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ON THE OPTIMAL IMPULSE CONTROL PROBLEM
FOR DEGENERATE DIFFUSIONS*

J. L. MENALDI®

Abstract. In this paper, we give a characterization of the optimal cost of an impulse control problem as
the maximum solution of a quasi-variational inequality without assuming nondegeneracy. An estimate of the
velocity of uniform convergence of the sequence of stopping time problems associated with the impulse
control problem is given.

Introduction. Summary of main results. In this article, we develop the proofs of
results announced in Note [5].

The impulse control problem has been studied by several authors. A. Bensoussan
and J. L. Lions [2] treated nondegenerate diffusions, M. Robin [11] developed the case
of Feller processes, and J. P. Lepeltier and B. Marchal [4] investigated a similar problem
for a more general kind of Markov processes. In a purely analytical framework, L.
Tartar [13] considered an abstract coercive quasi-variational inequality and F. Mignot
and J. P. Puel [10] a first order quasi-variational inequality.

We study here the case of degenerate diffusions which lead to a second order
noncoercive quasi-variational inequality. The deterministic case leading to a first order
quasi-variational inequality is treated in [6].

Let (Q, %, P) be a probability space and {#'},=o be a nondecreasing right-
continuous family of completed sub-o-fields of %.

Let v be any admissible’ impulse control and y(¢) = y(t, v, w), t =0, w € Q be the
diffusion with jumps on R" starting at x, with Lipschitz continuous coefficients g(-) and
o(+).

Suppose O is an open subset of R", and 7 = 7, (v, w) the first exit time of process y (¢)
from @.

Next, let f(x) be a bounded upper semicontinuous nonnegative real function on 0,
and k(¢) be a continuous real function on RY such that

0.1) k()=ko>0V¢=0, and k(¢)->0if |¢ 00,

functional cost is defined by

0.2) Jx(v) =E{ L fly@e)) e " dt+ Z k(£)16,<c0 e“""i},

where « is a positive constant.
Our purpose is to characterize the optimal cost

(0.3) i(x)=inf {J,(v)/v an admissible impulse control},

and to obtain an optimal admissible impulse control.

* Received by the editors July 10, 1979, and in final revised form March 3, 1980.
T Université de Paris IX (Dauphine), Paris, France.
! See Def. (1.7).
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OPTIMAL IMPULSE CONTROL PROBLEM 723

We denote by A, the second order differential operator associated with the Ito
. 2
equation

0.4) A =-—ltr<0'0'*—a—2—)-— 2
' 0 2 ax* gax
and A = Ao +a.
Let I'o < 80 be the set of regular points, and let us use the integral formulation of
A
We define by M the operator

(0.5) [M¢1(x)=inf{k(&)+p(x +&)/£20,x +£€ 0.

Assume that 0 is sufficiently smooth such that M maps continuous functions ¢ into
continuous functions M¢. We will give conditions below (Lemma 1.3), so that M has
the proposed regularity.

Finally, we introduce the problem: To find a real bounded measurable function on
0, u(x) such that

u=0 on I,
(0.6) u=Mu in O\T,,
Au=f in the martingale sense on O\T,.

Now, we consider the following sequence of variational inequalities corresponding
to optimal stopping time problems (cf. [7]). _

Let #°(x) be the bounded upper semicontinuous nonnegative real function on 0
such that

4°=0 onT,,
0.7) 0 . . _
Aid =f in the martingale sense on O\I'y,

and given ﬁ":l(x), let #"(x) be the bounded upper semicontinuous nonnegative real
function on @ which is the maximum solution of

u"=0 on Iy,
(0.8) u"=Mi""" in O\T,
Au"=f in the martingale sense on O\T,.

We have the following characterization.
THEOREM 0.1. Assume that g, o are Lipschitz continuous, (0.1), and that f is
bounded upper semicontinuous and nonnegative. Then problem (0.6) admits a maximum

solution i which is upper semicontinuous and given as the optimal cost (0.3). Moreover,
the following assertions are true.

a1
(0.9)° lal=—171,
a

(0.10) 4" (x)- d(x)(n >0) uniformly in x€0.

2If B is a matrix, then B* denotes the transpose of B and tr (B) the trace of B.
3 See Def. (1.13). B
11| denotes the supremum norm on 0.
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Furthermore, if Ty is closed and f continuous, the function il is also continuous on 0 and
there exists an optimal admissible impulse control.

