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Abstract 

Secular change in height has been extensively investigated, but size and shape of the postcranial 

skeleton much less so. The availability of large, documented collections of 19
th

 and 20
th

 century 

skeletons makes it possible to examine changes in skeletal structure over the past 150 years. In 

this, paper we examine secular changes in long bone lengths and proportions, their allometric 

relationship to stature, and cross sectional properties of long bone shafts. 

Bone measurements and stature were organized into 10 year birth cohorts, ranging from 1840 to 

1989. Variation among cohorts was tested by one way ANOVA and secular trend was examined 

visually by plotting mean measurements by birth decade. Allometry was examined by regressing 

log bone lengths onto log stature, using least squares regression. Allometry was also examined 

using the geometric mean of log bone lengths as the size variable. 

All bone lengths and stature show positive secular change. Stature and the distal long bones show 

the most pronounced changes. There are also changes in proportions as revealed by the brachial 

and crural indices. Both indices increase, but the brachial index change is the most pronounced. 

Allometric relationships suggest that brachial index changes result from positive allometry of the 

radius and negative allometry of the humerus. Similar but less marked allometric relationships are 

seen in the tibia and femur. Long bone shaft properties change in the following ways: femur 

midshafts and tibia shafts at the nutrient foramen became more medio-laterally narrowed; the 

femur becomes more medio-laterally thickened at the subtrochanteric level, approaching 

platymeria. All major long bones become more gracile. 

These remarkable changes in the postcranial skeleton are a response to the unparalleled changes in 

the environment in which modern Americans now live. Changes in growth resulting from plentiful 

and secure nutrition, reduced disease load, and marked reduction in bone loading from reduced 

activity levels are mainly responsible. 
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  Secular change in stature has received considerable attention in the U.S. and Europe 

(Floud et al. 2011; Komlos 1995, Fogel 2004). From an anthropological perspective, changes in 

stature reflect changes in long bone length. However, observing secular trends in long bone length 

has been limited by the lack of availability of modern skeletal collections. Trotter and Gleser 

(1951) realized the importance of bone length as an indicator of secular change. Only the Terry 

collection and the World War II sample were available, so their time frame was limited to birth 

cohorts from 1840 to 1924. Nevertheless, they were able to show a relatively steep change 

occurring in the early 20
th

 century. In the past three decades, much more skeletal data has become 

available and has been used to investigate a much longer time series of long bone lengths 

(Meadows Jantz and Jantz 1999). 

 Skeletal analyses possess some significant advantages in the study of secular changes. 

They permit analysis of changes in proportion, and it is not necessary to correct for changes due to 

ageing. Additionally they allow analyses of populations beyond the reach of historical data. 

Over the last 150 years the American environment has experienced tremendous change in terms of 

healthcare, nutrition, sanitation, and daily activity levels; all of which play significant roles in 

changes in our skeletons. This paper will examine secular trends in limb lengths and proportions, 

postcranial robusticity, shape of long bone shafts, and femoral and humeral head diameters. It will 

also examine whether limb proportions change in relation to stature, termed allometric changes, or 

whether limb proportions remain constant with changes in stature, termed isometry.  

Materials and Methods 

 The sample of American whites is derived from three sources, including the Terry 

Collection, World War II casualties, and the Forensic Data Bank (FDB). Dates of birth range from 

the 1840s through the 1980’s. Measurements for the Terry and WWII long bone lengths were 
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performed by Mildred Trotter (Trotter and Gleser 1952). The remaining data derive from the FDB.  

Forensic anthropologists from across the United States submit osteometric data to the FDB 

(Moore-Jansen et al., 1994). The FDB also includes data from the Bass Donated collection. It is 

obvious that many different observers were involved in the creation of this data base. Despite 

measurement definitions and illustrations presented in Moore-Jansen et al. (1994, and previous 

editions), which most observers who contributed to the FDB used as a guide, interobserver 

variation is inevitable. An extensive interobserver variation study is included in the revised version 

of this manual (Langley et al. 2016). Variation among four observers was well below 1 % for 

nearly all dimensions included in this study. 

