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Regression Models for Mixed Over-Dispersed Poisson and Continuous Clustered 
Data: Modeling BMI and Number of Cigarettes Smoked Per Day 

 
Folefac Atem Julius S. Ngwa Abidemi Adeniji 

Brigham and Women's Hospital, 
Boston, MA 

Boston University, 
Boston, MA 

University of Pittsburgh, 
Pittsburgh, PA 

 
 
Clustered data, multiple observations collected on the same experimental unit, is common in 
epidemiological studies. Bivariate outcome data is often the result of interest in two correlated response 
variables. An efficient method is presented for dealing with bivariate outcomes when one outcome is 
continuous and the other is a count using a simple transformation to handle over-dispersed Poisson data. 
A multilevel analysis was performed on data from the National Health Interview Survey (NHIS) with 
body mass index (BMI) and the number of cigarettes smoked per day (NCS) as responses. Results show 
that these random effects models yield misleading results in cases where the data is not transformed. 
 
Key words: Joint bivariate model, random effect model, multilevel, mixed model, GLIMMIX. 
 
 

Introduction 
Modeling bivariate outcome using joint 
multivariate random effect models (JMRE) is a 
popular approach in the medical field. There are 
a number of conditions where a disease under 
study is well understood when two outcomes are 
considered. For example, in clinical trials the 
clinician may be interested in the joint evolution 
of HIV RNA and CD4+t lymphocytes in a 
cohort of HIV-1 infected patients treated with 
active antiretroviral drugs. Bellamy (1995) 
studied the study of the risk factors associated 
with the progression of osteoarthritis (OA) of the 
knee. In this study two outcomes were collected, 
the Western Ontario and McMaster Universities 
(WOMAC) disability score and the number of 
missed work days for the past three months due 
to knee pain. The JMRE model allows the 
modeling of mixed effects and bivariate 
outcomes. 
 
 
 
Folefac Atem is a Biometric Consultant. Email 
him at: folefac_atem@yahoo.com. Julius S. 
Ngwa is a Ph.D. candidate in the Biostatistics 
Department at the School of Public Health. 
Abidemi K. Adeniji has a Ph.D. in biostatistics 
and is a researcher at The Epidemiology Data 
Center (EDC), University of Pittsburgh. 

 
There are several advantages of 

modeling bivariate outcomes (see Laird and 
Ware, 1982; Dempster, et al., 1984; Bagiella, 
2000; Pantazis & Touloumi, 2007; McCulloch, 
2008; Atem, et al,. 2010). First, this model 
allows exploration of variations at different 
levels of a hierarchy and modeling of a 
correlation structure serially and across two 
outcomes. Second, the bivariate JMRE model 
achieves greater bias reduction in all model 
parameters compared to the two independent 
JMRE models. Third, there is greater flexibility 
in dealing with exploratory variables; the JMRE 
model can conveniently test hypotheses on 
either end point individually or simultaneously. 
JMRE can also handle missing data as the 
parameter estimates are obtained by techniques 
of maximum likelihood; the variance and means 
of the outcomes are estimated, thus the choice of 
the variance must be taken into consideration.  

Rao (1973) suggested that irrespective 
of the chosen variance, the fixed effect estimates 
are unbiased; however, the estimates can achieve 
maximum efficiency only when the appropriate 
variance is specified. Lastly, multiple testing can 
be avoided by forming joint models without 
resorting to ad hoc methods such as the 
Bonferroni adjustment or using advanced 
methods such as those as presented by 
Dmitrienko, et al. (2009). Moreover, because the 
bivariate model is a regression model, 
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classification and continuous predictors can be 
incorporated; the predictors can either be time 
variant or invariant.  

