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Abstract 

The image reconstruction from noisy data is studied. A nonparametric boundary 

function is estimated from observations in N independent channels in Gaussian 

white noise. In each channel the image and the background intensities are unknown. 

They define a non-identifiable nuisance "parameter" that slows down the typical 

minimax rate of convergence. The large sample asymptotics of the minimax risk is 

found and an asymptotically optimal estimator for boundary function is suggested. 

Key words and phrases: image reconstruction, boundary function estimation, multi­

channel model, minimax rates. 
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1 Introduction 

We study a problem that belongs to the image analysis or reconstruction of images 

from noisy data. Let us start with a statistical model proposed in [10], 

Y; =!(X;)+~;, i = 1, ... ,n. (1.1) 

This is a discrete model with a number of observations n, n ~ oo. In this model, 

f is an unknown "intensity" function that depends on a two-dimensional "input" 
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variable X,·= (X,,, X,,). We call X, a design point and we assume that it belongs to 

the unit square K = [0, 1] x [0, 1]; Y; is a real-valued response variable determined 

by the "intensity" function f and the random noise €i· To ease the presentation, 

suppose that Xis are independent and uniformly distributed in K while Eis are 

conditionally independent, given Xis, with a normal distribution that has zero 

expectation and a variance a 2 > 0, i.e., €i f'"V N(O, 0"2). 

An ('image" is associated with an unknown domain G inside K , and its com­

plement in K, K\G, is associated with a background. Assume that f(x) suffers 

a jump along the boundary of G, i.e., its values are essentially different over the 

image and the background, 

{

!J(x) 
f(x) = 

fz(x) 

if X E G, 

if x E K\G. 

where x = (x 1 , x2). Though the model (1.1) resembles a regression model, the 

objective is not to estimate f. In image analysis, the goal is to estimate the boundary 

of G, i.e., the curve of discontinuity off. 

Let us discuss in brief a continuous analogue of the model (1.1) 

(1.2) 

where W(x1, x2) is a two-dimensional white noise - a formal derivative of the two­

dimensional Wiener sheet W(x 1 ,x2 ), (see [5] or [10]). A small parameter E > 0, is 

connected to the discrete model (1.1) by the equation E = e7/fo. 

The easiest way to explain the link between (1.1) and (1.2) is to assume that the 

design points Xi's are not random but rather run over the uniform equidistant grid 

of points in the unit square K with the step size 1/ fo in each dimension. There 

are [fox!] x [fox2] observations in the rectangle R = [0, x,] x [0, x2] where [fox] 

is the integer part of fox. Sum up and average the discrete observations Yi over 

the rectangle R, and obtain the equation, 

1 1 1 Ei - L Y; = - L f(X,) + - '""' -. 
n n 'n~ 'n XiER XiER vI~ X;ER v /b 

As n ~ oo, the first deterministic Riemann's sum on the right-hand side converges 

to J; 1 J0x
2 f(sl, s2) ds2 ds1, while the normalized random sum of €i's converges to a 
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two-dimensional random field u W (x1 , xz) called the Wiener sheet (of intensity u2
): 

Here W(x 1,x2) is a standard Weiner sheet- a Gaussian random field that has the 

zero-mean and whose variance equals the area of the rectangle R. The covariance 

of this random field is given by the formula 

(1.3) 

A natural analogue to the discrete observations y(nl(x!,x2 ) above is the random 

field of the continuous observations Y(x1, xz) which satisfies the following equation: 

(1.4) 

where a small parameter e is a substitution for un-112 • In the model (1.4), the 

asymptotics is studied ass-. 0. Another traditional notation for Y(x1 ,xz) in (1.4) 

is in the differentials, 

dY(xl ,xz) 

or in the formal derivatives, 

(1.5) 

where W(x1,x2) is a two-dimensional white noise. The differential representation 

(1.5) is only a convenient notation. The mathematically rigorous interpretation of 

such models is possible only in the integral sense (1.4). 

Note that a consistent estimation in the model (1.4) is possible due to a small 

parameter c . Probably, the first work where a continuous white noise image model 

has been introduced is [6]. In this paper, the likelihood ratio was found and its 

asymptotics was studied as £ --+ 0 in a parametric hnage model. In nonparametric 

problems the statistical models are studies with image domains G or their edges 

not described by finitely many parameters [10]. In nonparametric problems the 

key question is about estimators that are uniformly good over a broad classes of 

domains. One possible approach is in the minimax optimality of estimators. The 

minimax rates of convergence guarantee a certain degree of approximation for any 

domain within the given class of domains. In the parametric case, the minimax 
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rates of convergence have been studies for a variety of models [10, 11, 9]. Many 

works in image analysis are practically motivated, e.g., the deconvolution methods 

[3, 4], the productivity analysis [2, 9], among others. Adaptive estimation in image 

reconstruction is another interesting direction. In this case, we deal with many 

nonparametric models, and we wish to find an estimator which is optimal or near 

optimal for each model without information about the true model. An example is 

the estimation of image boundaries of unknown degree of smoothness [1]. 

It is worthy mentioning a closely related area of studies: estimation of support 

of a density. This density can be either a probability density or an intensity of a 

Poisson point process [10, 11]. The minimax approach and the rates of convergence 

turn out to be quite similar in image and density supports estimation. It is also 

wmth to notice that the one-dimensional analogue of an image estimation problem 

is a change-point problem. For possible estimators and their rates of convergence 

we refer to [8], [7] and [12]. 

2 Multi-channel model 

Suppose we have a single observation of an unknown image in (1.4) with E = 1 

In this case, no consistency in estimation off can be expected from this observation 

because of the non-decreasing intensity of noise. But what if we have many such 

observations? We associate each observation with a "channel" and we interpret a 

set of such observations as a multi-channel image model: 

Y;(x,,xz) = fox'fox'fJ(s,,sz)dszds, + WJ(x,,xz), j = 1, ... ,N, (2.1) 

where N is a number of channels. The model (2.1) is the principal object of our 

study. It describes N independent "snap-shots" of the same unknown image G. 

The. unknown intensity functions fJ may differ in different channels; Wj(Xt, x2) 

represents a noise in the channel number j , j = 1 , ... , N . The random fields Wj 

are the independent standard 2-D Wiener sheets. 

The general model (2.1) is a challenging one, we do not have its complete solu­

tion. To simplify the model, suppose that the functions fJ are piecewise-constants; 
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J1 = Bj if (xr, x2) E G and fJ = Bj if (xr, x2) E K\G where the real-valued constants 

Bj and B'J are unknown. 