 Tables 1 through 3 provide the sample sizes for the long bone lengths, indices, and joint 

sizes for males and females by decade of birth cohort. Trotter’s WWII and Terry Collection data 

did not include diaphyseal or joint measurements. These data for the Terry Collection were 

obtained from http://anthropology.si.edu/cm/terry.htm. Measured stature was available from 

Trotter and Gleser’s WWII data, and cadaver stature was available from the Terry Collection. In 

addition, forensic stature (Ousley 1995) was available for many of the FDB skeletons, so stature 

was also included to evaluate allometric changes in bone lengths. Measured and cadaver statures 

were adjusted to maximum stature as described by Cline et al. (1989). Forensic stature was not 

adjusted because it is essentially a form of reported stature, which tends to be an overestimate of 

measured stature (Willey and Falsetti 1991).  

 Although Trotter and Gleser’s (1952) definition for tibia length has been followed for the 

Terry and FDB data, it has been determined that Trotter did not actually measure the tibia in the 

way she describes (Jantz et al. 1995), which is essentially condylar-malleolar length given in 

Martin and Knussmann (1988) as tibia measurement number 1. Rather, she omitted the malleolus, 
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despite saying it should be included. Therefore, Trotter’s measurements have been adjusted as 

described in Jantz et al. (1995) to account for this discrepancy. 

 In addition to lengths, some diaphyseal and articular surface dimensions were also 

included: humerus epicondylar breadth and head breadth, humerus diaphyseal midshaft maximum 

and minimum diameters, femur head breadth and diaphyseal anterior-posterior and mediolateral 

diameters at the subtrochanteric and midshaft levels, and tibia anterior-posterior and medio-lateral 

diameters at the nutrient foramen level. These measurements were taken as defined in 

Moore-Jansen et al. (1994). 

 Several indices were also used to quantify various aspects of limb proportions and 

diaphyseal shape and robusticity. The brachial index (radius length/humerus length x 100) and 

crural index (tibia length/femur length x 100) show proportions of distal and proximal segments of 

upper and lower limbs respectively. Indices of robusticity were calculated as √((a-p) x 

(m-l))/length. Robusticity in the humerus was calculated using the maximum and minimum 

midshaft diameters in place of a-p (antero-posterior) and m-l (medio-lateral) dimensions. 

Diaphyseal shapes at the subtrochanter of the femur (platymeric index) and the nutrient foramen of 

the tibia (cnemic index) were expressed as (a-p/m-l) x100. Lovejoy et al. (1976) present the 

cnemic index as (m-l/a-p) x100. Our definition is therefore the inverse of the traditional definition, 

but maintains consistency with other indices in placing a-p in the numerator. 

 Variation among decade cohorts was tested using one way ANOVA in NCSS10 (2015). 

Secular changes were evaluated visually by plotting mean lengths for each 10 year cohort. 

Allometry of bone lengths in relation to size was investigated by regressing log bone length onto 

log stature, using least squares regression in NCSS10 (2015). We also evaluated variation in 
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sexual dimorphism by dividing the sample into three broad groups, defined as mid to late 19
th

 

century (birth years 1850-1899), early 20
th

 century (birth years 1900-1949) and late 20
th

 century 

(birth years 1950-1989). Sexual dimorphism was evaluated using 2-level ANOVA in NCSS10 

(2015), with sex and time group as treatments. The interaction of group*sex tests for variation in 

sexual dimorphism (Konigsberg 1991).  

 

Results 

Long Bone Lengths  

 Table 4 shows the ANOVA tests for variation among decade means of the long bone 

lengths, stature, and the crural and brachial indices. Males are more variable than females as 

demonstrated by the F ratios. Males exhibit patterning in variation between upper and lower limbs, 

and proximal and distal elements within both upper and lower limbs to a greater extent than 

females. Proximal bones are less variable than distal bones, and upper limb bones are less variable 

than lower limb bones. Brachial indices are more variable than crural indices. The crural index 

shows relatively longer tibiae in males, but not females. The brachial index is larger than the crural 

index in both sexes, but in males it has the highest F ratio of all bone related variables. Male stature 

is the most variable. 

 The variability among birth cohorts reflects little about how it is patterned. Figure 1 shows 

the mean lengths by birth cohort of the four main long bones (humerus, radius, femur and tibia) for 

males and females. Stature is illustrated in Figure 2 with crural and brachial indices presented in 

Figure 3. In general, the long bones exhibit increases in length beginning just before the turn of the 

century. Females have less marked trends, and more apparent stochastic variation because of 

smaller sample sizes. Both sexes demonstrate an increase in stature from the mid-19
th

 century 
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through the late 20
th

 century, with males increasing faster than females. Males exhibit an 

especially marked increase in stature in the 20
th

 century. While females also increase in stature 

across this time, it is not as striking. The brachial index shows a steady increase with males out 

pacing females. The crural index also increases, but with less regularity than the brachial index. 

