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Note the change of notation with respect to the definition (2.34) in 2.
Observe that function u , given by (1.18), is also the unique solution of the equation

(4.9)

under the regularity (2.34).
Consider the problem:

Find v in V, such that

(4.10)

Au=f in '(R[0, T[),

u( .,T)=0 inR,

v(.,.,T)=0 inRx[0, o[,

v(.,0,.)=u ingx[0, T],

Av <=f in '( x ]0, o[ [0, T[),

B'v <-_ 0 a.e. in R x ]0, c[ x ]0, T[.

Notice that for every v in

(4.11)
is equivalent to

(4.12)

where the operator

B'v<-O a.e. in ]0,[ ]0,T[

v<_M'v in]0,[x[0, T[,

(4.19) a(x, t)=inf Jx,(v, O)+ E exp a(s) as a(y(O-), o) M

(4.18)

then
" inf {s t, T]: z(s) < 0}

and

(4.13) Mv=inf{c(t)+v(x+, z-, t): 0<_- :=< z}.
TI-IEOREM 4.2. Under the assumptions (1.7), , (1.10) theproblem (4.10) possesses

a maximum solution , which is given explicitly as the optimal cost (1.6). Moreover, we
have the following decomposition:

(4.14) (x, z, t) a(x, t)+ h(x + z, t) for every (x, z, t) in x[0, o[ [0, T],

where is the unlimited optimal cost (1.4) and

(4.15) h u- in [0, T],

with u being defined by (4.9).
Prooj First of all, we remark the dynamic programming equation applies to both

optimal control problems (1.4), (1.6), i.e. if

(4.16) z(s)=z-u(s-t) for every t<-s<-T,

Jx(u, 0)=E f(y(s),s)exp a(A) dl ds+c(t),(O)I(t<O)
(4.17)

+ c(s) exp a(A)dA dr(s-t)
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f
3(x, z, t)=inf Jx,(’, 0 ^ ’)

 4o 0, [ (I t+E exp a(s) ds (y(Or-),z(Or-),O) "
where N 0 N T is any stopping time associated with the system control , which
includes the probability space (, , P), the filtration, the Wiener process and the
control (’, w(t), (t), 0).

Next, by viue of the estimates (4.3), (4.4) we can prove as in 2 that the optimal
cost (1.6) is the maximum solution of the problem (4.10).

Finally, let us prove (4.14). Indeed, using either (1.19) or (4.20) with 0=r, and
the fact that

(., 0, .)=a+h,

we obtain

(x, , t)=inf J(, r)+ exp (s) ds (y(-), )

(4.
+ exp (s) ds h(y(r-),) "

Since we may assume that (. is continuous and because of

y(-) =x+z+ (a(s)y(s)+b(s)) ds+ (s) dw(s)

and

Ah f A >- O

we get, by applying It6’s formula

(4.22) E exp (s) ds h(y(’- ), ’) <-_ h(x + z, t).

Clearly, combining (4.19), (4.21) and (4.22), we deduce

(4.23) (x, t) <- a(x, t) + h(x + z, t).

On the other hand, denoting by v(x, z, t) the right-hand side of (4.23), we have

(4.24) Av(x, z, t) Aa(x, t) +f(x + z, t) A(x + z, t).

Denoting by x*(t) the free boundary (3.56), the equality (4.24) yields

Av(x, z, t) <- Aa(x, t) <=f(x, t) if x + z >- x*(t).

Because

A(x+ z, t) A(x, t) A’
0a
(x+, a,

where A’ is the operator (3.1), so from (4.24) we obtain

Av(x, z, t) =f(x, t) g(x + A, t) dA <-f(x, t) if x + z < x*(t),
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in view of Remark 3.7 and the definition (3.3). Hence

(4.25) Av <-f in R ]0, c[ [0, T[

and also

(4.26) B’v Ba <-0 in R x ]0, [ x[0, T[.

