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A Distributed Parabolic Control with Mixed

Boundary Conditions

Jose-Luis Menaldi ∗ Domingo Alberto Tarzia †

Abstract

We study the asymptotic behavior of an optimal distributed control
problem where the state is given by the heat equation with mixed bound-
ary conditions. The parameter α intervenes in the Robin boundary con-
dition and it represents the heat transfer coefficient on a portion Γ1 of
the boundary of a given regular n-dimensional domain. For each α, the
distributed parabolic control problem optimizes the internal energy g. It
is proven that the optimal control ĝα with optimal state uĝαα and opti-
mal adjoint state pĝαα are convergent as α → ∞ (in norm of a suitable
Sobolev parabolic space) to ĝ, uĝ and pĝ, respectively, where the limit
problem has Dirichlet (instead of Robin) boundary conditions on Γ1. The
main techniques used are derived from the parabolic variational inequality
theory.

Keywords and phrases: Parabolic variational inequalities, Distributed
evolution optimal control, Mixed boundary conditions, Adjoint state, Op-
timality condition, Asymptotic.
AMS (MOS) Subject Classification. Primary: 49J20, 49J40, Sec-
ondary: 35R35, 35K20, 35B40.

1 Introduction

Let Ω be a bounded domain in Rn with a regular boundary ∂Ω = Γ1 ∪ Γ2,
which is the union of two essentially disjoint (and regular) portions Γ1 and Γ2,
where Γ1 has a positive (n− 1)-Hausdorff measure. Also suppose given a time
interval [0, T ], for some T > 0. Consider the following two-state evolution heat
conduction problems with mixed boundary conditions,

∂tu−∆u = g in Ω, u
∣∣
Γ1

= b, −∂nu
∣∣
Γ2

= q, (1.1)

and, for a parameter α > 0,

∂tu−∆u = g in Ω, −∂nu
∣∣
Γ1

= α(u− b), −∂nu
∣∣
Γ2

= q, (1.2)
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1 INTRODUCTION 2

both with an initial condition

u(0) = vb, (1.3)

where g is the internal energy in Ω, b is the temperature (of the external neigh-
borhood) on Γ1 for (1.1) (for (1.2)), q is the heat flux on Γ2 and α is the heat
transfer coefficient of Γ1 (Newton’s law on Γ1). All data, g, q, b, vb and the do-
main Ω with the boundary ∂Ω = Γ1∪Γ2 are assumed to be sufficiently smooth so
that the problems (1.1) and (1.2) admit variational solutions in Sobolev spaces.

The data b, vb and q are fixed, sufficiently smooth and satisfy the com-
patibility condition vb = b on Γ1, while g is taken as a control variable in
L2

(
0, T ;L2(Ω)

)
, and α as a (singular) parameter destined to approaches infi-

nite. Thus, denote by ug and ugα the solution of (1.1) and (1.2), respectively,
with the initial condition (1.3) in the following standard variational form{

ug − vb ∈ L2(0, T ;V0), ug(0) = vb and u̇g ∈ L2(0, T ;V ′
0)

such that ⟨u̇g(t), v⟩+ a(ug(t), v) = Lg(t, v), ∀v ∈ V0,
(1.4)

and {
ugα ∈ L2(0, T ;V ), ugα(0) = vb and u̇gα ∈ L2(0, T ;V ′)

such that ⟨u̇gα(t), v⟩+ aα(ugα(t), v) = Lgα(t, v), ∀v ∈ V,
(1.5)

where

V0 := {v ∈ H1(Ω) : v
∣∣
Γ1

= 0},

H := L2(Ω), (g, h)H :=

∫
Ω

gh dx,

Lg(t, v) := (g(t), v)H −
∫
Γ2

q(t)v dγ,

a(u, v) :=

∫
Ω

∇u · ∇v dx,

aα(u, v) := a(u, v) + α

∫
Γ1

uv dγ,

Lgα(t, v) := Lg(t, v) + α

∫
Γ1

bv dγ,

(1.6)

and ⟨·, ·⟩ denotes the duality bracket. Note that the dual space V ′
0 (and V ′) of V0

(and V ) is not an space of distributions, sinceD(Ω) is not dense in V0 ⊂ V, due to
the non-zero boundary conditions on Γ2. The norm in V0 is given by v 7→ ∥∇v∥H ,
while the norm in V is (∥v∥2H + ∥∇v∥2H)1/2. Nevertheless, v 7→ Lg(t, v) and
v 7→ Lgα(t, v) are linear continuous functional satisfying

∥Lg(t, ·)∥V ′
0
≤ ∥g(t)∥V ′

0
+ ∥q(t)∥H−1/2(Γ2), ∀v ∈ V0,

∥Lgα(t, ·)∥V ≤ ∥g(t)∥V ′ + ∥q(t)∥H−1/2(Γ2) + α∥b∥H1/2(Γ1), ∀v ∈ V,
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2 PARABOLIC EQUATIONS WITH MIXED CONDITIONS 3

and a(·, ·) and aα(·, ·) are bilinear symmetric continuous forms on V0 and V,
respectively. Also, it is clear the compatibility assumption vb = b on Γ1 and
that if b = 0 then Lg(t, ·) = Lg,α(t, ·).

One should remark that an element u of L2(0, T ;V ) such that u̇ belongs to
L2(0, T ;V ′) then u can be regarded as a continuous function from [0, T ] into H.
This makes clear the meaning of the initial condition at t = 0 (and idem with
V0 replacing V ).