 The changing indices document proportional change, so we can inquire whether these are 

due to allometric responses to increases in stature. Table 5 shows the scaling coefficients of each 

long bone in relation to stature. In males, the humerus, radius, and ulna are negatively allometric, 

but the femur does not differ from isometry, and the tibia and fibula are positively allometric. In 

females all upper limb bones and the femur are negatively allometric, and tibia and fibula do not 

differ from isometry.  The male scaling coefficients indicate that the humerus becomes relatively 

shorter in relation to stature, while the radius is closer to isometry. This in turn implies that 

changes in the male brachial index are due to relatively shorter humeri rather than to relatively 

longer radii.  In females, all bones are negatively allometric except for the tibia and fibula, which 

are isometric. The humerus is considerably more negatively allometric than the radius, suggesting, 

as in males, that the humerus becomes shorter relative to the radius with increasing stature. 

 Secular changes in male crural index are presumably due to positive allometry of the tibia 

and isometry of the femur. The pattern of change of the male crural index is similar to that seen in 

the tibia, supporting the idea that the tibia is driving the change in crural index in males. The 

female pattern differs somewhat from the male pattern, where the tibia and fibula are isometric and 

the femur is negatively allometric.  Both female femur and tibia show weak positive trends; crural 

index shows little evidence of trend. Apparently the more or less parallel changes in femur and 

tibia maintain proportionality as seen in the crural index, despite what the scaling coefficients 

might suggest. 
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 Some additional insight into allometric changes may be obtained from using size defined 

by the bones themselves, rather than stature. Table 6 shows the scaling coefficients obtained from 

regressing each bone on mean log size, as suggested by Jolicoeur (1963). This approach imposes 

certain constraints on the allometry coefficients in that their average must be 1, since size is 

internally defined (Auerbach and Sylvester 2011). In males, all bones differ significantly from 

isometry, and all are negatively allometric with the exception of the tibia. The tibia is positively 

allometric in females. The female humerus is negatively allometric, while the femur and radius are 

isometric. Both sexes agree in showing strong negative allometry for the humerus compared to the 

radius.  

 Meadows Jantz and Jantz (1999) observed that female secular change is not as pronounced 

as male change. This is also implied by the lower variation among birth year cohorts in Table 4. 

The change in males is more marked than in females, which leads to the expectation that sexual 

dimorphism increases. Sex and time group interaction F ratios are shown in Table 7. They reveal 

that all bones, stature, and both indices change in sexual dimorphism from the 19
th

 to the 20
th

 

century. Specifically, stature dimorphism increases by more than 3 cm from the late 19
th

 to early 

20
th

 century and continues to rise into the late 20
th

 century. The long bones similarly increase from 

the late 19
th

 to early 20
th

 century, but unlike stature, this trend does not continue through the latter 

part of the 20
th

 century.       

Long Bone Size and Shape Properties 

Variation for size and shape properties of long bone shafts and proximal articular surfaces 

among decade birth cohorts was examined using variables that describe various aspects of 

diaphyseal shape, robusticity, and head diameters for the humerus and femur. Table 8 presents the 
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ANOVA tests for variation for size and shape properties of long bone shafts and proximal articular 

surfaces among decade birth cohorts. For the humerus, the variables which show significant 

variation (alpha < 0.05) among decade birth cohorts for males are head diameter and epicondylar 

breadth. Among females however, the only variable to show significant variation among decade 

birth cohorts is humerus robusticity. Femoral head diameter is significant only for males. All of the 

shape and robusticity indices for femur and tibia are significant for males. Over time, females 

show significant variation in lower limb midshaft shape and robusticity with the exception of tibia 

robusticity.  

 Figure 4 illustrates the robusticity change over time. In the 19
th

 century, males show an 

increase in all bones, however, during the 20
th

 century, all bones, especially the femur and tibia, 

show a decline in robusticity over time. Females show a general decline throughout both 19
th

 and 

20
th

 centuries. Both femur and tibia experience a marked reduction in sexual dimorphism, 

although males remain more robust throughout the time period represented. Figure 5 shows the 

humerus and femur head diameter change. A trend is barely apparent and decreases significantly 

only in males. 

