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seismic source (Julian & Gubbins, 1977). In principle, greater depths can be investigated by increasing the 
distance between source and receiver (i.e., the off-end shot distance) and shorter receiver intervals can re-
solve shallower velocity structure. Because seismic velocity is affected by rock type and the degree of weath-
ering, constraints on subsurface seismic velocity from P-wave arrival data can be used to infer material type, 
fracture density, and water content (Holbrook et al., 2014).

Commercial software packages such as Plotrefa developed by Geometrics (http://www.geometrics.com) 
and DW Tomo by Geogiga (http://geogiga.com) are commonly used in seismic refraction for CZ studies (e.g., 
Befus et al., 2011; Holbrook et al., 2014; Pasquet et al., 2016; St. Clair et al., 2015). These approaches start 
from an initial velocity structure and iteratively perform the inversions until the model misfit to the arrival 
time reaches a certain threshold value. Iteration is necessary because of nonlinearity inherent in the inverse 
problem: the unknown velocity structure determines the paths taken by the seismic waves, which, in turn, 
defines how sensitive individual recorded travel-times are to the velocity structure itself. The inversions are 
regularized by parameters defining model resolution and smoothing, which are set by the user at the start of 
the inversion. For example, St. Clair et al. (2015) impose model smoothing to prevent overfitting and reduce 
the number of model parameters. They also repeat the inversions with many different initial models to en-
sure that the final velocity model is not influenced by the initial model. However, these classical approaches 
do not extensively explore the uncertainty and tradeoffs in the inverted velocity models, nor do they assess 
the effect of horizontal and vertical model smoothing assumptions. These limitations hinder interpreta-
tion, particularly of deeper structures. For example, seismic velocity models in Figures 1b, 1d, and 1f are 
inverted by using Plotrefa with synthetic data calculated from Figures 1a, 1c, and 1e with imposed Gaussian 
noise (detail described in Section 3.2). Solely based on the inverted results without the knowledge of data 
uncertainty, we cannot rigorously assess model resolution at greater depth and therefore distinguish the CZ 
models. Indeed, quantifying uncertainty and influence of prior assumptions is indispensable when testing 
hypotheses regarding CZ structure.
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Figure 1.  Schematic models of three hypotheses for subsurface CZ structure. (a) Stress model (model A), where the CZ structure is mainly influenced by 
regional stress fields. (c) Hydrology model (model B), where the CZ structure is regulated by channel incision. (e) Combined gradual model (model C), where 
a shallower change in velocity gradient is subparallel to the surface, and a deeper gradient change mirrors topography, amidst gradually increasing seismic 
velocity with depth. (b, d, and f) show the predicted CZ structures using seismic refraction with the commercial software Plotrefa. (g and h) show the mean 
vertical gradient for model C generated from the input and using Plotrefa. Without an uncertainty estimate of the mean velocity, there is no rigorous way to 
fully resolve the lower boundary of the model. CZ, critical zone.
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In this study, we tackle a few aspects of CZ research using seismic refraction methods. We develop a seismic 
velocity inversion strategy for near-surface geophysics that does not require regularization parameters such 
as model smoothing or damping, and more fully quantifies uncertainty of the velocity models. The strategy 
is based on self-parameterizing (i.e., transdimensional), probabilistic (i.e., Bayesian) inversion of travel-time 
measurements, where the measurement uncertainty is also estimated in the inversion (i.e., hierarchical). 
To explore the capability of this Transdimensional, Hierarchical, Bayesian (THB) approach to distinguish 
different velocity structures, we design three 2D candidate models, predict traveltimes through them for 
various acquisition geometries, and invert these predicted traveltimes using our THB approach. We quanti-
tatively assess the accuracy of retrieval for each velocity structure, as well as the model uncertainty at depth. 
Finally, we conduct field surveys along hillslopes in the Cretaceous sedimentary Great Valley Sequence in 
California (Figure 2) and invert traveltime measurements from the surveys using the THB approach in or-
der to characterize the CZ structure of the study site.

