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ON SOME IMPULSE CONTROL PROBLEMS WITH CONSTRAINT∗

J. L. MENALDI† AND M. ROBIN‡

Abstract. The impulse control of a Markov–Feller process is considered when the impulses are
allowed only when a signal arrives. This is referred to as an impulse control problem with constraint.
A detailed setting is described, a characterization of the optimal cost is obtained using previous
results of the authors on optimal stopping problems with constraint, and an optimal impulse control
is identified.
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1. Introduction. Impulse control problems were introduced by Bensoussan and
Lions [3] in the 1970s, and since then, a considerable literature has been devoted to
many aspects and applications of these control problems (e.g., see references in the
books by Bensoussan and Lions [4, 5], Bensoussan [2]).

Typically, the state without control follows a stochastic differential equation
(SDE) with continuous trajectories, and the control ν is an increasing sequence {ϑi}
of (stopping) times and a sequence of random variables {ξi}. At time ϑi, the control
transfers the state immediately from xϑi to ξi, with a positive cost per impulse given
by c(xϑi , ξi) > 0. In between two consecutive (impulse or intervention) times ϑi and
ϑi+1, the evolution behaves like the initial SDE, and a nonnegative cost per unit of
time f(xt) ≥ 0 is applied. Thus, Jx(ν) denotes the total α-discounted cost on [0,∞[,
and the optimal cost function is given by v(x) = infν Jx(ν). Switching control and
control by interventions are similar/equivalent problems; e.g., see references in the
books by Bensoussan [1, 2], Davis [6], among others.

Usually, the random variable ξi should belong to a particular set of “admissible”
states (for the current state xϑi), but the (intervention) time ϑi is as arbitrary as
possible. In our problem presented below, the instants {ϑi} are required to satisfy a
restriction referred to as “wait for a signal,” e.g., an intervention is allowed only at the
jump times, an exogenous process, the simplest case being the Poisson process. Over
this class of impulse controls, the cost Jx(ν) is minimized and all previous arguments
(of the dynamic programming) should be adapted to this new model.

A key tool to solve an impulse control problem is to regard it as a sequence of
optimal stopping time problems. A considerable literature exits on optimal stopping
time problems (e.g., see the recent book by Peskir and Shiryaev [19]). However, we
have seen an explicit constraint on stopping time problems (i.e., when the process can
be stopped) for the first time in Dupuis and Wang [7], and this was extended in several
directions in [17], where we have studied a class of optimal stopping problems with a
similar (to those mentioned above) type of constraint. For the impulse control with
constraint, we obtain a Bellman equation which is not a quasi-variational inequality
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as in the standard case and, an auxiliary impulse control problem, which is essentially
in discrete time, is instrumental to solve the initial problem

To the best of our knowledge, the impulse control with constraint in the sense
described above has been addressed only in Liang [13], Liang and Wei [14], Wang [22],
for diffusion processes and Poisson constraint. In this paper, the settings are such that
the initial process {xt : t ≥ 0} is a general Markov–Feller process and the times allowed
for impulses are the jumps of a (non-necessarily-Poisson) process {yt : t ≥ 0}, which
is not necessarily independent from {xt : t ≥ 0}.

The paper is organized as follows: section 2 is devoted to the statement of the
problem (with notation and assumptions), section 3 addresses the application of the
dynamic programming arguments. Next, the Hamilton-Jacobi-Bellman (HJB) equa-
tion is solved in section 4 and an optimal control is constructed. Several extensions
of the results are discussed in section 5.

2. Statement of the problem. The state (with the exception for the signal) of
the dynamical system is a time-homogeneous (right-continuous, left limited) Markov
process {xt : t ∈ [0,∞[} in a compact metric space E with transition probability
function p(x, t, B), i.e.,

(2.1) P{xt ∈ B |xs = x} = p(x, t − s,B) ∀x ∈ E, t > s ≥ 0, B ∈ B(E),

where B(E) is the Borel σ-algebra. It is also assumed that {xt : t ≥ 0} is a Feller
process, i.e., if {Φ(t) : t ≥ 0} is its semigroup and C(E) denotes the Banach space
(with the sup-norm ‖ · ‖) of real-valued continuous functions defined on E then

(2.2) {Φ(t) : t ≥ 0} is a continuous semigroup on C(E).

Moreover A = Ax is its infinitesimal generator. This Markov–Feller process is realized
in a (canonical) filtered probability space (Ω,F, P ).

An impulse (or intervention) is the action on the evolution of the dynamical
system (e.g., at time ϑ) to provoke an instantaneous transition from the state xϑ into
ξ with ξ in Γ(xϑ), a closed subset of E. Actually, to simplify assumptions, it is better
to suppose that

(2.3) Γ(x) = Γ fixed for every x ∈ E with ∅ �= Γ ⊂ E closed.

This is a sequential-type control, and between two consecutive interventions, the
transition probability function (2.1) governs the evolution of the system.

Thus, an arbitrary impulse control is a double sequence ν = {(ϑi, ξi) : i ≥ 1},
where 0 ≤ ϑ1 ≤ ϑ2 ≤ · · · is an increasing sequence of stopping times satisfying ϑi →
∞, almost surely, and {ξi : i ≥ 1} is a sequence of Γ-valued random variables, such that
ξi is ϑi-adapted.1 This impulse is implemented only when the time of intervention (or
impulse) ϑi is finite. Note that, in general, the construction of a suitable probability
space, where these impulse controls are “realized” is a hard problem (e.g., see Lepeltier
and Marchal [12], Robin [20], among others). Hence, later in this section, we give a
quick intuitive idea about this construction, without the complete details.

A process {yt : t ≥ 0} with values in the interval [0,∞[ (not necessarily a
Markov process by itself) represents the time elapsed since the last signal, and, a
“signal” arrives at the hitting time of the singleton {y = 0}. Assume that the couple

1In other words, if ϑi is relative to the filtration F = {Ft : t ≥ 0} then ξi is Fϑi
-measurable.
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{(xt, yt) : t ≥ 0} is a time-homogeneous strong Markov process in E × [0,∞[, with
infinitesimal generator

Ax,yϕ(x, y) = Axϕ(x, y) + ∂yϕ(x, y)
+ λ(x, y)[ϕ(x, 0) − ϕ(x, y)], y ≥ 0,

(2.4)

where ∂y is the partial derivative with respect to y and the intensity function (or jump
rate) satisfies

(2.5) λ : E × [0,∞[−→ [0,∞[ is bounded and continuous.

It is simple to check that the (complete) state process {(xt, yt) : t ≥ 0} becomes a
Markov–Feller process.

Besides a discount factor α > 0, there is a running cost (or the cost per unit of
time) given by a continuous and bounded function f ≥ 0, i.e.,

(2.6) α > 0 and f : E × [0,∞[−→ [0,∞[, f is continuous,

and another function

(2.7) c : E × Γ −→ [c0,∞[, c is continuous and c0 > 0,

representing a cost per impulse. Thus, the cost of an arbitrary impulse control ν =
{(ϑi, ξ) : i ≥ 1} is given by

(2.8) Jx,y(ν) = E
ν
x,y

{∫ ∞

0
e−αtf(xt, yt)dt+

∞∑
i=0

e−αϑic(xϑi , ξi)

}
,

where E
ν
x is the expectation of the process under the impulse control ν with ini-

tial conditions (x0, y0) = (x, y), and xϑi is the value of the process just before the
impulse. But, in our model, not all interventions are permitted; indeed, an interven-
tion at a time ϑ ≥ 0 is authorized only when yϑ = 0. Hence, an impulse control
ν = {(ϑi, ξi) : i ≥ 1} is called zero admissible if yϑi = 0, almost surely, for any
i ≥ 1; while, it is called admissible if also the first intervention is strictly positive, i.e.,
ϑ1 > 0, almost surely.