On the space H := L2(Ω×]0, T [) with norm ∥ · ∥H and inner product (·, ·)H,
i.e.,

(u, v)H =

∫ T

0

(
u(t), v(t)

)
H
dt, ∀u, v ∈ H,

consider the nonnegative functional costs J and Jα, defined by the expressions

J(g) :=
1

2
∥ug − zd∥2H +

m

2
∥g∥2H, (1.7)

and

Jα(g) :=
1

2
∥ugα − zd∥2H +

m

2
∥g∥2H, (1.8)

where zd is a given element in H = L2(Ω×]0, T [) and m is a strictly positive
constant.

Our interest is on the distributed parabolic (or evolution) optimal control
problems

Find ĝ such that J(ĝ) ≤ J(g), ∀g ∈ H (1.9)

and

Find ĝα such that Jα(ĝα) ≤ Jα(g), ∀g ∈ H, (1.10)

as well as the asymptotic behavior as the parameter α approaches infinite.
This type of optimal distributed control problems have been extensively

studied, e.g., see the book Lions [10] among others. As point out early, our inter-
est is the convergence as α→ ∞, a parabolic version of Gariboldi and Tarzia [8],
which is related to Ben Belgacem et al. [4] and Tabacman and Tarzia [11].

2 Parabolic Equations with Mixed Conditions

Note that if via Riesz’ representation H = H ′ then one has V ⊂ H ⊂ V ′ and
V0 ⊂ H ⊂ V ′

0 with a continuous and dense inclusion.
As mentioned early the control parameter g belongs to H, and the data for

the optimal control problems are zd and m satisfying

zd ∈ H = L2
(
0, T ;L2(Ω)

)
, and m > 0. (2.1)
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2 PARABOLIC EQUATIONS WITH MIXED CONDITIONS 4

The regularity of the domain Ω, the boundary Γ1 ∪Γ2 and the regularity of the
boundary data vb, b and q are summarized on the assumption

there exists ψ ∈ L2
(
0, T ;H2(Ω)

)
with ψ̇ ∈ L2

(
0, T ;L2(Ω)

)
such that ψ(0) = vb, ψ

∣∣
Γ1

= b, ∂nψ
∣∣
Γ1

= 0, −∂nψ
∣∣
Γ2

= q,
(2.2)

with the standard notation of Sobolev and Lebesgue spaces and the compati-
bility assumption vb = b on Γ1. Note the over conditioning for ψ on Γ1, which
is not necessary but convenient in some way (e.g., the adjoint state has a very
similar equation with homogeneous boundary conditions).

Thus, the change of unknown function u into u− ψ reduces to analysis the
case where the boundary data vb, b and q are all zero, and g is replaced by
g − (∂t −∆)ψ. However, for α > 0 a new term appears, namely,

⟨gψ(t), v⟩ = (g(t), v)H +

∫
Γ1

v∂nψ(t) dγ, ∀v ∈ V, (2.3)

i.e., the new Robin boundary condition is non-homogeneous and

∥gψ(t)∥V ′ = sup
∥v∥V ≤1

∣∣⟨gψ(t), v⟩∣∣ ≤ ∥g(t)∥L2(Ω) + ∥∂nψ(t)∥H−1/2(Γ1).

Thus, because of the over conditioning on Γ1 one has gψ = g. Anyway, both
problems, (1.4) and (1.5) become{

ug ∈ L2(0, T ;V0), with ug(0) = 0 and u̇g ∈ L2(0, T ;V ′
0)

such that ⟨u̇g(t), v⟩+ a(ug(t), v) = (g(t), v)H , ∀v ∈ V0
(2.4)

and {
ugα ∈ L2(0, T ;V ), with ugα(0) = 0 and u̇gα ∈ L2(0, T ;V ′)

such that ⟨u̇gα(t), v⟩+ aα
(
ugα(t), v

)
= (g(t), v)H , ∀v ∈ V,

(2.5)

where (·, ·)H , a(·, ·) and aα(·, ·) are as in (1.6). Again V0 ⊂ V with inclusion
continuous but not dense, so that V ′ is not identifiable with a subset of V ′

0 .
However, by Hahn-Banach Theorem, any element in V ′

0 can be extended to an
element in V ′ preserving its norm.

Recall that for any element u in L2(0, T ;V ) with u̇ in L2(0, T ;V ′) such
that the distribution (∂t − ∆)u belongs to L2(Ω×]0, T [) one can integrate by
parts to interpret ∂nu as an element in L2

(
0, T ;H−1/2(∂Ω)

)
, where H−1/2(∂Ω)

is the dual space of H1/2(∂Ω) = γ
(
H1(Ω)

)
and γ is the trace operator from

H1(Ω) onto H1/2(∂Ω). Again, to simplify the arguments, one may assume that
∂Ω = Γ1∪Γ2 such that for any vi in H

1/2(Γi) there exists v in H1(Ω) satisfying
v = vi on Γi, for i = 1, 2, e.g., the two pieces of the boundary are strictly
disjoint, Γ1 ∩ Γ2 = ∅ (i.e., Γi = ∂Ωi and Ω1 ⊂ Ω2). Therefore, the parabolic
equations (2.4) and (2.5) mean the following:

4 Menaldi-Tarzia May 14, 2007



3 STATE AND ADJOINT STATE EQUATIONS 5

• space of the solution: ug in L2(0, T ;V0) with u̇g in L2(0, T ;V ′
0), and ugα

in L2(0, T ;V ) with u̇gα in L2(0, T ;V ′),

• initial condition: for either u = ug or u = ugα the solution u belongs to
C0

(
0, T ;L2(Ω)

)
and so u(0) = 0 in L2(Ω),

• equation in Ω×]0, T [: for either u = ug or u = ugα the solution u is
considered as a distribution so that (∂t −∆)u = g in D′(Ω×]0, T [),

• boundary condition on Γ2: for either u = ug or u = ugα the trace of the
solution u is defined and ∂nu = 0 in L2

(
0, T ;H−1/2(Γ2)

)
,

• boundary condition on Γ1: ug = 0 in L2
(
0, T ;H1/2(Γ1)

)
and ∂nugα +

αugα = 0 in L2
(
0, T ;H−1/2(Γ1)

)
.

