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Observations of a two-layer soil moisture influence on surface energy
dynamics and planetary boundary layer characteristics in a semiarid
shrubland

Zulia Mayari Sanchez-Mejia1 and Shirley A. Papuga1

Received 17 May 2013; revised 22 September 2013; accepted 4 December 2013; published 15 January 2014.

[1] We present an observational analysis examining soil moisture control on surface energy
dynamics and planetary boundary layer characteristics. Understanding soil moisture control
on land-atmosphere interactions will become increasingly important as climate change
continues to alter water availability. In this study, we analyzed 4 years of data from the
Santa Rita Creosote Ameriflux site. We categorized our data independently in two ways:
(1) wet or dry seasons and (2) one of the four cases within a two-layer soil moisture
framework for the root zone based on the presence or absence of moisture in shallow (0–20
cm) and deep (20–60 cm) soil layers. Using these categorizations, we quantified the soil
moisture control on surface energy dynamics and planetary boundary layer characteristics
using both average responses and linear regression. Our results highlight the importance of
deep soil moisture in land-atmosphere interactions. The presence of deep soil moisture
decreased albedo by about 10%, and significant differences were observed in evaporative
fraction even in the absence of shallow moisture. The planetary boundary layer height
(PBLh) was largest when the whole soil profile was dry, decreasing by about 1 km when the
whole profile was wet. Even when shallow moisture was absent but deep moisture was
present the PBLh was significantly lower than when the entire profile was dry. The
importance of deep moisture is likely site-specific and modulated through vegetation.
Therefore, understanding these relationships also provides important insights into feedbacks
between vegetation and the hydrologic cycle and their consequent influence on the climate
system.

Citation: Sanchez-Mejia, Z. M., and S. A. Papuga (2014), Observations of a two-layer soil moisture influence on surface energy dynamics
and planetary boundary layer characteristics in a semiarid shrubland, Water Resour. Res., 50, 306–317, doi:10.1002/2013WR014135.

1. Introduction

[2] The land surface and the atmosphere are tightly
coupled through the exchange of energy and water [Nichol-
son, 2000; Shukla and Mintz, 1982; Shuttleworth, 1991].
Soil moisture plays an important role in this exchange [e.g.,
Seneviratne et al., 2010; Vereecken et al., 2008] through
the partitioning of available energy into sensible and latent
heating [Brubaker and Entekhabi, 1996; Colby, 1984]. Soil
moisture control on the exchange of energy and water is
especially strong in dryland ecosystems [Small and Kurc,
2003; Vivoni et al., 2008; Williams and Albertson, 2004].
Because over 40% of the Earth’s land surface can be classi-
fied as arid to semiarid [e.g., Okin et al., 2009; Reynolds

et al., 2007], understanding soil moisture control on the
interactions between the land surface and the atmosphere
will be critical for anticipating feedbacks associated with
global change [Betts, 2000; D’Odorico et al., 2013; Taylor
et al., 2002].

[3] Interest in the soil moisture influence on land-
atmosphere interactions arises from observations of feed-
backs between soil moisture and precipitation, where high
rainfall may lead to increased soil moisture which, in turn,
promotes increased rainfall, or where low rainfall may lead
to a decrease in soil moisture, further decreasing rainfall
[Findell and Eltahir, 1997; Koster et al., 2003]. One possi-
ble mechanism for this feedback is through direct contribu-
tion of surface moisture to precipitation through increased
evapotranspiration (ET) [Dekker et al., 2007; Dominguez
et al., 2008; Eltahir and Bras, 1996]. However, dry or wet
soil conditions may also influence the surface energy
budget and its relationship to the development of the plane-
tary boundary layer (PBL) [Betts et al., 1996; Eltahir,
1998].

[4] Assuming no storage, the surface energy budget can
be summarized as Rn 2 G 5 LH 1 SH, where Rn is the net
radiation, G is the ground heat flux, LH is the latent heat
flux, and SH is the sensible heat flux [Pitman, 2003].
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The available energy, Qa, is the amount of energy available
for sensible and latent heat exchange with the atmosphere,
i.e., Rn 2 G. The evaporative fraction (EF) is the fraction of
Qa that is partitioned into latent heating, i.e., LH/Qa. The
surface energy budget is coupled with the net radiation
balance which can be summarized as Rn 5 (SWin 2
SWout) 1 (LWin 2 LWout) 5 SWnet 1 LWnet, where SW refers
to shortwave radiation and LW refers to longwave radia-
tion. Net shortwave radiation is influenced by the land sur-
face through albedo, a, i.e., the amount of incoming
shortwave radiation that is reflected. Net longwave radia-
tion is influenced by the temperature and emissivity of the
land surface.

[5] Multiple and complex interactions control land-
atmosphere feedbacks [Ek and Holtslag, 2004]. For
instance, the presence of soil moisture is expected to
increase the EF [Betts and Ball, 1998; Eltahir, 1998].
Higher EF is expected to lower the land surface tempera-
ture and therefore outgoing longwave radiation [Brubaker
and Entekhabi, 1996; Eltahir, 1998]. Further, an increase
in ET associated with increased soil moisture should
increase water vapor in the atmosphere, increasing the
longwave radiation emitted back to the land surface [Elta-
hir, 1998; Miller et al., 2009]. Therefore, the combined
effect of higher EF and higher ET should lead to a higher
LWnet and therefore a lower planetary boundary layer
height [Santanello et al., 2009]. Additionally, increased
soil moisture should be associated with increased SWnet

because wet soils tend to have a lower albedo than dry soils
[Cunnington and Rowntree, 1986; Small and Kurc, 2003;
Twomey et al., 1986]. This relationship is important in local
soil moisture-albedo-precipitation feedbacks [Zaitchik
et al., 2013]. Overall then, an increased Rn is expected with
increase in surface soil moisture [Eltahir, 1998]; alterna-
tively, an increase in emissivity may decrease Rn due to an
increase of LWnet leaving the surface [Pielke, 1984].
Finally, because G is very small relative to Rn, an increased
Rn is expected to increase the energy transported into the
PBL by increasing Qa [Betts, 2000; Eltahir, 1998; Quinn
et al., 1995].

