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~ Abstract

The image reconstruction from noisy data is studied. A nonparametric boundary
function is estimated from observations in N independent channels in Goussian
white noise. In each channel the image and the background intensities are unknown.
They define a non-identificble nuisance "parameter” that slows down the typical,
minimar rate of convergence. The large sample asymplotics of the minimaex risk is

found and an asymptotically optimal estimator for boundary function is suggested.

Key words and phrases: image reconstruction, boundary function estimation, multi-

channel model, minimaz rates.
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1 Introduction

We study a problem that belongs to the image analysis or reconstruction of images

from noisy data. Let us start with a statistical model proposed in [10],
Yi=f(X)+&  i=1,...,n (1.1)

This is a discrete model with a number of observations n, n -— co. In this model,

f is an unknown ”intensity” function that depends on a two-dimensional “input”
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variable X; = (X;,, X;,) . We call X; a design point and we assume that it belongs to
the unit square K = [0,1] x [0, 1]; ¥; is a real-valued response variable determined
by the “intensity” function f and the random noise &. To ease the presentation,
suppose that X;’s are independent and uniformly distributed in K while &’s are
conditionally independent, given X;’s, with a normal distribution that has zero

expectation and a variance o2 > 0, i.e., & ~ AN (0,0°).

An “image” is associated with an unknown domain G inside K, and its com-
plement in K, K\G, is associated with a background. Assume that f(z) suffers
a jump along the boundary of G, i.e., its values are essentially different over the
image and the background,

fi{z) i zegG,
flz) =
falz) if ze K\G.
where © = (2;,22). Though the model (1.1) resembles a regression model, the
objective is not to estimate f. In image analysis, the goal is to estimate the boundary

of 7, i.e., the curve of discontinuity of f.

Let us discuss in brief a continuous analogue of the model (1.1) :
Y(.’E],Ig) = f(a:l,asg) +EW($1,$2), (331,332) e K, (12)

where W(z1,%2) is a two-dimensional white noise - a formal derivative of the two-

dimensional Wiener sheet W(zy,za), ( see [5] or [10]). A small parameter £ > 0, is

connected to the discrete model {1.1) by the equation £ = o/y/n.

The easiest way to explain the link between (1.1) and (1.2) is to assume that the
design points X;'s are not random but rather run over the uniform equidistant grid
of points in the unit square K with the step size 1/+/7n in each dimension. There
are [y/nz1] X [v/nzs] observations in the rectangle R = [0, z1] x [0, z2] where [{/nz]
is the integer part of ./nz. Sum up and average the discrete observations ¥; over
the rectangle A, and obtain the equation,
YO@m) = 2T %= 250 j00) + 52 ¥
X:eR Xi€R Xi€ER

As 1 — oo, the first deterministic Riemann’s sum oun the right-hand side converges

to Om 09:2 f(s1, $2) dsp dsq, while the normalized random sum of &’s converges to a



two-dimensional random field o W (z1, z3) called the Wiener sheet (of intensity ¢2):

&i
Z ——>0'W(5'311372), OS$13$2 Sla
X.eR ﬁ

Here Wz, T3) is a standard Weiner sheet - a Gaussian random field that has the
zero-meant and whose variance equals the area of the rectangle R. The covariance

of this random field is given by the formula

E[W (zy, z2)W(z],z5)] = minfzs; 2} minfzg; x5 (1.3)

A natural analogue to the discrete observations Y™ {(z1,22) above is the random

field of the continuous observations ¥ (1, z2) which satisfies the following equation:

Y(331,$2)=f0 1/0 2f(31»52)d32d31 +eW(z1,29) (1.4)

where a small parameter ¢ is a substitution for on%/2, In the model (1.4), the
asymptotics is studied as € — 0. Another traditional notation for Y (z1,2z2) in (1.4)

is in the differentials,
dY (21,22) = flz1,29)dz1dzy + dW(z1,22)
or in the formal derivatives,
Vienz2) = f(z1,22) + W (z1,22), (1.5)

where W(:ﬂl,mg) is a two-dimensional white noise. The differential representation
(1.5) is only a convenient notation. The mathematically rigorous interpretation of
such models is possible only in the integral sense (1.4).

Note that a consistent estimation in the model (1.4) is possible due to a small
parameter £ . Probably, the first work where a continuous white noise iinage model
has been introduced is [6]. In this paper, the likelihood ratic was found and its
asymptotics was studied as £ — 0 in a parametric iimage model. In nonparametric
problems the statistical models are studies with image domains G or their edges
not described by finitely many parameters [10]. In nonparametric problems the
key question is about estimators that are uniformly good over a broad classes of
domains. One possible approach is in the minimax optimality of estimators. The
minimax rates of convergence guarantee a certain degree of approximation for any

domain within the given class of domains. In the parametric case, the minimax

3



rates of convergence have been studies for a variety of models [10, 11, 9]. Many
works in image analysis are practically motivated, e.g., the deconvolution methods
(3, 4], the productivity analysis (2, 9], among others. Adaptive estimation in image
reconstruction is another interesting direction. In this case, we deal with many
nonparametric models, and we wish to find an estimator which is optimal or near
optimal for each model without information about the true model. An example is
the estimation of image boundaries of unknown degree of smoothness [1].