Starting from now on, we assume that the image domain G can be represented 

by a real-valued function x2 = T(xr) so that the image domain G can be presented 

by 

In [10], this case is called a boundary fragment and T is a boundary function. The 

boundary function T is assumed to be one and the same in all the channels. This 

function is the objective of the statistical estimation from the observations (2.1). 

Introduce a vector of all the unknown constant parameters, B = {(Bj, Bj),j = 

1, ... , N}, B E JR2N. Observe that there can be no jump of fJ in some channels if 

Bj = Bj . We will show that for the consistent estimation of the boundary function 

the difference IBj - Bjl must be large in some integrated or "averaged'' sense. 

For the boundary fragments, our model (2.1) can be written explicitly, 

or in differential form, 

j = l, ... ,N. 

(2.2) 

The model (2.2) has a "double" nonparametric structure. First, it has the non­

parametric part that comes from the unknown boundary function T(xr). Second, 

there is a growing number 2 N of unknown constants f:Jj and Bj , and we have to 

take into account this growing dimension of the "nuisance" parameter B. Note that 

the components of() are not identifiable, i.e., they cannot be estimated consistently 

as N ----t oo . As shown below, the rate of convergence in the boundary function 

estimation should be associated to the "total jump" - the quadratic norm of jumps: 

N N 

lll>BII 2 = Ll>BJ = L(Bj- Bj)2
• (2.3) 

j=l j=l 

The rate of convergence depends as well on the a priori degree of smoothness of 

the boundary function. We work with the Holder smoothness of an integer degree 

f], f]E{1,2, ... }. 
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Definition 2.1. Let (3 be an integer and L > 0. Let '£;((3, L) denote all the functions 

r(x,) whose ((3 -1)-th derivative satisfies the Lipschitz condition: 

X!, Xj +hE [0,1]. 

Functions in '£;((3, L) can be unbounded and their values can leave the interval 

[0, 1]. We restrict their values to even a shorter interval [to, 1- to], 0 <to < 1/2, 

introducing a prior set of functions, 

'£;((3,L,to) = '£;((3,L) n {r(x1): 0 S x1 S 1, to S r(x1) S 1- to}. 

Consider the image domain G, 

Let G = G(f) be an estimator of the domain G obtained from the observations 

(2.1). The estimator G(f) will be defined via the corresponding estimator f(·) of 

the boundary function, G(f) = { (x1,x2) E K : x2 < f(il)}. Note that the 

estimator f(x1), 0 S x1 S 1, is not necessarily a smooth function. 

The notation lEe, r [ · J will be used for the expectation with respect to the dis­

tribution IP'e, r of the observations in (2.2) with a boundary function r and a given 

set of constants () , () E R2 N . 

Our multi-channel image model (2.2) is the extension of its one dimensional 

analogue proposed in [8]. In the one dimensional case, the image model turns into 

the change-point problem. Indeed, let x1 be fixed so that the boundary function 

r shrinks to a single point in the interval [0 , 1 J . The intensity function fJ equals, 

respectively, Bj or Bj before and after T if we interpret t = x2 as a time scale. So, 

the two-dimensional observations (2.2) come down to equations, 

}j(t) = Ojl(t < r) + Ojl(t 2: r) + w,(t), 0 S t S 1, j = 1, ... , N, (2.4) 

As shown in [8], the rate of estimation of the one dimensional parameter r from the 

observations (2.4) depends on the performance of the "total jump" [[Ll.0[[2 . If this 

quantity grows slower than 0( VN) a consistent estimation of r is not possible. If 

[[Ll.0[[ 2 increases with N faster than O(N) then the parametric rate of convergence 

O(I[Ll.0[[-2) is attainable. Thus, the mostly interesting case- at least theoretically 

- is under the intermediate conditions, 

lim [[Ll.0[[ 2 /N = 0 as N _, oo. 
N~oo 

(2.5) 
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In the present study, we always assume that the conditions (2.5) hold. Under 

these conditions, in the one dimensional case, the minimax rate of convergence has 

been found. It turns out to be O(N/11118114 ) ---> 0 as N ---> oo. As we prove in 

the next section, in the multi-channel image model, the rate of convergence is also 

associated with the same quantity though in a more complex way which involves 

the smoothness parameter (3 of the boundary function. In Section 4, the minimax 

lower bound is given which claims that the estimator of Section 3 cannot be improved 

uniformly over the Holder class of boundary functions. The proofs of the auxiliary 

lemmas are postponed to the Appendix. 

3 Estimation at a point 

Motivation: The case of known 8's. Consider the problem of estimation of 

the boundary function r(xt) at a single point x1 = a, where a is strictly inside the 

interval [0, 1], i.e., 0 < a < 1. The main result of this section states that uniformly 

over the boundary functions Tin B(f3, L, to), the value r(a) can be estimated with 

the rate O(c';t/(~+l)) where s'J, = N/1111811 4 . Recall that under the conditions 

(2.5), EN---> 0 as N---> oo. 

We want to use a nonparametric version of the maximum likelihood estimator. 

To explain the underlying motivations, consider the problem with known B's. If B's 

are known in the model (2.2) then we are in position to introduce a single random 

field Z(x1,x2) by 

N 

Z(x1,x2) = 1111~ll' ~(8j- 8j') l(x2 <f(x1)) [ij(x1,x2)- ~(8j Hj)]. (3.1) 

It will be shown that (3.1) is a likelihood function. Actually, it is a functional as 

it depends on observations ij and the whole function f = f(-). We emphasize this 

dependence writing Z = Z(x1,x2lf). The function f(·) should be looked at as 

an "input variable" in Z(x1 , x2l f). To define the maximum likelihood estimator, 

the maximization over f of this functional must be specified and explained. This is 

done below. 

To understand what Z(x1, x2l f) in (3.1) has to do with the likelihood, consider 
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the formal log-likelihood of the Gaussian distribution scaled by IIL\.0]] 2 
: 

N 

- 2 ]]~0]] 2 L(1'J(xr ,x2)- [Oj l(x2 < f(xr)) + Ojl(x2 ::0: f(xr))] )
2

. 
J=l 

Leaving only the terms depending on f, we obtain the log-likelihood functional, 

N 

Zo(xr, x2] f) = ]]L\.~]] 2 ;; ( ij(xr , x2) [ Oj l(x2 < f(xr)) + Oj l(x2 ::0: f(xr)) ]-

- ~ [ Oj l(x2 < f(xr)) + Oj' l(x2 ::0: f(xr)) ]2 ) (3.2) 

Lemma 3.1. The functional Z(xr, x 2 ] f) in (3.1) equals the log-likelihood functional 

Zo(xr, x2] f) in {3.2) up to an additive term which does not depend on f . Besides, 

the random field Z ( XJ, x2] f) admits the following representation: 

Z(x1,x2) = l(x2 < f(xr)) [~ (l(x2 < r(xr)) -l(x2 ::0: r(xr))) + II~B]] W(xr,x2)] 

with a new standard Wiener sheet W(xr ,x2). 