Regarding i as a distribution in 0, we have

THEOREM 0.2. Let the assumptions be the same as in Theorem 0.1. Suppose

2
0.11) £—C—20'0'* cLL.(0).

Then the optimal cost ii verifies

(0.12) AlL=sf in92'(0).

Moreover, if Ty is closed and f continuous, the following equation
(0.13) Ad=f in2'([4<Mi)

is also true.

Now, a quasi-variational formulation is given.

Let Bo(x), B1(x) be the weight functions (1+|x|>)" V"2, (1+|x)™?, A >N/2
respectively. Introduce the following Hilbert spaces, H = {v/Bov € L*(0)} with scalar
product (-, ), and V ={v e H/B1(3v/dx;)e L*(0),Vi=1,---,N and v =0 on I'}. The
space V' is the dual of V, and (-, -) denotes the duality between V' and V.

Consider the following quasi-variational inequality:

ueV, u=Mu,

(0.14)
(Au,v—u)z=(f,o—u) VYoeV, v=Mu.
Assume
62
(0.15) ?aa* e L(0),

and that there exists a Lipschitz continuous subsolution w, i.e.,
(0.16)° WweWgy®(0) and Aw=-—fin 2'(0),

where the constant « is assumed large enough.

For instance, if 0 =R" or oo* is coercive on T, then the assumption (0.16) is
satisfied.

THEOREM 0.3. Let the conditions of Theorem 0.1, (0.15), and (0.16) hold. Suppose
that f is Lipschitz continuous; then the quasi-variational inequality (0.14) has a maxi-
mum solution 4 which is Lipschitz continuous and explicitly given as the optimal cost
(0.2).

This work is divided into three sections. The first section establishes several useful
lemmas. In § 2, the integral formulation of the impulse control problem is studied, and
in the last section, the associated quasi-variational inequality is treated.

In this paper, we will use extensively the results of [7].

1. Preliminary results. Let (), %, P) be a probability space, {#'},=o a nondecreas-
ing right-continuous family of completed sub-o-fields of %, and w(¢) a standard
Brownian motion inR" with respect to %".

% Also in the martingale sense.
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Suppose we are given two Lipschitz continuous functions g(x) and o (x) on RY,
taking values in R" and RY ® R, respectively, g = (g;), o = (o),

(1.1)° 98 9% pRY),  ijk=1,--,N.
0Xr ’ ox X1

We consider the diffusion y°(¢) = y2(¢, w), t =0, € Q and x € RY, described by the Ito
equation

dy°(t)=g(y°(t)) dt+o(y°(1)) dw(t),  t=0,

1.2)
y2(0)=x.
Let A be a closed subset of R", convex with respect to zero’. An impulse control v is
aset{6;,&1;-;0,&; -} where {6,}{2; is an increasing sequence of stopping times

with respect to 97 convergent to infinity (6; = 6;.1, 6; > 00) and {£}i1 is a sequence of
random variables taking values on A, adapted with respect to {6;};2; (&: Q- A, F%
measurable).

Now, we define the sequence of diffusions with jumps {y"(t)}n=1, y"(t)=
yilt,v,w), t20,weQ, x e R", and v any impulse control, by the Ito equation

dy"()=g(y" (@) dt+o(y"(t)) dw(t), =6,

(13) n n—1
yiO) =y " () +1g,-:&, 1=6,.
We have
(1.4) y"(t)=y'(H)on[0,6,] V=
So, if we define
(1.5) y(, v) = lim y"(®), t=0,

the process y(f) = y.(¢, v, w), which is right-continuousg, satisfies the stochastic equa-
tion,

(1.6) dy(t)=g(y(#)) dt+o(y(2)) dw(t)+ -i £&8(t—6)dt,  t=0,

y(0)=x,

where §(¢) is the Dirac measure.

Suppose O an open subset of R™, and 7 = 7, (v, »), 7%= 7%(w) the first exit time of
processes y(t), y () respectively, from 0.

We call v ={6,, &5+ + 5 6, &; - - -} an admissible impulse control if it satisfies

1.7 y(r)e@ a.s.on[r<oo];

that is, no jump of the process y(z) is outside of @ before 7.
Denote by I'p the set of regular points (cf. D. W. Stroock and S. R. S. Varadhan

(12)),
(1.8) To={x e =90/P(+2>0)=0}.