Denote by V (or V0) the set of admissible (or zero-admissible) impulse controls,
all relative to the initial condition (x0, y0) = (x, y). Therefore, the optimal cost is
defined by

(2.9) v(x, y) = inf
{
Jx,y(ν) : ν ∈ V} ∀(x, y) ∈ E × [0,∞[,

and its associated auxiliary impulse control problem (referred to as the “time-homoge-
neous” impulse control) has the optimal cost given by

(2.10) v0(x, y) = inf
{
Jx,y(ν) : ν ∈ V0

} ∀(x, y) ∈ E × [0,∞[.

Actually, the optimal cost v0(x, y) will be of any use only for y = 0.
The aim is to give a characterization of the optimal cost v(x, y) and to construct

an optimal (admissible, feedback) impulse control ν̂. The statement of the problem to
be solved was presented above, but several details (and specifications on the model)
necessary to fully understand the above model are discussed below.

Note that even if the setting is Markovian, the impulse control problem with
optimal cost (2.9) is not homogeneous in time, i.e., the controller should wait for
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a signal before applying the initial impulse time, and so the time variable t should
be included in the analysis, i.e., a cost v(x, y, t) should be defined. However, the
auxiliary impulse control problem with optimal cost v0(x, y) given by (2.10) is a
Markovian time-homogeneous (an “almost usual”) impulse control problem (except
for the constraint of intervening only when the second component of the state vanishes,
i.e., when y = 0).

2.1. Time elapsed since last signal. In setting up the constraint for a stop-
ping time (or impulse control) problem relative to an initial time-homogeneous strong
Markov process {xt : t ≥ 0} (i.e., the uncontrolled state of the system), we assume
that a stochastic process {yt : t ≥ 0} representing the time elapsed since last signal is
either given or constructed from an exogenous sequence {T1, T2, . . .} of nonnegative
independent and identically distributed (IID) random variables with distribution π0.

If the IID sequence is given a priori then a realization of the stochastic process
{yt : t ≥ 0} can be defined by induction for an initial condition y0 = y as follows:

(1) first get a nonnegative random variable T y independent of {T1, T2, . . .} and of
the Markov process {xt : t ≥ 0} with distribution

(2.11) P{T y ∈]a, b]} = P{T1 ∈]a+ y, b+ y] |T1 ≥ y} =
π0(]a+ y, b+ y])
π0(]y,+∞[)

for any b > a ≥ 0;
(2) and now, define the sequence of signals

(2.12) τy
0 = 0, τy

1 = T y, and τy
n+1 = τy

n + Tn ∀n ≥ 1,

and the process {yt : t ≥ 0} with y0 = y by the expressions

(2.13) yt = yτy
n−1

+ t− τy
n−1 if τy

n−1 ≤ t < τy
n and yτy

n
= 0 ∀n ≥ 1.

For simplicity, assume that the π0 is supported on the whole [0,∞[ and, so, any
non-negative initial values y0 = y are valid.

In this case {yt : t ≥ 0} (by itself) is a time-homogeneous strong Markov with
values in [0,∞[. The jumps of the process {yt : t ≥ 0} are better understood with
an intensity function λ(·) of the random variables Tk. Therefore, instead of referring
to the common law π0, it is convenient to assume that a bounded Borel measurable
intensity function y �→ λ(y) exists.

Actually, if the sequence {T1, T2, . . .} is only conditionally independent with re-
spect to {xt : t ≥ 0} then the (conditional) intensity may also be depending on the
variable x, i.e., λ(x, y) as in (2.5), and the above construction can be adapted to this
situation. The couple t �→ (xt, yt) is an E × [0,∞[-valued cad-lag process and, since
the jumps have an intensity, we deduce that P{τn = t} = 0 for every t ≥ 0 and n ≥ 1,
and therefore, P{yt− = yt} = 0 for every t > 0. Note that yτn− = τn − τn−1 = Tn is
the arrival time of the n-signal measured from the previous (n− 1)-signal.

Summing up, in our stopping time (or impulse control) problem with constraint,
the couple {(xt, yt) : t ≥ 0} and {xt : t ≥ 0} are both time-homogeneous strong
Markov processes, but {yt : t ≥ 0} alone is not necessarily a Markov process by itself.
By taking the image probability, this construction can be moved to the canonical
space D = D([0,∞[;E× [0,∞[) under a transition probability Px,y, with infinitesimal
generator given by (2.4), and the times of jumps (to zero) of the second variable t �→ yt

have intensity t �→ λ(xt, yt). The recurrence formula

(2.14) τ0 = 0 and τn = inf
{
t > τn−1 : yt = 0

}
, n ≥ 1,
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defines the sequence {τn : n = 1, 2, . . .} signals, as a functional of yt with the initial
condition y0 = y.

Furthermore, since {xt : t ≥ 0} is a Markov–Feller process, assumption (2.5)
implies that the same holds true for the couple, i.e., also

(2.15) (x, y, t) �−→ Ex

{
ϕ(xt, yt)

}
is continuous on E × [0,∞[×[0,∞[

for every bounded continuous function ϕ. This yields

(2.16)
(x, y) �→ Ex,y

{
e−ατϕ(xτ )

}
is continuous,

τ = inf
{
t > 0 : yt = 0

}
, α ≥ 0,

for every continuous and bounded function ϕ.
On the other hand, once the expression of the infinitesimal generator Ax,y is

known to be given by (2.4), the construction of the corresponding time-homogeneous
strong Markov process {(xt, yt) : t ≥ 0} follows, provided Ax,y is proved to satisfy suf-
ficient conditions; several results exist in this direction. Actually, in the case of signals
given via an IID sequence independent of the {xt : t ≥ 0}, the expression (2.4) of the
joint infinitesimal generator suffices to guarantee the construction of {(xt, yt) : t ≥ 0}
without explicitly defining the {yt : t ≥ 0}, even if its construction itself seems inter-
esting.

2.2. Interventions and costs. Let us first present a quick intuitive idea on the
construction of the impulse control in a filtered probability space, without complete
details; the reader is referred to Bensoussan and Lions [1, Chapter 6, section 4.2],
Davis [6, Chapter 5], Lepeltier and Marchal [12], Robin [20], among others.

For the sake of simplicity, temporarily forget about the constraint, use z or (x, y)
indistinctly, and let us describe the actions or steps of interventions on a Markov
process XY = {zt = (xt, yt) : t ≥ 0} with values in (the Polish space) E× [0,∞[, and
transition probability p(z, t, ·).

Let us recall that a realization of the time-homogeneous Markov process XY is
a family {Pz : z ∈ E × [0,∞[} (on which all further constructions are based) of time-
invariant probabilities on the canonical space D = D([0,∞[, E × [0,∞[) satisfying
Pz{zt ∈ · | z0 = z} = p(z, t, ·), where zt(ω) = ω(t) is the canonical process, and the
canonical filtration F = {Ft : t ≥ 0}, Ft = σ(zs : 0 ≤ s ≤ t), has been modified to
satisfy the usual conditions.

If θ is a finite F-stopping time and ζ is a Fθ-measurable random variable (with
values in E × [0,∞[) then an initial stochastic condition zθ = ζ is obtained in two
steps: (i) a family of probability Ps,z on (D,Fs

∞) satisfying Ps,z{zt ∈ ·} = p(z, t−s, ·),
and (ii) the substitution z = ζ(ω), s = θ(ω) into Ps,z provides a “regular conditional
probability” given zθ = ζ, which is only defined on the σ-algebra Fθ

∞.
In short, (a) Ez or Pz is the expectation or probability (defined on {Ft : t ≥ 0})

with the initial (deterministic) condition z0 = z, and (b) Eζ,θ or Pθ,ζ is the con-
ditional expectation or a (regular) probability (i.e., first Ps,z is constructed for de-
terministic values and then the substitution s = θ(ω), z = ζ(ω) is used) with the
initial (stochastic) condition zθ = ζ (defined on {Ft : t ≥ θ}), all this within the
canonical space D([0,∞[, E × [0,∞[), the universally completed filtration F, and the
canonical process (t, ω) �→ zt = ω(t). It is worth mentioning that both probabilities
Pz and Qζ = Pz(dω)Pζ(ω),θ(ω)(·) are defined on the (universally completed) Borel
σ-algebra F∞ of the canonical space D, even if Pz and Qζ = EzPθ,ζ are used on
the stochastic interval [0, θ] and [θ,∞[, respectively (the notation EzPθ,ζ , instead of
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Qζ = Pz(dω)Pθ(ω),ζ(ω)(·), is meant to emphasize the point that Qζ is used only for
events after θ). Upon some details, it should be clear that these two probabilities Pz

and Qζ cannot be jointed together in only one probability onD; there is an “imposed”
discontinuity at t = θ.