This study develops a straightforward 
and efficient method to handle bivariate 
outcome data where one outcome is continuous 
and the other is count with over-dispersion; a 
test is proposed to identify possible over-
dispersion in the count outcome. For modeling, 
data from the National Health Interview Survey 
(NHIS) from 1997-2006 was used to establish 
the joint relationship between body mass index 
(BMI; continuous) and number of cigarettes 
smoked per day (NCS; count), adjusting for 
race, gender and age. The National Health 
Interview Survey (NHIS) was founded in 1957 
as an annual nationwide survey of 
approximately 40,000 households in civilian, 
non-institutionalized populations. It is conducted 
by the National Center for Health Statistics 
(NCHS) and administered by the United States 
Census Bureau. 
 
Regression Techniques 

Regression techniques for hierarchical 
data have been referred to in the literature under 
different names, including random coefficient 
models (Rao, 1965) and hierarchical linear 
model (Bryk & Raudenbush, 1987). Song, et al. 
(2008) refers to bivariate and multivariate 
analyses as structural level equations. 
 
Bivariate Model 

For the case of two continuous markers 
with correlated random effect superscripts a  
and b  are used to distinguish the two markers. 
Subscripts j  and i  are used to denote the 

information of the thj  measurement for the thi  
individual. Assuming that the marker trends can 
be explained by two linear mixed models with 
correlated random-effects, a bivariate model for 
the multilevel marker measurements can be 
presented as follows (Thiebaut, et al., 2002): 
 

and

a a a a a a
ij ij ij i ij

b b b b b b
ij ij ij i ij

y x z e

y x z e

β λ

β λ

= + +

= + +
                 (1) 

 

Vectors ( 1)a a
i kλ ×  and ( 1)b b

i kλ ×  contain 

random (subject-specific) regression coefficients 

for ak  and bk  predictor variables included in 

the corresponding design vectors (1 )a
ijZ k×  and 

(1 )b
ijZ k×  respectively. The joint distribution of 
a
iλ  and b

iλ  is assumed to be multivariate 

normal with zero means and variance–
covariance matrix: 
 

a ab

ab b

  
 =  

  
                    (2) 

 
Matrices ( )a a ak k ×  and ( )b b bk k ×  are 
variance and covariance of the random effects 
for both outcomes respectively, while 

( )ab b ak k ×  specifies the covariance structure 
of the random effects between outcomes. 

Vectors ( 1)a apβ ×  and ( 1)b bpβ ×  
contain fixed regression coefficients for both 

markers respectively; (1 )a a
ijx p×  and 

(1 )b b
ijx p×  are their corresponding design 

vectors containing the values of ap  and bp
exploratory variables. The coefficients a

ije  and 
b
ije  represent the level-1 residual for the two 

outcomes. The bivariate model can be presented 
in the matrix form: 
 

0 0

0 0

a aaa a
i ii i

b bb b b
i ii i

Y X Z
X ZY

λβ
β λ

       
= +                  

 

(3) 
 
Bivariate Model: Random Effects Approach 

The outcomes of interest, BMI and NCS 
are denoted by 1 ( )iY t  and 2 ( )iY t  respectively, 

for subject i  at time t . Assume that the 
outcomes can be described by two linear mixed 
models with correlated random effects. A joint 
model can be constructed from the basic random 
effect model proposed by Laird and Ware 
(1982): 
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1 1 1 1 1

2 2 2 2 2

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
i i i i

i i i i

Y t t a b t t
Y t t a b t t

β ε
β ε

= + + +
= + + +  

(4)
 

 
where 1( )tβ  and 2 ( )tβ  refer to the average 

changes of the outcomes. The dependent 
variables (BMI and NCS) are linked together 
through the joint distribution of their random 
effects 
 

1

2

1

2

~ (0, )

i

i

i

i

a
a

N D
b
b

 
 
 
 
  
 

 

 
where D  is a matrix of the random effects with 
the following variance-covariance structure: 
 

2
1 1 2

2
2 1 2

a a b

b a b

σ σ

σ σ

 
 
 
 
 


  


 

 
The variance-covariance matrix of the model 
parameter is often derived by maximum 
likelihood or restricted maximum likelihood 
method. 