;] S B(RY ) denotes the set of all Borel measurable and bounded functions on RV taking values in R.
i.e., AéeA, VA e[0,1], Vée A, Generally, we take A =RY.
y(t) has also left limits.
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LEMMA 1.1. Assume (1.1). Let v be any admissible impulse control, and 6 be any
stopping time; then the following assertions are true.
(1.9) P(y(r, v) €T, 1<0)=0,
(1.10) E{y.(0)=y«(0) e "}=[x—x'" Vx, x'eR”,

where the positive constant y depends on the Lipschitz constant of functions g and o.
Proof. Setting

(o(x)—o(x)(o(x)— cr(x'))*]

e —x'

+2(x —x’)(g(x)—g(x'))/x’ oe RN},

e =’

Y =Ssup {tr [
(1.11)

and recalling that the process y,(t)—y.(¢) is a diffusion (from I[to’s formula) to the
function |x|* e, we obtain (1.10) as Lemma 1.1 in [7].
Finally, using (1.7) from Markov’s property we get

(1.12) P(y"(r")&To, 7" <0) =0,

where " is the first exit time of process y" () from 0. So regarding (1.4), we deduce
(1.9). 0

Let u, v be real bounded’ upper semicontinuous functions on €. Then the integral
formulation of operation A (cf. [7]) is given by

Au=v in O\Iy if the process
OATO
(1.13)* X, = j o(y°(s)) e ds +u(y°(r n %) e """
0

is a submartingale for each x € O\I',.

LEMMA_1.2. Assume (1.1) and O smooth™*. Let f(x) be a real bounded continuous
function on 0. Suppose that there exists w such that

wec@®, w2ep@), i=1,-,N,
(1.14) ax;

Aw=—f in9'(0), w(x)=0 Vxerl.
Then, for any admissible'” impulse control v ={01, &; - - - ; 6, &; -+ -} such that
(1.15)" 62T AT, e[ Vi=1,2,++",

the following estimation is true:

(1.16) E{ j flyx() e~ d’} = "2_:

||x —x'| Vx,x'€0,
where ||0w/ox| denotes the smallest Lipschitz continuous constant of w.

° u and v may have polynomial growth if 0 is not bounded.
10 We say Au =v in the martingale sense.

11 We also assume a large enough.

12 Clearly, admissible for x.

13 ;A 7. denotes the minimum between 7, and 7.
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Proof. First, assume w € C*RN); w, ow/ox;e BRY), i=1,- -+, N. Ito’s formula
applied to function w(x) and process y,(f) gives

E{w(y.(r2)) e ™ = (yelre A o) e * ")

(1.17) - _E{j ,Aw(yx(t)) e ™ dt}.

Since
Wy (1) =0=w(ye(1c ATy)) as.in(ry =7, <00],

from (1.17), we deduce

£ f Fye(e) e~ ai)

éE{‘W(yx(Tx A Tx')) — W(yx'(fx A Tx'))l e—a(*rx/\'rxr)}'

(1.18)

Next, defining

(e(x)—o(x)N(ox) = cr(X'))*]

e —x[?

+(x—x’)(g(x)—g(x’))/x’x,e RN}’

e =

1
Yo = sup {5 tr [
(1.19)

and assuming a =1v,, from Lemma 1.1 and (1.18) we obtain (1.16). Finally, if
w £ C*(0), by approximating w by regular functions the lemma is proved. a
Remark 1.1. Assume w € W"*(0), f € C(0) N B(0). Approximating W by regular
functions, we deduce that [Aw = f in @'(0)] is equivalent to [Aw = f in the martingale
sense of (1.13)]. This fact will be used several times.
Suppose we are given a continuous real function k(¢) on A, such that

k(&)= ko>0 VEeA,

(1.20)
k(¢§)>o0 if [¢(]>00 with £eA.

We define the operator M: B(0) - B(0) by

(1.21) [Mp1(x)=inf{k(&)+d(x +£)/E€ A, x +£€O).
We always assume 0 and A smooth enough, such that

There exists P: @ x A> A measurable and uniformly continuous in x €@
verifying

(1.22) x+P(x,£)e@ Vxe0, Ve,
P(x,&)=¢ ifx+£€0.

For instance, if A = RY and 0 convex with regular boundary, we can take P(x, £) as the
projection of £ on AN (0 —x).

LEMMA 1.3. Assume (1.20) and (1.22). Then if ¢ is upper semicontinuous (or
continuous) on 0, so is M.