 Figure 6 shows the index of platymeria and midshaft shape. The secular change for these 

variables proceeds in opposite directions with platymeria decreasing and midshaft shape 

increasing. The cross sectional shape reflected by these two indices is nearly round in the mid 19
th

 

century. From 1880 to 1910, these indices diverge with subtrochanteric dimensions becoming 

more platymeric, while the midshaft index moves toward greater relative anterior-posterior 

elongation. Although the pattern shift is towards playtmeria, the population remains in the 

euromeric range (Wescott 2005).  
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 The cnemic index shown in Figure 7, presents a notable pattern characterized by a steep 

rise in the index at the turn of the century. Like the femur midshaft index, this is mainly due to 

mediolateral narrowing. 

   

Discussion 

 The results show clearly that the postcranial skeleton has undergone some rather 

remarkable restructuring since the turn of the 20
th

 century. Stature shows stronger trends than any 

of the long bones, which implies trunk height is also experiencing secular trend. Our stature data 

agree well with what has been presented by Floud et al. (2011) from historical records. Changes in 

relative long bone lengths can largely be seen as allometric responses to increasing size. The 

strong negative allometry of the humerus can be seen as the driving forces behind the increasing 

brachial index, as can the greater positive allometry of the tibia compared to the femur regarding 

the crural index. This was also seen in the decline of relative length of the humerus over time 

(Meadows Jantz and Jantz 1999). 

 Auerbach and Sylvester (2011) have argued that when using stature as a size variable, all 

bones exhibit positive allometry. Our current results do not support that conclusion. However, the 

WWII sample (Meadows and Jantz 1995) found positive allometry in all bones except the ulna, but 

that was not the case for the 19
th

 century Terry sample. This begs the question of whether allometry 

itself varies in time. We calculated the allometry coefficients for the male sample for late19th, 

early 20
th

 and late 20
th

 century samples. The proximal bones became more negatively allometric 

through time, while the distal bones did not vary systematically. This requires further 

investigation, but may suggest that growth gradients are themselves subject to secular change and 

interpopulation variation.   
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 One of the more remarkable secular changes concerns the brachial index. In the early 19
th

 

century, it is approximately equal to the Neanderthals in Holliday (1998), while by the end of the 

20
th

 century it is about the same as his Upper Paleolithic and Mesolithic groups, the most distally 

extended of his European groups. The crural index is more constrained, ranging from about 81 to 

83, well within the European range, the higher value about equal to Holliday’s recent Europeans. It 

is reasonable to suppose that locomotor functions constrain the crural index, while the brachial 

index is less constrained and can respond to changes in activity. 

 Changes in cross sectional morphology are also remarkable. In general, one sees 

linearization and gracilization of the long bones. The femur midshaft and tibia at the nutrient 

foramen became relatively narrower. Robusticity decreases markedly, especially in the femur and 

tibia. Looking at determinants of long bone geometry broadly, several factors have been identified 

as playing a significant role, among them climate (Pearson 2000), activity (Shaw and Ruff 1987; 

Stock 2006; Wescott 2006 ), body breadth (Davies and Stock 2014), body weight (Reeves 2013; 

Ruff et al. 1991 ), muscle strength (Frost 1997) and lower limb length (Shaw and Stock 2011). 

Climate would seem to play a limited role in the present results, so other alternatives must be 

considered. 

 The most obvious changes relevant to long bone cross sectional morphology involve a 

major reduction in activity, especially work related activity (Floud et al. 2011) resulting from 

increased mechanization. Reducing childhood labor from child labor laws was also likely an 

import factor because it would have reduced stress on the developing skeleton. Linearization and 

gracilization take the form of reduced medio-lateral dimensions of the femur midshaft, something 

noted by Trotter et al. (1968), and of the tibia at the level of the nutrient foramen. Shaw and Stock 

(2009) have shown that tibia shape and robusticity respond to activity level and directionality of 
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loading. The medio-lateral narrowing and reduction in robusticity presumably reflect reduction in 

multidirectional loading associated with physical labor and overall reduction in activity beginning 

at the turn of the 20
th

 century and continuing throughout the 20
th

 century. 

 Ruff et al. (1991) present evidence that the medio-lateral expansion of the proximal femur 

is associated with body weight. Body mass index (BMI) rises from 1870 to 2000 (Floud et al. 