The residual components are 
uncorrelated and independent of the random 
effects 
 

2
1 1

2
2 2

0 0
~ , .

0 0
i

i

N
ε σ
ε σ

     
           

 

 
The variance-covariance structure implies that 
conditioning on the random effects, both 
responses are independent. Other cases can be 
obtained by making additional assumptions 
about the variance-covariance matrix .D  
Thiebaut, et al. (2002) outlined further 
procedures on a number of special cases of the D 
matrix. For these analyses, models were fitted 
using the SAS GLIMMIX procedure, while the 
random effects were introduced through the 

shared random effects procedures as described 
by De Gruttola, et al. (1994). 

A common objective for joint modeling 
is to investigate how outcomes are correlated. 
For example, a researcher might be interested in 
how the correlation of BMI and NCS are 
associated with age, while controlling for race 
and gender. The correlation between outcome 
variables BMI and NCS is derived from the 
variance- covariance matrix of the random effect 
and is given by: 
 

1 2

1 2

2 2

b b
e

b b

r
σ

σ σ
=  

 
The marginal correlation between BMI and NCS 
as a function of time t  is given by: 
 

1 2 1 2 2 1 1 2

1 1 1 1 2 2 2 2

2

2 2 2 2 2 2 2 2
1 2

( )

( )
.

2 2

m

a a a b a b b b

a a b b a b b a

r t
t t

t t t t

σ σ σ σ

σ σ σ σ σ σ σ σ

=

+ + +

+ + + + + +
 
When 0t =  the equation reduces to 
 

1 2

1 2

2 2 2 2
1 2

( ) a a
m

a a

r t
σ

σ σ σ σ
=

+ +
 

 
This formula implies that the marginal 
correlation cannot be higher than the correlation 
between random intercepts. If the measurement 
errors of BMI and NCS are smaller, the marginal 
correlation at 0t =  better approximates the 
correlation between the random intercepts. The 
covariance parameters of the random effects and 
the error components determine the shape of the 
marginal correlation function. Further, as t  
increases, the marginal correlation converges to 
the correlation between the random slopes. 
 

Methodology 
Simulation Study 

Yang, et al. (2007, 2009, 2010) 
discussed methods to simulate and test for an 
over-dispersed Poisson distribution. A simple 
and efficient way to simulate a mixture of 
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bivariate continuous and over-dispersed Poisson 
distribution using the specified parameters is:  
 

2

(1,0.2, 0.2,1) ' 1,5

(1,0.2,0.1,0.1) ', 0.5, 1

0.12, 100, 7

a

b

a b
i i

a

n T

β
β ρ σ
λ λ

= − =
= = =
= = = =

 

 
Data were simulated using a negative binomial 
distribution for the case where α = 5. A negative 
binomial may result from a mixture of Poisson 
distributions with a Gamma distribution of the 
mean and a specified shape and scale parameters 
(R – Documentation). The mean to variance 
ratio was about 1:5. See Table 1, Figure 1 for a 
table and plot of the mean and variance for a 
non-dispersed and see Table 2, Figure 2 for a 
dispersed Poisson distribution. Using equation 4, 
5,000 samples were generated; each sample of 
size 100 represents a mixed Poisson and 
continuous longitudinal data with 7 time points. 
Both outcomes were generated as a linear 

function of 4 predictors ( ix ); the predictors were 

specified as both binary and continuous. The 
bias of the estimates using different 
transformations and correlations were 
approximately equal. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Results 
Tables 3 - 5 summarize the results of the 
simulated dataset; Log likelihood (-2 Log L), 
AIC, AICC and BIC together with the means 
estimates, standard errors and p-values of our 
estimates. The AIC, AICC and BIC as defined in 
Akaike (1973, 1985), Sakamota, et al. (1986) 
and Bozgogan (1987) are specified as: 

ˆ2( log ( , ) )g x dθ− + , 
2( 1)( 2)