Proof. Starting at

(M ](x) - [M](x") = sup inf [(k(&) = k(&) +(B(x+&)~d(x'+£)],
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and choosing ¢ = P(x, £'), we get

[M](x) —[Mp](x") =sup [k(P(x, £)) —k(P(x', )]
(1.23) ¢

+sup [4(x + Plx, €)= b '+ P, £)]

So, from (1.23) and the uniform continuity of function P(x, £), the lemma is
proved. 0
LEMMA 1.4. Suppose (1.20), (1.22) and

(1.24) & bounded and upper semicontinuous on 0.
Then, for each £ >0 there exists a function £.(x) such that

&.:0 - A bounded and Borel measurable,
x+&(x)e0® VxeO,

(1.26) [M1(x)+e =[k(&(x)+(x +£(x)] Vxel.

Moreover, if ¢ is continuous, there exists f(x) verifying (1.25) and (1.26) with ¢ =0.
" Proof. First, if ¢ is continuous, the classical theorems of selection imply the result.
Next, if ¢ is only upper semicontinuous, there exists a decreasing sequence {¢, }n-1
of continuous functions convergent to ¢. So, we also have M¢, decreasing to Me.
Let é "(x) be a function which satisfies (1.25) and

[M$,1(x) =[k(£" () + dn(x +E"(x))] Vxeb,
and let n.(x) be the function

ne(x)=min {n =1/[M¢,)(x) =[Me1(x)+¢}.

(1.25)

Then, if we set
(1.27) E@)=€"(x) if n=n.(x),
the lemma is proved. a

2. Integral formulation. Let I'y be the set of regular points (1.8) and A be the
operator given by (1.13). Assume f(x) an upper semicontinuous function on @ such that

(2.1) feB(0), f=o.

Consider the following problem: To find u(x) such that

2.2) ueB(0), ulx)=0 Vxel,,

(2.3) Au=fin O\I'y [martingale sense (1.13)],
2.4) u=Mu on O\T,.

Let us define the sequence {ii"},_1 of solutions to variational inequalities corresponding
to optimal stopping time problems (cf. [7]). Starting with °(x) verifying (2.2) and

2.5) A’ =f in O\I', [martingale sense (1.13)],
we set 72" (x) as the maximum solution of problem (2.2), (2.3) and

(2.6) u"=MGE"" on O\,
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This section is divided into two parts. First we solve problem (2.2), (2.3), (2.4) and
consider the case where the set of regular points I'y is closed. Next we study the general
case and give some complementary results

2.1. Regular case.

THEOREM 2.1. Let the assumptions (1.1), (1.20), (1.22) and (2.1) hold. Then the

problem (2.2), (2.3), (2.4) admits a maximum solution i which is given by the decreasing
limit

(2.7) d(x)=lim 4"(x) Vxel.
n—-»>oo
Moreover, the function {i(x) is upper semicontinuous and the following estimate is true:

1
(2.8) lell=—1171,

where |- || denotes the supremum norm on 0.
Proof. Using the monotone property of operator M,

(2.9) & = ¢ implies M¢p = My,
and knowing that 0= 4" = i°, we deduce

+1

(2.10)

o
A
IA
I

i"t=at=a°%  n=1,2,-
Then, for any solution u of problem (2.2), (2.3), the trivial maximum principle in the

martingale formulation implies u =< i°. Because of (2.4) and (2.9), we obtain
(2.11) usi", n=1,2,---.

So, the function # defined by (2.7) is the maximum solution of problem (2.2), (2.3), and
(2.4). Since #" is upper semicontinuous (cf. [7]), we conclude the theorem. a
Remark 2.1. If we set ¢ = Mii, the maximum solution # can also be considered as
an optimal stopping time cost, i.e., the maximum solution of problem (2.2), (2.3) and
u=sy.
We can also define the sequence {ii"},- as the optimal costs

70

(2.12) 2°(x) =E{j0 F6°0) €~ i

and given "' we obtain 4" by

OATO

(2.13) at(x)= inf E” FO>D)) e dt + Mi"  (y°(6))1 g0 e"“”}

0

where 6 is any stopping time of %",
THEOREM 2.2. Let the conditions (1.1), (1.20), (1.22), (2.1), and

(2.14) feC(0),
(2.15) T'o closed,
hold. Then the maximum solution ii of problem (2.2), (2.3), (2.4) is continuous. Moreover,

i is given as the optimal cost (0.3), and the following estimate is true:

I£1?
. A" —dl= , =0,1,2,---.
(2 16) "u u" koa2(n+1) n=0
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Proof. Recalling that, from [7] and Lemma 1.3, #" is continuous, we need only to

show the estimate (2.16). Since 'y is closed, we are in the case of Feller processes (cf. A.
Bensoussan [1] and M. Robin [11]).