2011). That may account for the trend toward platymeria seen in Figure 6, but large increases in 

BMI associated with the past few decades do not seem to be reflected in the index, which is 

essentially flat after about 1920. Hypertrophy of the proximal femur was also found to be 

associated with body breadth (Davies and Stock 2014). However, body breadth has been shown to 

decrease from the 19
th

 to 20
th

 century (Driscoll 2010). 

Conclusion 

 Much of the recent research on limb lengths, proportions, and cross sectional morphology 

is not really relevant to interpreting the restructuring of the modern postcranial skeleton. Most of 

them use samples from earlier populations and reflect the more stable conditions of the past. By 

contrast, modern Americans have experienced environmental changes far exceeding the rate and 

magnitude of anything that has happened in the past. The environment of modern Americans can 

only be described as novel, never before having been experienced by human populations. The 

secular changes in stature described by economic historians are seen to be the tip of the iceberg, in 

the sense that the entire skeleton has been restructured as a response to the new environment. The 

way various aspects of this new environment have influenced the changes we have seen, and 

possibly others we have not, are not clear. But they offer the opportunity to develop new models 

that explain a broader range of environments than heretofore.  
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Table 1. Sample sizes by element. 

 

 

Males Females 

Decade 

of 

Birth 

Humerus Radius Ulna Femur Tibia Fibula Max 

Stature 

Humerus Radius Ulna Femur Tibia Fibula Max 

Stature 

1840 15 15 15 15 15 15 8 4 3 3 3 3 3 4 

1850 50 50 49 48 50 50 34 20 19 19 20 20 19 16 

1860 78 78 78 78 78 78 77 47 45 44 46 47 45 30 

1870 74 74 74 74 74 74 73 18 16 15 19 19 16 14 

1880 52 52 52 52 52 52 52 14 13 13 14 14 13 10 

1890 23 23 23 22 23 23 20 6 5 5 6 6 6 4 

1900 59 54 54 58 62 57 49 19 19 19 18 18 18 9 

1910 499 488 473 496 496 443 477 58 55 59 53 56 51 30 

1920 741 735 713 733 738 670 697 75 71 70 69 71 70 45 

1930 194 193 193 177 187 189 127 78 76 74 74 78 75 61 

1940 206 206 207 203 201 201 153 94 92 90 91 92 90 70 

1950 205 195 198 205 201 194 143 95 90 91 91 93 90 76 

1960 89 86 87 86 85 86 55 66 63 62 59 62 60 48 

1970 36 34 33 35 32 27 24 40 35 34 36 33 32 27 

1980 10 10 10 10 10 10 5 3 2 2 5 2 2 4 
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Table 2. Male sample sizes for various indices and joint dimension. 
Decade 

of Birth 

Crural 

Index 

Brachial 

Index 

Humeral 

Head 

Diameter 

Humerus 

Epiphyseal 

Breadth 

Humerus 

Robusticity 

Femoral 

Head 

Diameter 

Platymeric 

Index 

Femur 

Midshaft 

Shape  

Femur 

Midshaft 

Robusticity 

Cnemic 

Index 

Tibial 

Nutrient 

Foramen 

Robusticity 

1840 15 15 14 14 14 13 14 13 13 13 13 

1850 48 50 34 34 34 32 32 31 31 33 33 

1860 78 78 11 11 11 9 9 9 9 10 10 

1870 74 74 9 9 9 8 8 8 8 7 7 

1880 52 52 5 5 5 5 5 5 5 5 5 

1890 22 23 7 7 7 5 6 7 6 7 7 

1900 58 52 19 21 20 19 19 20 16 20 20 

1910 489 485 44 46 46 43 44 43 40 42 40 

1920 724 726 109 117 114 106 110 109 100 112 109 

1930 173 191 189 198 194 187 183 175 166 191 184 

1940 191 200 206 211 203 205 204 198 189 199 194 

1950 193 194 201 204 203 201 205 199 193 203 195 

1960 80 86 90 90 88 90 92 87 82 88 84 

1970 30 33 34 35 33 30 31 31 31 31 30 

1980 10 10 9 9 9 8 8 8 8 9 9 
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Table 3. Female sample sizes for various indices and joint dimension. 
Decade 