To define the cost associated with an impulse control, we begin with a sequence
{ϑi : i ≥ 1} of F-stopping times satisfying ϑ1 ≤ ϑ2 ≤ · · · ≤ ϑi ≤ · · · and ϑi → ∞,
and a sequence {ζi : i ≥ 1} of random variables such that ζi is Fθi-measurable, which
form an impulse control. Therefore, a sequence of probabilities {P ν|ϑi

z : i ≥ 0} can be
associated with each impulse control and any initial (deterministic) condition z0 = z
as follows:

Define P ν|ϑ0
z = Pz , ϑ0 = 0, and if P ν|ϑk−1

z (or E
ν|ϑk−1
z ) has been given then define

P
ν|ϑk
z (or E

ν|ϑk
z ) on Ω by recurrence,

(2.17) P ν|ϑk
z (A) = E

ν|ϑk−1
z

{
Pϑk,ζk

(
A

)} ∀A ∈ Fϑk∞ ,

i.e., for events after ϑk, after k-impulses.
Remark that the law of the canonical process {zt : t ≥ 0} changes from P

ν|ϑk−1
z

to P ν|ϑk
z , e.g., P ν|ϑk

z {zϑk
= ζk} = 1 and

P ν|ϑk−1
z {zϑk

∈ B | Fϑk−1} = p(ζk−1, ϑk − ϑk−1, B),

where p(z, t, ·) is the transition probability of the process Z = XY.
In our case, only the x-component is affected (i.e., ζi = (ξi, y(ϑi)) with ξi taking

values in Γ) and thus, ν = {(ϑi, ξi) : i ≥ 1} represents an impulse control in this
model, the family of probabilities is denoted by {P ν|ϑk

x,y : k ≥ 0}. Note that the
canonical process is {zt = (xt, yt) : t ≥ 0}, and Pζk

= Pξk,yϑk
, which means Px,y after

the substitution x = ξk(ω) and y = yϑk(ω)(ω). Therefore, within this construction, we
have the following.

Definition 2.1. If {τn} is the sequence of signals (2.14) then an F-stopping time
ϑ is called “admissible” if for almost surely every ω there exists n = η(ω) ≥ 1 such
that ϑ(ω) = τη(ω)(ω) or, equivalently, if ϑ almost surely satisfies ϑ > 0 and yϑ = 0.
Thus, an impulse control ν = {(ϑi, ξi) : i ≥ 1} is called admissible if each impulse
time ϑi is an admissible F-stopping time, i.e., yϑi = 0 for every i ≥ 1, and ϑ1 > 0,
and ξi is Fϑi-measurable. If, in addition, ϑ1 = 0 is allowed then ν is called “zero
admissible.”

Thus, the controller chooses an F-stopping time ϑ1 and an Fϑ1-measurable ran-
dom variable with values in Γ, so that

Jz(ν|ϑ1) = E
ν|ϑ0
x,y

{∫ ϑ1

0
f(zt)e−αtdt+ e−αϑ1c(xϑ1 , ξ1)

}
, ϑ0 = 0,

represents the cost (of interventions) up to the time ϑ1. The time of intervention is
t = ϑ1 when ϑ1 < ∞ and no intervention at all when ϑ1 = ∞. Remark that if ϑ1 = ∞
then e−αϑ1c(xϑ1 , ξ1) = 0. As a second decision, the controller chooses an F-stopping
time ϑ2 and an Fϑ2-measurable random variable ξ2 with values in Γ, so that

Jz(ν|ϑ2) = Jz(ν|ϑ1) + E
ν|ϑ1
x,y

{ ∫ ϑ2

ϑ1

f(zt)e−αtdt+ e−αϑ2c(xϑ2 , ξ2)
}

represents the cost (of interventions) up to the time ϑ2. The time of the second
intervention is t = ϑ2 when ϑ2 < ∞ and there is no second intervention at all when
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θ2 = ∞. Iterating this procedure, the controller chooses an F-stopping time θk+1 and
an Fθk+1-measurable random variable ξk+1 with values in Γ, so that

Jz(ν|ϑk+1) = Jz(ν|ϑk)

+ E
ν|ϑk
x,y

{∫ ϑk+1

ϑk

f(zt)e−αtdt+ e−αϑk+1c(xϑk+1 , ξk+1)

}
,

(2.18)

represents the cost (of interventions) up to the time ϑk+1, and the limit Jz(ν) =
limk Jz(ν|ϑk+1) is the cost corresponding to the impulse control ν. Note that (2.18)
makes sense for k ≥ 0, after setting ϑ0 = 0 and Jz(ν|ϑ0) = 0. Recall that the
expectation E

ν|ϑk
x,y is defined only for events after ϑk, and both terms (the integral in

t and the other one) are zero on the event [ϑk−1 = ∞].
Since interventions are allowed only at the time a signal arrives, our impulse

control problem with constraint could be considered in a discrete-time setting as
follows. Indeed, a realization of the Markov process XY yields also a realization
of the Markov chain {(xτn , yτn , τn) : n ≥ 0} with a filtration G = {Gn : n ≥ 0},
Gn = Fτn . This Markov chain takes values in E × [0,∞[×[0,∞[, and τn represents
the continuous time. Since yτn = 0 for every n ≥ 1, it is convenient to replace
yτn with yτn−, which represents the arrival time of the n signal (measured from
the (n − 1) signal). The previous construction produces a discrete-time model as
in Bensoussan [2] (or Hernández-Lerma and Lasserre [9]), where a Markov chain is
controlled by impulses. The discrete-type (or discrete in short) impulses occur at
stopping times ηk with values in N = {1, 2, . . .} (or in N = {0, 1, 2, . . .} if needed).
The relations are θk = τk−1

ηk
and ϑk = τk−1

ηk
+ ϑk−1 with ϑ1 = θ1. If a translation in

time is added then the intermediate variables θk are bypassed, and if ηk denotes the
translated stopping times, then the relation ϑk = τηk

is deduced. The sequence of
costs is rewritten as Jx,y(ν|ηk) instead of Jx,y(ν|ϑk). Remark that there is a one-to-one
correspondence between admissible impulse controls {(ϑi, ξi) : i ≥ 1} and admissible
discrete impulse controls {(ηi, ξi) : i ≥ 1}, ηi = inf{k ≥ 1 : ϑk = τk}, and similarly,
between zero-admissible impulse controls and all discrete impulse controls. Therefore,
with this construction, we have the following.

Definition 2.2. If {ηi : i ≥ 1} is a sequence of G-stopping times with values
in N = {0, 1, 2, . . .}, such that 0 ≤ η1 ≤ η2 ≤ · · · and ηn → ∞, almost surely, and
{ξi : i ≥ 1} is another sequence of random variables with values in Γ, such that ξi
is Gηi-adapted, then the double sequence η = {(ηi, ξi) : i ≥ 1)} is referred to as a
discrete-time impulse control, which is called admissible when η1 ≥ 1.

In general, it is convenient to construct (in some infinite product copy space) a
probability P ν

x,y and a sequence cad-lag processes {zi,ν
t : t ≥ 0, i = 0, 1, . . .} to write

the cost as

(2.19) Jx,y(ν) = E
ν
x,y

{∫ ∞

0
e−αtf(xν

t , y
ν
t )dt+

∞∑
i=1

e−αϑic(xi−1,ν
ϑi

, ξi)

}
.

Note that for diffusion with jumps, this construction is made in the canonical space,
without any infinite product copy space.

3. Dynamic programming (DP). The impulse control problem has been de-
fined above, but some more details are necessary before applying the DP principle.
As discussed earlier, two models are presented with state (x, y) and time t:
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(a) The initial control problem with optimal cost v(x, y) given by (2.9), where the
constraint “wait to intervene until a signal arrives” has been translated as “intervene
only when y = 0 and t > 0.”

