999.
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