[6] These couplings between the land surface and the
atmosphere have been shown to be especially strong in semi-
arid ecosystems [e.g., Charney, 1975]. Previous research has
demonstrated the sensitivity of semiarid ecosystems to
pulses of moisture [Austin et al., 2004; Huxman et al., 2004;
Loik et al., 2004], i.e., concentrations of moisture that come
in discrete surges. Pulses of moisture arrive either by fre-
quent small storms that wet only the shallow surface layer or
large but infrequent storms that wet deeper soil layers [Kurc
and Small, 2007; Sala and Lauenroth, 1985; Yaseef et al.,
2010]. How the layering of this soil moisture influences the
partitioning of the vertical fluxes of energy and water in
semiarid ecosystems is poorly understood.

[7] In semiarid ecosystems, Qa increases as much as 80
W m22 [Kurc and Small, 2004] with increasing soil mois-
ture at the surface, a magnitude larger than changes in Qa

associated with major land surface changes such as defores-
tation [Gash and Nobre, 1997] or shrub encroachment
[Kurc and Small, 2004]. Evaporation is also driven by
moisture near the surface [Cavanaugh et al., 2011; Kurc
and Small, 2004]. However, transpiration tends to be driven
by the availability of soil moisture at depths greater than 20

cm, presumably delivered by large storms [Cavanaugh
et al., 2011; Domingo et al., 1999; Scott et al., 2006;
Zeppel et al., 2008]. Because transpiration and photosyn-
thesis are inextricably linked, regardless of vegetation type,
net ecosystem uptake of carbon dioxide also tends to occur
only when moisture reaches depths greater than 20 cm
[Kurc and Small, 2007; Kurc and Benton, 2010]. Further,
analysis of time-lapse digital photography has demon-
strated that green-up of creosotebush (Larrea tridentata), a
widespread species in the Sonora, Chihuahua, and Mojave
deserts, is also driven by moisture that reaches depths
greater than 20 cm [Kurc and Benton, 2010]. These obser-
vations argue for the importance of the consideration of
deep soil moisture in the cycling of energy and water, and
therefore land-atmosphere interactions, in semiarid
ecosystems.

[8] Based on the contrasting influence of shallow and
deep soil moisture on surface energy dynamics in semiarid
ecosystems, we have developed a paradigm for evaluating
their relative roles in land-atmosphere interactions. Our
objective is to evaluate how moisture in shallow (0–20 cm)
and deep (20–60 cm) soil layers influences surface energy
dynamics and planetary boundary layer characteristics.
Specifically, we provide quantitative estimates of (1) the
magnitude of changes in the surface energy budget associ-
ated with the presence or absence of soil moisture in each
layer and (2) linkages between soil moisture in each layer
and planetary boundary layer characteristics. This analysis
is critical in assessing the importance of the inclusion of
soil moisture in multiple soil layers in models of land-
atmosphere interactions. Additionally, our results point to
the consideration of size-of-storm in addition to timing and
frequency when evaluating climate change impacts in
semiarid ecosystems and their feedbacks to the atmosphere.

2. Study Area and Methods

2.1. Study Area

[9] Our study site is located within the Santa Rita Exper-
imental Range (SRER) and is approximately 25 km south
of Tucson, Arizona, USA. This site is co-located with the
Santa Rita Creosote (US-SRC) Ameriflux eddy covariance
site (http://ameriflux.ornl.gov) in the northern portion of
the SRER (UTM: 12 R 515177, 3530284) at 950 m above
sea level (Figure 1). With adherence to Ameriflux protocol,
30 min averaged CO2, H2O, and energy fluxes are calcu-
lated using 10 Hz measurements from an open path CO2/
H2O infrared gas analyzer (LI-7500, LI-COR Inc., Lincoln,
NE, USA) and a 3-D sonic anemometer (CSAT-3, Camp-
bell Scientific Inc., Logan, UT, USA), both at 3.75 m. Data
are stored in a CR5000 data logger (Campbell Scientific
Inc., Logan, UT, USA) and downloaded every 2 weeks.

[10] Mean annual precipitation at the site is 294 mm (cal-
culated from a 4 year record), more than 50% of which
occurs from July to September; 89 years of precipitation
record from a nearby station indicate that the long-term
mean annual precipitation in the area is 255 mm (Northeast
Station; http://ag.arizona.edu/SRER/data.html). Small rain-
fall events (<5 mm) are most frequent; however, events
>20 mm make the largest contributions to the annual rain-
fall. As typical for the region, this site is characterized by a
bimodal precipitation distribution. However, winter rains
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(December, January, February) account only for �20% of
the annual precipitation while precipitation in the months of
July, August, and September accounts for about 60% of the
annual precipitation. We define the monsoon season as ‘‘the
shortest continuous period of the year during which 50% of
the annual precipitation accumulates.’’ To determine the mon-
soon for our study site, we analyzed long-term precipitation
data from two stations within 1 km (Cholla and Northeast
Stations; http://ag.arizona.edu/SRER/data.html). According
to these data, the monsoon season occurs during the months
of July, August, and September, hereafter referred to as the
‘‘wet season’’ (Day of Year (DOY) 182–273). The ‘‘dry sea-
son’’ (DOY 121–181) for this site occurs during the months
of May and June (4% of total precipitation). Mean annual sur-
face temperature is about 20�C, with monthly mean tempera-
tures ranging from about 10�C during the winter to about
35�C during the summer.