(b) The auxiliary problem with optimal cost v0(x, y) given by (2.10), where the
constraint wait to intervene until a signal arrives has been translated as “intervene
only when y = 0.”

In this section, we will use f(x) instead of f(x, y) to shorten the writing, and the
expression (2.19) for the cost function. First let us comment on these two descriptions:

(1) Time homogeneous. The second model (b) is homogeneous in time, but the
first one is not. This means that to properly use the DP arguments, the cost v(x, y)
should include the time variable as part of the state, i.e., to define a cost v(x, y, s),
where the evolution begins at time t = s, with the constraint as in model (a), i.e.,
v(x, y, 0) = v(x, y) and for s > 0,

Jx,y,s(ν) = E
ν
x,y

{∫ ∞

0
e−α(t−s)f(xν

s+t)dt+
∑

i

e−α(ϑi−s)c(xi−1,ν
s+ϑi

, ξi)

}
,

v(x, y, s) = inf
{
Jx,y,s(ν) : ν any admissible impulse control

}
,

where now admissible means “intervene only when y = 0 and s �= 0.” Since all data
are time homogeneous, the equality

(3.1) v(x, y, s) = e−αsv(x, y) ∀x ∈ E ∀y, s ≥ 0,

holds true.
(2) Multiple impulses. Another point to clarify is the possibility of making several

impulses at the time, i.e., if “intervene” means “stop and restart” the dynamic of the
system then, upon arrival of a signal, the controller may stop and restart multiple
times (say n times, each impulse from xi to ξi = xi+1, i = 1, . . . , n, with a cost
c(xi, ξi), where the state begins at x1 = x and ends at xn+1). If no other assumption
is made, multiple impulses are not excluded from the optimal decision. For the sake
of simplicity, we assume in the following that

(3.2) c(x, ξ1) + c(ξ1, ξ2) ≥ c(x, ξ2) ∀x ∈ E, ξ1, ξ2 ∈ Γ.

The expression

(3.3) ϕ(x) �→ (Mϕ)(x) = inf
ξ∈Γ

{
ϕ(ξ) + c(x, ξ)

}
defines the impulse operator M .

Now, by comparing the constraints in models (a) and (b), it is clear that there
is no difference when the state variable y > 0, and there are possible impulses at the
initial time when y = 0, i.e., any control in (b) can be expressed as an initial impulse
followed by a control in (a). Therefore, directly from the definitions, (2.9) and (2.10)
of the optimal costs follow the relations

(3.4)
v(x, y) ≥ v0(x, y) ∀x ∈ E, y ≥ 0, with = if y > 0,

v0(x, 0) = min
{
v(x, 0), inf

ξ∈Γ
{v(ξ, 0) + c(x, ξ)}

}
∀x ∈ E,

hold, provided assumption (3.2) is enforced.
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3.1. Weak DP equations. If θ ≥ 0 is a time at which the evolution of the
system is “stopped and restarted” then all interventions at times ϑi < θ will be
applied within the time interval [0, θ[, and the remaining impulses are left for the
time interval [θ,∞[. For a given impulse control ν, this is written as ν[0,θ[ and ν[θ,∞[.

If τi−1 < θ < τi for some i ≥ 1, then the class of impulse controls acting on the
time interval [θ,∞[ is the same for both models (since yθ �= 0). However, if θ = τi for
some i ≥ 1, then the class of impulse controls on model (b) is unchanged, and that of
model (a) becomes those of model (b).

Using the expression of the cost Jx,y(ν) given by (2.19), we have

Jx,y(ν) = E
ν
x,y

{∫ θ

0
e−αtf(xν

t )dt+
∑

i

e−αϑic
(
xi−1,ν

ϑi
, ξi

)
�{ϑi<θ}

}

+ E
ν
x,y

{∫ ∞

θ

e−αtf(xν
t )dt+

∑
i

e−αϑic
(
xi−1,ν

ϑi
, ξi

)
�{ϑi≥θ}

}
.

Now, assuming the impulse control is a Markovian feedback and the controlled process
satisfies the strong Markov property, we have the equality

E
ν
x,y

{∫ ∞

θ

e−αtf(xν
t )dt+

∑
i

e−αϑic
(
xi−1,ν

ϑi
, ξi

)
�{ϑi≥θ}

}

= E
ν
x,y

{
E

ν
x,y

{∫ ∞

θ

e−αtf(xν
t )dt+

∑
i

e−αϑic
(
xi−1,ν

ϑi
, ξi

)
�{ϑi≥θ}

∣∣ Fθ

}}

= E
ν
x,y

{
e−αθJxν

θ
,yν

θ
(ν[θ,∞[)

}
,

where ν[θ,∞[ means the impulses after θ, and we obtain

Jxy(ν) = E
ν
x,y

{∫ θ

0
e−αtf(xν

t )dt+
∑

i

e−αϑic
(
xi−1,ν

ϑi
, ξi

)
�{ϑi<θ}

}

+ E
ν
x,y

{
e−αθJxν

θ
,yν

θ
(ν[θ,∞[)

}
.

Hence, minimizing first on ν[θ,∞[ and then on ν[0,θ[, the so-called weak dynamic pro-
gramming equation (wDPE) for v is obtained, namely,

u(x, y) = inf
ν

E
ν
x,y

{ ∫ θ

0
e−αtf(xν

t )dt+
∑

i

e−αϑic
(
xi−1,ν

ϑi
, ξi

)
�ϑi<θ

+ u
(
xiθ−1,ν

θ , yθ, θ
)}

,

where iθ = sup{i : ϑi < θ} with iθ = 1 if ϑi ≥ θ for every i ≥ 1. Next, since the first
intervention on [θ,∞[ must satisfy ϑ1 ≥ τ1 > 0, any zero-admissible control can be
applied on [θ,∞[ and, therefore, the previous equality becomes

u(x, y) = inf
ν

E
ν
x,y

{ ∫ θ

0
e−αtf(xν

t )dt+
∑

i

e−αϑic
(
xi−1,ν

ϑi
, ξi

)
�ϑi<θ

+ e−αθu0

(
xiθ−1,ν

θ , yθ

) }
, θ ≥ τ1,

(3.5)
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which together with

u(x, y) = inf
ν

E
ν
x,y

{∫ θ

0
e−αtf(xν

t )dt+ e−αθu (xν
θ , yθ)

}
, θ < τ1,

is the wDPE.
Similarly, for the optimal cost v0 given by (2.9), adding the time as an extra state

variable is not necessary and the wDPE reads as

u0(x, y) = inf
ν

E
ν
x,y

{ ∫ θ

0
e−αtf(xν

t )dt+
∑

i

e−αϑic
(
xi−1,ν

ϑi
, ξi

)
�ϑi<θ

+ e−αθu0

(
xiθ−1,ν

θ , yθ

)}(3.6)

for any stopping time θ ≥ 0.

3.2. HJB equations. In view of the first relation (3.4), the interest of the
optimal cost v0 is limited to the initial condition (x0, y0) = (x, 0).

Therefore, since an impulse (at time t = 0) is allowed within the first period
[0, τ1[, take θ = τ1 in the wDPE equation (3.6) to deduce

u0(x, 0) = min
{

inf
ξ1∈Γ

{u0(ξ1, 0) + c(x, ξ1)},

Ex,0

{∫ τ1

0
e−αtf(xt)dt+ e−ατ1u0(xτ1 , 0)

}}

or, equivalently,

(3.7) u0(x, 0) = min{Mu0(x, 0), Ru0(x, 0)} ∀x ∈ E,

where M is given by (3.3) and

(3.8) ϕ(x) �→ (Rϕ)(x, 0) = Ex,0

{∫ τ1

0
e−αtf(xt)dt+ e−ατ1ϕ(xτ1)

}

with Ex,0 referring to the initial condition x0 = x and y0 = 0 relative to the Markov
process {(xt, yt) : t ≥ 0}.