Unknown B's. In our nonparametric problem with unknown B's, it is reasonable 

to substitute O's in (3.1) by their estimates. Recall that we cannot estimate Bj 

and 8j consistently in any channel. Nevertheless, we can use some inconsistent 

estimators with finite stochastic errors. Since T = r(xr) E [to, 1 - to] , a part of 

the corresponding random fields of observations }j(xb x2) can be used to obtain 

the direct estimates of B's for each j . We will use the parts of these fields located 

within the strips Tr = [0, 1] x [0, to/8], 72 = [0, 1] x [to/8, to/4], and 73 = 

[0, 1] x [1- to/4, 1- to/8], 4 = [0, 1] x [1- to/8, 1]. By the simple averaging 

we obtain the estimates, 

= 8t01 f dY;(x1 ,x2) = Bj Hj, 
}T, 

= 8t01 
{ dY;(xr ,x2) = Bj Hj, 

}T, 

where ~j 'e; 'TJj and ryj are independent normal random variables with zero mean 

and variance 8/to. The cause to take the four strips is to make the estimates in­

dependent. Thus, we have got the two independent estimates of Bj and Oj with 

random errors whose variance 8/to is finite. Now we are ready to mimic the case of 

known (}'sand to combine the observations }j(xb x2)'s into a singe random field: 

N 

Z(xr,x2]f) = l(x2 <f(x1))f; [ (eYl-ej3l) (1'J(x1,x2)- ~(ej2l + 8)4
)) )]· 

(3.3) 
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The random field Z(x1, x2l f) in (3.3) plays the same role of a log-likelihood func­

tional as the one in (3.1). Note that there is no factor associated with IIL'>OII 2 in the 

definition (3.3) of Z(x1, x2l f). It is quite understandable since this quadratic norm 

is unknown. Before we formulate the result about the asymptotic structure of the 

random field in (3.3), introduce the a--algebra Fo generated by the fields Yj in the 

union of the strips 7i , i = 1 , 2 , 3 , 4. 

Lemma 3.2. Let for a 0, 0 E JR2N, the conditions {2.5) hold. Then the log­

likelihood functional Z(x1,x2l f) in {3.3) admits the following representation: 

(3.4) 

with <N = 116011-2 viiL'>OII 2 (1 + 0<]) + 16 Nfto and a new standard Wiener sheet 

W(x1, x2) where the random variables ai, i = 1, 2, 3, are :Fa-measurable and 

I a; I ---> 0 in W'e, r-probability uniformly overT E 'B(/3, L, to). Moreover, if Go is a 

set of 0 's for which the convergence in {2. 5) is uniform, then the random variables 

I a; I ---> 0 in W'e, r-probability uniformly over Go as well. 

Remark 3.1. If we neglect the vanishing terms in (3.4), we obtain the asymptotic 

representation for Z(x1, x2l f) in (3.3), 

Z(x1,x2lf)"" II60II21(x2 < f(xl))· 

· [~ (l(x2 < r(xJ)) -l(x2 <': r(x1))) + 4/vto£NW(xl,x2)] 

with <Jv = N/116011 4
. 

Comparing the latter asymptotic representation with that in Lemma 3.1, we see 

the two differences. There is an additional factor 1160112 , and there is a different 

intensity of the stochastic term. Recall that we want to use the log-likelihood for 

maximization over f . Clearly, the constant factor does not spoil this game. In what 

concerns the intensity of the stochastic term, indeed, we have to make some extra 

payment for unknown B's. 

The maximum likelihood estimator, The key difference between the one 

dimensional multi-channel change point problem in [8] and the image model of 

observations (2.2) is that the one dimensional maximization of the log-likelihood 

(3.3) does not require any knowledge of the nuisance parameters 0, 0 E JR2N, 
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while in the image model the rate of growth of 11~811 2 plays the essential role in 

the definition of estimator. For this reason, we start with the case when this rate 

of growth is fixed. Take a sequence of positive numbers EN such that EN -> 0 as 

N ---+ oo , and introduce a set 

8(sN) = { 8, 8 E IR2N 
1 ..jN 

< 

Note that for 8 E 8(sN), the inequalities hold, 

1 2 N 2 

4 EN:<::: IIMII4 :<::: 4 'N 
(3.5) 

so that the magnitude of N/11~811 4 equals O(E~) uniformly over the set 8(EN). 

Clearly, on the set 8(EN), the first condition in (2.5) holds. To ensure the second 

condition in (2.5) we require that ../N EN-> oo as N-> oo. 

We consider the boundary functions T from the Holder class "B(/3, L, to). For a 

given sequence c N , an estimator of r will be defined that guarantees a certain rate 

of convergence uniformly over 8 E 8(EN) and T E "B(/3, L, to). Introduce a sequence 

DN = E;J<Ml). Now, when we know the log-likelihood function Z(xr, x2l f), we can 

define the maximum likelihood estimator for the boundary fragment T(xr). First, 

consider the case of the polynomial boundary functions presented in the following 

form: 

1 1 (3 1 
T(xr) = ]'o + i"fi'' (xr- a) + · · · + (/3 _ 1)! /'(3-1 (xr- a) - . (3.6) 

Put I' = ( ]'o, l't, ... , /'fJ-rl, I' E JRf3, for the vector of the polynomial coefficients. 

To define the maximum likelihood estimator on the set of polynomials, we have to 

take the maximum of Z ( xr, x2 I f) over all the polynomial coefficients I', I' E JRf3. To 

avoid the technical troubles of maximization, we look at the log-likelihood functional 

on a discrete subset, 

where m = ( mo, mr, ... , m(J-1) is a /3-tuple of integers. We think of (3.6) as a 

Taylor's expansion of the unknown boundary function T(x1) at xr = a. For any 

r E L.(/3, L, to), the derivatives of r and, respectively, its Taylor's coefficients are 

bounded, 
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with some constants £ 1, ... , L~-! . Thus, we can take into account only those 

integers mo, m1, ... , 1nf3-l in (3.7) which are also bounded, 

0 :0: mo :0: Iii/ , I m1 I :0: L!li!/{3-!) , ... , I m/3-1 I :0: L~-!li!/ . (3.8) 

0 bserve that the total number of such polynomials does not exceed Lo li-p/ (~+!) / 2 

where the constant L0 = L0 (/3) does not depe11d on N . Denote the set of polyno­

mials (3.6) with the coefficients 1 ErN satisfying (3.8) by M13. We will select our 

maximum likelihood estimator from this set M~. 