First, we are going to prove that
(217" 4" (x)=inf {J,(v)/v admissible impulse control such that 6; = Vi=n +1},

where the functional cost J,(v) is given by (0.2).

Indeed, from Lemma 1.4, there exist functions é\i (x),i=1, -+, n verifying (1.25)
and

(2.18) Mu" " (x)=k(Ex)+a" " (x+£(x) Vxel.
Thus, we define 7" ={6, £}i>, as follows.
(2.19) 6°=0;
dj’(t) = g(°(1)) dt + o (§°(1)) dw (),  t=0,
$90) =x;
221  #F=inf{r=0/7' ()¢}, i=0,1,---,n;
(222)" ¢ =inf{rel[6’, F /2" @) =[MA" NG (@)}, i=0,1,--,n—1;
2.23)7  &a=EGF(6"),  i=0,1,---,n-1;
dj () =g(F'(t) dt+o(F (1) dw(r), t=9,
(2.24)  $i(6H=9""6+&,
$I =971, <6, i=1,2,---,n;

(2.20)

and next

029 d={g gt T e
(2.26)  &=0 ifizn+1.

We have

2.27) y(t, 2")=73"(1), t=0,

and from Markov’s property

(2.28) 2" (x) =J: ("),

(2.29) 4" (x)=J,(v) if v has at most n impulses.

Then, (2.28) and (2.29) imply (2.17).
Now we are going to show the estimate (2.16).

em gn; o0, §n+1; .t } we have

vy, v) =yt v")=y"(t) ift<6,n1"

4j.e., v has at the most n impulses.
BSwWeset #' =0 if §(£) e GVt =0.

16 We set §'** = # if the subset is empty.
171f §"*1 = co we set &1 =0.
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Hence, if & is given by (0.3), we obtain

(2.30) 0=4"—d=sup E{J Fiy"™ (1) e"""dt}.
v O, A"
Since
1
R Z k(é)lg<we R

-
k(n+1), 1

and since it is possible to take the supremum only over all admissible impulse controls
such that

oo ) 1
E{ L k(E)lg<oe “"f}é—llfll,
i=1 a

the estimate (2.16) follows from (2.30). O
Remark 2.2. The estimate (2.16) can be improved using a probabilistic version of
results in B. Hanouzet and J. L. Joly [3]. We have

(2.31) la"—a|=Cq", n=0,1,2,--,
where constants C >0 and g € [0, 1[ depend only on |/f[|, @, and ko. Indeed, we define
the operator S: C(0) - C(0) by
OATO
(2.32) Sv =ir;f E{J' F°t)) e dt + Mo (y°(8))1 g0 enae},
0

where 6 is any stopping time of %",

Let i° be the function given by (2.12), so using estimate (2.8) and the fact that
ko =M (0), we deduce

(2.33)'® AG°=S(0) if0= Afi}’flr

Clearly, the operator S is increasing and concave, hence it is easy to prove from
(2.33) the following property:

VYu,ve C0), 0=u,v=1i’and satisfying
(2.38) —rv=u-—v=pu, r,pel0,1],
we have
—(1-MrSv=Su—Sv=(1—-A)pSu.
Next, we obtain from (2.34)
(2.35) Is"a®=s"a’l=@-0""a’,  m>n,

and recalling that #" = S"4°, we have the estimate (2.31) with C =]z’ and g =
1-x. O

COROLLARY 2.1. Let the assumptions be as in Theorem 2.2. Then there exists an
optimal admissible impulse control ¥ = b,

(2.36) i(x) =J.(?),
where ii is given by (0.3).

8 We assume that A =1.
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Proof. From Theorem 2.2, the function #(x) is continuous. Then, from Lemma
1.4, there exists a function £(x) verifying (1.25) and
(2.37) [Mi)(x)=k(é(x)+d(x +E(x)) Vxel.
Then, we define # = {8, &}i>1 by
(2.38) 9°=0;
dj’(t) = g(P°(1)) dt + o (3°(1)) dw (1),  1=0,
$°(0)=x;
(2.40) ' =inf{rz=0/5'(e0}, i=0,1,2,---;
(2.41) 6" =inf{re[6’, #1/4( (1)) =MAIF' (1)}, i=0,1,2,---,
242)  &n=E@'(6"N), i=0,1,2,--;
a5’ () =g(F () dt+o(3'@) dw(®),  tZ6',
(243)  9U(6H=9"1(6)+6, i=1,2,-,
Pn=5""n, 1<,

and later on,

(2.39)