Now, for any initial condition (x0, y0) = (x, y), take θ = τ1 (this first signal may
depend on y) in the wDPE equation (3.5) to get the equality

(3.9) u(x, y) = Ex,y

{∫ τ1

0
e−αtf(xt)dt+ e−ατ1u0(xτ1 , 0)

}
,

which yields the values of u(x, y) for y ≥ 0, once u0(xτ1 , 0) is known. Together with
the first equality (3.4), this also provide the values of u0(x, y), for y > 0.

To write an equation with u alone, the relation (3.4) in (3.9) gives

u(x, y) = Ex,y

{∫ τ1

0
e−αtf(xt)dt

+ e−ατ1 min
{
u(xτ1 , 0), inf

ξ1∈Γ
{u(ξ1, 0) + c(xτ1 , ξ1)}

}}
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or, equivalently,

(3.10) u(x, y) =
(
R(min{u(·, 0), (Mu(·, 0))})

(x, y) ∀x, y,
with the same operators M and R, given by (3.3) and (3.8), but now R is used for
(x, y), and Ex,y is referring to the initial condition x0 = x and y0 = y relative to the
Markov process {(xt, yt) : t ≥ 0}.

Finally, consider (3.9) with y = 0, taking the minimum value with (Mu(·, 0))(x),
and using the relation (3.4),

u0(x, 0) = min
{
u(x, 0), (Mu(·, 0))(x)

}
= min

{
(Mu(·, 0))(x), Ex,0

{∫ τ1

0
e−αtf(xt)dt+ e−ατ1u0(xτ1 , 0)

}}

is obtained.

3.3. Comments on settings and proofs. As mentioned earlier, because of the
sequential aspect of the impulse control policies, the discrete DP is a good choice to
deal with constraint impulse control problems of this type. Therefore, a discrete (or
sequential) setting would be as follows: begin with the initial state (x0, y0) = (x, y)
and within a period n ≥ 1, the time goes from τn−1 to τn and the state moves from
xτn−1 to xτn , yτn = 0, and the running cost for the given period is

E
ν
x,y

{∫ τn

τn−1

e−αtf(xν
t )dt

}
.

If an intervention is decided, then an impulse appears only at the beginning of a
period, with a cost

E
ν
x,y

{
e−ατn−1c

(
xn−2,ν

τn−1
, ξn−1

)}
, n ≥ 2.

The difference is that, within the initial period [τn−1, τn[, n = 1, the model (b) allows
intervention and model (a) does not allow it (and the cost per impulse is adjusted
accordingly). Thus, adding over all periods, Jx,y(ν) is the total cost for an impulse
control ν = {(ηi, ξi) : i ≥ 1}, and v(x, y) and v0(x, y) are the optimal costs.

Recall that u or u0 replace the optimal cost v or v0 in the HJB equations to
indicate the “formal approach.” Now, analyzing each period, the controller may
intervene or not, with a corresponding cost. This yields directly the HJB equation
(3.7) for u0. Because on the first period there is no intervention for the cost v, (3.9)
is obtained. The difference between both models can be expressed with the equality
(3.4), i.e.,

v0(x, 0) = min
{
Mv(x, 0)(x), v(x, 0)

} ∀x ∈ E,

which can be used in (3.9) to deduce the HJB equation (3.10) for u.
To actually prove the wDPE, note that, because the cost within the time interval

[θ,∞[ is always larger than e−αθu0(xθ−, yθ), the inequalities

u(x, y) ≥ inf
ν

E
ν
x,y

{ ∫ θ

0
e−αtf(xν

t )dt+
∑

i

e−αϑic
(
xi−1,ν

ϑi
, ξi

)
�ϑi<θ

+ e−αθu0

(
xiθ−1,ν

θ , yθ

)}
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and

u0(x, y) ≥ inf
ν

E
ν
x,y

{∫ θ

0
e−αtf(xν

t )dt+
∑

i

e−αϑic
(
xi−1,ν

ϑi
, ξi

)
�ϑi<θ

+ e−αθu0

(
xiθ−1,ν

θ , yθ

) }
,

are immediately deduced. However the converse inequalities are more delicate; this
involves either using an ε-optimal (or optimal) impulse control or properly splitting
the action of an impulse control into the two time intervals [0, θ[ and [θ,∞[. Certainly,
either way is doable, but perhaps a little tedious. In our case, since a strong version
of the DP (or HJB) equation will be proved, this verification is not necessary.

Remark that if τ is given by (2.16) then

E
ν
x,y

{ ∫ τ

0
e−αtf(xt, yt)dt

= E
ν
x

{∫ ∞

0
exp

(
−

∫ t

0
λ(xs, y + s)ds

)
e−αtf(xt, y + t)dt

}

and

E
ν
x,y

{
e−ατϕ(xτ , yτ )

}
= E

ν
x

{∫ ∞

0
e−αt exp

(
−

∫ t

0
λ(xs, y + s)ds

)
λ(xt, y + t)ϕ(xt, 0)dt

}

can be used to deduce the following assertion.
If ϕ is a continuous and bounded function and

w(x, y) = (Rϕ(·, 0))(x, y)

with R given by (3.8), then the function w belongs to the domain in Cb(E × [0,∞[)
of the infinitesimal generator of the Markov process {(xt, y + t) : t ≥ 0}, and

−Axw(x, y) − ∂w(x, y)
∂y

+ λ(x, y)w(x, y) + αw(x, y)

= f(x, y) + λ(x, y)ϕ(x, 0) ∀x, y,
(3.11)

which can be used as an alternative definition of the operator R given by (3.8).
Therefore, the HJB equation (3.10) can be written as

−Axu(x, y) − ∂u(x, y)
∂y

+ λ(x, y)u(x, y) + αu(x, y)

= f(x, y) + λ(x, y)min
{
u(x, 0), (Mu(·, 0))(x)

} ∀x, y,
or, equivalently,

−Ax,yu(x, y) + αu(x, y) + λ(x, y)
[
u(x, 0) − (Mu(·, 0))(x)

]+

= f(x, y) ∀(x, y) ∈ E × [0,∞[.
(3.12)

All this cannot be applied to the HJB equation (3.7), but the equality (3.4) expresses
u0(x, 0) in term of u(x, 0).
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4. Solving the HJB equation. In order to solve the HJB equations, we need
some results on the optimal stopping problems with constraint.

4.1. Stopping time with constraint. For convenience let us adapt the results
in our previous paper [17] (which were presented as reward problems with only a
terminal reward and without the x-dependency of the intensity λ) to the current
situation.

The assumptions on {xt, yt : t ≥ 0}, α, f are those of section 2, and we add a
positive terminal cost ψ in Cb(E × [0,∞[).

The cost function is

Jx,y(θ, ψ) = Ex,y

{∫ θ

0
e−αtf(xt, yt)dt+ e−αθψ(xθ, yθ)

}

with an optimal cost

(4.1) u(x, y) = inf
{
Jx,y(θ, ψ) : θ > 0, yθ = 0

}
,

i.e., θ is any admissible stopping time, and an auxiliary optimal cost is defined as

(4.2) u0(x, y) = inf
{
Jx,y(θ, ψ) : yθ = 0

}
,

which forms a homogeneous Markovian model. Moreover, if τ is the first signal, i.e.,

τ = inf
{
t > 0 : yt = 0

}
then

(4.3) u0(x, y) = min
{
ψ,Ex,y

{∫ τ

0
e−αtf(xt, yt)dt+ e−ατu0(xτ , yτ )

}}

and

(4.4) u(x, y) = Ex,y

{∫ τ

0
e−αtf(xt, yt)dt+ e−ατ min{ψ, u}(xτ , yτ )

}
,

are the corresponding HJB equations, and both problems are related by the equation

(4.5) u(x, y) = Ex,y

{∫ τ

0
e−αtf(xt, yt)dt+ e−ατu0(xτ , yτ )

}
.

Note that yτ = 0.