To define the maximum likelihood estimator of the value r(a) at the fixed point 

x1 = a, we need the log-likelihood (3.3) only within the strip 

SN(a) =[a -liN, a+ liN] x [to, 1- to]. 

The maximum likelihood estimator r;:, = r;:,(-) is defined as the "point" of maxi-

1TIU1TI 1 

r;:,(-) = arg max f Z(xJ,x2lf)dx2dx1. 
f(·) EM, j SN(a) 

(3.9) 

Due to the properties of the Wiener sheet, a unique point of maximum exists with 

probability 1. We take the value of r;:, at XJ = a for the maximum likelihood 

estimator of the boundary function r(a). Introduce another likelihood function by 

Note that £ cannot be used for estilnation since it involves the unknown terms T 

and 6. On the other hand, this modified likelihood function .C(f) differs from the 

integral one in (3.9) by only terms that do not depend on f. It immediately implies 

that the point of maximum r;:,(a) in (3.9) coincides with the point of maximum 

of .C( f). The asymptotic performance of the latter is much easier to study. The 

next lemma shows that at any f fixed, the value of the modified likelihood .C(f) has 

the Gaussian distribution with the explicit formulas for expectation and variance. 

Introduce the £1-norm of the difference of f and the true boundary function r 

reduced to the interval [a - liN , a - liN] by 

1
a+8N 

d1(f, r) = I f(x1) - r(x1) I dx1. 
a-&N 

Lemma 3.3. Let the assumptions of Lemma 3.2 hold. Then there exist random 

variables a4 = a4 ( f , r, 6) and as = as ( f , r, 6), measurable with respect to the 
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(]"-algebra :Fa, and vanishing in 'il'e, 7 -probability uniformly over f E M13, B E 

8(<N), and T E E((J,L,to), i.e., ja4j-> 0 and ja5j-> 0 as N-> oo, such 

that, conditionally on :Fo, the random variable [. = C.( f I T, B) has the Gaussian 

distribution, 

where s'Jv = N /IIMII 4
. 

For the true boundary function r(xt) define its approximate Taylor's polynomial 

r<0l(x1 ) at x1 =a by the formula 

13 ) (/3-l) m(o, I) m(0,/3-1) 
r(0l(x1) = DN m(O,O + DN -

11
- (x1 -a)+···+ DN ((3 _ 

1
)! (x1-a)f3-! (3.10) 

where the integers rrL(O,i) are given by 

i = 0, 1, ... , (3- 1 . 

Define the vector of these integers, 

The Taylor approximation (3.10) is a convenient tool to describe the distance be­

tween the actual function r(x!) and its estimator fN(xt). First, we state a trivial 

result about the distance between a boundary function and its Taylor's approxima­

tion. 

Lemma 3.4. LetT E E((J,L,to) and let r<0l(x1) be its approximate Taylor polyno­

mial defined by {3.10}. Then there exists a constant Cr > 0 which depends only on 

the class E((3, L, to) such that 

The following theorem describes the rate of convergence of the maximnm likelihood 

estimator rJV (a) . 

Theorem 3.1. Uniformly in T E E((J, L, t0 ) and B E 8(cN), the normalized de­

viations <'N2
!3/(/3+l) I rJV(a) - r(a) I of the maximum likelihood estimator {3.9} are 

bounded in W'e, 7 -probability, that is 

lim lim sup sup 
x-+oo N-+= rEE(/3,L,to) 

sup 'il'e,r ( ( IIMII4/N) 131
(/3+!) I rJV(a) - T(a) 12 x) = 0. 

eee(eN) 

(3.11) 

12 



Proof. Choose a large positive number z and take an integer k , k = 0 , 1 , . . . . For 

every k, define a "spherical layer" by 

(3.12) 

where T(O) is the approximate Taylor polynomial of a true boundary function T . 

The next auxiliary result estimates the number of the integer points in each layer. 

Lemma 3.5. For any true boundary function T, the number Ilk, k 2': 1, of the 

elements in Lk does not exceed A (kz)~ with a positive constant A independent of z 

or k. 

Return to the proof of the theorem. The idea of the proof is standard for 

the maximum likelihood estimators. In accordance with Lemma 3.3, the random 

variable ,C has a negative expected value proportional to d1 ( f , T) and a variance 

with a small factor s'iv. Consider the random variable .C(T(O) IT, e) with f = T(0l. 

By Lemma 3.4, the distance d1 ( T(O) , T) = 0( s'iv) is small. We want to show that 

with a high probability, the random variable .C( T(O) IT, e) is bigger than - z c'iv for 

some large z , z > 0 . On the other hand, if f belongs to a "spherical layer" Lk 

with a large k , k > k0 , where ko is fixed, then the distance d, ( f , T) is large, and 

the probability of the random event .C(f IT, e) 2': -z c)., is vanishing as z -> oo. 

Thus, the "point" of maximum, r'fv , with a high probability must belong to one 

of the "spherical layers" Lk with k <:: ko and z large enough. It implies that with 

a high probability the distance d1(Tj:,, T) has the magnitude O(s'iv) = O(J~+ 1 ). 

Finally, as the following lemma shows, if the distance dt ( Tj:, , T) has the magnitude 

O(J~+l), then the absolute deviation I Tj:,(a) - T(a) I at x, =a has the magnitude 

O(J~). 

Lemma 3.6. Let f E M~ and T E 2:-((3, L, t 0 ). Let for a given constant zo the 

inequality holds, d1 (f, T) <:: z0 J~+ 1 . Then there exists a constant Co= Co(zo,f3) 

independent o.f N and such that I f(a) - T(a) I <::Co J~. 