It is worthy mentioning a closely related area of studies: estimation of support
of a density. This density can be either a probability density or an intensity of a
Poisson point process [10, 11]. The minimax approach and the rates of convergence
turn out to be quite similar in image and density supports estimation. It is also
worth to notice that the one-dimensional analogue of an image estimation problem
is a change-point problem. For possible estimators and their rates of convergence

we refer to (8], [7] and [12].

2  Multi-channel model

Suppose we have a single observation of an unknown image in (1.4) withe =1 :

x1 T
Yz, zs) = / / fls1,82)dsodsy + Wz, 22).
o Je

In this case, no consistency in estimation of f can be expected from this observation
because of the non-decreasing intensity of noise. But what if we have many such
observations? We associate each observation with a "channel” and we interpret a

set of such ohservations as a multi-channel image model:

] 9
Yi(z1,%2) = f / fi(s1,80) dsadsy + Wi(z1,z2), j=1...,N, (21)
o Jo

where N is a number of channels. The model (2.1) is the principal object of our
study. It describes NV independent *snap-shots” of the same unknown image G .
The unknown intensity functions f; may differ in different channels; Wj{zy,z9)
represents a noise in the channel number 7, j =1,...,N. The random flelds W;
are the independent standard 2-D Wiener sheets.

The general model (2.1) is a challenging one, we do not have its complete solu-

tion. To simplify the model, suppose that the functions f; are piecewise-constants;
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fj = 85 if (w1, 22) € G and f; = 87 if (21, 72) € K\G where the real-valued constants

93 and 93’ are unknown.,

Starting from now on, we assume that the image domain G can be represented
by a real-valued function zo = 7(;) so that the image domain G can he presented
by

G = {{z1,22) : = < T(z1)}.

In [10], this case is called a boundary fragment and 7 is a boundery function. The
boundary function 7 is assumed to be one and the same in all the channels. This

function is the objective of the statistical estimation from the observations (2.1).

Introduce a vector of all the unknown constant parameters, § = {(8},85),7 =
1,...,N}, 8 € R?N  Observe that there can be no jump of f; in some channels if
¢ = 8. We will show that for the consistent estimation of the boundary function

the difference |6; — 87| must be large in some integrated or “averaged” sense.

For the boundary fragments, our model (2.1) can be written explicitly,

Ty pxo
Y}'(:L‘l,wz) = f f 1:9;-1(82 < 7(81)) + 9}1(82 > T(S1))}d32 dsy + PVj{:l':l,xg)
0 Jo
or in differential form,

Yi(zy, @2) = #i1(za < T(x1)) + 8 L(x2 > T(21)) + Wi(z1,22), j=1,...,N.

(2.2)
The model (2.2) has & “double” nonparametric structure. First, it has the non-
parametric part that comes from the unknown boundary function 7(x1). Second,
there is a growing number 2N of unknown constants ¢; and &7, and we have to
take into account this growing dimension of the "nuisance” parameter 4. Note that
the components of € are not identifiable, i.e., they cannot be estimated consistently
as N — oo. As shown below, the rate of convergence in the boundary function
estimation should be associated to the “total jump” - the quadratic norm of jumps:

N

N
802 =" A2 =8 - 6))% (2.3)
7=1

j=1
The rate of convergence depends as well on the a priori degree of stnoothness of

the boundary function. We work with the Hoélder smoothness of an integer degree

g,8e{1,2,...}.



Definition 2.1. Let 3 be an infeger and L > 0. Let L(f, L) denote all the functions

7{x\) whose (8 — 1)-th derivative satisfies the Lipschilz condition:
|70V (zy) — 78-V(z; 4 B)| < L|k|, z1, z1 + h €[0,1.

Functions in ¥(8, L) can be unbounded and their values can leave the interval
[0,1). We restrict their values to even a shorter interval [to,1 —t0], 0 <ip < 1/2,

introducing a prior set of functions,
(B, L,tg) = BB, LYN{r(z1): 03 <1, tp < 7(x1) €1 - 1o}
Consider the image domain &,
G={X=(r,m)eK: 0<z2 <1, 0<m < 7(z1)}.

Let G = (Z(7) be an estimator of the domain @ obtained from the observations
(2.1). The estimator G(#) will be defined via the corresponding estimator 7(} of
the boundary function, G(#) = {(z1,29) € K : z3 < #(z1)}. Note that the
estimator #{z1), 0 <z <1, is not necessarily a smooth funetion.