2

d dAIC
n d
+ ++
− −

 

and *ˆ2log ( , ) (log( ))g x d nθ− +  respectively.  
These definitions of AIC, AICC and 

BIC imply that smaller AIC, AICC and BIC 
estimates provide a better fit for the model. 
Gurka, et al. (2011) showed that the model with 
independent correlation structure offers a 
parsimonious model, but may not always be the 
best model. However, this study shows that – in 
the case of mixed Poisson and continuous 
longitudinal data – the independent and the 
unstructured correlation tend to perform best and 
have the lowest AIC, AICC and BIC (see Table 
3). In the case of a mixed over-dispersed Poisson 
and continuous clustered data a number of 
transformations for the outcome variables were 
examined. First, the case with no transformation 
on   the  outcome   was  considered;   this  model  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1: Mean and Variance for a Non-Dispersed Poisson Distribution 
 

Simulated Data Results (Non-Dispersed Poisson) 

Replicate Mean of Poisson Variance of Poisson 

1 4.46 4.95 

2 4.04 3.75 

3 3.98 3.08 

4 3.30 2.79 

5 4.54 3.56 

6 4.18 3.82 

7 4.32 3.81 
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Figure 1: Mean and Variance Plots for a Non-Dispersed Poisson Distribution 
Results Obtained from one Replicate (n = 100, q = 7) 

 
 
 

Table 2: Mean and Variance for a Dispersed Poisson Distribution 
 

Simulated Data Results (Dispersed Poisson) 

Replicate Mean of Poisson Variance of Poisson 

1 15.94 89.24 

2 16.56 90.62 

3 16.40 88.49 

4 16.12 83.94 

5 14.10 64.01 

6 16.72 102.21 

7 14.82 93.62 
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performed poorly with extremely high values for 
AIC, AICC and AICC (see Table 4). Next, a 
number of data transformations were performed 
and the best model was selected based on the 
AIC, AICC, BIC and the standard errors of the 
estimates. The transformation log( 1)Y +  
performed best for both responses using the 
independent and the unstructured correlation 
structure for the data (see Table 5).  

Using NHIS data, approximately 
264,727 people were interviewed over the 10-
year period 1997-2006. The sample size for this 
analysis was reduced to 42,138 after cleaning. 
First, BMI values were analyzed with a general 
linear mixed model. The fixed effects in the 
model were gender, race and age. The random 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
effects in this model were year (time) and 
residual (see Table 7). Next, NCS was analyzed 
with similar fixed effect and random effect 
variables. The univariate analysis assumed a 
Poisson error because NCS is count data (see 
Table 8); however, the resulting fitting algorithm 
did not converge. The Poisson error might not be 
a proper residual term for this analysis even 
though NCS is count data because the means are 
not equal to the variances (see Table 6). 
Overdispersion was verified using techniques 
proposed by Lindsey (1999). Assuming a normal 
error for NCS, the deviance is 323842.2 which is 
more than twice the degrees of freedom of 
42139, hence the Poisson data is overdispersed. 
 
 

Figure 2: Mean and Variance plots for a Dispersed Poisson Distribution 
Results Obtained from one Replicate (n = 100, q = 7) 

 



MODELS FOR OVER-DISPERSED POISSON AND CONTINUOUS CLUSTERED DATA 

224 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3: Means, Standard Errors and p-values of Fixed Effects Parameter Estimates 
 

Simulated Data Results 
(No Overdispersion) 