2.  THB Approach
In this section, we describe our approach for inverting shallow seismic refraction data to produce estimates 
of subsurface seismic velocities. Traditional inversions obtain a velocity model that most closely predicts 
measurements and may introduce spurious structures when attempting to fit measurement noise or er-
rors introduced by modeling approximations. Typically, only a single model is obtained, and uncertainty 
quantification is limited and often neglects any nonlinearities inherent in the inversion (e.g., Tarantola 
& Valette, 1982). Because inversions for velocity structure are usually a mixed-determined problem, pri-
or information about the model must be introduced. This is commonly done by imposing smoothing or 
damping (Menke, 1984), though formulations in terms of a priori distributions on the model parameters 
are also common (Tarantola & Valette, 1982). Measurement and modeling noise, such as that due to picking 
uncertainty and the approximation to actual 3D seismic raypaths, are poorly known in active source seismic 
surveys. Thus, the reliability of model characteristics is difficult to estimate, complicating hypothesis testing 
and interpretation.

The THB inversion scheme attempts to alleviate some of the limitations of traditional inversion approaches 
in two ways: (1) It treats model complexity (i.e., the number of unknowns) as an unknown to be estimated 
from the data (Malinverno, 2002; Sambridge et al., 2006); (2) It estimates measurement and modeling error 
explicitly through the inversion (Malinverno & Briggs, 2004). Here, we implement THB inversion using the 
reversible jump Markov chain Monte Carlo (rjMCMC) algorithm (Green, 1995) and obtain an ensemble of 
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Figure 2.  Field site location. (a) Study site (Rancho Venada) location in Northern California. (b) Regional geology with hillshade background. The lower- to 
upper-Cretaceous sedimentary Great Valley Sequence rocks dominate this region. The red square indicates the study site in (c). (c) Location of the shallow 
seismic refraction transect (Figures 7 and 8). The background optical satellite image downloaded from Google Earth shows clear contrast between vegetated 
north-facing slopes and unvegetated south-facing slopes. MH2, MH3, and MH4 represent the dry channels that run across the survey line, and MH3R and 
MH4R are the ridgetops along the survey line (also labeled in Figure 8).
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velocity models. A posteriori probability density of parameters of interest (such as velocity at a location, 
number of velocity layers, data measurement uncertainty, etc.) can be estimated from the ensemble, allow-
ing uncertainties and tradeoffs to be quantified. Crucially, the inversion scheme exploits the nonuniqueness 
inherent in seismic inversions, which exhibit as multimodal posterior distributions, particularly near struc-
tural boundaries (e.g., Burdick et al., 2019; Galetti et al., 2015; Olugboji et al., 2017).

Transdimensional approaches to traveltime tomography in 2D (Bodin & Sambridge, 2009) were extended to 
explicitly estimate data error through hierarchical parameters (Bodin et al., 2012) and to 3D tomography on 
local (Piana Agostinetti et al., 2015) and continental (Burdick & Lekic, 2017) scales. THB approaches have 
been applied to the inversion of controlled-source data in 2D dimensions: geoacoustic imaging (Dettmer & 
Dosso, 2013), full waveform reflection inversion (Ray et al., 2018; Visser et al., 2019), marine electro-mag-
netic sounding (Ray & Myer, 2019; Ray et al., 2014), electrical resistivity imaging (Galetti & Curtis, 2018), 
and refraction traveltime tomography (Ryberg & Haberland, 2018).

Here we follow the approach of Ryberg and Haberland (2018), and only briefly describe the concept and the 
process for near-surface applications. A user guide of this program can be found in Supplementary Material. 
In this inversion scheme, the user proposes an initial velocity model and priors of model parameters, in-
cluding the lower and upper bounds of each model parameter (e.g., computational grid resolution, velocity 
range, number of control points, noise parameter, total iterations). The data uncertainty term includes both 
the measurement errors associated with P-wave arrival time picking and errors introduced by approxima-
tions in forward-modeling, such as the treatment of 3D sensitivity of traveltimes to velocity variations. This 
uncertainty term is usually not quantified but it impacts the complexity of the models retrieved through in-
version. The prior for this uncertainty term is assumed to be a uniform distribution with user-set minimum 
and maximum limits, and the posterior distribution is estimated through the THB inversion. This estimated 
uncertainty term is referred to as the “noise hyperparameter” and can provide an objective estimate of data 
uncertainty (Bodin et al., 2012).