This implies that v solves the problem (4.10) and since 3 is the maximum solution,
the equality must hold in (4.23).

COROLLARY 4.1. Ifthe conditions (1.7), , (1.10) and (3.78) hold, then the control

^ z is optimalfor the problem with the resource constraints (1.6), where is the process
defined in Theorem 3.5.

Proofi The result is straightforward and follows from the decomposition (4.14),
the technique of Theorem 3.5 and Remark 3.6.

Remark 4.1. An equivalence to Theorem 3.4 can be stated for the problem with
the resource constraints (1.6). Moreover, the fact that f(t, x) approaches infinity as x
goes to positive infinity is useless in the proof for existence of an optimal control
relative to problem (1.6).

Remark 4.2. From the expressions (1.4) and (1.6), it follows that

(4.27) 3(x, z, t)- fi(x, t) as z-+

in a decreasing fashion and pointwise in x[0, T]. Hence, the equalities (4.14) and
(4.15) imply, for every in [0, T],

(4.28) u(x, t)- (x, t)--> 0 as x -->+

in a decreasing fashion. This means that for a large initial state x, the optimal cost
(1.4) is very close to the cost of the free-control evolution. Clearly, this agrees with
the characteristics of the optimal control of Theorem 3.5.

5. Optimal corrections. Now, we consider a model of an optimal correction control
problem which will be reduced to a problem of the type presented in 1.

Denote by U the set of controls v(. which are progressively measurable random
processes from [0, +] into , right continuous having left limit (cad-lag) and with
locally bounded variation. Hence if/ is the set ofprocesses in which are nonnegative
and increasing, we have the following decomposition

(5.1) = +(R)+,

i.e., for every u(. in o//. there exist ,(. ), ’2(" in 7/’+ such that

(5.2)
v(t) r,,(t) ’2(t), --> 0,

,(0) ((0))+, _(0) ((0))-.
Note the change of notations used in 1.

The state of the dynamic system is described by (1.2), i.e.,

y(s)=x+ ,(s-t)+ (a(1)y(,) + b(,)) dl

(5.3)
+ o’(A) dw(A t), s >- t,

y(s)=y,(s,v) being a cad-lag random process adapted to (ffs-’,s>=t). A cost
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associated to each control v in OF is given by the payoff functional (1.3), i.e.

Jt(v)=E f(y(s),s)exp a(A)dA ds+c(t)lv(O)l
(5.4)

+ c(s) exp (A) dl l(s-)

where a(t), b(t), o-(t), c(t), a(t), f(x, ) and T satisfy (1.7), (1.8), (1.9), (1.10), and
Ivl denotes the total variation of v, i.e., Ivl v + v given by (5.2). Notice that a better
notation could be J,( v, v) in lieu of J,(v), because v, , are not uniquely determined
by v. However, we prefer to use (5.4).

Our purpose is to characterize the optimal cost

(5.5) (x, t) inf {J,(v): v in }

and to construct an optimal control in .
In the first part of this section we treat the problem just stated and then otter

some general comments about other extensions of these results.

g.l. lledfiom Let us suppose that f(x, t) is symmetric in the following sense.

(5.6) f(x, t) f(2xo( t)- x, t), (x, t) in N x[0, T] with xo(t) being Lipschitz
continuous in [0, T] and satisfying 2o(t) a(t)xo(t) + b(t), in [0, r],

where 2o(t) denotes the derivative of xo(t). From (5.6) we have

(5.7) Of=o at (xo(t), t) for every in [0, T].
Ox

Therefore, the function f(x, t) is completely determined by the restriction off(x, t) on
the half-line x >= Xo(t) for every in [0, T]. The assumptions (1.9) and (5.6) imply

(5.8) c[xl’-f<=f(x, t)<-f(l+lx[") in [0, T],

for some constants C -> c > 0, m => 1. Observe that Xo(t) represents the minimal trajectory
of the system.