[11] The physical landscape of the flux site is gently
sloping (slopes <2%), and the soils are sandy-loam with a
10% increase of clay and silt from 35 to 75 cm depth. The
site is a mosaic of canopy and bare patches; specifically,
�14% are canopy patches of creosotebush (Larrea triden-
tata) and �86% are bare patches of which �8% host
grasses, forbs, or cacti [Kurc and Benton, 2010]. The root
distribution in the soil profile differs between bare and can-
opy patches; highest densities of roots are present at 10 and
35 cm in bare patches, while canopy patches have their
highest density at 25 cm (Figure 2). These distributions
were determined by excavating six 1 m soil pits, three in
bare patches, and three in canopy patches, and extracting
10 cm 3 10 cm soil samples every 5 cm. These soil sam-

ples were brought back to the laboratory, weighed, and
then placed in a drying oven for 24 h at 60�C. After they
were dried, they were reweighed. Following this drying,
roots were collected through a tiered sieving process until
no further roots could be identified with the naked eye. The
collected roots were then weighed, and the root density was
calculated as grams of roots per kilograms of dry soil.

0 0.5 1 1.5

0

10

20

30

40

50

60

70

80

90

100

Root density [g/kg]

So
il 

de
pt

h 
[c

m
]

Bare
Canopy

Figure 2. Root density (g/kg, root/soil) under bare (filled)
and canopy (open). Each line represents the average from
three independent profiles.

Figure 1. Location of study site. The Santa Rita Experimental Range (SRER) is shown in solid gray,
and the white circle indicates the location of Santa Rita Creosote Ameriflux tower. The distribution range
of L. tridentata is shown for Arizona in light gray semicircles, and the dominated areas in the SRER are
shown in solid black.
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2.2. Data

[12] In this study, we present data from 2008 to 2011. In
this section, we introduce how the data were collected and
the instrumentation used. We also introduce how we calcu-
late site-averaged values by combining measurements from
bare soil patches and plant canopy patches. All surface and
radiation variables were recorded every 30 min. Unless oth-
erwise indicated, half-hour data were aggregated to a 24 h
period starting at midnight local time. The flux tower was
installed 2008 DOY 5 72; data gaps (DOY 81–133 and
166–190 in 2008, DOY 154–159 in 2009, DOY 261–280 in
2010, DOY 30–34 in 2011) were caused by external distur-
bances to equipment or power failures.
2.2.1. Radiation and Surface Energy

[13] Incoming (SWin) and outgoing (SWout) shortwave
radiations, as well as incoming (LWin) and outgoing (LWout)
longwave radiations, are measured with a four-component
net radiometer (CNR1, Kipp & Zonen, Inc., Delft, Nether-
lands) installed at 2.75 m above the surface and 10 m from
the eddy covariance flux tower to avoid shading from
other sensors. Net radiation (Rn) is calculated as Rn 5
SWnet 1 LWnet where SWnet is the shortwave net radiation
and LWnet is the longwave net radiation. Shortwave net
radiation is calculated as the difference between SWin and
SWout. Longwave net radiation is calculated as the differ-
ence between LWin and LWout.

[14] We corrected half-hour sensible and latent heat
fluxes (SH and LH, respectively) collected from the data
logger for an apparent flux occurring from density fluctua-
tions [Webb et al., 1980]. We note that using eddy covari-
ance sensible heat flux can only be measured to within 20%
of its actual value. Because the sensible heat component of
the surface energy budget can be very large in dryland eco-
systems, we expect that the uncertainty in our SH, and
therefore, our uncertainty in our correction for density fluc-
tuations may also be very large. Finally, we established and
used a friction velocity (u�) threshold of 0.25 m s21

[Blanken et al., 1998].
[15] Soil heat flux is measured at six locations (three can-

opy and three bare patches) using heat flux plates (HFP01SC,
Hukseflux Thermal Sensors, Elektronicaweg, Netherlands)
installed at a depth of 5 cm into the soil. Six soil temperature
probes (TCAV-L50, Campbell Scientific Inc., Logan, UT,
USA) are co-located with the heat flux plates. Ground heat
flux (G), accounting for the storage of energy above the heat
flux plates, is calculated from the soil heat flux and soil tem-
perature using a combined calorimetric heat flux approach
[Kimball et al., 1976; Kurc and Small, 2004].

[16] Surface albedo (a) is calculated as the ratio of out-
going to incoming shortwave radiation:

a5
SWout

SWin
(1)

[17] The available energy (Qa) that could be transferred
from the land surface to the atmosphere is calculated as

Qa5 Rn2 G 5 LH 1 SH (2)

[18] The evaporative fraction (EF) is the ratio of LH to
Qa, the fraction of available energy that is used toward
latent heating, and is calculated as [Shuttleworth, 2012]

EF5
LH

SH1LH
(3)

[19] Midday averages were calculated from 30 min data
for a, Qa, EF, and components of the surface energy budget.
Midday averages (10:00 A.M. to 2:00 P.M., UTC/GMT-7,
Mountain Standard Time, no daylight saving) are used
because this is the time when available energy is at its maxi-
mum and incoming shortwave radiation is relatively stable.
2.2.2. Soil Moisture

[20] Six soil moisture profiles (under three bare and three
canopy patches, not co-located with the soil heat flux
plates) were monitored since 2008 using factory-calibrated
water content reflectometers (CS616, Campbell Scientific
Inc., Logan, UT, USA) at five different depths (2.5, 12.5,
22.5, 37.5, and 52.5). Average soil moisture at each depth
calculated using the soil moisture from the profiles
weighted based on the site-specific bare (86%) and canopy
(14%) patch cover (equation (4)) [Kurc and Small, 2004;
Small and Kurc, 2003]:

h5f hC1ð12f ÞhB (4)

where h is the volumetric soil moisture (m3 m23) in the
ecosystem, f is the fraction of canopy cover for the site, hC

is the shrub canopy soil moisture, and hB is the bare ground
soil moisture.