Now we are ready to proceed to the program announced above. Introduce the 

random event Ao = {I "'•I <:: 1/2; I <>sl <:: 1/2}. From Lemma 3.3, we find that 

IP'e, 7 ( Ao) -> 1 as N ---+ oo. Conditionally on :Fo, the random variable .C(T(O) IT, B) 
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is Gaussian, so that 

For any f E M~, put 

Take f = T(O) , and compute the conditional probability, 

where if{) is the standard normal cumulative distribution function. In accordance 

with Lemma 3.4, on the random event Ao, the inequality holds 

zcJv - Jl.N(r(0)) > zcJv - (3/4) CrcJv 

O"N(r(O)) - [ (24/to) Cr sf, ] 112 
2: c,(z- Cr) 

with C! = Jt0 j(24Cr). Thus, 

which implied that 

lim liminf ll'o r(L:(r(O) IT, e) 2: - zcJv) = 1. 
Z--+00 N --+00 ' 

(3.13) 

We want to show that uniformly over e and r , 

lim lim sup ll'o 7 ( uk>ko ufELk { L:( fIT, e) 2: - z cJv } ) = 0. (3.14) 
z--+oo N--+oo ' -

Conditionally, given :Fo , if the random event Ao occurs then 

ll'o,r ( L:(f I r ,e) 2: -zc2 IF.) = 1- il?( i'N(f)- zcJv) 
N 0 ( ') • O"N T 

For any f E Lk , we have that 

and 
' 16 ' 24 

crJv( r) = - (1 + <>5) EJv d1 ( T, r) :'; - [ (k + 1) z + Cr J sf,. 
to to 
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If z ~ 1 and k ~ ko ~ 8 + 2 Cr , then 

1-'N(f) - Z£h > ~ f[i kz- 4z- Cr > ~ ~ _17.-~(4~+;=Go';r~)/~kcc > a-Jk;; 
CTN(f) -8 V6 y'kz+z+Cr -8 V----r! )1+(1+Cr)/k-

with a = V2To/24. Hence 

If z is so large that a -fk;; ~ 1, then the elementary inequality 1 - if>(x) < 

exp(-x2 /2), x ~ 1, implies 

00 
a2k z 

:S L A(kz)~ exp(- -
2
-) 

2 00 2( ) 
A a ( akoz)""k~ (a k-koz) = z"exp --

2
- ~ exp-

2 
, 

k=ko k=ko 

where Lemma 3.5 has been applied. The latter infinite sum is finite, 

~ k~ ( a
2
(k-ko)z) ~ k~ ( a

2
(k-ko)) C 

~ exp-
2 

:S~ exp-
2 

=r 
k=ko k=ko 

< 00, 

Finally, combining these estimates, we find that the limit in (3.14) is zero, 

lim lim sup IP'e r ( Uk>ko UfEL, {£(fIT, B) ~ - Z£h } ) < 
z->OO N -HXJ ' -

. ~ a 2 ko z :0: hm CrAz exp(---) = 0. 
Z-HXJ 2 

The interpretation of the inequalities (3.13) and (3.14) is immediate. For an ar­

bitrarily small p, p > 0, there exists a positive number zo such that with the 

probability at least 1 - p, the maximum likelihood estimator TN belongs to one of 

the layers Lk with k :S ko and z = z*. In its turn, this fact and the definition of the 

layers Lk guarantee that d1(rN, r(0l) :S (ko + 1) z. J~+l. Applying Lemma 3.6 with 

zo = ( ko + 1) z. , we obtain the inequality 

limsuplimsup!P'e,r (c-;}M~+l) I rN(a) - r(a) I~ x) :0: 
x--;oo N---+oo 

:<; limsup!P'e,r (I TN(a) - r(a) I~ c.c;.fl(~+l)) :0: p. 
x~oo 

Since pis arbitrarily small, the limit as x--> oo on the left-hand side of (3.11) exists 

and equals zero. This proves the theorem. D 

Adaptation to unknown B. As mentioned above, Theorem 3.1 guarantees the rate 

of convergence c;.f/(~+1) uniformly over all the boundary functions T E 'B((3, L, to) 

15 



but only locally in e. Under our assumption, e must belong to 8(EN) defined by 

a chosen sequence EN. It is understandable since the bandwidth 8N is defined in 

terms of this sequence. Now, the question arises: Is it possible to substitute an 

unknown EJv = N/[[Ll.8[[4 by an estimate obtainable from observation (2.2) so that 

an analogue of Theorem 3.1 would stay valid uniformly over all O's ? We will show 

that under some restrictions, the answer to this question is positive. 

Let 8o be a set of O's, 8 E lR2 N, for which the convergence in (2.5) is uniform. 

An example of such a set 8o can be presented by 

where a sequence of positive numbers '¢N is given in advance, ¢N -)o 0 as N---+ co. 

Note that in this example, the sequence '1/JN can decrease in whatever slow rate. 

There is a strip in the unit square K not yet used in our considerations, To = 

[0, 1] x [to/2, t0]. Take f = 1 in (3.3), and define a statistic totally computable from 

the observations (2.2) : 

Q'N = 

The following lemma is the immediate consequence of Lemma 3.3. 

Lemma 3. 7. Conditionally on :Fo , the random variable Q'N is Gaussian, 

Q'N ~ N ( [[Ll.8[[ 2 (1 + a 2), ~ •Jv [[Ll.8[[4
) 

to 

and Q'N = [[Ll.8[[ 2 (1 + <>o) where <>o--> 0 in II'e,r-probability uniformly overT E 

E(/3, L, to), and 8 E 8o. 

The statistic Qiv can serve as a empirical substitution for [[Ll.8[[ 2
. As a Gaussian 

random variable, it may take negative values and values whatever close to zero. 

That is why, we replace Q'N by a truncation to define an empirical analogue of the 

bandwidth 8N = ,;;c~+l) by 

8'/v =min [(N/(Qiv)2 ) 1 /(~+l); a; 1-a] 

and put 

S'/v(a) =[a- 8'/v, a+ 8'/v] x [to, 1- to]. (3.15) 

The truncation in the definition of cliv guarantees that the strip S'fv(a) lies entirely 

within the unit square with probability 1. The strip S'fv(a) serves as a substitution 
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for SN(a) which is not computable from the data in the multi-channel model. It is 

worthy to mention that o)'v and the strip SJ'v(a) are .Fo-measurable while the white 

noise in (2.2), { Wj(XI, x2), (xi, x2) E SJ'v(a)} is independent of .Fo. 

Theorem 3.2. Substitute ON in the definition of the maximum likelihood esti­

mator T/'v by o)'v. Then the statement of Theorem 3.1 stays true uniformly over 

T E '£((3, L, to) and B E 8o. 

4 Lower bound 

Recall, our model is (2.2): 

where e = {(Bj,BJ),j = 1, ... ,N} E rn:.2N is unknown. 

As in the upper bound, take a sequence of positive numbers eN such that 

and cN...fN->oo as N->oo. (4.1) 

Introduce a prior set 

( 4.2) 

and choose ON = ,·;p~+l) 

Theorem 4.1. There exists a positive constant CL such that for any sequence EN 

satisfying (4.1) and the sequence ON defined above the lower bound holds: 

(4.3) 

where the prior set 8(cN) is defined by (4.2}. 