For the velocity structure, an initial velocity model is constructed by a number of control points, each of 
which has a velocity associated with it. The velocity at arbitrary locations in the model domain is given by 
Delaunay piecewise-linear interpolation of the control point velocities (Figure 3a) (implemented using scat-
teredInterpolant function in Matlab), and the number of control points can increase or decrease during the 
rjMCMC iterations. Similar approaches have previously been implemented in Ryberg and Haberland (2018) 
and Hawkins et al. (2019). There are several methods to interpolate the velocity of control points. As test-
ed by Ryberg and Haberland (2018), interpolation using Delaunay triangulation (Figure 3c) can produce 
smaller velocity jumps and therefore more realistic earth structure than using Voronoi cells with constant 
velocity within a cell (Figure 3b). For the length scales relevant to CZ science (meters to submeters), the 
transitions from soil, saprolite, to bedrock are normally gradual. We therefore use Delaunay piecewise-lin-
ear interpolation. Additionally, like Voronoi cells, the Delaunay triangles can conform to arbitrary geom-
etries, making this parameterization suitable for reproducing more than just simple layered structures. To 
start, we set the control points at the four corners of the model domain fixed with at least one free control 
point within the model domain. The maximum number of control points is set by the user, and the location 
of each control point is varied during iterations, along with its associated velocity.

The user inputs the locations of the sources and receivers on the model domain, which are on the ground 
surface in this study. Since obtaining meaningful estimates of the posterior distribution requires computing 
travel-times through velocity models proposed during large numbers (∼105−7) of rjMCMC steps, compu-
tational efficiency is crucial for ensuring practicability. To that end, we use the Fast Marching Method to 
expedite calculations (Rawlinson & Sambridge, 2005; Sethian, 1996), specifically the Matlab Fast Marching 
Method (FMM) toolbox (Kroon, 2021; Peyre, 2020; Peyre & Cohen, 2004) to compute P-wave arrival time at 
each receiver from the source.

The posterior probability of a set of model parameters { }jm  given the set of measured traveltime data { }id , 

    | ,j iP m d I  is given by Bayes’ Theorem ({ } indicates a collection of values):

            | , | , | ,j i i j jP m d I P d m I P m I� (1)
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where I is the relevant background information, including grid spacing that can capture the size of struc-

ture of interest, etc.   |jP m I  is the prior probability distribution on the model parameters, which can be 

defined by the users based on the knowledge of the region targeted in the inversion (e.g., range of seismic 

velocity, number of control points in horizontal and vertical, etc.).   | ,i jP d m I  is the likelihood function 

that depends on the goodness-of-fit between predicted and measured P-wave arrival times:
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where Ti and obs
iT  are the travel times predicted by the proposed model and observed arrival times, re-

spectively.  2 is the variance of data error related to picking uncertainty and other error sources, which is 
parameterized by the noise hyperparameter. In this study, we assume that data error does not change with 
source-receiver distance, and that the noise is not spatially correlated. In Text S5, we show how error that 
increases with source-receiver distance affects the inversion results. Implementation of spatially correlated 
data noise and the design of the hyperparameters is described by Dettmer et al. (2012).

The basic concept of Markov Chain is that a new model is proposed by changing one parameter from the 
previous model, and whether or not the proposed model is accepted or rejected depends on the change in 
posterior probability following the Metropolis-Hastings condition (Metropolis et  al.,  1953). In rjMCMC, 
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Figure 3.  Schematic model geometry and interpolation of THB2D. (a) Location of cells in the model domain. The color 
of the cells represents seismic velocity. The black line is the surface topography. (b) Velocity interpolation using Voronoi 
cells. (c) Velocity using Delaunay linear interpolation.