[21] Vertical moisture was aggregated into two different
layers based on the relative influence of atmospheric
demand, where the shallow layer (0–20 cm) is largely influ-
enced by and the deep layer (20–60 cm) is minimally influ-
enced by atmospheric demand. Weighted averages were
based on the relative contribution of depth to the shallow
(equation (5)) or deep (equation (6)) layers of the profile,
and assuming each probe measures a source area with a
radius of 7.5 cm:

hshallow50:33h2:510:5h12:510:17h22:5 (5)

hdeep50:25h22:510:375h37:510:375h52:5 (6)

2.2.3. Atmospheric Sounding
[22] Atmospheric sounding data were obtained from the

Department of Atmospheric Science, University of Wyom-
ing (http://weather.uwyo.edu/upperair/sounding.html). The
sounding data correspond to the National Weather Service
surface Tucson station (KTUS, WMO: 72274) located at the
Tucson International Airport (UTM: 12 R 504112, 3555012),
which is about 29 km away from our study site. This means a
single North American Regional Reanalysis grid cell would
cover both our site and the airport. In this study, we analyzed
the PBL characteristics using sounding data at 00 UTC which
corresponds to a 5:00 P.M. local time.

[23] Planetary boundary layer height (PBLh) was deter-
mined by analyzing potential temperature profiles (hp)
[Stull, 1988]. In a mixed layer, hp remains constant with
height; therefore, the height of the PBL can be determined
using the gradient Dhp/Dz (Figure 3) in which hp is calcu-
lated as follows:

hp5T
p0

p

� �R=cP

(7)
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where hp (K) is the potential temperature, T (K) is the tem-
perature at each level, p0 (Pa) is the pressure at sea level,
p (Pa) is the pressure at each level, R is assumed to be
ffiRd 5 287 J K21 kg21 and cpd ffi 1004 J K21 kg21. We
note that there are multiple ways to determine PBLh

and that the results can be sensitive to the method used
[LeMone et al., 2013].

[24] An air parcel that travels from the surface adiabati-
cally will reach a saturation point, i.e., the lifting condensa-
tion level (LCL, m), at which the temperature of the air
parcel and dewpoint are equal). We can calculate the height
of displacement from

T zð Þ5T02Cdz (8)

Tdew zð Þ5Tdew02Cdewz (9)

LCL5
T02Tdew0

d2Cdew
(10)

where T0 is the initial temperature, Tdew0 is the initial dew-
point temperature, Cd is the dry adiabatic lapse rate, and
Cdew is the dewpoint lapse rate. We assume a constant dry
adiabatic lapse rate with height Cd 5 9.8�C/km. Tdew0 is
calculated as

Tdew05
237:3 lnðe=0:6108Þ
17:272lnðe=0:6108Þ (11)

where Tdew0 is in �C, and e is the actual vapor pressure [see
Wallace and Hobbs, 2006], i.e.,

e5
w

w1e
p (12)

where w is the mixing ratio (g/kg), e 5 Rd/Rv 5 0.622, and
p (kPa) is the pressure at the T level. Finally, Cdew is calcu-
lated as

Cdew52
dTdew

dz
5

g

elv

T2
dew0

T0
(13)

where Cdew is in �C/km, g is 9.8 m s22, and lv is the latent
heat of vaporization (2.5 3 106 J kg21), derived from
Clausius-Clapeyron and Poisson’s equation [Tsonis, 2007;
Wallace and Hobbs, 2006].

[25] In addition, data available from the soundings
include convective available potential energy (CAPE) and
precipitable water (PWAT) for the whole sounding, a com-
bination of which helps in understanding the likelihood of a
thunderstorm. The CAPE is a measure of a potentially
unstable atmosphere. It represents the potential energy
available in an air parcel that can be transformed to kinetic
energy in a buoyant updraft, i.e., CAPE >2500 J/kg sup-
plies enough energy for strong updrafts and therefore thun-
derstorms [Renno and Ingersoll, 1996]. Precipitable water
(PWAT) is an indicator of the moisture in the atmosphere.
With enough CAPE, PWAT values above >30 mm gener-
ally suggest that thunderstorms are likely [Kirkpatrick
et al., 2011; Means, 2012].

2.3. Soil Moisture Conceptual Framework

[26] Soil moisture drydown dynamics differ between the
shallow and deep soil [Cavanaugh et al., 2011; Kurc and
Benton, 2010], and therefore, two different approaches
were used to define dry and wet periods in each layer (Fig-
ure 4a). For the shallow layer, soil moisture drydown
curves were used to determine a moisture threshold. To do
this, we first identified large storms, i.e., precipitation
events >8 mm [Sala and Lauenroth, 1982]. Soil moisture
values for the 14 days following each of the large precipita-
tion events were used to develop an average drydown curve
(Figure 4a). Then, an exponential model (equation (14))
was fit to this average drydown curve:

hðtÞ5ðhi2hf Þeð2t=sÞ1hf (14)

where h is the volumetric soil moisture (m3 m23), t is the
time in days from the rainfall event, hi is the soil moisture
on the first day after the rainfall event, hf is the soil mois-
ture on the last day of the drying curve, and s is the expo-
nential time constant [Kurc and Small, 2004; Lohmann and
Wood, 2003; Scott et al., 1997]. Consistent with other stud-
ies, we identified the shallow soil moisture layer threshold
as the time when one third of the moisture remained (i.e., at
time s) [Kurc and Small, 2004; Lohmann and Wood, 2003;
Scott et al., 1997]. For our site this threshold occurred on
day 4, when hshallow was 0.1229 (more than two significant
digits are needed for this analysis). Therefore, the shallow
layer was considered dry at moisture values less than
0.1229.