Proof. Consider a subset el0l(cN) of 8(cN) defined by 

el0l(,N) = { e = ( ej = M 1, e," = o) f~1 : JN ::; II Mll2 ::; 
2
.../N}. 

2£N EN 

By lEe ,7 and IPe ,7 we understand the expectation and distribution of observations 

in (2.2) for a given T(x1) andB= {(t.e1,o),j = 1, ... ,N}. 

Put 0'
2 = <IJv = 1/(cN.../N) and introduce a sequence t.B1 of the independent 

normal random variables with zero-mean and variance o-2 . 
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Denote by JE(M) the expectation with respect to the distribution JP'(L'>B) of these 

normal random variables. Note that for N large the following lower bound is true 

(4.4) 

where (I:f~ 1 !!.8])/(N a 2) is a standard chi-square random variable with N degrees 

of freedom. Next, we will need two hypotheses on function T( Xt). Let To (xt) = C for 

x1 E [0, 1] with a constant C E (to, 1- to) and let the other hypothesis differ from 

To(x1) by a "bump" of height o~ centered at a point a E (0, 1), i.e. let Tt ( Xt) = 

C + o~ 'PO ( "!~" ), where 'Po > 0 is some test function, such that 'Po E 'f;((3, L, to). 

Notice that both, To( Xt) and Tt ( Xt) belong to our class of boundary functions 

L;(f3, L, to). Indeed, To ( Xt) E 'f;({3, L, to) trivially. By definition of 'f;({3, L, to) 

if 'PO E L;(f3, L , to ) , then 

For 'P ( Xt ) = o~ 'PO ( "!~") this gives the following: 

I 'P(~-1) (X[) - 'P(~-1) (X~) I = 

-I 0~ o-<~-1) (~-1) ( Xt- a) _ 0~ o-<~-1) (~-1) ( x~ -a) I < 
- N N 'Po ON N N 'Po ON 

I 
x1 - a x~ - a I 1 5,oN · L ----- = L · [xt- xtl· 

ON ON 

Hence, Tt( xt) = C + o~ 'Po ( "l~") E L;(f3 , L , to ) . 

For the two hypotheses T; (X[ ) , i = 0, 1 denote the sets 

and by S; = S(G;), i = 0,1 denote the corresponding areas. 

We impose the following condition on our hypotheses: we require that the dif­

ference between the areas St and So be of order cfv, i.e. St - So = ro cfv. This 

is the least difference when we can distinguish our two hypotheses. The positive 

constant ro will guarantee the right constant L in the class '[; ( {3, L , to) . 

Our goal is to prove the lower bound for an estimator of the true function T(xt) 

at a fixed point a E (0, 1) . For any estimator TN( a) the maximum of the expected 
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losses can be estimated from below by the Bayes risk: 

sup oj;/lEo,r I fN(a) - r(a) I 2 
rEE{j3,L,to), 0E8<0l{EN) 

> sup o,;/lEo,rlfN(a)- r(a)l 2 
rE{ro,rl}, &E9(0)(eN) 

2 o,;/ JE(AO) [ 1 { e E e(O)(cN)} 0 lEe' To I fN(a) - ro(a) I + ~lEo' Tl I fN(a) - Tj (a) I) ] ::": 

2~JE(M) [IP'o,ro(A) + ll"e,r1 (A)]­

r~ 
- .J'{_ JE(AB) 

4 

(4.5) 

where we assumed without loss of generality that 0 :5 fN(xr) :5 1. The random 

event A= {lfN(a)- ro(a)l > o~/2} and A is its compliment. Using (4.1) and 

(4.4), we find that the second term in (4.5) is vanishing 

< -1 -N < r;:;N -N O _ eN e _ v IV e ---+ , as N ---+ oo. 

Thus, it is enough to show that the lower limit of the expectation 

(4.6) 

is bounded from below by a positive constant. 

Define the two likelihood ratios and their expectations with respect to the distri­

bution IP'(AB) of the random variables c,e,.. Since we have j = 1, 2, ... , N channels, 

the likelihood ratios are 

A; = dll"AO,T; = 
dll"o,r, 

= exp {tUfa, MJWJdx2dx1 - ~ Jla, M
2

(0,r)dx2dx1 ] }· i=O,l. 

The corresponding expectations with respect to the distribution IP'(IlB) we denote by 

Zo = JE(AB) [ Ao] and 

With these notations we can rewrite ( 4.6) as 

JE(AB) [lEo,ro (Ao 1 (A))+ lEo,r1 (Ar 1 (A))] 

= lEo,ro ( Zo 1 (A)) + lEo,r1 ( Zr1 (A)) 2 

?lEo,ro (min{Zo, Zr }) . 
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The expectations lEo ,To and lEo TI are identical since there is no difference between 

the case when we have no jump at To(xl) or T1(x!). That is why, it is enough to 

estimate from below the minimum of Zo and Z1: 

. [ Zo + Z1 lEo,'" [mm{ Zo, Z!}] =lEo,'" 2 
_ IZ1 ~ Zo I] 

=lE JE(M) dll't.e,'" - ~lE IZ - Z I o,, dll' 2 o,, 1 0 
O,To 

=1- ~lE JE(M) [dll't.e,ro I zl - 11] 2 O,ro dll' Z O,To 0 

=1--lE JE,e --1>1--1 (Ml 1 z1 1 1 
2 ~ '"" Zo - 2 

where the last inequality is due to the Schwarz inequality. 

Since 

[ ~~ l dJP>o, TO (6.(1) 
="'-'-'"- = lE lEo, , 0 [ Z1] = 1 , 
dlF 6.0, To 

then 

JE(M)JE I zl- 112 = JE(MlJE,. 
6.6,To Zo uo,To [ ~~ r- 1. 

Thus, we have 

lEo,,[min{Zo, Z!}] e: 1- ~ JE(M)JEt.e,," [~~r -1. (4.7) 

We will now use the direct computations to calculate Zo and Z1: 

i = 0, 1. 

First, for the sake of simplicity, we compute this expectation for one channel: 

JE(M) exp { - ~~OJ S; + MJ !la, WJ } = 

= ~ ( exp {- y
2 

S; + y (( WJ} . exp {- y
2

2 } dy = 
v21ru2 J'/11. 2 JJa, 2u 

=-
1
- r exp{-y

2 
(s,+..!:..)+y rr wj}dy= 

V27r0'2 J'/11. 2 0'2 }} G; 

u ffa, WJ 1 1 + S; u 2 u 2 ffa WJ 
= exp 2(1 + S; u2) V27ru2 f. exp - 2u2 [ y - 1 + S; u2 ] { 

2 ( . )
2

} { . 2} 

1 { ()'2 - ex 
- v1 + S, u2 P 2(1 + S; u2) u1a; Wj r}. i = 0,1. 
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Since j = 1, ... , N, then 

If ro(xt) is the true boundary function, then 

(4.9) 

and since S1 - So = ro e'Jv , then 

( 4.10) 

where ~Jo) , ~jll are independent standard normal random variables. Next we will 

use the following auxiliary result: 

Lemma 4.1. Let~~ N(O, 1) be a standard normal random variable. 

