January 2021

Using Machine Learning to Generate a Core Set of Echocardiographic Indices for Pediatric Research: A Sub-study in the PCS2 Cohort

Thomas S. Przybycien
Wayne State University, go0028@wayne.edu

Brigitte Mueller
Ted Rogers Centre for Heart Research

Steven Fan
Ted Rogers Centre for Heart Research

Paul C. Nathan
Division of Hematology/Oncology, Dept. of Pediatrics, The Hospital for Sick Children, paul.nathan@sickkids.ca

Cedric Manlhiot
Ted Rogers Centre for Heart Research

See next page for additional authors.

Follow this and additional works at:
https://digitalcommons.wayne.edu/som_srs

Part of the Medicine and Health Sciences Commons

Recommended Citation
https://digitalcommons.wayne.edu/som_srs/97

This Research Abstract is brought to you for free and open access by the School of Medicine at DigitalCommons@WayneState. It has been accepted for inclusion in Medical Student Research Symposium by an authorized administrator of DigitalCommons@WayneState.
Authors
Thomas S. Przybycien, Brigitte Mueller, Steven Fan, Paul C. Nathan, Cedric Manlhiot, and Luc Mertens

This research abstract is available at DigitalCommons@WayneState: https://digitalcommons.wayne.edu/som_srs/97
Using Machine Learning to Generate a Core Set of Echocardiographic Indices for Pediatric Research: A Sub-study in the PCS² Cohort

Thomas S. Przybycien¹, Brigitte Mueller², Steven Fan², Paul C. Nathan³, Cedric Manlhiot², and Luc Mertens⁴

¹ Wayne State University School of Medicine, Detroit MI, ² Cardiovascular Data Management Centre, The Hospital for Sick Children, Toronto ON, ³ Division of Hematology/Oncology, The Hospital for Sick Children, Toronto ON, ⁴ Division of Cardiology, The Hospital for Sick Children, Toronto ON

Question and Introduction

- With a multitude of echo parameters at a clinician’s disposal and clinical efficiency paramount, what are the most reliably measured and clinically relevant pediatric echo indices?

- No studies have determined the most clinically relevant and reliable groupings echo parameters in pediatric patient populations

- Using the PCS² (Preventing Cardiac Sequelae in Pediatric Cancer Survivors) cohort of childhood cancer survivors and clustering analysis, a machine learning (ML) method, we identify related echo parameters that represent a similar dimension of the variance in a pediatric echocardiographic study

Goal

- Use machine learning to cluster echo parameters by dimensionality of information, assess reproducibility and clinical relevance to identify a core set of echo indices to guide pediatric clinical care and research

Methods

- n=1,284 PCS² participants
- n=1,073 with 94 echo parameters
- 211 removed due to <20% availability of all echo indices
- 33 parameters removed due to not being calculated in >5% of cases
- n=1,073 with 94 echo parameters
- 54 echo parameters for B-A plots and ICC
- Clinical Relevance ranked by cluster
- Core pediatric echo indices
- 61 echo parameters for dendrogram

Results

- ≥73% of all scored parameters had good (0.60-0.74) or excellent (≥0.75) ICC in the inter- and intra-rater analyses
- Using highly reliable (>0.65 ICC) and available (>80% scored) parameters, we presented clusters of parameters to (5) pediatric cardiologists to rank within cluster clinical relevance
- Mean within cluster ranks identified a core set of 10: EF, pulmonary vein S/D ratio, auto EF A4C, tissue doppler mitral valve A-velocity, tissue doppler tricuspid valve S-velocity, mitral valve E/A ratio, mean LV A4C longitudinal strain rate systole, LV end diastolic dimension, m-mode LV posterior wall thickness (end diastole), average global longitudinal strain

Conclusions and Future Directions

- Using clustering analysis, clinical relevance rankings, and reliability we have identified 10 core echo indices that together recapitulate the information generated from the standard study set of 94 parameters.
- We aim to use these 10 parameters to guide pediatric echocardiographic research and clinical care.

Funding: This research study is being conducted with support from the Canadian Institutes of Health Research (CIHR, TCF118696), Ontario Institute for Cancer Research (OICR), Children’s Cancer and Blood Disorders Council (C17), Canadian Cancer Society (CCS), Pediatric Oncology Group of Ontario (POGO) and the Garron Family Heart Centre at the Hospital for Sick Children

Contact: thomas.przybycien@med.wayne.edu