Theorem 4.1. Let us assume (2.2), (2.5), (2.6), and ψ ≥ 0 in Cb(E × [0,∞[).
Then the variational inequality (VI) (4.3) and (4.4) each has a unique solution in
Cb(E × [0,∞[), which are the optimal costs (4.1) and (4.2), respectively. Moreover,
the first exit time from the continuation region is optimal, i.e., the discrete stopping
times

(4.6)
θ̂ = inf

{
t > 0 : u(xt, yt) ≤ ψ(xt, yt), yt = 0},

θ̂0 = inf
{
t ≥ 0 : u0(xt, yt) = ψ(xt, yt), yt = 0}

are optimal, namely, u(x, y) = Jx,y(θ̂, ψ) and u0(x, y) = Jx,y(θ̂0, ψ). Furthermore, the
relation (4.5) holds.
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Remark that u0 = min{u, ψ} may not belong to the domain D(Ax,y) ⊂ Cb(E ×
[0,∞[) of the infinitesimal generator Ax,y of the Markov process {(xt, yt) : t ≥ 0}.
However, the optimal cost u given by (4.1) belongs to D(Ax,y) and

(4.7) −Ax,yu(x, y) + αu(x, y) + λ(x, y)[u(x, 0) − ψ(x, y)]+ = f(x, y)

for any (x, y) in E × [0,∞[. Also recall that several extensions are possible, in partic-
ular, the use of data with polynomial growth (instead of bounded).

There are some references regarding the stopping time problem with Poisson
constraint (e.g., Dupuis and Wang [7], Lempa [11], Liang and Wei [14]), while there
are many more about the usual or standard stopping times problem (e.g., the books
by Bensoussan and Lions [4], Peskir and Shiryaev [19], among several others books
and papers).

4.2. Existence and uniqueness. If D(A) is the domain of the infinitesimal
generator in C(E) of the semigroup {Φ(t) : t ≥ 0} corresponding to the initial Markov
process {xt : t ≥ 0}, and

(4.8) u0(x) = Ex

∫ ∞

0
e−αtf(xt)dt ∀x ∈ E,

then u0 is the unique solution in D(A) ⊂ C(E) of the equation −Au0 + αu0 = f.
This function u0 is the cost of no intervention, i.e., when the controller chooses not
to apply any impulse to the system. Since all costs are supposed nonnegative, the
interval

(4.9) C(u0) =
{
ϕ ∈ C(E) : 0 ≤ ϕ(x) ≤ u0(x), ∀x ∈ E

}
contains the optimal costs v and v0 given by (2.9) and (2.10).

Consider the HJB equation (3.7), i.e., denoting u0(x) = u0(x, 0),

u0(x) = min
{

inf
ξ∈Γ

{u0(ξ) + c(x, ξ)},

Ex,0

{∫ τ1

0
e−αtf(xt)dt+ e−ατ1u0(xτ1)

} }
,

(4.10)

and recall the impulse operator M and the (almost resolvent) operator R (which used
the running cost f), given by (3.3) and (3.8), to write (4.10) as u0 = min{Mu0, Ru0},
and (4.8) as the solution of the equation u0 = Ru0.

Also consider the scheme un
0 = min{Mun−1

0 , Run
0} with u0

0 = u0, i.e.,

un
0 (x) = min

{
inf
ξ∈Γ

{
un−1

0 (ξ) + c(x, ξ)
}
,

Ex,0

{∫ τ1

0
e−αtf(xt)dt+ e−ατ1un

0 (xτ1)
}}(4.11)
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for any n ≥ 1. As seen in the previous paper [17] (see also section 4.1), this equation
has a unique solution in C(E), which is the optimal cost of a stopping time problem
with constraint, i.e., un

0 = vn
0 (·, 0) with

(4.12) vn
0 (x, y) = inf

θ
Ex,y

{∫ θ

0
e−αtf(xt)dt+ e−αθMvn−1

0 (xθ, 0)

}
,

where the minimization is over all zero-admissible stopping times θ, i.e., θ = τη for
some discrete stopping time η ≥ 0.

Theorem 4.2. Under assumptions (2.2), (2.5), (2.6), (2.7), and (3.2), the mono-
tone decreasing sequence {un

0 : n ≥ 1} defined by (4.11) converges to u0, and there
are two constants C > 0 and ρ in ]0, 1[ such that

(4.13) 0 ≤ un
0 (x) − u0(x) ≤ Cρn ∀x ∈ E, n ≥ 1.

Moreover, the HJB equation (4.10) has one and only one solution u0 within the in-
terval C(u0) given by (4.8), and the representation

(4.14) u0(x) = inf
θ

Ex,0

{∫ θ

0
e−αtf(xt)dt+ e−αθMu0(xθ)

}

holds true, where the minimization is over all zero-admissible stopping times θ, i.e.,
θ = τη for some discrete stopping time η ≥ 0.

Proof. Using section 4.1, from the scheme (4.11), we deduce that {un
0 : n ≥ 1}

is a monotone decreasing sequence of nonnegative functions and, hence, the limit
limn u

n
0 (x) = u0(x) exists for every x in E. Since the operator M maps C(E) into

itself, for any v in C(E) the VI

w(x) = min
{
Mv(x), Ex,0

{∫ τ1

0
e−αtf(xt)dt+ e−ατw(xτ1 )

}}
,

has a unique solution w in C(E), which is the optimal cost of the stopping time
problem with constraint (with the stopping cost ψ = Mv), namely,

w(x) = inf
θ

Ex,0

{∫ θ

0
e−αtf(xt)dt+ e−αθMv(xθ, 0)

}
,

where the minimization is over all zero-admissible stopping times θ, i.e., θ = τη for
some discrete stopping time η ≥ 0. This defines the nonlinear operator v �→ w = T (v).

From the definition of T , it can be shown that v �→ T (v) is a nondecreasing and
concave mapping from C(E) into itself, i.e.,

(4.15)
u ≤ v implies T (u) ≤ T (v),

γT (u) + (1 − γ)T (v) ≤ T (γu+ (1 − γ)v) ∀γ ∈ [0, 1].

The next point is to check that

(4.16)
0 ≤ v ≤ u0 implies 0 ≤ T (v) ≤ u0,

∃ r ∈]0, 1[ such that ru0 ≤ T (0).
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Indeed, looking at T (v) as the optimal cost, it is clear that T maps the interval C(u0)
into itself. Next, from (4.8) it follows that u0 is bounded and, hence, the assumption
(2.7) implies that there exists r in ]0, 1[ such that ru0(x) ≤ c0 ≤ M(0)(x) for every x
in E. Also, the strong Markov property and f ≥ 0 give

ru0(x) = Ex,0

{∫ θ

0
e−αtrf(xt)dt+ e−ατ1ru0(xθ)

}

≤ Ex,0

{∫ θ

0
e−αtf(xt)dt+ e−αθM(0)(xθ)

}

for any zero-admissible stopping time θ. This implies ru0 ≤ T (0).
Now, we are ready to implement the arguments of Hanouzet and Joly [8]. For the

sake of completeness, details on those arguments are given below. First, the second
part of (4.16) together with (4.15) yield

(4.17)
if v, ṽ ∈ C(u0), γ ∈ [0, 1], and v − ṽ ≤ γv,

then T (v) − T (ṽ) ≤ γ(1 − r)T (v)

with the same r as in (4.16). Indeed, γ0 + (1 − γ)v ≤ ṽ implies

T (ṽ) ≥ T (γ0 + (1 − γ)v) ≥ γT (0) + (1 − γ)T (v)

and so

T (v) − T (ṽ) ≤ γT (v) − γT (0) ≤ γT (v) − γru0 ≤ γ(1 − r)T (v).

Then, we iterate (4.17) with un+1
0 = T (un

0 ) and u0
0 = u0 as follows: since T (u0

0) ≤
u0

0 = u0 and u0
0 ≥ u1

0 ≥ 0, we have 0 ≤ u0
0 − u1

0 ≤ u0
0 for n = 1. By means of (4.17)

with γ = 1, we get 0 ≤ u1
0 − u2

0 ≤ (1 − r)u1
0; for n = 2, by induction, from (4.17) with

γ = (1 − r)n−1 we deduce

0 ≤ un
0 − un+1

0 ≤ (1 − r)nun
0 , n = 0, 1, . . . ,

which gives

0 ≤ un
0 − u0 ≤ (1 − r)n ‖u0‖

r
, n = 0, 1, . . . .