THEOREM 5.1. Let the assumptions (1.7), , (1.10) and (5.6) hold. Then, if(x, t)
denotes the optimal cost (5.5), we have

(5.9) a(x, t)= a(2Xo(t)-x, t) for every (x, t) in [0, T],

where Xo(t) is given in (5.6).
Proof. Let v be an arbitrary control in F and (x, t) be any point in [0, T].

From (5.3) we have for =< s-< T

y(s, v)= 2xo(s)+ y(s, v-2q) with q(s)= xo(s)- a(s)xo(s) ds.

Since

we have

(5.10)

q(s) b(s) ds + Xo( t),

yx,(s, ) 2Xo(S)-pz(S, -), z 2Xo(t) x,



ADDITIVE CONTROL OF STOCHASTIC LINEAR SYSTEMS 891

where (s) solves an equation similar to (5.3) with a new Wiener process (s-t)--
-w(s-t) in lieu of w(s- t). Hence

f,(s,-u)=yz,(s,-u) in law.

Thereby, we obtain by virtue of (5.6)

(5.11) Jxt(u)=Jz,(-u),

where z is given by (5.10).
Thus, the assertion (5.9) is deduced from (5.11) by taking the infimum over v

inV
Remark 5.1. As in Theorem 2.1, we can prove that under the hypotheses

(1.7), , (1.10) and (5.6), there exist constants C => c > 0, such that for the same m => 1
of the assumption (1.9) and every (x, t), (x’, t’) in [0, T] we have

0 <- (x, t)<= C(1 +[x[),

I (x, t)- t)l +lxl
(5.12)

[(x, t)-(x, t’)]--<_ C(1 + [x[’)[t t’],

O<=(x, t)<C(l+]x[ q) q (m 2) +,
OX2

so is convex in the first variable. Actually, m 1 in (5.12) even if m> 1 in the
assumption (5.8).

Remark 5.2. From Theorem 5.1 we deduce that

(5.13) 0_ 0 at (Xo(t), t) for every in [0, r],
Ox

which represents a Neumann boundary condition for the corresponding Hamilton-
Jacobi-Bellman equation, i.e. the optimal cost is the solution of the equation

(A-f)vB=0 ifx<-xo(t),0 <-_t <-_ T,
(5.14)

-, T) 0 in co, Xo( T)],

with the boundary condition (5.13). This implies that the restriction of the optimal
cost (x, t) to the half-line x<-_Xo(t), 0<= t<= T, is actually the solution of a quasi-
variational inequality with Neumann boundary condition, associated with an optimal
impulse control problem where the state of the system is a reflected diffusion process
(cf. Bensoussan and Lions [9], and [37], [52]). On the other hand, notice that a =f(xo)
if c 0 and f is time-independent.

The whole 3 can be adapted to this case. For instance, define the differential
operator

--+(a(t)-a(t))u(5.15) A’u cr2(t) -(a(t)x+b(t)+2o(t))
OxOt OX2

and the substitutions

(5 16) v(x, t)
0a

(x Xo(t) t) c(t)

de
(5.17) g(x, t)=-dt (t)-(a(t)-a(t))c(t)-f (x-xo(t) t)

Ox

for the given functions and f.
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Then, the following equation is satisfied by the optimal cost (5.5) through (5.16)
and (5.17),

(A’-g) v =0 in ]-c,O] [0, T[,

(5.18) (., T)=0 in ]-,0],

vb(O, .) 0 in [0, T].