. é’i if §i < 2i-1
(2.44) @={ EO<T & o1,
o otherwise,
We have
(2.45) y(t, $)=9"(t) £ 0=t<b,

and from Markov’s property

P
6, ATn

(2.46) ax) =E“

0

A"y e des § K@ azme )

+E{l4,<en18(5"(80)) e ™).
Hence, letting n - o0 in (2.46) and, using (2.45) and (1.9), we obtain (2.36). g

2.2. Complementary results. Now we omit assumptions (2.14) and (2.15).

THEOREM 2.3. Let the conditions (1.1), (1.20), (1.22), and (2.1) hold. Then the
maximum solution i of problem (2.2), (2.3), (2.4) is given as the optimal cost (0.3), and
the estimate (2.16) is true.

Proof. As in Theorem 2.2, we just need to prove (2.17). Moreover, we will only
show that

) Ve >0 there exists #°, an admissible impulse control
(2.47) which has at most # impulses, such that

A" (x)+e=J.(9°).

Indeed, given & >0, from Theorem 3.4 in [7], we can choose a stopping time which is
g-optimal and depends measurably on the initial point, so there exist functions . (x),
i=1,2,-+-,n,such that

6.:0 x Q> [0, ] is Borel measurable,
(2.48)

Vxe@, 6.(x)is a stopping time;
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5; ATO .
arit et gEU fo8) e dt+14i<,o[Mi" ']
(0]

2.49 5 '
( ) - (y°(8Y)) exp (—aei)}-

Also from Lemma 1.4, there exist functions «f'g (x),i=1,2,- -+, n,verifying (1.25), and
(2.50) [Ma" x)+e2 " =k (x)+4" " (x +EL(x) Vxed.

Thus, defining the admissible impulse control #° = {§;, £}, by (2.19), (2.20), and

(2.51) #=inf{t=0/9 ()¢ O}, i=0,1,--,n,
(2.52) 6 =[6""+63" @ NIAFTY,  i=1,---,n,
(2.53) E=ET1(NEY), i=1,-+,n,

and (2.24), (2.25), (2.26) we deduce assertion (2.47) using Markov’s property. O

COROLLARY 2.2. Let the assumptions be as in Theorem 2.3. Then given £ >0 there
exists a function p.(x) ={6:(x), é,-(x)}fil such that 6; and & verify (2.48) and (1.25)
respectively, and

(2.54) d(x)+e=J.(.(x)) Vxeb,

where i is the optimal cost given by (0.3).

Proof. We just need to combine the methods of Theorem 2.3 and Corollary
2.1. 0

Finally, the function # is regarded as a distribution in 0. Notice that Theorem 0.1 is
completely proved.

Recalling that A is the differential operator (0.4) and assuming

2

(2.55) 3 ot e LL(0)
ox

we can define Au, for any u € B(0), as the following distribution,

(2.56) (Au, )= J uA*$dx Ve eD(0),
[
where A* is the adjoint of A,
. 178 ... 9
(2.57) A*¢p=—=tr| —o0*d|+—gd +ad.
2 Lox ax

THEOREM 2.4. Assume the boundary T is smooth, and conditions (1.1), (1.20),
(1.22), (2.1), and (2.55) hold. Then the optimal cost ii given by (0.3) satisfies

(2.58) AG=f in9P'(0).
Moreover, if (2.14) and (2.15) are true, we also have
(2.59)"° Ad=f inP'[4<Mi).

Proof. We need only to use Theorem 3.6 in [7] and Remark 2.1. O

914 < Mii] denotes the subset of @ such that @(x) < Mii(x).
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3. Quasi-variational inequality. Let a;(x), a;(x) be functions for i,j=1,---

such that

(a;);; is a nonnegative symmetric matrix and
(3.1) ¥ ay;

4, e C'RY), 2 e1*RY) Vijki=1,--,N,

dxy 0X;
N aai 00 /N .
3.2) a,€eC(R"), E—EL (RY) Vik=1,---,N.
k
Define the following differential operator A,
N 9 d N 0

(33) A=- Z ——ai,-——+ Z a,»——+a,

Li=10Xx; 0x; =1 O0X;

where « is a positive constant.
We always identify g and o given by (1.1) as

1
(aij)ij =300%,

Let Bo(x) and Bi(x) be the weight functions (1+|x>)"**"? and (1+|x[))™?,

A > N/2, respectively.
Introduce the Hilbert spaces

(3.5) H ={v/Bov e L*(0)},
with the inner product
(3.6) (w,0)= [ (Bow)(Bov) d
[}
and the norm |- |;
(3.7) V={v eHml:—x’ieLz(m Vk=1,---,N}
k
with the norm
N a0 12 1/2
(3.8) ||v]|=(|v|2+ Y J' ‘31—- dx) .
k=1 Jo 0Xx

V' denotes the dual space of V and (-, -) the duality between V' and V.
We have

(3.9 VecHcV', L%0)cH, {v/;—;eLw(@) Vi=1,---,N}CV.