Assume that numbers a and (3 are such that 1 - a(32 > 0. Then for any flo E lR 

Now we are ready to estimate the expectation with respect to distribution ltD e:..e ,ro 

on the right-side of (4.7). From (4.8)-(4.10) we find that 

[ z
1 

]
2 

lEL>O,ro Zo = 

where fJ.(D) 
J 

6.81 So + VSo~JO) Applying Lemma (4.1) with a = 1.;;;.,, (3 
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J'i'QcN and /1 = MJD) and averaging over E)1l we get 

·fxlEt>e ,To exp { ( l+cr;ocr2 + 1+ Sw2 ~ 2cr2 roc};) (MJO) n = 

= (1 + Socr2)N (1 + Sw2)- N/2 (1 + S!cr2 - 2cr2roch )- N/2. 

N 

·IT IEM,ro exp {~0 
(MJJ) + -/SaE)"l)} = 

j=l 

( 
cr4r5C:~.r )-N/2 ITN {"'" ( (!) 10 (D))} 

= 1 - (1 + Socr2)2 . J~! IEM ,ro exp 2 /lj + V SoEj 

where /1)1) = /',.Bj So and 

ao a2 

2 = 1 + Sw2 - 2cr2r0s}_, 

Note that cr4 roc};= ro/N as N-> oo, while the denominator of the latter formula 

approaches at 1, so ao ~ 2ro/N. 

Once again, applying lemma (4.1) with a = ao, (3 = ..,!So and /1 = /lyl, and 

averaging now over t;,J0
) to obtain 

[ 
Z1 ]

2 
( cr

4
r54.r ) - N/

2 
( S )- N/2 { ao S5II/',.BII

2 
} 

IEM,ro Zo 1 - (1 + Socr2)2 . 1 - ao o . exp 2(1- ao So) . 

(4.11) 

For N large the first factor on the right-hand side of ( 4.11) is equivalent to 

The second factor in ( 4.11) has a finite limit: 

N/2 ( 2roSo)-N/
2 

(1 - ao So)- ~ 1 - "Jil' ~ exp {ro So} < oo, as N---+ oo. 

Using the Lemma 4.1 one more time with a = 1 ~~~~0 , p, = 0 and {3 = a the last 

factor in (4.11) has expectation 

JE(M) exp { "'o S5II!',.BII
2 

} = ( 1 _ 
2(1- aoSo) 

S2 2 )-N/2 ao 0 a 
1- aoSo 

~ exp {ro S,'lcr2} -> 1 as N-> oo. 
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Choose ro = J~ 1 <p(xt) dx, so that 

JE(M)JE,;e,m [~~r :O:exp {r}} · exp{roSo}JE(,;O) exp{roS6cr2
} :0:2. 

Now the expectation of the minimum of Zo and Zt in (4.7) is bounded from 

below by a positive constant 

Hence, the expectation in ( 4.6) is also bounded from below by the same constant. 

This completes the proof. D 

5 Appendix 

Proof. (Lemma 3.1) Add to the right-hand side of (3.2) the following sum inde­

pendent of f: 

N 

112.~112 L (- lJ(xt ,x2) [8jl(x2 < f(xt)) + 8jl(x2 2 f(xt)) I+ 
J=l 

1 + 2 [ (8j)21(x2 < f(xt)) + (8j)2l(x2 2 f(xt)) I). (5.1) 

After that, as the easy algebra shows, the right-hand side of (3.2) turns into the 

right-hand side of (3.1). Next, the random field in (3.1) satisfies, 

N 

Z(xt,X2) = l(x2 < f(xt)) 112.~112 ~(ej- ej) [ 8jl(x2 < r(xt)) + 

Note that 
N 

. 1 """' I II .• 
W(xt ,x2) = ll2.ell L.)8J- ej) Wj(Xt,X2) 

J=l 

defines a new standard Wiener sheet, and the stochastic term equals 

Finally, find that 

N 

112.~112 ~(ej- ej) [ ejl(x2 < r(xt)) + ejl(x2 2 r(xt)) - ~(ej + ej) l 
N 

ll2.~ll 2 ~(ej- 8])
2 [~ (l(x2 < r(xt)) -l(x2 2 r(xt)))] = 

1 2 (l(x2 < r(xt)) -l{x2 2 r(xt)}) 

23 



and the lemma follows. D 

Proof. (Lemma 3.2) First, note that Z(x,, x2[f) in (3.3) is computable from the 

data. 

Put Ei = Ej - (j ~ N(O, 16/to) and '1J = 11} + 11} ~ N(O, 16/t0 ). Simplifying (3.3), 

we obtain that 
N 

Z(x,,x2[f) = l(x2 < f(xt)) L (Bj+Ej-BJ -Ej)(ij(x,,x2)-~ (Bj+rJj+Bj+rJJ)). 
j=l 

From (2.2), the sum on the right-hand side of the latter equation can be written as 

t (i'J.Bj + Eil [ ~ l(x2 < T(xt)) (i'l.Bj- '7j) - ~ l(x2:::: T(Xt)) (Mj + rJj) + wj] = 

N 

L (Mj Hil2 W(x,, x2), 
}=1 

where W(xb x2) is a new standard Wiener sheet; 

and 

with the independent standard (0, 1)-normal random variables 

N N 

( = v'to/16[\i'l.B[[-1 I; i'l.BJ Ei 
j=l 

and i) = 0ofl6!1Mll-1 L i'l.Bj '1i. 
j=l 

Note that 

N 8 - 16 16 16 
""(Mi+Eil2 = IIMII 2 + !+:' [[i'l.B[IE+- (x;l,-N) +- N = [[i'l.Bll 2 (1 +a,)+- N, 
~ v~ ~ ~ ~ 
J=l 

where 
8( 16 x;l,r-N 

vTo [[i'J.Bll + to' IIMII 2 

and Xh = (to/16) I:f~1 E] is the chi-square random variable with N degrees of 

freedom. To complete the proof of the lemma, we have to show that the random 

variables (/[[i'J.B[[, i)/[[i'l.B[[, I:f=1 EJ'7i/IIM[[ 2, and (x}.r - N)/IIM\[ 2 are van­

ishing as N --> oo. From the first condition in (2.5), we have that [[i'J.B[[ 2 ;::: ffi, 

so that the convergence to zero of the first two random variables is trivial. In what 

concerns the last two random variables, some calculations are necessary. Recall that 

(16/to) Ei '1; is the product of two independent standard normal random variables. 