of Birth 

Crural 

Index 

Brachial 

Index 

Humeral 

Head 

Diameter 

Humerus 

Epiphyseal 

Breadth 

Humerus 

Robusticity 

Femoral 

Head 

Diameter 

Platymeric 

Index 

Femur 

Midshaft 

Shape  

Femur 

Midshaft 

Robusticity 

Cnemic 

Index 

Tibial 

Nutrient 

Foramen 

Robusticity 

1840 2 3 3 3 3 3 3 3 3 2 2 

1850 20 19 15 16 16 13 16 15 14 12 11 

1860 46 45 28 29 29 24 28 28 27 27 27 

1870 19 16 10 10 10 10 10 10 10 7 7 

1880 14 13 6 6 6 6 6 6 6 6 6 

1890 6 5 4 4 4 4 4 3 3 4 4 

1900 17 19 15 15 15 12 13 13 13 11 11 

1910 52 52 54 58 58 54 58 57 53 60 55 

1920 66 70 70 73 75 71 75 74 69 77 71 

1930 73 72 78 80 75 76 77 81 73 80 77 

1940 87 91 91 93 93 90 89 89 86 94 89 

1950 85 88 95 96 94 91 97 98 88 96 91 

1960 53 59 61 61 58 59 58 56 49 59 54 

1970 29 34 40 37 39 39 38 36 34 36 33 

1980 2 2 3 3 3 5 5 5 5 4 3 
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Table 4. F ratios and probabilities testing variation among decade cohort means. 

 
 Males Females 

Variable F(ndf,ddf) P F(ndf,ddf) P 

Maxstat 21.09(14,1979) <0.0001 2.86(14,433) 0.0004 

Humxln 4.47(14,2316) <0.0001 2.17(14,622) 0.008 

Radxln 10.95(14,2278) <0.0001 3.47(14,589) <0.0001 

Ulnxln 10.39(14,2244) <0.0001 2.78(14,585) 0.0005 

Femxln 10.94(14,2277) <0.0001 2.35(14,589) 0.0036 

Tibxln 15.71(14,2289) <0.0001 2.59(14,599) 0.0012 

Fibxln 15.02(14,2168) <0.0001 2.40(14,575) 0.0029 

Crural Index 7.46(14,2222) <0.0001 1.06(14,556) 0.3938 

Brachial Index 16.53(14,2254) <0.0001 4.18(14,573) <0.0001 
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Table 5.  Allometric scaling coefficients for bone lengths in relation to stature. 

 Males 
Females 

Bone N Scaling se N Scaling 
se 

Humerus 1932 0.8496* 0.0194 411 0.8059* 
0.0382 

Radius 1905 0.9511* 0.0199 390 0.8409* 
0.0424 

Ulna 1872 0.8850* 0.0192 392 0.8001* 
0.0424 

Femur 1908 1.0222 0.0168 387 0.9121* 
0.0350 

Tibia 1921 1.1451* 0.0188 395 1.0032 
0.0385 

Fibula 1797 1.1187* 0.0185 388 0.9717 
0.0391 

* Indicates significantly different from isometry. 
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Table 6. Bone length scaling coefficients using the geometric mean as the size variable. 

 Males (N=2154) Females (N=526) 

 Scaling se Scaling se 

Humerus 0.9277* 0.0085 0.9278* 0.0170 

Radius 0.9792* 0.0084 1.0095 0.0173 

Femur 0.9799* 0.0077 0.9887 0.0149 

Tibia 1.1131* 0.0078 1.0740* 0.0164 

* Indicates significantly different from isometry  
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Table 7. Interaction terms for 2-level ANOVA (sex and half century), testing for variation in sex 

dimorphism. 

Variable 
Interaction F 

(ndf,ddf) 
P 19th C E 20

th
 C L 20

th
 C 

Humerus 11.03(2,2943) <0.001 26.2 32.0 24.3 

Radius 8.89(2, 2873) <0.001 21.5 27.4 23.0 

Ulna 11.37(2,2835) <0.001 22.2 29.1 24.0 

Femur 7.54(2,2872) <0.001 28.1 39.2 33.4 

Tibia 10.23(2,2894) <0.001 22.2 34.6 30.6 

Fibula 8.27(2,2735) <0.001 23.9 34.9 31.0 

Stature 7.91 <0.001 8.6 12.3 12.9 

Crural Index 3.37(2,2785) 0.004 -0.188 0.544 0.575 

Brachial Index 3.68(2,2833) 0.025 0.489 1.078 1.411 
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Table 8.  Variation among decade of birth cohorts for size and shape properties of long bone 

shafts and proximal articular surfaces.   