[27] The deep soil moisture threshold was determined by
using carbon flux data from the eddy covariance tower, spe-
cifically using the net ecosystem exchange (NEE) of CO2.
In this approach, we assume that uptake of CO2 (negative
NEE) is an indicator of plant activity and that plant activity

Figure 3. The planetary boundary height is established
following the DhP/Dh [Stull, 1988]. Here we present a typi-
cal profile from Case 1.
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only occurs when deep moisture is available for the plant to
use [Kurc and Small, 2007]. For this threshold analysis, we
selected a 10 day window in which NEE shifted from nega-
tive (uptake, five continuous days) to positive (release, five
continuous days; Figure 4a). This transition signal indi-
cated that low soil moisture levels in the deep layer were
reducing photosynthetic activity. We assumed the fifth day
of the positive NEE (release of CO2) represented the time
when soil moisture was unable to continue to support plant
activity (Figure 4a); generally after 5 days, soil moisture
was at a minimum. For our 4 year period (2008–2011) we
extracted all 10 day windows that represented this transi-
tion and noted the soil moisture value on the fifth day of

positive NEE for each; this resulted in a total of seven tran-
sition windows. To be conservative, we used the maximum
value of the time series generated from soil moisture values
on the fifth day (values had a range of 0.0858–0.1013).
Therefore, the deep layer was considered dry at
hdeep< 0.1013.

[28] These threshold values (hshallow 5 0.1229 and
hdeep 5 0.1013) were used to design the conceptual frame-
work (Figure 4a) composed of four cases: (1) dry shallow
soil (hshallow< 0.1229) and dry deep soil (hdeep< 0.1013);
(2) wet shallow soil (hshallow> 0.1229) and dry deep soil
(hdeep< 0.1013); (3) wet shallow soil (hshallow> 0.1229)
and wet deep soil (hdeep> 0.1013); and (4) dry shallow soil

Figure 4. Our two-layer soil moisture conceptual framework. Soil moisture is influenced by its vertical
distribution whether is at reach of atmospheric demand (0–20 cm) or not (20–60 cm). We use (a) a dry-
down curve to determine the soil moisture threshold in the shallow layer and a relationship between car-
bon uptake and soil moisture to determine the soil moisture threshold in the deep layer. (b) Using these
thresholds, all days within the study period are categorized into cases, where Case 1 represents the dry
state, Case 2 represents small precipitation events, Case 3 represents large precipitation events, and Case
4 represents drying of the surface after a large precipitation event.
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(hshallow< 0.1229) and wet deep soil (hdeep> 0.1013;
Figure 4b).

3. Results

[29] Here we demonstrate how soil moisture present or
absent in shallow or deep soil layers influences land surface
processes. We do this by analyzing (1) the surface energy
budget components and (2) the planetary boundary layer
characteristics, both in the context of our wet and dry sea-
sons and in the context of our two-layer conceptual frame-
work. Overall, our 4 year record consisted of 1227 days of
micrometeorological observation and 1277 days of soil
moisture observations. The four dry seasons total 244 days,
while the four wet seasons total 368 days. Using our two-
layer soil moisture framework which is not restricted to wet
and dry seasons, days assigned to soil moisture cases were
as follows: Case 1: 795 days (62%), Case 2: 18 days
(1.4%), Case 3: 178 days (13.9%), and Case 4: 286 days
(22.4%) .

3.1. Soil Moisture Influence on Radiation and Surface
Energy Components

3.1.1. Wet and Dry Seasons
[30] When calculated using midday averages, differences

in all radiation and surface energy components were statis-
tically significant between the wet and dry seasons, with
the exception of Rn and Qa (Table 1). The similar average
Rn between seasons is a result of higher average SWnet dur-
ing the dry season and higher LWnet during the wet season
(Table 1). The average midday ground heat flux G was pos-
itive during the dry season while negative during the wet
season (Table 1). However, average midday G accounts for
less than 4% of average midday Rn in either season which
leads to a negligible difference between wet and dry sea-
sons (Table 1). We note that the relatively low values for G
(Table 1) are an artifact of the midday averaging period
which did not capture the full G cycle.

[31] While overall, average SH was lower during the wet
season than the dry season (Table 1), SH dominated the
partitioning between SH and LH in both seasons. However,
average LH was significantly higher during the wet season
than the dry season by about 81 W m22 (Table 1). Because

the difference in average midday available energy Qa was
negligible between the seasons, this lower SH and higher
LH leads to a significantly higher average midday EF
during the wet season than the dry season (Table 1;
Figure 5c).

[32] Average midday surface albedo was significantly
higher during the dry season (0.192) than during the wet
season (0.173; Table 1 and Figure 5a). This difference of
0.02 corresponds to about a 10% decrease in albedo under
wet conditions.

3.1.2. Two-Layer Conceptual Framework
[33] When calculated using midday averages, differences

in radiation and surface energy components were always
statistically significant between conceptual framework
cases the moisture state in the shallow layer differed, i.e.,
Cases 1 and 4 were always significantly different than
Cases 2 and 3 (Table 1).