For whatever small "'! > 0, the Chernoff bound yields the inequalities, 

16 N 16 N 
Il'o,r( tiL Ei'1il 2:"'1[[i'J.B[[ 2

) :0; 2 exp(- }., [[i'l.B[[
2 )lEo,r [ exp( r;;:; L Ei'1J)] 

o i~t v N t0 v N i~t 
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"f 2 ( [ (116 2JJ)N = 2 exp(- ..JN 116.811 ) lEe, r exp 2 N t;; ~1 

= 2 exp(- }N IIMII2) ( 1- ~ )-N/
2 :S 8 exp(- }N 116.8112) -+ 0 as N-+ oo, 

the latter convergence to zero being uniform over those ()'s for which the convergence 

116.811 2 j..;N -+ oo is uniform. Similarly, for all N large, 

Il'e, r (I Xh - N I ~ "1116.811 2
) :S 

:S exp(-N-112'YII6.8II2) ( lEe,r [ exp(- N-1/2 + N-1/2mJ( 
+ exp(-N-112'YIIMII2) ( lEe,r [ exp(N-112- N-112EilJ( = 

= exp(- N-1/ 2 'YIIMII 2 ) ( exp ( - N-1/2 - (1/2) In( I - 2 N-112)) N + 

+ exp(- N-112 'YIIMII 2 ) ( exp ( N-112 
- (1/2) ln(1 + 2 N-112 ) ( = 

= 2 exp(- N-1/ 2 "1116.811 2 ) exp ( N (N-1 + o(N-1)) :S 8 exp(- N-1/ 2 "1116.811 2
) 

where the Maclaurence's expansion for the logarithm has been applied. This com-

pletes the proof. D 

Proof. (Lemma 3.3) From Lemma 3.2 and the definition oft:., we obtain that 

where the random variable 

is bounded, I <>4 I :S I <>2 I + I <>3 1. The variance of the Gaussian stochastic term 

equals E'Jvd1(f, T), where c'Jv is defined in Lemma 3.2, 

2 4 ( 2 ) 16 N ( to 116.811
2

) 
<N = 116.811- 116.811 (1+<>1) + 16Nfto = t;; 116.8114 1 + (1+<>1) 16 ~ 
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16 N . to IID.BII 2 

= t;;" lll>BII4 ( 1 + "5) w1th a5 = (1 +a,) 16 ~-+ 0 as N--> oo. 

Note that the convergence a5 -+ 0 is uniform over those B's for which the convergence 

IID.BII2 /N---> 0 in (2.5) is uniform. 0 

Proof. (Lemma 3.4) Put p,; = J)V~ T(i)(a) and note that I p,; - m(O,i) I ::; 1, i = 

0, ... , (3- 1. The Taylor's expansion of T(x,) can be written a.s 

(5.2) 

where the remainder term Rem(x1), uniformly overT E 2:.((3, L, to), satisfies 

for any x, such that I x, -a I S JN. Indeed, any function T E 2:.((3) admits the 

expansion, 

with an intermediate point xi located between x 1 and a. Note that 

Thus, the absolute value of the remainder term in (5.2) is bounded by 

I Rem(x,) I x1 -a 13 
( 

* )~-1 L 
----g;;- S ((3 _ 1)! JN · 

Hence 

0 

Proof. (Lemma 3.5) Applying the definitions off EM~ and T(o), we obtain that 

d,(f,T(O)) =6~1a+ON ~~ ":' (x,-a)'- ~ m(~,•) (x,-a)'l dx, = 
a-ON i=O ~. ON z=O L ON 

= J~+l 1' 1 ~ ~ ti 1 dt = J~+lllqll 1, 1 ~ ~ ti 1 dt 
-1 i=O '· -1 i=O llqll '· 
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with t = (x1- a)/5N, an integer q; = m; - m(O,i), i = 0, ... ,/3-1, and the 

norm 
fi-1 

"'l.'!!...l 0 i! 
i=O 

Note that the absolute values of the polynomial coefficients q;f(llqll i!) do not exceed 

1 and their sum is 1. The set P of polynomials with such coefficients defines a 

compact in accordance with the Arzella-Ascolli Theorem. Hence the minimum of 

the latter integral over P is strictly positive, 

min j' I I: II ql,l .. 1 t' I dt ?. ro > 0. 
p -1 i=O q z. 

Indeed, if this minimum is zero, it would attain at some polynomial with non-zero 

coefficients what is impossible. Thus, the number of points vk in the layer Lk does 

not exceed the number of the integer solutions (qo, ... , Qfi-l) of the inequality 

or 

So, each q; may take no more than 2 ( k + 1) (!3 - 1)! z fro values which yields the 

bound Ilk S ( 2 (k + 1) (/3- 1)! z /ro )fi, and for k > 1, the lemma follows with 

A= (4 (/3- 1)!/r0)fi. D 

Proof. (Lemma 3.6) From Lemma 3.4, we have that dt(f, r(0)) S (zo + Cr)5~+l. 
With the same notations as in the proof of Lemma 3.5, the claim of the lemma 

reduces to the following: Let J~ 1 I L,~;:o' q; t' /i! I dt S zo + Cr for a polynomial 

with integer coefficients q;'s. Then there exists a constant Co such that I Qo I S Co. 

But this statement is obvious because, as in Lemma 3.5, with some positive constant 

ro the inequalities hold, 

that is I Qo IS (zo + Cr) (!3 -1)!/ro = Co. D 

Proof. ( Lemma 3. 7) Apply Lemma 3.2. To finish the proof, it suffices to put 

a5 = a2 + <N J81iQ N(O, 1) where N(O, 1) is a standard normal random variable. 

Note that under the assumptions of the lemma, a2 ----t 0 and EN -+ 0 uniformly over 

D 
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Proof. (Lemma 4.1 ) The direct integration gives us: 

lE [ exp {~(I' + (3~) 2 }] = vk J. exp {~(I' + (3x)
2

} exp {- ~
2 

} dx1 = 

1 { ""1'2 } f. { (1 _ a(32) ( CXJ'{i )
2

} 
= J27r exp 2(1 - a(32) IR exp - 2 x - 1 - a(32 dx = 

1 { ""1'2 } 
= ,!1 - a(32 exp 2(1 - a(32) · 

0 
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