Let a(-, -) be the bilinear form associated with the operator A,

alu,v)= 3 [ e "’”)(31;—;) dx

Q=1 0x;

(3.10) N o
+ 3 | a(Bi2) Bov) dx+au )
i=1Jo Xi
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where

a;(x) = (1+]x[") " ay(x),
3.11 N
G0 a(x)=1+xH @) 20+ DA+ T ay(x)x;

Notice that a;;, a; are not supposed to be bounded, but a;; is at most of quadratic growth,
and g; of linear growth. Then, d;, d; in (3.11) are bounded.

This section is divided into two parts. First, we consider the case where 0 = R".
Next, we study the general case.

3.1. Case 0 =R". Assume 0 =R". After some calculation, we deduce
(3.12) a(u,v)=(Au, v) VYu,veV,AucH,
(3.13)*° la(u, v)|=Clullvll Vu,veV,
and if « is large enough there exists ao> 0 such that
(3.14) a(u,v)Zao(u, u) VueV.
Next, from (3.12) and (3.13), it follows that
(3.15) a(u,v)=(Au,v) Vu,veV.

We recall that M denotes the operator given by (1.21). We define, for any
ue VNLYRY), the closed cone K (1) in V by

(3.16) K(u)={ve V/v(x)=[Mul(x)a.e.inR"}.
Let us consider the following quasi-variational inequality,
3.17) Find u € VN L*(R") such that u € K (u) and
a(u,v—u)=(f,v—u) YveK(u),
and also the sequence of variational inequalities
(3.18) Find u°€ V such that a(u®, v) = (f,v) VveV.

Find u" € VN LP(RY) such that " € K (u""") and

(3.19) )
aw",v—uz(f,o—u") VoeK@" ).
We have
THEOREM 3.1. Let the assumptions (3.1), (3.2), (1.20), (2.1), and
(3.20) A o ®Y),  k=1,---,N
Xk

hold. Then the quasi-variational inequality (3.17) admits a maximum solution ii which is

given as the optimal cost (0.3). Moreover, i is Lipschitz continuous and the following
estimates are true.

oi
ax

1

L a—%Yo

of

ox

A

(3.21)*

L°°,

20 > denotes a constant,
21|34/ ax||.~ denotes the smallest Lipschitz continuous constant of @, and yo is given by (1.19).
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(3.22) Osu"-4=C(n+1)7"Y, n=0,1,---,

where the constant C depends only on the supremum norm of f and a, ko.*?

Proof. First, from Theorem 4.1 in [7], the sequence defined by (3.18), (3.19)
coincides with that defined by (2.12), (2.13).

Then, from (2.17), we have

lu" (x)—u"(x")| = sup {|J,(v) = Jo(v)|/v an impulse control
such that ;=00 V i=n +1}.

Hence, Lemma 1.1 and (3.20) imply

(3.23) wl < 1A yp=0,1,2,--
0x L a—%Yo ax L®
Thus, using Theorem 2.2 and classical technique, the proof is completed. a

Remark 3.1. Clearly, using only analytic methods, like B. Hanouzet and J. L. Joly
[3], we can prove that (Remark 2.2)

(3.24) 0=u"—-d=cq", n=0,1,--+, withO0<g<l1. 0

3.2. General case. Now, we come back to the general case, 0 an open subset of RY
with boundary I' sufficiently smooth.
Define the closed subspace of V,

(3.25) Vo={veV/v=0onT}

Then, as in the case 0 = R", if « is large enough there exists a constant a¢ >0 such
that

(3.26) a(u,u)=aolu, u) VueVy,
and we also have
3.27) a(u,v)=(Au,v) VYu,ve V.

For any u € VoN L*(0), we define Ko(u), the following closed cone in V, by
(3.28) Ko(u)={ve Vo/v =Mu, a.e. in O}.