Firstly, note that ugα
∣∣
Γ1

belongs to L2
(
0, T ;H1/2(Γ1)

)
and

L2
(
0, T ;H1/2(Γ1)

)
⊂ L2

(
0, T ;L2(Γ1)

)
⊂ L2

(
0, T ;H−1/2(Γ1)

)
,

with continuous and dense inclusion. Secondly, when comparing the solutions
ug and ugα one has both in the larger space L2

(
0, T ;V

)
. However, the continu-

ous inclusion V0 ⊂ V is not dense, and so the inclusion V ′ ⊂ V ′
0 is not injective,

one has u̇g and u̇gα elements in L2
(
0, T ;V ′

0

)
, which are not identifiable as dis-

tributions.

3 State and Adjoint State Equations

To study the optimal control problem (1.9), denote by u0 the solution ug of the
parabolic variational equality either (1.4) or equivalently (2.4) corresponding to
g = 0, and define the (linear) operator C : H → L2(0, T ;V0), given by C(g) :=
ug − u0. We have

Proposition 3.1. With the previous notation and assumptions, the functional
(1.7) can be expressed as

J(g) =
1

2
π(g, g)− ℓ(g) +

1

2
∥zd − u0∥2H, ∀g ∈ H,

where π(g, h) :=
(
C(g), C(h)

)
H +m(g, h)H is a symmetric, continuous and co-

ercive bilinear form on H and ℓ(g) :=
(
C(g), zd − u0

)
H is a linear continuous

functional on H. Moreover, J is strictly convex and its Gateaux derivative is
given by ⟨J ′(g), h⟩ =

(
ug − zd, C(g)

)
H + m(g, h)H. Furthermore, as a conse-

quence, the optimal control problem (1.9) has a unique minimizer ĝ in H, i.e.,
J(ĝ) ≤ J(g), for every g in H, any solution ḡ of the equation J ′(ḡ) = 0 is indeed
a minimizer. Also, if pg is the adjoint state defined by the parabolic variational
equality with a terminal condition{

pg ∈ L2(0, T ;V0), with pg(T ) = 0 and ṗg ∈ L2(0, T ;V ′
0)

such that − ⟨ṗg(t), v⟩+ a(ug(t), v) = (ug − zd, v)H , ∀v ∈ V0,
(3.1)

5 Menaldi-Tarzia May 14, 2007



3 STATE AND ADJOINT STATE EQUATIONS 6

then J ′(g) = mg + pg for every g in H and J ′(ĝ) = mĝ + pĝ = 0.

Proof. Note the boundary conditions for the adjoint state pg are

pg(t) = 0 on Γ1 and ∂npg(t) = 0 on Γ2.

for almost every t in ]0, T [.
First, we check the expression of J , if z′d := zd − u0 then

J(g) =
1

2
∥C(g)− z′d∥2H +

m

2
∥g∥2H =

=
1

2

[
∥C(g)∥2H + ∥z′d∥2H − 2(C(g), z′d)H

]
+
m

2
∥g∥2H =

=
1

2
π(g, g)− L(g) +

1

2
∥zd − u0∥2H.

To verify that g 7→ C(g) is a linear application, one checks that the function
r1ug1 + r2ug2 +(1− r1 − r2)u0 is a solution of the parabolic variational equality
(1.4) with g = r1g1 + r2g2, for every real numbers r1, r2; and by uniqueness one
has

ur1g1+r2g2 = r1ug1 + r2ug2 + (1− r1 − r2)u0, (3.2)

for every ri, r2 in R and g1, g2 in H. Hence,

C(r1g1 + r2g2) = ur1g1+r2g2 − u0 = r1ug1 + r2ug2 + (1− r1 − r2)u0 − u0 =

= r1(ug1 − u0) + r2(ug2 − u0) = r1C(g1) + r2C(g2),

i.e., the operator C is linear.
Now to check the continuity of C, we note that since Γ1 has positive measure,

Poincaré inequality implies that the bilinear form a(·, ·) is coercive on V0, i.e.,
there exists λ0 > 0 such that

a(v, v) ≥ λ0∥∇v∥2H , ∀v ∈ V0. (3.3)

We have

(u̇g(t)− u̇0(t), v)H + a(ug(t)− u0(t), v) = (g(t), v)H , ∀v ∈ V0,

and, in particular, for v = ug(t)− u0(t),

1

2

d

dt

(
∥ug(t)− u0(t)∥2H

)
+ λ0

∥∥∇(
ug(t)− u0(t)

)∥∥2
H

≤

≤
(
g(t), ug(t)− u0(t)

)
H

≤ 1

2λ0
∥g(t)∥2V ′

0
+
λ0
2
∥∇

(
ug(t)− u0(t)

)
∥2V0

,

where the dual norm is given by

∥v∥2V ′
0
= sup

{
(v, φ)H : φ ∈ V0, ∥φ∥V0 ≤ 1

}
.