Hence, the limit u0 as n → ∞ exits uniformly, and the estimate (4.13) follows. Finally,
take n → ∞ in (4.11) and (4.12) to obtain (4.10) and (4.14).

Since u0(x, 0) is known, in view of (3.9), i.e.,

u(x, y) = Ex,y

{∫ τ1

0
e−αtf(xt)dt+ e−ατ1u0(xτ1 , 0)

}
,

the function u(x, y) can be obtained. Nevertheless, it may be convenient to state
directly a result for u similar to Theorem 4.2, even if almost the same arguments are
used.

Theorem 4.3. Under assumptions (2.2), (2.5), (2.6), (2.7), and (3.2), the mono-
tone decreasing sequence {un : n ≥ 1} defined by (4.23) converges to u, and there are
two constants C > 0 and ρ in ]0, 1[ such that

(4.18) 0 ≤ un(x) − u(x) ≤ Cρn ∀x ∈ E, n ≥ 1.
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Moreover, the HJB equation (4.22) has one and only one solution u within the interval
C(u0) given by (4.8), and then the representation

(4.19) u(x) = inf
θ

Ex,0

{∫ θ

0
e−αtf(xt)dt+ e−αθMu(xθ)

}

holds true, where the minimization is over all admissible stopping times θ, i.e., θ = τη
for some discrete stopping time η ≥ 1. Furthermore, un and u belong to the domain
D(Ax,y) ⊂ Cb(E × [0,∞[) of the infinitesimal generator Ax,y,

−Ax,yu(x, y) + αu(x, y) + λ(x, y)
[
u(x, 0) − (Mu(·, 0))(x)

]+

= f(x) ∀(x, y) ∈ E × [0,∞[,
(4.20)

and

−Ax,yu
n(x, y) + αu(x, y) + λ(x, y)

[
un(x, 0) − (Mun−1(·, 0))(x)

]+

= f(x) ∀(x, y) ∈ E × [0,∞[ ∀n ≥ 1,
(4.21)

hold true.

Proof. Let us give only some comments and arguments used in this proof. Con-
sider the HJB equation (3.10), i.e.,

u(x, y) = Ex,y

{∫ τ1

0
e−αtf(xt)dt

+ e−ατ1 min
{
u(xτ1 , 0), inf

ξ∈Γ
{u(ξ, 0) + c(xτ1 , ξ)}

}}
,

(4.22)

and recall the impulse operator M and the operator R, given by (3.3) and (3.8), to
write (4.22) as (3.12), i.e., (4.20). This yields the scheme

un = R
(
min

{
un(·, 0),Mun−1(·, 0)

})
with u0 given by (4.8), i.e.,

un(x, y) = Ex,y

{∫ τ1

0
e−αtf(xt)dt

+ e−ατ1 min
{
un(xτ1 , 0), inf

ξ∈Γ

{
un−1(ξ, 0) + c(xτ1 , ξ)

}}}(4.23)

or, equivalently, (4.21). As seen in the previous paper [17] (see also section 4.1), this
equation has a unique solution in C(E), which is the optimal cost of a stopping time
problem with constraint, i.e., un = vn with

vn(x, y) = inf
θ

Ex,y

{∫ θ

0
e−αtf(xt)dt+ e−αθMvn−1(xθ, 0)

}
,

where the minimization is over all admissible stopping times θ, i.e., θ = τη for some
discrete stopping time η ≥ 1.
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Theorem 4.4. Under assumptions (2.2), (2.6), (2.7), (2.5), and (3.2), the unique
solution of the HJB equation (4.22) is the optimal cost (2.9), i.e.,

(4.24) u(x, y) = inf
{
Jx,y(ν) : ν any admissible impulse control

}
or

u(x, y) = inf
{
Jx,y(η) : η any discrete impulse control with η1 ≥ 1

}
for every (x, y) in E × [0,∞[.

Proof. First, let us show that

(4.25) un(x, y) = inf
{
Jx,y(ν) : ν ∈ Sn}, n ≥ 0,

where Sn denotes the set of admissible impulse controls with at most n interventions.
Since u0(x, y) is defined by (4.8), it is clearly the cost without any intervention.

Then using (4.23) and section 4.1 on the optimal stopping with constraint, we have

(4.26) u1(x, y) = inf
θ

Ex,y

{∫ θ

0
e−αtf(xt)dt+ e−αθMu0(xθ, 0)

}
,

where θ is any admissible stopping time. For an admissible pair (ϑ1, ξ1), the equality
(4.26) gives

u1(x, y) ≤ Ex,y

{∫ ϑ1

0
e−αtf(xt)dt+ e−αϑ1c(xϑ1 , ξ1) + e−αϑu0(ξ1)

}

and from the definition of u0, we get

u1(x, y) ≤ Ex,y

{∫ ∞

0
e−αtf(xt)dt+ e−αϑ1c(xϑ1 , ξ1)

}
= Jx,y(ν) ∀ν ∈ S1.

Moreover, since the optimal stopping problem with constraint (4.26) has an optimal
solution θ̂, and taking ξ̂ minimizing ξ → [c(xθ̂, ξ) + u0(ξ, 0)], we have u1(x, y) = J(ν̂)
for a ν̂ in S1. Therefore the equality (4.25) is proved for n = 1. Certainly, this
argument can be iterated to complete the proof of (4.25)

To show the validity of (4.24), we start with un(x, y) ≤ Jx,y(ν, n) for ν in
Sn, where Jx,y(ν, n) is the cost for ν in Sn, to obtain u(x, y) = limn u

n(x, y) ≤
limn Jx,y(ν, n) = Jx,y(ν), as n → ∞ for any admissible impulse control ν.

Since Sn ⊂ V we have

un(x, y) = inf
ν∈Sn

{
Jx,y(ν)

} ≥ inf
ν∈V

{
Jx,y(ν)

}
,

and as n → ∞, we get

u(x, y) = lim
n
un(x, y) ≥ inf

ν∈V
{
Jx,y(ν)

}
,

which completes the argument to prove the equality (4.24).

Theorem 4.5. Under assumptions (2.2), (2.6), (2.7), (2.5), and (3.2), the first
exit time of the continuation region provides an optimal admissible impulse control.
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Proof. First, if u is the optimal cost then (1) the continuation region [u < Mu]
is defined as all x in E such that u(x, y) < Mu(x, 0), (2) the optimal jump-to is a
Borel minimizer ξ̂(x) of Mu(x, 0), i.e., x �→ ξ̂(x) is a Borel functions from E into Γ
and c(x, ξ̂(x)) + u(ξ̂(x), 0) = Mu(x, 0) for every x in E., and (3) the first exit time of
[u < Mu] is defined as

θ̂(x, y, s) = inf
{
t > s : u(xt−s, yt−s) = Mu(xt−s, 0), yt−s = 0

}
,

and θ̂(x, y, s) = ∞ if u(xt−s, yt−s) < Mu(xt−s, 0) for every t > s such that yt = 0.
Note that he Markov process t �→ (xt−s, yt−s) for t ≥ s, represents the initial condition
(xs, ys) = (x, y) as discussed in section 2.2. Moreover, the continuity ensures that

u
(
xθ̂(x,y,s)−s, 0

)
= c

(
xθ̂(x,y,s)−s, ξ̂(xθ̂(x,y,s)−s)

)
+ u

(
ξ̂(xθ̂(x,y,s)−s), 0

)

if θ̂(x, y, s) < ∞.
Therefore, the evolution under the above feedback and initial conditions (x, y) is

as follows:
(1) first, ϑ1 = θ̂(x, y, 0) and ξ1 = ξ̂(xϑ1 ) when ϑ1 < ∞ (we may use an isolated