Moreover, the solution of (5.18) admits a stochastic representation as the optimal
cost of a stopping time problem, i.e.,

(5.19) (x, t)=inf {Sx,(O)" <- 0 <- T, stopping time},

where

(5.20)
S,(0)=E g(y(s),s)exp (a(A)-a(A))dA ds

r inf {s >- t" y(s) >= 0},

and the process y(s)= y,(s) is given by (5.3) with the control v=0.
Next, with the function (x, t) we can define the moving boundary x*(t), 0-<_ < T,

by

(5.21) x*(t) inf {x --<_ 0: (x, t) < O}

which induces an optimal control.
The precise variational inequality is exactly (3.23) with the space

(5.22) V is the set of all real measurable functions v on [0, [ with a derivative
v’ such that IlV[lp and Ilv’llp-1 are finite, and v(0) =0,

where II" lip and (.,.) are the norm and the inner product on [0, o[ instead of . The
bilinear form a(t, u, v) is defined as in (3.21) but the integration is over [0, c[ in lieu
of E, where a term is added in order to use the new definition (5.15) of the operator
A’. In a similar way, if the space V,,_I is given by (3.34) restricted to [0, [, we can
state a strong formulation of the variational inequality as follows:

Find w in V,,_I such that

(5.23) w(x, T)= w(0, t)= 0 for every (x, t) in ]-, 0] [0, T],

A’w _-< g in ’(]-c, O[ ]0, T[), w<-0 in ]-, 0] x [0, T[.

As in Theorems 3.2 and 3.3 we can prove
THEOREM 5.2. Under the hypotheses (1.7),..., (1.10) the function (5.19) is the

maximum solution of the weak variational inequality (3.23) with the changes (5.22).
Moreover, if we also suppose (3.36) is true and

(5.24) the derivative of Xo( t) is Lipschitz continuous in [0, T],

then the strong version (5.23) of the variational inequality admits a maximum solution,
which is precisely the optimal cost (5.19) and the equality

(5.25) A’C;=g in ([<O])

holds.
Remark 5.3. Similar results to Theorems 3.4 and 3.5 can be proved. For instance,

assuming (1.7), , (1.10) and (3.78), there exists an optimal control in which is
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continuous and uniquely determined by (5.3) and the conditions

(5.26) (s) /(s)- _(s) with /,

_
in /,

if z/(s)= Xo(S)+ x*(s) and z_(s)= Xo(S)-X*(S), then we impose

(5.27)
+(O)=(z+(t)-x)+, _(O)=(z_(t)-x)-,

z/(s) <= y(s) <- z_(s) for every -< s _-< T,

I(y(s) > z+(s)) d+(s- t)=0,
(.28) .

I(y(s) < z_(s)) d_(s- t) =0,

where I(.) denotes the characteristic function, y(s) the associated state and Xo(t),
x*(t) are given by (5.6), (5.21) respectively, i.e. reproduces the reflected diffusion
of y(s) on the interval [z/, z_].

5.2. General comments. Most of the results presented herein can be extended to
more general situations. Let us mention the following examples:

Extension to multidimensional model This includes all of 2 about the dynamic
programming equation, the second part of 3, i.e. 3.2, about the optimal decision
process, all of 4 about the case of finite resources, the first part of this section, i.e.,

5.1, about the optimal correction problem. Let us mention that one of the main
difficulties of the multidimensional case is the smoothness of the free boundary, which
is for us an open question.

Extension to partially observed system. Since the model-equation is linear and the
system may be degenerate, we can treat a multidimensional model with incomplete
information on the state of the system. In particular, a separation principle result can
be obtained (cf. [44]).

Extension to nonconvex data. In all of 2, 4 and in the first part of this section,
i.e., 5.2, we may allow the coefficients of the stochastic equation (1.2) to be nonlinear
in x, i.e., o-= tr(x, t), g g(x, t) in lieu of ax + b, and also c c(x, t), c c(x, t) and
f=f(x, t) to not necessarily be convex in x. In that case, the optimal cost (x, t) is
no longer convex in x and the technique of [41] applies.

Extension to diffusion with jumps. All results herein may be extended to a model
in which a Poisson integral is added to the stochastic equation (1.2). The technique is
similar to that used in [42].