6 Menaldi-Tarzia May 14, 2007



3 STATE AND ADJOINT STATE EQUATIONS 7

This yields

∥∇C(g)∥H ≤ 1

λ0

[ ∫ T

0

∥g(t)∥2V ′
0
dt
]1/2

,

sup
0≤t≤T

∥C(g)(t)∥H ≤ 1√
λ0

[ ∫ T

0

∥g(t)∥2V ′
0
dt
]1/2

,

and going back to the equation, we get[ ∫ T

0

∥∥ d

dt

(
C(g)(t)

)∥∥2
V ′
0
dt
]1/2

≤ 2

λ0

[ ∫ T

0

∥g(t)∥2V ′
0
dt
]1/2

Hence the operator

C : L2
(
0, T ;V ′

0

)
→

{
v ∈ L2(0, T ;V0) ∩ L∞(0, T ;H) : v̇ ∈ L2(0, T ;V ′

0)
}

is actually continuous. As a consequence, the bilinear form π(·, ·) is symmetric,
continuous and coercive on H×H, since H ⊂ L2

(
0, T ;V ′

0

)
.

To complete the argument, we choose v = C(h) in (3.1) and v = pg in (1.4)
with g = 0 and g = h to obtain, after integrating in t, the equalities

−
(
ṗg, C(h)

)
H +

∫ T

0

a
(
pg(t), C(h)(t)

)
dt =

(
ug − zd, C(h)

)
H

and

(
u̇h − u̇0, pg

)
H +

∫ T

0

a
(
uh(t)− u0(t), pg(t)

)
dt = (h, pg)H.

Thus

−
∫ T

0

d

dt

(
pg(t), C(h)(t)

)
H
dt+ (h, pg)H =

(
ug − zd, C(h)

)
H,

and because pg(T ) = 0 and C(h)(0) = 0, we deduce J ′(g) = mg + pg.
To show that g 7→ J(g) is strictly convex, one makes use of (1.7) and (3.2)

to check that

(1− θ)J(g2) + θJ(g1)− J
(
(1− θ)g1 + θg2

)
=

=
1

2
θ(1− θ)

[
∥ug1 − ug2∥2H +m∥g1 − g2∥2H

]
,

for every θ in [0, 1] and any g1, g2 in H.

Similarly, to study the optimal control problem (1.10), denote by u0α the so-
lution ugα of the parabolic variational equality either (1.5) or equivalently (2.5)
corresponding to g = 0, and define the (linear) operator Cα : H → L2(0, T ;V ),
given by Cα(g) := ugα − u0α. We have

7 Menaldi-Tarzia May 14, 2007
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Proposition 3.2. With the previous notation and assumptions, the functional
(1.8) can be expressed as

Jα(g) =
1

2
πα(g, g)− ℓα(g) +

1

2
∥zd − u0α∥2H, ∀g ∈ H,

where πα(g, h) :=
(
Cα(g), Cα(h)

)
H +m(g, h)H is a symmetric, continuous and

coercive bilinear form on H and ℓα(g) :=
(
Cα(g), zd−u0α

)
H is a linear continu-

ous functional on H. Moreover, Jα is strictly convex and its Gateaux derivative
of Jα is given by ⟨J ′

α(g), h⟩ =
(
ug − zd, Cα(g)

)
H +m(g, h)H. Furthermore, as a

consequence, the optimal control problem (1.10) has a unique minimizer ĝα in
H, i.e., Jα(ĝα) ≤ Jα(g), for every g in H, and any solution ḡα of the equation
J ′(ḡα) = 0 is indeed a minimizer. Also if pgα is the adjoint state defined by the
parabolic variational equality with a terminal condition{

pgα ∈ L2(0, T ;V ), with pgα(T ) = 0 and ṗgα ∈ L2(0, T ;V ′)

such that − ⟨ṗgα(t), v⟩+ aα(pgα(t), v) = (ugα − zd, v)H , ∀v ∈ V,
(3.4)

then J ′
α(g) = mgα + pgα for every g in H and J ′

α(ĝα) = mĝα + pĝα = 0.

Proof. The calculations are similar to the previous proposition. We remark that
the boundary conditions for the adjoint state pgα are

−∂npgα(t) = αpgα on Γ1 and ∂npgα(t) = 0 on Γ2.

for almost every t in ]0, T [. Moreover, we assume α > 0 so that the coerciveness
(3.3) becomes

aα(v, v) ≥ λ1 min{1, α}
[
∥∇v∥2H + ∥v∥2H

]
, ∀v ∈ V, (3.5)

Indeed, by contradiction one can show that a1(v, v) ≥ c1∥v∥2H for every v in
V, which implies (3.5). The continuity of a(·, ·) in V uses the continuity of the
trace in H1(Ω), namely, for some Λ1 > 0 one has

aα(u, v) ≤ Λ1 max{1, α}∥u∥V ∥v∥V , ∀v ∈ V, (3.6)

which depends on α > 0.
The operator Cα actually maps the space L2(0, T ;V ′) into the space{

v ∈ L2(0, T ;V ) ∩ L∞(0, T ;H) : v̇ ∈ L2(0, T ;V ′)
}

and the estimates

∥∇Cα(g)∥H ≤ 1

λ1

[ ∫ T

0

∥g(t)∥2V ′ dt
]1/2

,

sup
0≤t≤T

∥Cα(g)(t)∥H ≤ 1√
λ1

[ ∫ T

0

∥g(t)∥2V ′ dt
]1/2

,

[ ∫ T

0

∥∥ d

dt

(
Cα(g)(t)