“coffin” state ∂ to set x∞ = ∂ and ξ̂(∂) = ∂);
(2) next ϑk+1 = θ̂(ξk, 0, ϑk) for any k ≥ 1.
This produces an admissible impulse control ν̂ = {(ϑk, ξk) : k ≥ 1}.
Recall the representation (4.19), namely,

u(x, y) = inf
θ

Ex,y

{∫ θ

0
e−αtf(xt)dt+ e−αtMu(xθ, 0)

}
,

where the minimization is over all admissible stopping times θ, with the initial con-
dition (x0, y0) = (x, y). Moreover, if u(x, y, s) = e−αsu(x, y) then the homogeneity in
time yields

(4.27) u(x, y, s) = inf
θ≥s

Ex,y,s

{∫ θ

s

e−α(t−s)f(xt)dt+ e−α(θ−s)Mu(xθ, 0)

}

under the initial condition (xs, ys) = (x, y).
For the initial condition (x0, y0) = (x, y), from (4.27) with s = 0 we get

u(x, y) = Ex,y

{∫ ϑ1

0
e−αtf(xt)dt+ e−αϑ1c(xϑ1 , ξ1) + e−αϑ1u(ξ1, 0)

}

= Jx,y(ν̂|ϑ1) + E
ν̂|ϑ1
x,y

{
e−αϑ1u(xϑ1 , 0)

}
,

since xϑ1 = ξ1 under P ν̂|ϑ1
x,y . Similarly, using (4.27) with s = ϑ1,

E
ν̂|ϑ1
x,y

{
e−αϑ1u(xϑ1 , 0)

}
= E

ν̂|ϑ1
x,y {u(xϑ1 , 0, ϑ1)}

= e−αϑ1E
ν̂|ϑ1
x,y

{∫ ϑ2

ϑ1

e−αtf(xt)dt+ e−αϑ2c(xϑ1 , ξ2) + e−αϑ2u(ξ2, 0)

}
,
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and this gives

u(x, y) = Jx,y(ν̂|ϑ2) + E
ν̂|ϑ2
x,y

{
e−αϑ2u(xϑ2 , 0)

}
after recalling (2.18), i.e.,

Jz(ν|ϑk+1) = Jz(ν|ϑk) + E
ν|ϑk
x,y

{∫ ϑk+1

ϑk

f(xt)e−αtdt+ e−αϑk+1c(xϑk+1 , ξk+1)
}
,

which represents the cost (of interventions) up to the time ϑk+1, and makes sense for
k ≥ 0, with ϑ0 = 0, and Jz(ν|ϑ0) = 0.

Thus, iterate this argument to deduce

u(x, y) = Jx,y(ν̂|ϑk) + E
ν̂|ϑk
x,y

{
e−αϑku(xϑk

, 0)
} ∀k ≥ 1,

and as n → ∞,

u(x, y) ≥ lim
k
Jx,y(ν̂|ϑk) = Jx,y(ν̂).

Since u(x, y) is the optimal cost, we have

u(x, y) = Jx,y(ν̂) and lim
n

E
ν̂|ϑk
x,y

{
e−αϑku(xϑk

, 0)
}

= 0,

proving the optimality of the admissible impulse control ν̂.

5. Extensions. Some possible extensions are discussed below, without full de-
tails and only with precise indications. A full analysis would take much more space.

5.1. Other impulse control problems. Let us consider the “variable” case of
Γ(x),

Γ : E �→ 2E with Γ(x) closed ∀x ∈ E,

where the condition (3.2) becomes

c(x, ξ1) + c(ξ1, ξ2) ≥ c(x, ξ2) ∀x ∈ E, ξ1 ∈ Γ(x), ξ2 ∈ Γ(x) ∩ Γ(ξ1).

There are several convenient settings (e.g., Bensoussan and Lions [5], Davis [6, Chap-
ter 5, pp.186–255], Seydel [21], among others), for the multivalued mapping Γ, but it
always seems necessary to ensure that the impulse intervention operator M ,

Mϕ(x) = inf
{
ϕ(x) + c(x, ξ) : ξ ∈ Γ(x)

} ∀x ∈ E,

possessed the properties

(5.1)

{
(a) M maps continuously Cb(E) into itself,
(b) there exists a Borel measurable minimizer for M,

where a minimizer means a Borel function ξ̂ : E × Cb(E) → E satisfying

ξ̂(x, ϕ) ∈ Γ(x), Mϕ(x) = ϕ(x) + c(x, ξ̂(x, ϕ)) ∀x, ϕ.
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Sometimes, the space Cb(E) is replaced by another suitable space, e.g., Borel and
bounded functions B(E) or continuous and bounded with a polynomial weight. Cer-
tainly, some modifications are necessary to include the variable y used in the con-
strained models under consideration.

In inventory models, the impulse intervention operator M may take the form

Mϕ(x) = inf
{
ϕ(x + ξ) + c(x, ξ) : ξ ≥ 0

} ∀x ∈ R
d,

where ξ is the jump (the order placed) instead of the jump-to as described earlier.
Clearly, in this case, the multivalued function is given by Γ(x) = {ξ ∈ Rd : ξ ≥ x}.

Switching problems with constraint (or more general hybrid models; e.g., see
Menaldi [16]) can be studied with almost the same technique. In these models, a
discrete variable n is added and, for instance, the intervention operator M becomes

Mϕ(x, n) = inf
{
ϕ(ξ,m) + c(x, n, ξ,m) : (ξ,m) ∈ Γ(x, n)

}
for any x in E and n inN ⊂ N. Essentially, the variable x contains several components
and the value of n determines which component is highlighted and, clearly, there are
several other interpretations. The reader is referred to the book Jasso-Fuentes et
al. [10], to appear soon. Similar problems with constraint of this type are found in
Liang and Wei [14], Wang [22], for diffusion processes.

Summing up, it is simple to review the proofs given earlier in the text to accom-
modate a multivalued function Γ under the assumption (5.1). Moreover, based on the
current large bibliography on control by interventions, this technique can be adapted
to other problems with constraint, like switching (or hybrid) models.

5.2. Unbounded data. Using the same tools as in our previous paper [17], we
can extend the results of the present paper to the case E = R

d or, more generally,
E locally compact and f with polynomial growth, using the Banach space Cp(Rd) of
real uniformly continuous functions on any ball and with a growth bounded by the
norm (in Rd) to the p-power (i.e., continuous functions with a polynomial growth),
or the most delicate case when E is a Hilbert or Banach space of infinite dimension;
e.g., see Menaldi and Sritharan [18].

Beyond this, let us point out that for unbounded data, the quasi-VIs (QVIs) or
impulse control problems present more challenges than the VIs or optimal stopping
problems. The reader is referred to Menaldi [15], where some general arguments are
used to close this gap, at least for diffusion with jumps.

5.3. Other type of signals. Modelling the signal with a sequence {T1, T2, . . .}
of IID (conditionally to {xt : t ≥ 0}) as presented, it seems very efficient to include
the cases described in our previous paper [17] as sources of the sequence of signal,
namely, pure jump Markov processes, semi-Markov processes, piecewise-deterministic
Markov processes, and diffusion processes with jumps. Essentially, it suffices to add a
new variable to the initial process {xt : t ≥ 0} to be reduced to the current situation.

As other assumptions on the process {yt : t ≥ 0}:
(a) Instead of assuming yt in R

+, we can consider the case yt in [0, y�[, for some
finite y� > 0, and therefore π([0, y�[) = 1. The results of section 4 can be extended
to this situation, except for the result involving the infinitesimal generator in Theo-
rem 4.3.

(b) In the case of IID variables independent of {xt : t ≥ 0}, we can consider a
“general” distribution π0 without a density. If π0(]0, t[) is continuous with respect to
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t and π0(]t,∞[) > 0 for every t, then the results of section 4 are still valid, except
that which concerns the infinitesimal generator.

REFERENCES

[1] A. Bensoussan, Stochastic Control by Functional Analysis Methods, North-Holland, Amster-
dam, 1982.

[2] A. Bensoussan, Dynamic Programming and Inventory Control, IOS Press, Amsterdam, 2011.
[3] A. Bensoussan and J.-L. Lions, Nouvelle formulation de problèmes de contrôle impulsionnel
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