[34] Average Rn was lowest for Case 2, i.e., wet shallow
layer and dry deep layer (Table 1). This was a result of sig-
nificantly lower average SWnet for Case 2 than for the other
cases (Table 1). The average midday ground heat flux G
was positive for Cases 1 and 4 when the shallow layer was
dry but negative for Cases 2 and 3 when the shallow layer
was wet (Table 1). Similarly, average SH was significantly
higher for Cases 1 and 4 when the shallow layer was dry

Table 1. Midday Average Values of Season and Case Analysis�

n

Dry Wet Case 1 Case 2 Case 3 Case 4

244 368 795 18 178 286

Rn 510A 515A 444b 296c 410b 490a

SWnet 722A 662B 613a 369c 521b 648a

LWnet 2212B 2147A 2169b 273a 2111a 2158b

G 18A 23B 23a 26c 29c 9b

SH 286A 213B 232a 113b 139b 220a

LH 23B 105A 32c 116a 105a 72b

Qa 526A 508A 467b 290d 400c 499a

a 0.193A 0.173B 0.182a 0.167c 0.163c 0.174b

EF 0.090B 0.325a 0.132c 0.475a 0.419a 0.249b

*Here we present net radiation (Rn, W m22), net shortwave radiation
(SWnet, W m22), net longwave radiation (LWnet, W m22), ground heat flux
(G, W m22), sensible heat flux (SH, W m22), latent heat flux (LH,
W m22), available energy (Qa, Wm22), albedo (a), and evaporative frac-
tion (EF). Significance differences (t test, p value <0.01) are indicated by
differences in superscript letter for season (A, B) and case (a, b, c, d). The
number of days, n, is indicated under each category.
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than for Cases 2 and 3 when the shallow layer was wet
(Table 1). As for wet and dry seasons, regardless of case,
SH dominated the partitioning between SH and LH, with
the exception of Case 2 where LH is slightly higher than
SH (Table 1). Average LH was significantly higher for
Cases 2 and 3 when the shallow layer was wet than for
Cases 1 and 4 when the shallow layer was dry (Table 1).

[35] Average midday available energy Qa was highest
for Case 4 (499 W m22) when the deep layer was wet, but
when the shallow layer was dry (Table 1 and Figure 5e).
This is a consequence of Rn being largest for Case 4 (Table
1). Case 4 is likely under ‘‘drying’’ conditions with sparse
cloud cover that may lead to the high SWnet (Table 1).
Average midday available energy Qa was lowest for Case 2
(290 W m22) when the shallow layer was wet but the deep
layer was dry (Table 1 and Figure 5e). Again, in Case 2 Rn

was lowest (Table 1). Because Case 2 is likely under short
duration ‘‘wetting’’ conditions from a small storm before
the surface has had time to dry, clouds likely lead to the
low SWnet (Table 1). As a consequence, differences in Qa

were significant even when similar moisture conditions
were present in the shallow layer (Table 1). Despite the dif-
ferences in Qa between the cases, Qa did not appear to be
strongly associated with increased soil moisture in either
the shallow layer (R2 5 0.03) or the deep layer (R2 5 0.01;
Figures 6e and 6f).

[36] EF was highest for Cases 2 (0.475) and 3 (0.419)
when the shallow layer was wet (Table 1 and Figure 5f).
While EF was lowest when the shallow layer was dry, EF
was significantly higher for Case 4 than for Case 1 (Table 1
and Figure 5f), presumably because the moisture in the
deep layer can be used for transpiration. EF tended to
increase with increased soil moisture in either layer, but
this association was stronger for the shallow (R2 5 0.66)
than for the deep soil layer (R2 5 0.32; Figures 6c and 6d).

[37] Difference in albedo from a complete dry case (4) to
wet case (3) is about 0.01 (Table 1 and Figure 5d); this cor-
responds to about a 9% decrease in albedo under wet condi-
tions. Albedos for cases with any moisture at all (Cases 2,
3, 4) were significantly lower than for a completely dry soil
profile (Case 1), even if this moisture was only present in
the deep layer (Case 4; Table 1 and Figure 5d). Further,
albedo tended to decrease with increased soil moisture in
either layer, but this association was stronger for the shal-
low (R2 5 0.38) than for the deep soil layer (R2 5 0.15;
Figures 6a and 6b).

3.2. Soil Moisture Influence on the Planetary
Boundary Layer

3.2.1. Wet and Dry Seasons
[38] Differences in all planetary boundary layer charac-

teristics were statistically significant between the wet and
dry seasons (Table 2). The PBLh develops more during the
dry season by a little more than 1 km (Table 2). In addition,
the lifting condensation level (LCL) is more than 800 m
higher in the dry season than the wet season (Table 2). Dur-
ing the dry season the CAPE is significantly lower than dur-
ing the wet season (Table 2). Based on the average CAPE
values, both the dry and wet season PBL values are likely
to be ‘‘weak unstable,’’ the range during the dry season
goes from 0 to 24 J kg21, while during the wet season goes
from 0 to 1280 J kg21. The PWAT is higher during the wet

season than during the dry season by around 16 mm
(Table 2). The wet season PWAT is 25 mm (Table 2) sug-
gesting that thunderstorms are more likely in the wet sea-
son than the dry season.
3.2.2. Two-Layer Conceptual Framework

[39] The PBLh was significantly lower when shallow
layer was wet (Cases 2 and 3; Table 2). The PBLh extended
the most when the whole soil profile was dry (Case 1) and
extended the least when the whole profile was wet (Case 3;
Table 2). However, even when the shallow layer was dry
but the deep layer was wet (Case 4), the height of the PBL
was significantly lower than when the entire profile was dry
(Case 1; Table 2). Further, the PBLh tended to decrease
with decreased albedo (R2 5 0.21) under the presence of
moisture, but this association was stronger for the shallow
(R2 5 0.32) than for the deep soil layer (R2 5 0.10;
Figure 7).