)∥∥2
V ′
0
dt
]1/2

≤ 2

λ1

[ ∫ T

0

∥g(t)∥2V ′ dt
]1/2

8 Menaldi-Tarzia May 14, 2007



3 STATE AND ADJOINT STATE EQUATIONS 9

are independent of α > 1, but[ ∫ T

0

∥∥ d

dt

(
Cα(g)(t)

)∥∥2
V ′ dt

]1/2
≤ 1 + α

λ1

[ ∫ T

0

∥g(t)∥2V ′ dt
]1/2

is depends on α. Certainly, also one deduces

α

∫ T

0

|Cα(g)(t)|2L2(Γ1)
dt ≤ ∥g∥L2(0,T ;V ′)∥Cα(g)∥L2(0,T ;V ),

which is uniformly bounded in α > 1. On the other hand, note that the functions
b and q (or ψ) intervene to estimate u0α and u̇0α.

To show that g 7→ Jα(g) is strictly convex, one show that

(1− θ)Jα(g2) + θJα(g1)− Jα
(
(1− θ)g1 + θg2

)
=

=
1

2
θ(1− θ)

[
∥ug1α − ug2α∥2H +m∥g1 − g2∥2H

]
,

for every θ in [0, 1] and any g1, g2 in H.

Remark that one has nice estimates for the affine application g 7→ ugα,
namely

∥∇ug1α −∇ug2α∥H ≤ 1

λ1
∥g1 − g2∥L2(0,T ;V ′),

sup
0≤t≤T

∥ug1α(t)− ug2α(t)∥H ≤ 1√
λ1

∥g1 − g2∥L2(0,T ;V ′),

∥u̇g1α − u̇g2α∥L2(0,T ;V ′
0 )

≤ 2

λ1
∥g1 − g2∥L2(0,T ;V ′),

∥u̇g1α − u̇g2α∥L2(0,T ;V ′) ≤
1 + α

λ1
∥g1 − g2∥L2(0,T ;V ′),

∥ug1α − ug2α∥L2(0,T ;L2(Γ1) ≤
1√
λ1α

∥g1 − g2∥L2(0,T ;V ′),

and similarly, for the adjoint state mapping g 7→ pgα, one obtain estimates as
above replacing ugiα with pgiα.

On the other hand, ug1α − ug2α is the unique solution of a parabolic vari-
ational equality (1.5) with q = 0, b = 0 and g = g1 − g2, i.e., (∂t −∆)(ug1α −
ug2α) = g in L2(Ω×]0, T [) with homogeneous mixed (Robin on Γ1 and Neu-
mann on Γ2) boundary conditions. Hence, regularity results implies that ug1α−
ug2α belongs to L2(0, T ;H2(Ω)) ∩H1(0, T ;L2(Ω)). Similar arguments apply to
ug1 −ug2 , i.e., (∂t−∆)(ug1 −ug2) = g in L2(Ω×]0, T [) with homogeneous mixed
(Dirichlet on Γ1 and Neumann on Γ2) boundary conditions. Note that some dif-
ficulties due to the mixed boundary conditions do arrives, e.g., see Grisvard [9],
but our interest is on the asymptotic behavior as α becomes infinite.
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4 Asymptotic Estimates

First one needs to obtain estimates on ugα and pgα uniformly in α > 1 and any
given g.

Proposition 4.1. Under the previous assumptions one has the estimate

∥ugα∥L∞(0,T ;H) + ∥ugα∥L2(0,T ;V ) +

+
√
(α− 1)∥ugα − b∥L2(Γ1×]0,T [) ≤ C(1 + ∥gψ∥L2(0,T ;V ′)),

(4.1)

for every α > 1 and any g in H, where the constant C depends only on the
norms ∥u̇g∥L2(0,T ;V ′), ∥∇ug∥L2(0,T ;H), and the coerciveness constant λ1 in (3.5).
Moreover, as α → ∞ one has ugα → ug strongly in L2(0, T ;V ) ∩ L∞(0, T ;H)
and u̇gα → u̇g in norm L2(0, T ;V ′

0).

Proof. First note that V0 ⊂ V is a continuous (non dense) inclusion and the
norms ∥v∥V0 = ∥∇v∥H is equivalently to ∥v∥V =

√
∥v∥V0 + ∥v∥H on V0.

Let φ be a function in L2(0, T ;V ) such that φ̇ belongs to L2(0, T ;V ′), φ(0) =
vb and φ = b on Γ1, e.g., an extension of b and vb such as ψ in (2.2). Now, on
the equality (1.5) defining ugα take v = ugα(t)− φ(t) := zgα(t) to get

⟨u̇aα(t), zgα(t)⟩+
(
∇ugα(t),∇zgα(t)

)
H
+ α⟨ugα(t), zgα(t)⟩Γ1

=

= (g(t), zgα(t))H − ⟨q(t), zgα(t)⟩Γ2 + α⟨b, zgα(t)⟩Γ1 ,

and because φ = b on Γ1 one deduces

1

2

d

dt

∥∥zgα(t)∥∥2H +
∥∥∇zgα(t)∥∥2H + α

∥∥zgα(t)∥∥2L2(Γ1)
= (g(t), zgα(t))H −

− ⟨q(t), zgα(t)⟩L2(Γ2) − ⟨φ̇(t), zgα(t)⟩ − (∇ug,∇zgα)H ,
(4.2)

which together with coerciveness (3.5) and the condition zgα(0) = 0 yield the
bound (4.1). By means of estimate (4.1), there exists a sequence αn → ∞ and
z in L2(0, T ;V ) ∩ L∞(0, T ;H) such that zgαn → z weakly in L2(0, T ;V ) and
weakly* in L∞(0, T ;H), and z = 0 on Γ1, i.e., z belongs to L2(0, T ;V0).