The notation Eg .| - | will be used for the expectation with respect to the dis-
tribution Py - of the observations in (2.2) with a boundary function 7 and a given

set of constants 0, 6 ¢ R2V .

Our multi-channel image model {2.2) is the extension of its one dimensional
analogue proposed in [8]. In the one dimensional case, the image model turns into
the change-point problem. Indeed, let z; be fixed so that the boundary function
7 shrinks to a single point in the interval [0,1]. The intensity function f; equals,
respectively, 8} or 6;.’ before and after T if we interpret £ = z, as a time scale. So,

the two-dimensional observations (2.2) come down to equations,
VO =01¢<n)+81 =) + W), 0<t<1,  j=1...N, (24)

As shown in (8], the rate of estimation of the one dimensional parameter 7 from the
observations (2.4) depends on the performance of the “total jump” ||Ag]|%. If this
quantity grows slower than O VN } a consistent estimation of 7 is not possible. If
|A8||? increases with N faster than O(N) then the parametric rate of convergence
O(||A8]i=2) is attainable. Thus, the mostly interesting case - at least theoretically

- is under the intermediate conditions,

lim VN /||ag|? =0, lim ||AG|*/N =0 as N - o0, (2.5)
N—oo Nwoo
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In the present study, we always assume that the conditions (2.5) hold. Under
these conditions, in the one dimensiona} case, the minimax rate of convergence has
been found. It turns out to be O(N/||AG|Y) — 0 as N — oco. As we prove in
the next section, in the multi-channel image model, the rate of convergence is also
associated with the same quantity though in a more complex way which involves
the smoothness parameter 3 of the boundary function. In Section 4, the minimax
lower bound is given which claims that the estimator of Section 3 cannot be improved
uniformly over the Holder class of boundary functions. The proofs of the auxiliary

lemmas are postponed to the Appendix.

3 Estimation at a point

Motivation: The case of known 8’s. Consider the problem of estimation of
the boundary function 7(z;) at a single point x1 = a, where o is strictly inside the
interval [0,1], i.e.,, 0 < @ < 1. The main result of this section states that uniformly
over the boundary functions 7 in {3, L, %), the value 7(a} can be estimated with
the rate Ofey 28/( ﬁ'H}) where €2, = N/||A8||*. Recall that under the conditions
(2.5), ey —0as N — co. '

We want to use a nonparamstric version of the maximum likelihood estimator.
To explain the underlying motivatious, consider the problem with known &’s. If 8’s

are known in the model {2.2) then we are in position to introduce a single random

field Z(z1,z9) by
Z{zy,m3) = ”M”Q Z(e’ 87) L(za < #(x1)) [ V(z1,z2) — (ej,.+93')]. (3.1)

It will be shown that (3.1) is a likelihood function. Actually, it is a functional as
it depends on observations Y;r and the whole function # = #(-). We emphasize this
dependence writing Z = Z(x1,z2|7). The function 7(-) should be looked at as
an “input variable” in Z(z1,z2|#). To define the maximum likelihood estimator,
the maximization over 7 of this functional must be specified and explained. This is

done below.

To understand what Z(zy,z2|7) in (3.1) has to do with the likelihood, consider



the formal log-likelihood of the Gaussian distribution scaled by [|A8]|?

2||A9||2 Z (z1,22) — 6 L(za < F(z1)) + 0 1(z2 > 7(z1))] )2,

Leaving only the terms depending on 7, we obtain the log-likelihood functional,

Zo(a1,2|7) _Z a1 22) [0 1(es < F(z1)) + 0 1ez > F(20)] -

IIMII2
-3 [9;. 1z < #(z1)) + 0) Uz2 = #(z1)) )  (32)

Lemma 3.1. The functional Z(x1, x| 7) in (8.1) equals the log-likelihood functional
Zo(z1, 22| T) in (3.2) up to en additive term which does not depend on ¥ . Besides,
the random field Z(xq, x| T) admits the following representation:

1

Z{z1,722) = L{zg < F(z1)) %(1(932 < 7{z1)) — LHz2 = 7(z1})) + |/_\6||

W(zy,22)
with a new standard Wiener sheet W (1 ,749).