Extension to long term average criterion. When the horizon is infinite, we may
consider a model with a long term average cost instead of the cost (2). (See, e.g. [43].)

Nonsymmetric case. It is possible to treat cases in which the reduction (5.9) does
not hold. This is the case, for instance, if f(x, t) is not symmetric or the cost Jxt(u)
involves c(. v (.) and c2(" 2(" with v vl 2.

To conclude, let us mention that decomposable models and problems with the
long run average criterion may be treated. Also, a combined version of 4 and 5 can
be developed.

6. Examples. To illustrate the results obtained in the previous sections, we shall
consider some examples. We assume that the coefficients a, b, c, cr in (1.2) and (1.3)
are constant, and the running cost f(x) is time-independent and satisfies the condition
(1.9). In addition, let c(t)= 0, i.e., the cost for control is negligible. As mentioned in
the introduction, for a < 0 and b > 0, the equation (1.2) may be interpreted as an
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automatic cruise control problem. Probabilistically it pertains to the control of the
motion of a Brownian particle with viscous damping, or an Ornstein-Uhlenbeck process
[56]. In the case that a > 0 and b < 0, it becomes a simple model for the control of
the population of a renewable resource. In either case, the unperturbed equilibrium
state is Xo (-b/a) > 0. We wish to construct the optimal control, in particular, to find
the free boundary, so that the mean-square deviation from the equilibrium value Xo is
minimum.

6.1. Unlimited resources. Under the above assumptions, the average cost (1.3)
yields

(6.1) J,(u) E f(y(s)) e ds

By Theorem 2.5, the optimal cost a (1.4) must satisfy

(6.2)

where

Ao f and m->0 ifx>=x*(t),
Ox

Aot -<f and --=0t 0
Ox

if x<=x*(t), 0 <- t<= T,

(6.3) Aou
Ou 1

0"
2 __021g ]Oll

Ot 2 OX2 ax+b’ox +au’

(6.4) x*(t) inf x" xx (x, t) > 0

To construct the solution for x->_ x*(t), we let s (T-t) so that (5.2) gives the
following free-boundary problem

v(x, s)= (x, T- s),

02Ov 1 2 v Ov
Lv 0" -(ax+ b)+ av =f(x),

Os 2 Ox Ox

o31)
(6.5)

03x
for x> x*(T-s), O<- s < T,

v(x, o) o,
031)

x=x*(T-s)
=0,

where v(x, s)= (x, T-s).
Introduce the following change of variables:

e2as 1
7"=

2a
0_-<s_-<T,

(6.6)

1 b
X-- Xo e Xo =--,

o" a

O 1)e as,

*( 7")
l

l + 2aT") l/2 { x* [ ---2al ln( l + 2aT") ] x}"
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In terms of the above variables, it is easy to check that (6.5) reduces to a standard
free-boundary problem for a heat equation.

Ow 1 02w
Mw g(, ’)

Or 202

(6.7)

OW
for

w(, 0) 0,

O<=r<__r=(e2"r-1)/2a,

where

(6.8)

OW

g(sc, ’) 1 + 2a’)t. f{rsC 1 + 2ar)-/+ Xo},

c -2a

2a

To solve (6.7) we seek a similarity solution of the form

(6.9)
w(:,

/= ’r>O.
0()’

for some n 6 N+,

By a straightforward computation, we get

(6.10) Mw= O"-l(nq-rlq’)-O"-q"= g(sC*rl, -)

or

(6.11) OO( nq rlq9’) go"= g(* rl, )/ 0 n-2.

Now, suppose that f is symmetric about Xo such that

(6.12) f(x+xo)= h(x)=lrl"h(rx) for every rN-{0}.

That is, h is positive and homogeneous of degree m. Then the system (6.7) is reducible
to a one-dimensional problem, if we choose

(6.13) 0=1/2, 0(0) =0,

so that the free boundary is given by

(6.14) *(r)=60(r)=6 for some/3e, 0-<_z<-l.