Hence, note that aα(u, v) = a(u, v) and Lgα(t, v) = Lg(t, v) if u belongs to V
and v belongs to V0, and take v in V0 in the equations (1.4) and (1.5) defining ug
and ugα to obtain ⟨żgα, v⟩+a(zgα, v) = 0, for every v ∈ V0. Therefore, żgαn → ż
weakly in L2(0, T ;V ′

0) and because zgα(0) = 0 and z = 0 on Γ1, one deduces
z = 0 in L2(0, T ;V ).

Thus, as α → ∞ one has zgα → 0 weakly in L2(0, T ;V ) and weakly* in
L∞(0, T ;H). It is clear that the inclusion V0 ⊂ V is continuous and because
the norm of V restricted to V0 is equivalent to the norm of V0, Hahn-Banach
Theorem implies that any element ϑ of V ′

0 can be extended to an element in
V ′ preserving its norm, in particular u̇g can be extended to be an element in
L2(0, T ;V ′). Then, take φ = ug in the equality (4.2) and considering u̇g an
element in L2(0, T ;V ′), one deduces that the convergence of ugα toward ug
is indeed strongly in L2(0, T ;V ) ∩ L∞(0, T ;H). Moreover, zgα → 0 in norm
L2(Γ×]0, T [) and żgα → 0 in norm L2(0, T ;V ′

0).
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Proposition 4.2. Under the previous assumptions one has the estimate

∥pgα∥L∞(0,T ;H) + ∥pgα∥L2(0,T ;V ) +

+
√
(α− 1)∥pgα∥L2(Γ1×]0,T [) ≤ C(1 + ∥ugα∥L2(0,T ;V ′)),

(4.3)

for every α > 1 and any g in H, where the constant C depends only on the norms
∥zd∥H, ∥ṗg∥L2(0,T ;V ′), ∥∇pg∥L2(0,T ;H), and the coerciveness constant λ1 in (3.5).
Moreover, as α → ∞ one has pgα → pg strongly in L2(0, T ;V ) ∩ L∞(0, T ;H)
and ṗgα → ṗg in norm L2(0, T ;V ′

0).

Proof. Note that even when b ̸= 0 the (Robin) boundary condition of pg and
pgα on Γ1 does not involve b directly. Certainly, the norm ∥ugα∥L2(0,T ;V ′) is
bounded by ∥ugα∥L2(0,T ;H), which is uniformly bounded in α.

The technique used in Proposition 4.1 applies for the adjoint states pgα and
pg. Perhaps the only point to remark is the convergence as α → ∞. Indeed,
one needs to make use of the weak (and later strong) convergence ugα → ug in
L2(0, T ;V ′), which is deduced for the convergence in L2(0, T ;H).

5 Optimal Control Problems

We are now ready to consider the distributed control problems (1.9) and (1.10).
Our purpose is to establish

Theorem 5.1. Let assumptions (2.1) and (2.2) be hold, and ĝ and ĝα be the
minimizers in H of problems (1.9) and (1.10), respectively. Then, as the pa-
rameter α → ∞, the minimizers ĝα → ĝ strongly in H. Moreover the corre-
sponding optimal state and adjoint state satisfy (uĝαα, u̇ĝαα) → (uĝ, u̇ĝ) and
(pĝαα, ṗĝαα) → (pĝ, ṗĝ) strongly in L2(0, T ;V )× L2(0, T ;V ′

0).

Proof. We make several steps. First, be means of the estimate (4.1) in Propo-
sition 4.1 one has

∥u0α∥H ≤ C, ∀α > 1,

for some constant C. Now, from the inequality J(ĝα) ≤ J(0) we deduce

∥ĝα∥H + ∥uĝαα∥H ≤ C, ∀α > 1

for some constant independent of α > 1.
Again, estimate (4.1) in Proposition 4.1 and estimate (4.2) in Proposition 4.2

yield

∥uĝαα∥L2(0,T ;V ) + ∥u̇ĝαα∥L2(0,T ;V ′
0 )
+

+
√

(α− 1)∥uĝαα − b∥L2(0,T ;L2(Γ1)) ≤ C, ∀α > 1

and

∥pĝαα∥L2(0,T ;V ) + ∥ṗĝαα∥L2(0,T ;V ′
0 )
+

+
√

(α− 1)∥pĝαα∥L2(0,T ;L2(Γ1)) ≤ C, ∀α > 1.
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Hence, there exist ḡ in H, û and p̂ in L2(0, T ;V0) with ˙̂u and ˙̂p in L2(0, T ;V ′
0)

such that, for a convenient subsequence as α → ∞ we has ĝα ⇀ ḡ weakly in
H, uĝαα ⇀ û weakly in L2(0, T ;V ), u̇ĝαα ⇀

˙̂u weakly in L2(0, T ;V ′
0), pĝαα ⇀ p̂

weakly in L2(0, T ;V ), ṗĝαα ⇀
˙̂p weakly in L2(0, T ;V ′

0).
By taking v in V0 in the parabolic variational equality (2.5) and letting

α → ∞ we deduce that û solves parabolic variational equality (2.4), and by
uniqueness û = uĝ. In particular uĝαα ⇀ uĝ weakly in L2(0, T ;V ′

0). Thus, by
taking v in V0 in the parabolic variational equality defining the adjoint state
pĝαα in Proposition 3.2 and letting α→ ∞ we deduce that p̂ = pḡ. On the other
hand, taking limit in the equality mĝα + pĝαα = 0 we deduce mḡ + pḡ = 0.
Thus, by using Proposition 3.1, this proves that ḡ is a minimizer for the control
problem (1.9), and by uniqueness ĝ = ḡ.