Variable Independent 
Compound 
Symmetry 

First Order 
Autoregressive 

Toeplitz Unstructured 

-2 Log L 2500.50 2572.83 2572.83 2572.83 2485.63 

AIC 2507.60 2580.83 2580.83 2580.83 2507.63 

AICC 2507.65 2580.89 2580.89 2580.89 2508.02 

BIC 2514.39 2588.48 2588.48 2588.48 2528.66 

α  -4.8887 -4.7744 -4.7744 -4.7744 -4.8593 

β 1 27.1193 27.1193 27.1193 27.1193 27.1193 

β 2 0.0034 0.0034 0.0034 0.0034 0.0034 

β 3 0.6846 0.6846 0.6846 0.6846 0.6846 

β 4 -0.0063 -0.0092 -0.0092 -0.0092 -0.0070 

Standard Error 

α  1.5987 1.0841 1.0841 1.0841 1.3286 

β 1 0.3131 0.2424 0.2424 0.2424 0.3425 

β 2 0.0274 0.0426 0.0426 0.0426 0.0283 

β 3 0.0423 0.0547 0.0547 0.0547 0.0429 

β 4 0.0394 0.0265 0.0265 0.0265 0.0324 

p-value 

α  0.0150 0.0093 0.0093 0.0093 0.0053 

β 1 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 

β 2 0.5084 0.6408 0.6408 0.6408 0.5179 

β 3 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 

β 4 0.5675 0.4547 0.4547 0.4547 0.5820 

 



ATEM, NGWA & ADENIJI 
 

225 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 4: Means, Standard Errors and p-values of Fixed Effects Parameter Estimates 
 

Simulated Data Results 
(Overdispersed Poisson Without Transformation) 

Variable Independent 
Compound 
Symmetry 

First Order 
Autoregressive 

Toeplitz Unstructured 

-2 Log L 3626.17 3668.83 3668.83 3668.83 3540.68 

AIC 3633.57 3676.83 3676.83 3676.83 3562.98 

AICC 3633.62 3676.89 3676.89 3676.89 3563.38 

BIC 3640.65 3684.48 3684.48 3684.48 3584.30 

α  4.8104 5.9763 5.9763 5.9763 6.0410 

β 1 15.7333 15.7333 15.7333 15.7333 15.7333 

β 2 0.0114 0.0114 0.0114 0.0114 0.0114 

β 3 2.8471 2.8471 2.8471 2.8471 2.8471 

β 4 0.0354 0.0061 0.0061 0.0061 0.0045 

Standard Error 

α  3.3361 1.7362 1.7362 1.7362 2.1000 

β 1 1.0875 1.0691 1.0691 1.0691 1.1838 

β 2 0.0278 0.0436 0.0436 0.0436 0.0284 

β 3 0.2171 0.2403 0.2403 0.2403 0.1950 

β 4 0.0786 0.0342 0.0342 0.0342 0.0434 

p-value 

α  0.2181 0.0308 0.0308 0.0308 0.0357 

β 1 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 

β 2 0.4715 0.6047 0.6047 0.6047 0.4783 

β 3 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 

β 4 0.4694 0.3689 0.3689 0.3689 0.4897 
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Table 5: Means, Standard Errors and p-values of Fixed Effects Parameter Estimates 
 

Simulated Data Results 
(Overdispersed Log Transformed Poisson Outcome) 