[40] The LCL was highest when whole soil profile was
dry (Case 1) and was lowest when the shallow layer was
wet (Cases 2 and 3; Table 2). Moisture in the deep layer
tended to decrease the LCL whether or not moisture was
present in the shallow layer (Case 4; Table 2). In general,
the CAPE was lowest when the shallow layer was dry
(Cases 1 and 4; Table 2). The CAPE was highest when the
whole profile was wet (Case 3) and is statistically different
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from other cases which were not statistically different from
one another. PWAT was lowest when the entire soil profile
was dry (Case 1) and highest when the entire soil profile
was wet (Case 3; Table 2). Only in Case 3 PWAT was
greater than 30 mm (Table 2), suggesting that thunder-
storms are more likely under this soil moisture condition.

4. Discussion

[41] Our data demonstrate the importance of the pres-
ence of soil moisture on the surface energy dynamics in a
semiarid shrubland and therefore its importance in model-
ing local land-atmosphere interactions. Consistent with pre-
vious theory [Betts and Ball, 1998; Eltahir, 1998], the
presence of soil moisture was associated with an increase
of EF (Table 1 and Figures 5c and 5f). However, our data
also suggest that regardless of the moisture state of the
shallow layer, a wet deep layer was associated with high
EF (Figure 5f). This is most likely a consequence of the
shrubs being able to access moisture in the deep layer for
transpiration [Cavanaugh et al., 2011; Zeppel et al., 2008],
even when moisture from the shallow layer is unavailable
for latent heating. Also consistent with previous theory
[Eltahir, 1998; Miller et al., 2009], higher LWnet was asso-
ciated with the presence of soil moisture, as much as 60 W
m22 between wet and dry seasons (Table 1). In fact, LWnet

was higher when the deep layer was wet but the shallow
layer was dry (Case 4) than when the entire profile was dry

(Case 1), though this difference was not significant (t test,
a 5 0.05). Higher LWnet when the soil is moist may be a
result of lower LWout due to cooler soil, or a result of higher
LWin due to moist air and increased cloud cover.

[42] Consistent with previous studies [Cunnington and
Rowntree, 1986; Small and Kurc, 2003; Twomey et al.,
1986], albedo tended to be lower under wet conditions than
dry conditions (Table 1 and Figure 5d). In fact, albedo was
significantly lower when the deep layer was wet but the
shallow layer was dry (Case 4) than when the entire profile
was dry (Case 1). This suggests that moisture deep in the
profile has an influence on the characteristics of the land
surface. We suspect that because the shrubs have access to
deep moisture through their roots, the moisture in the deep
layer is altering the vegetation at the surface, which is alter-
ing the albedo. Supporting this notion, a recent study
showed that in a semiarid shrubland, deep moisture, beyond
the reach of atmospheric demand, is responsible for the
greening of vegetation in these shrubland ecosystems [Kurc
and Benton, 2010]. Because greening of vegetation influen-
ces albedo [Asner, 1998; Berbert and Costa, 2003; Song,
1999], the idea that deep soil moisture influences albedo is
reasonable.

[43] Generally, despite lower albedos under wet condi-
tions than dry conditions SWnet was higher under dry than
wet conditions (Table 1), which was not expected [Small
and Kurc, 2003]. This is likely a result of the use of a two-
layer soil moisture conceptual framework to classify proc-
esses through time rather than looking for cloudy versus
clear sky days. The use of cloudy days also has implica-
tions for the values of Rn. Contrary to expectations [Eltahir,
1998], our data show that Rn is not significantly different
between wet and dry conditions, even between an entirely
dry (Case 1) and an entirely wet (Case 3) soil profile (Table
1). These negligible differences in Rn associated with soil
moisture are reflected in similar negligible differences in
Qa (Table 1). Therefore at our site, we did not observe the
expected increase in Qa associated with moisture-driven
increase in Rn to increase the energy transported into the
PBL [Betts, 2000; Eltahir, 1998; Quinn et al., 1995]. It is
possible that these weak relationships could be explained
with time-lagged associations between soil moisture states
in the two layers and the surface energy dynamics and plan-
etary boundary layer characteristics. Alternatively, changes

Table 2. The Planetary Boundary Layer Characteristics Analyzed
Using a Two-Layer Soil Moisture Framework�

n

Dry Wet Case 1 Case 2 Case 3 Case 4

32 32 32 11 32 32

PBLh 3778A 2550B 2983a 1969c 1855c 2592b

LCL 4573A 3705B 4859a 2797c 2599c 3503b

CAPE 2B 171A 0b 104b 239a 61b

PWAT 9B 25A 6c 30a 33a 20b

*We present planetary boundary layer height (PBLh, m), lifting conden-
sation level (LCL, m), convective available potential energy (CAPE, J
kg21), and precipitable water (PWAT, mm). Significance differences (t
test, p value <0.01) are indicated by differences in superscript letter for
season (A, B) and case (a, b, c, d). The number of days, n, is indicated
under each category.
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in PBL characteristics observed under different moisture
conditions (Table 2) may be driven by other processes that
are influenced by soil moisture. For instance, increased
albedo (presumably by drying the soil) is associated with
increased PBLh (Figure 7c). Importantly, if moisture is
present anywhere in the two layers, then PBL growth is sig-
nificantly reduced. This has important implications for
land-atmosphere feedbacks. Similarly, when the shallow
layer is moist, the LCL is reduced considerably compared
when the deep layer is moist (Table 2). This condition
likely increases the relative humidity near the surface,
which impacts evapotranspiration and ultimately the poten-
tial feedbacks between soil moisture and precipitation.