At this point, we have

(ĝα, uĝαα, u̇ĝαα, pĝαα, ṗĝαα)⇀ (ĝ, uĝ, u̇ĝ, pĝ, ṗĝ)

weakly in the corresponding spaces, initially for a convenient subsequence as
α→ ∞, but in view of the uniqueness of the limit, the weak convergence whole
as α→ ∞.

To prove the strong convergence we use the weak semicontinuity of the norm
and the optimality of ĝ, ĝα, namely,

J(ĝ) =
1

2
∥uĝ − zd∥2H +

m

2
∥ĝ∥2H ≤ lim inf

α→∞

[1
2
∥uĝαα − zd∥2H +

m

2
∥ĝα∥2H

]
≤

≤ lim sup
α→∞

[1
2
∥uĝαα − zd∥2H +

m

2
∥ĝα∥2H

]
≤ lim sup

α→∞
Jα(g),

for any g in H. In view of Proposition 4.1, ugα → ug strongly in L2(0, T ;V ) as
α→ ∞, which implies that

lim sup
α→∞

Jα(g) = lim
α→∞

[1
2
∥ugα − zd∥2H +

m

2
∥g∥2H

]
= J(g).

By taking infimum on g, all the above inequalities become equalities and there-
fore

1

2
∥uĝαα − zd∥2H +

m

2
∥ĝα∥2H → 1

2
∥uĝ − zd∥2H +

m

2
∥ĝ∥2H.

This and the weak convergence imply that (ĝα, uĝαα) → (ĝ, uĝ) strongly in
H×H, as α→ ∞.

Finally, if zα = uĝαα − uĝ then we deduce∫ T

0

[
⟨żα(t), zα(t)⟩+ a1(zα(t), zα(t)) + (α− 1)

∫
Γ1

|zα(x, t)|2 dx
]
dt ≤

≤
∫ T

0

[
⟨ĝα − u̇ĝ, zα⟩ − a(uĝ, zα)−

∫
Γ2

q(x, t)zα(x, t) dx
]
dt.
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Since zα → 0 weakly in L2(0, T ;V ) and ĝα → ĝ strongly in H, we obtain
uĝαα → uĝ strongly in L2(0, T ;V ), as α→ ∞. Now, going back to the equation
one has

⟨żα(t), v⟩+ a(zα(t), v) = ⟨ĝα − ĝ, v⟩.

Now, taking sup for v in V0 with ∥v0∥V0 ≤ 1 and integrating in ]0, T [ one obtains
the strong convergence of the time derivative. Similarly, (pĝαα, ṗĝαα) → (pĝ, ṗĝ)
strongly in L2(0, T ;V )×L2(0, T ;V ′

0), as α→ ∞. This completes the proof.

Also we have

Proposition 5.2. If α2 ≥ α1 ≥ α0 > 0 then there exists a constant C = Cα0

such that for every g in H one has

∥ugα1
− ugα2

∥L2(0,T ;V ) ≤ Cα0
(α2 − α1)∥b− ugα2

∥L2(0,T ;H−1/2(Γ1)), (5.1)

and

∥pgα1 − pgα2∥L2(0,T ;V ) ≤ Cα0(α2 − α1)
(
∥pgα2∥L2(0,T ;H−1/2(Γ1)) +

+ ∥b− ugα2∥L2(0,T ;H−1/2(Γ1))

)
,

(5.2)

i.e., the dependency in α is Lipschitz continuous.

Proof. For a fixed g and α2 ≥ α1 ≥ α0 > 0 set z = ugα2 − ugα1 to obtain from
the equation (1.5) with αi the identity

⟨ż(t), v⟩+ aα1(z(t), v) = (α2 − α1)

∫
Γ1

(b− ugα2)v dγ, ∀v ∈ V.

By taking v = z(t) and by means of the inequalities∣∣∣ ∫ T

0

dt

∫
Γ1

(b− ugα2)z dγ
∣∣∣ ≤ C0∥b− ugα2∥L2(0,T ;H−1/2(Γ1))∥z∥L2(0,T ;V )

and

aα(v, v) ≥ λ(α0)∥v∥2V , ∀v ∈ V, α ≥ α0,

we deduce the desired estimate with Cα0 = C0/λ(α0).
Similarly, for a fixed g and α2 ≥ α1 ≥ α0 > 0 set w = pgα2 − pgα1 to obtain

from the equation (3.5) with αi the identity

⟨ẇ(t), v⟩+ aα1
(w(t), v) = (α1 − α2)

∫
Γ1

pgα2
v dγ + (ugα2 − ugα1 , v)H ,

for every v in V. By taking v = w(t) and in view of the estimate (5.1), we
conclude.

Under some more restrict assumption we have monotonicity on α
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Proposition 5.3. Let us assume the data b constant on Γ1, vb ≤ b on Ω,
g ≤ 0 in Ω×]0, T [ and q ≥ 0 on Γ2×]0, T [. Then ugα ≤ ug ≤ b for every
α > 0. Moreover, if 0 < α1 ≤ α2 then ugα1

≤ ugα2
≤ ug ≤ b in Ω×]0, T [.