Variable Independent 
Compound 
Symmetry 

First Order 
Autoregressive 

Toeplitz Unstructured 

-2 Log L -373.94 -336.83 -336.83 -336.83 -466.84 

AIC -366.74 -330.53 -330.53 -330.53 -443.44 

AICC -366.69 -330.50 -330.50 -330.50 -443.00 

BIC -359.86 -324.51 -324.51 -324.51 -421.07 

α  1.9758 1.9803 1.9803 1.9803 1.9286 

β 1 1.1255 1.1242 1.1242 1.1242 1.1809 

β 2 0.0005 0.0005 0.0005 0.0005 0.0005 

β 3 0.1852 0.1850 0.1850 0.1850 0.1953 

β 4 0.0008 0.0007 0.0007 0.0007 0.0005 

Standard Error 

α  0.1177 0.1027 0.1027 0.1027 0.1513 

β 1 0.0827 0.0831 0.0831 0.0831 0.1288 

β 2 0.0012 0.0016 0.0016 0.0016 0.0013 

β 3 0.0181 0.0183 0.0183 0.0183 0.0193 

β 4 0.0021 0.0015 0.0015 0.0015 0.0020 

p-value 

α  <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 

β 1 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 

β 2 0.6150 0.6922 0.6922 0.6922 0.6211 

β 3 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 

β 4 0.6090 0.4955 0.4955 0.4955 0.6082 
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BMI and NCS were analyzed using a 
joint bivariate model (see Table 8) with normal 
and Poisson residuals for the two outcome 
variables, respectively. The joint bivariate model 
appears to converge; however, the 
corresponding univariate analyses for the over-
dispersed Poisson error did not converge. This 
bivariate model is inappropriate because this 
analysis requires proper consideration of the 
correlation of the outcomes, which might not be 
true. In this case, the result of the joint bivariate 
analysis is similar to the univariate analysis of 
BMI as the outcome. This may be attributed to 
the correlation between the outcome variables 
BMI and cigarettes smoked not being accurately 
taken into consideration. In order to be sure that 
the model properly accounts for the association 
between both outcomes, it is important to ensure 
that the model assumptions of the independent 
univariate models are satisfied. For example, if a 
Poisson error for the univariate analysis of NCS 
as a dependent variable is assumed, the resulting 
model might be subject to over-dispersion (see 
Tables 2 & 6). Yang, et al. (2009) discussed the 
method of testing and how to manage these 
types of situations. In order to deal with over-
dispersion, NCS is transformed using log(Y+1), 
where Y is NCS. This model is very similar to 

the model in equation 1 with log( 1)a a
ij ijy y= + . 

After transforming to the count variable, 
NCS, the joint bivariate random effects model is 
fit. Fixed effects were gender, race, age, age 
interaction with age and the distribution 
(normal). The random effects were year and 
residual (see Table 9); this result is different 
from the previous joint bivariate model. 
Furthermore, the analysis of residual from the 
joint model with normal error for BMI and 
Poisson error for NCS shows that the model is 
not performing well. The Poisson model plot of 
residual is expected to have a funnel shape, but 
as Figure 3 shows, this is not the case. The 
model with normal error for BMI and normal 
error for log-transformed NCS tend to have 
improved residual plots, based on the 
distribution of the residuals. This model is also 
more efficient (see Figure 4) with −2logRe = 
579056.2, compared to the model with 
untransformed NCS (see Figure 3) with −2logRe 
= 663787.1. 

Conclusion 
A number of methods have been discussed to 
handle correlated data with bivariate outcomes 
(Song, et al., 2008), Yang, et al., (2006, 2007, 
2009), but little work has been done in cases 
with mixed over-dispersed Poisson and clustered 
continuous outcomes. Yang, et al., (2006, 2009) 
discussed estimation procedures for bivariate 
models with both complete and incomplete 
cases. Yang, et al., (2007, 2009) introduced 
various methods to test for over-dispersion using 
a univariate repeated measure data. Fieuws and 
Verbeke (2004) compared the univariate to the 
bivariate model with and without correlated 
random effects using the Hearing Data collected 
in the Baltimore Longitudinal Study of Aging 
(BLSA); they concluded that the bivariate 
correlated model performed best.  

The purpose of this study was not to 
develop a new estimation technique, but rather 
to show that a simple transformation together 
with the correct correlation will stabilize the 
model. Modeling bivariate outcomes is essential 
when there is an association between primary 
outcomes or when the question of interest 
focuses on the joint behavior of multiple 
outcomes. The extent to which the dependent 
structure would be considered, however, 
depends on the question at hand. If interest is 
primarily on the population response means and 
the impact of covariates on these means, then a 
detailed consideration of the transformation and 
correlation mechanism may not be of significant 
importance. However, loss of efficiency could 
result if the assumed working correlation is far 
from the true correlation (Gardiner, 2009). On 
the other hand, if there is interest in both 
marginal and subject-specific inferences (for 
example, in estimating the growth trajectories of 
individuals (Potthoff & Roy, 1964), a careful 
evaluation of the transformation mechanism and 
correlation structure is of tremendous 
importance.  