In view of (6.8), (6.12)-(6.14), the equation becomes an ordinary differential equation

(6.15) +-(e he’)= h(n),

provided that

m
(6.16) n=m+2, /3=.

.Let us summarize the above results"
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THEOREM 6.1. In (1.2) and (1.3), we assume the following:

(6.17) a,b, a, tr are constant and c(t)-=0, the conditions (6.12) and (6.16) are

satisfied.
Then, under the transformations (6.6) and (6.9), the free boundary problem (6.5) is
reducible to

-p +(np-/)=trh(r/) for ,1>=6,

(6.18)
’(6) =0,

"() =0,

(n)=o(n) as

Remark 6.1. The last two conditions in (6.18) follow from Theorem 2.1. The
reduced problem (6.18) is a free boundary value problem in one dimension where
is to be determined in the process of constructing the solution. A special case, to be
considered in what follows, has been solved by Benes, Shepp and Witsenhausen [6].

As a special case, let m 2. By (6.16), we get

(6.19) =1, n=4.

Then, setting 1, (6.18) may be written as

t)- +(4 n n, n,

(6.20)
(6) =62’
’() =0,

(n)=o(n) asn.
Similar to [6, Problem 2] (with replaced by -x), the solution of (6.20) is given by

(. ( o(+b(,(l [(al]- e-"/ a

where

(6.22) p, (/) (’04 + 6"r/2 + 3),

b(8)= ,(6)/{[,(6)]-’e })]-2 e-a2/2 da

The parameter 6 is determined by the equation

(6.23) 62 + )]--2 e- --t2)/2 da

[(41(/ )]--2 e-/2 dh-

which may be solved numerically to yield -0.6388 . In view of (6.5), (6.6), (6.9)
and (6.22), the problem (6.2) is solved and the associated free boundary is given by

t[1--e-2a(T-’)] I/2 b
O<=t<= T.(6.24) x-2 a a’

6.2. Finite resources. In the previous case 6.1, suppose the resource u for control
is finite so that 0<= u(T)<=z. The optimal cost (x, z, t) defined by (1.19) can be
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decomposed, according to Theorem 4.2, into two simple problems. That is, noting
(4.13) and (4.14),

(6.25) (x, z, t)= u(x + z, t)- [a(x + z, t)- a(x,

where (x, t) is the optimal cost without resource constraint, while u(x, t) is the cost
of free evolution defined by (1.18). Therefore it must satisfy

Aou=f, 0-<_t<T, xc,
(6.26) u(x, T) O,

,(x, t) O(Ixl") as

where Ao is defined by (6.3). By the transformation (6.6), (6.26) may be solved to give

flr-,, i exp ([(x t)_p]2/2[r(t)_A]+2aA)
u(x, t) e -"(

2[(t)-a]

(6.27)
x(l+2aa)f[ (l+2aa)-’/2p-b]-a da do,

x+ ea(T-t)

r(t)=(2a)-’ [e2" r-"- 11.
Thus, as a consequence of Theorems 4.2 and 6.1, we have

COROLLARY 6.1. If, in addition to the hypotheses (6.17), we assume u<= z, then, in

view of (6.27), the solution of (6.26) is reducible to a one-dimensional problem (6.18).
Remark 6.2. Note that the free boundary, given by (6.14), remains unchanged.

In particular, for m 2, this problem may be solved explicitly.
We wish to point out that, for the optimal correction problems, the case of vanishing

cost, c 0, is less interesting. In this case the optimal policy would be to counteract
the noise as long as the resources remain available so that f(y(t), t) is kept to the
minimum. However, for c # 0, the method of similarity transformations (6.6) and (6.9)
is no longer applicable. This, of course, is true also for the one-sided control problems.
Consequently one must deal with the genuine free-boundary problems for which the
analytical solutions are difficult to obtain.
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