 Males Females 

Variable F ratio (ndf, ddf) P F ratio (ndf,ddf) P 

Hum Head Diam 3.15(14,996) <0.001 1.66(14,558) 0.061 

Hum Epi Br 1.72(14,996) 0.047 1.15(14,569) 0.312 

Hum Robust 1.52(14,975) 0.097 2.46(14,566) 0.002 

Fem Head Diam 3.53(14,946) <0.001 0.87(14,542) 0.593 

Platymeria 3.92(14,955) <0.001 3.28(14,562) <0.001 

Fem Midshaft shp 5.97(14,928) <0.001 5.60(14,559) <0.001 

Fem Mid Robust 5.46(14,882) <0.001 2.48(14,517) 0.002 

Tib NFshp 3.46(14,955) <0.001 3.65(14,560) <0.001 

TibNF Robust 3.36(14,925) <0.001 1.12(14,527) 0.338 
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Captions for Figures 

 

Figure 1. Mean bone lengths (mm) by decade of birth. Humerus (A); Radius (B); Femur (C); Tibia 

(D). Males are solid lines, females are dashed. 

 

Figure 2. Stature (cm) by decade of birth. Males are solid lines, and females are dashed. 

 

Figure 3. Indices by decade of birth. Crural (A); Brachial (B). Males are solid lines, females are 

dashed. 

 

Figure 4. Robusticity by decade of birth. Humerus (A); Femur (B); Tibia (C). Males are solid lines, 

and females are dashed. 

 

Figure 5. Humerus (A) and femur (B) head diameters (mm) by decade of birth. Males are solid 

lines, and females are dashed. 

 

Figure 6. Platymeric index (A) and femur midshaft shape (B) by decade of birth. Males are solid 

lines, and females are dashed. 

 

Figure 7. Cnemic index by decade of birth. Males are solid lines, and females are dashed. 

 

 

 

 

 

 

 

 

 

 



Pre-print version. Visit http://digitalcommons.wayne.edu/humbiol/ after publication to acquire 
the final version. 

  

         

              
 

A. Humerus      B. Radius 
 

 

Femur 

        
 

C. Femur      D. Tibia 

 
 

 

Figure 1. Mean bone lengths by decade of birth. Males are solid lines, and females are dashed. 
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Figure 2. Stature by decade of birth. Males are solid lines, and females are dashed. 
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A. Crural index  

 

 

 
 

B. Brachial index. 

 

Figure 3. Crural (A) and brachial (B) indices by decade of birth. Males are solid lines, and females 

are dashed.  
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A. Humerus Robusticity 

 

 

 
B. Femur Midshaft Robusticity 

 

 

 
C. Tibia Nutrient Foramen Robusticity 

 

Figure 4. Robusticity by decade of birth. Males are solid lines, and females are dashed. 
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A. Humeral Head Diameter 

 

 

 
 

B. Femoral Head Diameter 

 

 

Figure 5. Humeral (A) and femoral (B) head diameters by decade of birth. Males are solid lines, 

and females are dashed. 

  

39

41

43

45

47

49

51

53

1
8

4
0

1
8

5
0

1
8

6
0

1
8

7
0

1
8

8
0

1
8

9
0

1
9

0
0

1
9

1
0

1
9

2
0

1
9

3
0

1
9

4
0

1
9

5
0

1
9

6
0

1
9

7
0

1
9

8
0

39

41

43

45

47

49

51

53

1
8

4
0

1
8

5
0

1
8

6
0

1
8

7
0

1
8

8
0

1
8

9
0

1
9

0
0

1
9

1
0

1
9

2
0

1
9

3
0

1
9

4
0

1
9

5
0

1
9

6
0

1
9

7
0

1
9

8
0



Pre-print version. Visit http://digitalcommons.wayne.edu/humbiol/ after publication to acquire 
the final version. 

 

 
 

A. Platymeric index 
 

 

 
 

B. Femur midshaft shape 

 

Figure 6. Platymeric index (A) and femur midshaft shape by decade of birth. Males are solid lines, 

and females are dashed. 
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Figure 7. Cnemic index by decade of birth. Males are solid lines, and females are dashed. 
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