The linear mixed model can be used for 
both marginal and subject specific inference. For 
example, on the subject-specific inference mean 
and the population mean, the significance test 
for this approach depends highly on the chosen 
covariance structure; therefore, careful 
consideration in choosing the right correlation 
structure is required.  
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Table 6: Number Cigarettes per Day 
 

NHIS Data Results 

Survey Year N Mean Variance 

1997 5578 16.27 146.87 

1998 4619 15.98 141.91 

1999 4316 15.39 144.02 

2000 4395 15.32 149.78 

2001 4616 14.96 134.03 

2002 4158 14.73 128.41 

2003 3900 14.33 131.44 

2004 3818 14.36 129.28 

2005 3840 13.85 120.16 

2006 2899 14.00 144.20 

 
 
 
 

Table 7: Modeling BMI with Normal Error 
 

NHIS Data Results 

Effect Estimate Standard Error DF T-value P-Value 

Intercept 20.75 0.2043 9 101.56 <.0001 

Male vs. Female 0.63 0.0366 84263 17.30 <.0001 

White vs. Others −0.23 0.0825 84263 −2.73 0.0064 

Black vs. Others 1.20 0.0944 84263 12.67 0.0013 

Age 0.25 0.0068 84263 37.13 <.0001 

Age*Age >-0.01 0.0001 84263 −37.22 <.0001 

*The estimate of the Age interaction is −0.003 
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Table 8: Bivariate Model with BMI and Number of Cigarette Smoked per Day 
 

NHIS Data Results 

Effect Distribution Estimate 
Standard 

Error 
DF T-value p-Value 

Distribution Normal 24.62 0.0347 84262 709.21 <.0001 

Distribution Poisson 1.18 0.0229 84262 51.30 <.0001 

Male vs. Female  0.17 0.0025 84262 68.05 <.0001 

White vs. Others  0.39 0.0067 84262 58.72 <.0001 

Black vs. Others  0.08 0.0076 84262 10.56 <.0001 

Age  0.04 0.0005 84262 89.48 <.0001 

Age*Age  > −0.01 0.0001 84262 −71.98 <.0001 

*The estimate of the Age interaction is −0.004 
 
 
 
 

Table 9: Transformed Bivariate Model BMI and Number of Cigarette Smoked Per Day  
 

NHIS Data Results 

Effect Distribution Estimate 
Standard 

Error 
DF T-value p-Value 

Distribution Normal 10.86 0.3838 84263 28.28 <.0001 

Male vs. Female  0.39 0.0857 84263 4.510 <.0001 

White vs. Others  0.10 0.1933 84263 0.540 0.5903 

Black vs. Others  0.68 0.2213 84263 3.050 0.0023 

Age  0.15 0.0159 84263 9.25 <.0001 

Age*Age*  > −0.01 0.0002 84263 −8.98 <.0001 

*The estimate of the Age interaction is −0.0016 
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Figure 3: Analysis of Residuals: Number of Cigarettes Smoked and BMI 

 
 
 
 

Figure 4: Analysis of Residuals; Transformed Number of Cigarettes Smoked and BMI 
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The fixed effects estimates with different 
covariance structures may yield the same values, 
even though the standard errors of these 
estimates can vary widely. One objective of data 
analysis using a linear mixed model is to define 
an adequate error covariance structure in order 
to obtain efficient estimates of regression 
parameters; however, to properly estimate the 
covariance structure, the normality assumption 
of the random effect must be met. After both 
conditions are met, multilevel models are most 
suitable for analysis of longitudinal data and 
data with hierarchical structure. (Bock, 1989; 
Bryk & Raudenbush, 1996; Goldstein, 2003: 
Hoeksma & Knol, 2001; Raudenbush, 1989; 
Snijders, 1996). 
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