[44] Because the two-layer conceptual framework is
based on thresholds influenced by wetting from precipita-
tion pulses [Sala and Lauenroth, 1985], our data also dem-
onstrate the importance of storm size and the consequent
temporal dynamics of the ‘‘layering’’ of soil moisture asso-
ciated with storm size on the surface energy components
and planetary boundary layer characteristics. To summa-
rize, for each day within our study period, the shrubland
falls into a case (1–4; Figures 8e and 8j) based on the mois-
ture states of a shallow and a deep layer (Figure 3b). Gener-
ally, before precipitation events both soil layers are dry
(Case 1). After small precipitation events, the shallow layer
is wetted, but the deep layer remains dry (Case 2; Figures
8a and 8f), after a larger precipitation event the deep layer
is wetted in addition to the shallow layer (Case 3; Figures
8e and 8j). However, Case 3 is more persistent following
larger storms (Figures 8a and 8f). Following both large and
small storms, the surface energy budget is modified by a
decrease in albedo (Figures 8d and 8i), an increase in LH
(Figures 8c and 8h), and a decrease in SH (Figures 8c and
8h). These changes correspond to a shrinking of the PBL
after both small and large precipitation events (Figures 8b

and 8g). Importantly, the persistence of soil moisture in the
deep layer through Case 3 and Case 4 (Figures 8e and 8j) is
closely linked to the height of the PBL (Figures 8b and 8g)
and the components of the surface energy budget (Figures
8c and 8h). This suggests that larger storms may have a
greater influence on land-atmosphere interactions than
small storms and that this influence is linked to the pres-
ence of deep soil moisture.

[45] Land-atmosphere interactions research has been
improved by using continuous measurements of atmos-
pheric and hydrological properties [e.g., Baldocchi et al.,
2001; Basara and Crawford, 2002]. We link the impor-
tance of deep soil moisture to surface energy fluxes by
showing linear relationships between variability in soil
moisture at 20–60 cm depths and variability of multiple
atmospheric properties. Basara and Crawford [2002] show
the strength of the relationships between soil moisture and
SH, LH, and EF especially with depths between 20 and 60
cm rather than at the surface. The results from our study
highlight the importance of deep soil moisture in the con-
sideration of land-atmosphere interactions.

[46] Insights from our research reflect the importance of
considering the site-specific role of soil moisture for both
shallow and deep layers of the root zone in land-atmosphere
interactions. Because the mechanism by which deep soil
moisture influences surface energy fluxes and planetary
boundary characteristics is likely through transpiration
[Yaseef et al., 2010], understanding site-specific controls on
feedbacks between vegetation and the hydrologic cycle is
critically important for land-atmosphere research [Chahine,
1992; Dekker et al., 2007; Scheffer et al., 2005]. For
instance, root density with depth is likely important in the
determination of the depth at which soil moisture most
strongly influences surface energy dynamics. At our shrub-
land site, roots are concentrated at depths >20 cm (Figure 2),

Figure 8. Summary showing two examples of (a, f) precipitation (PPT) events and how they are asso-
ciated with (b, g) planetary boundary layer height (PBLh) based on sounding data (dots) and based on
case averages (line), (c, h) surface energy components’ sensible heat (SH) and latent heat (LH) heat,
(d, i) albedo, and (e, j) case over time as the soil dries.
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and therefore, the strength of the relationship between mois-
ture in the deep soil layer with radiation and surface energy
components is reasonable. Furthermore, site-specific soil
characteristics will also play a role in the layering of soil
moisture and in the development of root density with depth
[Gregory et al., 1987]. For instance, in desert ecosystems of
the southwestern United States, a caliche layer, ‘‘bedrock,’’
or a argilic horizon may inhibit root growth and soil moisture
movement beyond depths of 40–60 cm [Hennessy et al.,
1983].

[47] Additional sources of uncertainty must be considered
in the interpretation of the surface energy dynamics. For
instance, the temporal distribution of the cases is subject to
variability in solar zenith angle throughout the year. Differ-
ences in solar zenith angle is likely to have a confounding
effect on the albedo values for each case [Wang et al., 2005]
as cases tended to be associated with particular times of
year, e.g., Case 3 can occur during the monsoon season and
in the presence of winter rains. Additionally, our two-layer
framework does not discern between cloudy or clear sky
days, which may add uncertainty to our findings. Clouds
influence the incoming shortwave radiation and other surface
energy components. While variations in albedo are not nec-
essarily driven by cloud cover at local scales [Small and
Kurc, 2003], at regional scales this may be an important
source of uncertainty because cloud cover is not necessarily
homogeneous [van Leeuwen and Roujean, 2002].

[48] Observational studies of land-atmosphere interactions
are especially important (1) to better understand interactions
and feedbacks and (2) for calibrating and validating land sur-
face model (LSM) schemes. In this study, we focus on using
these observations to quantify the influence of both shallow
and deep soil moisture on the surface energy budget and
PBL characteristics to contribute to the improvement of
LSMs. We acknowledge that our study was limited to one
study site and did not fully identify causality in the relation-
ship between soil moisture and the surface energy budget
and PBL characteristics. Despite these limitations, our study
highlights the importance of these relationships in land-
atmosphere interactions and suggests that more observatio-
nal studies, at different temporal and spatial scales, are
needed to further contribute to improving LSMs [Santanello
and Friedl, 2003; Santanello et al., 2009, 2011].
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