Furthermore, if b ≤ zd in Ω×]0, T [ then pgα1 ≤ pgα2 ≤ pg ≤ 0 in Ω×]0, T [, for
every α2 ≥ α1 > 0.

Proof. First, the maximum principle implies that ugα ≤ b. Indeed, if z = (ugα−
b) then we have

⟨ż(t), z+(t)⟩+ a
(
z(t), z+(t)

)
+ α

∫
Γ1

z(t)z+(t) dγ =

=
(
g(t), z+(t)

)
−
∫
Γ2

q(t)z+(t) dγ

after using the fact that b is constant, which implies z+ = 0.
Similarly, if w = ugα2

− ugα1
with α2 > α1 then we get

⟨ẇ(t), w+(t)⟩+ aα1

(
w(t), w+(t)

)
+ (α2 − α1)

∫
Γ1

(b− ugα2(t)z
+(t) dγ = 0,

which yields w ≤ 0, i.e., ugα2 ≤ ugα1 .
Finally, if y = ugα − ug then we obtain

⟨ẏ(t), y+(t)⟩+ a
(
y(t), y+(t)

)
+ α

∫
Γ1

(b− ugα(t)y
+(t) dγ = 0,

which yields y ≤ 0, i.e., ugα ≤ ug.
The estimate on the adjoint state follows from a comparison with the solution

r of the parabolic variational equality with terminal condition{
r ∈ L2(0, T ;V ), r(T ) = 0 and ṙ ∈ L2(0, T ;V ′)

such that − ⟨ṙ(t), v⟩+ a(r(t), v) = (b− zd, v)H , ∀v ∈ V.
(5.3)

Indeed, if b ≤ zd in Ω×]0, T [ then the maximum principle (as above) yields
pg ≤ r ≤ 0. Next, similarly to the state u with b = 0, one deduces that pgα1 ≤
pgα2 ≤ pg ≤ r ≤ 0 in Ω×]0, T [, for every α2 ≥ α1 > 0.

Certainly, the maximum principle yields ug1 ≤ ug2 and ug1α ≤ ug2α if g1 ≤
g2, but a priori, it is not clear when the minimizers satisfy ĝ ≥ ĝα to deduce the
monotonicity ugα1α1 ≤ ugα2α2 ≤ ugα ≤ b.

6 Final Comments

Variational inequalities was popular in the 70’s, most of the main techniques
for parabolic variational inequalities can be found in various classic books, e.g.,
Bensoussan and Lions [5], among other.
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It is well known that the regularity of the mixed problem is problematic
when both portions of the boundary Γ1 and Γ2 have a nonempty intersection,
e.g. see the book Grisvard [9]. Recently, sufficient conditions (on the data) to
obtain a H2 regularity for a (elliptic) mixed boundary conditions are given in
Bacuta et al. [3], see also Azzam and Kreyszig [1], among others.

Numerical analysis of a parabolic PDE with mixed boundary conditions
(Dirichlet and Neumann) is studied in Babuska and Ohnimus [2], while a parabolic
control problem with Robin boundary conditions is considered in Chrysafinos
et al. [7] and Bergounioux and Troltzsch [6].

The state equation, i.e., a parabolic PDE with mixed boundary condi-
tions (Robin and Neumann) has been discussed in Ben Belgacem et al. [4] and
Tarzia [12].

Certainly, there are several possible extensions, e.g., a state equation of the
form

∂tu− div
(
A(x, t)∇u

)
+ b(t, x)u = f in Ω×]0, T [,

with mixed boundary conditions. A carefully analysis is necessary, but the main
techniques used to let α → ∞ in the parabolic variational inequality seems to
be very well adaptable to more general situations.

References

[1] A. Azzam and E. Kreyszig. On solutions of elliptic equations satisfying
mixed boundary conditions, SIAM J. Math. Anal. 13 (1982), 254–262.

[2] I. Babuska and S. Ohnimus. A priori error estimation for the semidiscrete
finite element method of parabolic differential equations, Comput. Methods
Appl. Mech. Engrg. 190 (2001), 4691–4712.

[3] C. Bacuta, J.H. Bramble and J.E. Pasciak. Using fnite element tools in
proving shift theorems for elliptic boundary value problems, Numer. Linear
Algebra Appl. 10 (2003), 33–64.

[4] F. Ben Belgacem, H. El Fekih and J.P. Raymond. A penalized Robin ap-
proach for solving a parabolic equation with nonsmooth Dirichlet boundary
conditions, Asymptot. Anal. 34 (2003), 121–136.

[5] A. Bensoussan and J.L. Lions. Applications of Variational Inequalities in
Stochastic Control. North-Holland, Amsterdam, 1982.

[6] M. Bergounioux and F. Troltzsch. Optimal control of semilinear parabolic
equations with state-constraints of bottleneck type, ESAIM: Control, Opti-
mization and Calculus of Variations 4 (1999), 595–608.

[7] K. Chrysafinos, M.D. Gunzburger and L.S. Hou. Semidiscrete approxima-
tions of optimal Robin boundary control problems constrained by semilinear
parabolic PDE, J. Math. Anal. Appl. 323 (2006), 891–912.

15 Menaldi-Tarzia May 14, 2007



REFERENCES 16

[8] C.M. Gariboldi and D.A. Tarzia. Convergence of distributed optimal controls
on the internal energy in mixed elliptic problems when the heat transfer
coefficient goes to infinity, Appl. Math. Optim. 47 (2003), 213–230.

[9] P. Grisvard. Elliptic Problems in Nonsmooth Domains Pitman, London,
1985.
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