Let us consider the quasi-variational inequality

Find u € VN L™(0) such that u € Ko(u) and
(3.29)
a(u,v—u)=(f,v—u) VveKy(u),

and the associated sequence of variational inequalities,

(3.30) Find u°e V, such that a(u°, v) = (f,v) VYveV,.

Find u" € VoN L®(0) such that u" € Ko(u" ") and
(3.31)
a@w",v—u"z=(f,o—u") Vv e Ko(u" ™).

22 ko is given in (1.20).
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Remark 3.2. Assume (2.1). Suppose that O is bounded and satisfies the uniform
exterior sphere condition of radius p >0, and that

I'={xel/|lo(x)n(x)|>0}
(3.32) Uf{xeTl'/2g(x)n(x) <—tr (o(x)a*(x))},
n(x) is the inner normal with modulus p.
Then, there exists a Lipschitz continuous subsolution
5397 BECE@:W IeL™0),  i=1-,N,
Aw=—fin O, w(x)=0 Vxerl.

Indeed, we only need to use Lemma 1.5 in [7].
THEOREM 3.2. Let the conditions (3.1), (3.2), (1.20), (1.22), (2.1), (3.33) and**
(3.34) A cr=@), k=1,---,N,
axk
hold. Then the quasi-variational inequality (3.29) admits a maximum solution ii which is

given as the optimal cost (0.3). Moreover, ii is Lipschitz continuous and the estimates
(3.22) and

on 1 i) ow
(3.35) om) 1 o) ow
0x L a—%Yo oxll g x L>®
are true.
Proof. As for Theorem 3.1, we just need to prove the following estimate,
ou" 1 d ow
(3.36) wl < L e ¥ o,
oxllp~> « — %Yo oxll = ax L>®
Indeed, starting at
(3.37) u"(x)—u"(x")=supinf [J,(v) - J(»")],

we set, for any v’ ={6}, £¢/};=1, the impulse control v ={6,, £}~ defined by (1.2) and
(3.38) re=inf{t=0/y, (g0}, i=0,1,---;
b= {o; if 9) < .Ti—l AT,
00 otherwise;
& if g;<oo and &£ +yil(6)e0,
(3.40)  &=10 if 6, =00,
Al if ;<o and A& +yL'(6)eT;
dy' () =gy () dt+o(y' (1)) dw(®), t=8,
(3.41)  y'(B)=y (B +&
Y=y, <o

23 In the martingale sense with & large enough.
24 We also assume «a large enough and k(AE)=k(&),VeEe A, A e[0,1].
25 ;i is given as 7% in (3.38).

(3.39)%
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Notice that & is well defined, because if ¢ +y5 ' (6;) € Oand 6; <cowe have y' ' (6,) € 0,
and so there exists A €[0, 1] such that A&} +y. ' (6;) e T =To.

Thus, » is an admissible impulse control for x, and choosing » as above in (3.37), we
deduce

un(x)——u"(x’)gsup E{j. ) fy(t v)e ™ dt}
(3.42) oo

wsup B [ 1706 1) =06 0] e,

0

where the supremum is taken over all admissible impulse controls v'.
Finally, from Lemma 1.2 and the fact that

(3.43) ye(t, V) =y:(t, v"), as.in [0, 7 A7,

the estimate (3.36) follows from (3.42). 0

THEOREM 3.3. Under the conditions of Theorem 3.2, the following quasi-varia-
tional inequality

ieWe™(0), 4 =Mi in O,
Ad=fin 2'(0), Aii=fin 2'(4<Mi)),

(3.44)

has one and only one solution i. Moreover, U is given as the optimal cost (0.3).
Proof. We only need to prove the uniqueness of problem (3.44). Moreover, it
suffices to show that any solution of (3.44) is a solution of (2.46).

Indeed, using a classical technique (cf. D. W. Stroock and S. R. S. Varadhan [12]),
we can prove that if & verifies

deWyc(0), Ad=f in2'(4<Mi)),

then we also have
Ad = f in the martingale sense on [# < M#].

Therefore, as in Corollary 2.1, we obtain the equality (2.46) and the theorem is
established. 0

Remark 3.3. Itis possible to consider a function ao(x) instead of the constant « for
the definition of cost (0.2). Moreover, we can also consider f not necessarily bounded
and k =k(x, &).

Remark 3.4. All these results can be extended to the parabolic case.

Remark 3.5. In [9], we give an application to the impulse control problems with
partial information.

Final Remark. In a separate paper (cf. [8]) the stopping time and impulse control
problems for degenerate diffusions with boundary conditions will be studied.
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