Unknown 8%, In our nonparametric problem with unknown ’s, it is reasonable
to substitute &’s in {3.1) by their estimates. Recall that we cannot estimate 6';
and 9;-’ consistently in any channel. Nevertheless, we can use some inconsistent
estimators with finite stochastic errors. Since 7 = T(z1) € [to;1 — fo], a part of
the corresponding random fields of observations Y;(z1,z9) can be used to obtain
the direct estimates of #'s for each 7. We will use the parts of these fields located
within the strips 73 = [0,1] x [0, %/8], T2 = [0,1] x [to/8, to/4], and T3 =
0, 1] x [L —to/4,1 —10/8], T4 = [0, 1] x [1 —to/8, 1]. By the simple averaging

we obtaln the estimates,

Y = StEIfT dYj(z1,22) = 05 +¢&;, 67 = 8t; / dYj(z1,22) = 6+,
1

9§3):81:51de1/;,-($1,$2)=9;’+5;’, 8 = 83 de xp,2g) = 65 4+
3

! are independent normal random variables with zero mean

where £ JEY ,7f; and n;
and variance 8/t;. The cause to take the four strips is to make the estimates in-
dependent. Thus, we have got the two independent estimates of 6 and 67 with
random errors whose variance 8/¢g is finite. Now we are ready to mimic the case of
known 8’s and to combine the observations l'f'j(ml,:cg)’s into a singe random field:
N
Z(z1,22] %) = Lza < H21)) Y [(éf) - (1'/;-(1-1,3:2) - -;u(éj@ + 6% ))] .
j=1
(3.3)



The random field Z(z1, 22| %) in {3.3) plays the same role of a log-likelihood fune-
tional as the one in (3.1). Note that there is no factor associated with ||A8||2 in the
definition (3.3) of Z(z1,z2| 1) . It is quite understandable since this quadratic norm
is unknown. Before we fonﬁulate the result about the asymptotic structure of the
random field in (3.3), introduce the o-algebra Fy generated by the fields Y; in the
union of the strips 7;, i=1,2,3,4.

Lemma 3.2. Let for o 8, ¢ € R?¥ | the conditions (2.5) hold. Then the log-

likelihood functional Z{xy,z3 | ) in (5.8) admits the following representation:

Z(z1,2a|F) = || A8 Uaz < #z1))-
(3.4)

. -é— Lz < 7(z1)) (1 + o) — % 1(z2 > 7(x1)) (1 + @3) + enW(z1, z0)

with ey = ||A8]72 /| A9]|2(1 + 04) + 16 N/tg and a new standard Wiener sheet
Wz ,x2) where the random variables oy, 1 = 1,2,3, are Fyp-measurable and
|| — 0 in Py -probebility uniformly over 7 € £(8, L, tp). Moreover, if © is a
set of @7s for which the convergence in (2.5) is uniform, then the rendom variables

la; | — 0 in Py -probability uniformily over Sg as well.

Remark 3.1. If we neglect the vanishing terms in {3.4), we obtain the asymptotic

representation for Z(zp,ze|#) in (3.3},
Z(z1, 22| 7) = A6 Ly < #(x1)) -
1 .
(3 (o < @) = 12 2 7(00) + 4/ ERW (o,
with e%, = N/||Ag]*.

Comparing the latter asymptotic representation with that in Lemma 3.1, we see
the two differences. There is an additional factor |A8)|?, and there is a different
intensity of the stochastic term. Recall that we want to use the log-likelihood for
maximization over 7. Clearly, the constant factor does not spoil this game. In what

concerns the intensity of the stochastic term, indeed, we have to make some extra

payment for unknown 8's,

The maximum likelihood estimator. The key difference between the one
dimensional multi-channel change point problem in [8] and the image model of
observations (2.2) is that the one dimensional maximization of the log-likelihood

(3.3} does not require any knowledge of the nuisance parameters 8, § e R2¥ |



while in the image model the rate of growth of | A8 plays the essential role in
the definition of estimator. For this reason, we start with the case when this rate
of growth is fixed. Take a sequence of positive numbers )y such that ey — 0 as

N — oo, and introduce a set

@{SN)={9’9€R2N= fﬁsnaeukﬂ@'}'
N

2 en

Note that for 6 € ©(en), the inequalities hold,

ex <

<4 EN (3.5)

|

so that the magnitude of N/||Af||* equals O(e%) uniformly over the set O{ey).
Clearly, on the set ©(ey), the first condition in (2.5) holds. To ensure the second
condition in (2.5) we require that vN ey — o0 as N — oo.

We consider the boundary functions 7 from the Holder class (3, L, ). For a
given sequence £y , an estimator of 7 will be defined that guarantees a certain rate
of convergence uniformly over 6 € ©(en) and 7 € £(3, L, #0) . Introduce a sequence
iy = Ei{(ﬁ ) Now, when we know the log-likelihood function Z{(z1,z317), we can
define the maximum likelihood estimator for the boundary fragment"r(:cl). First,
consider the case of the polynomial houndary functions presented in the following

form:
T(z1) = % + —11—!71 (z1—a) + - + ﬁm—z (z1—a)’". (3.6)

Put v = (¥0,71,---,¥s-1), ¥ € R?, for the vector of the polynomial coefficients.
To define the maximum likelihood estimator on the set of polynomials, we have to
take the maximum of Z(z1,zs | 7) over all the polynomial coefficients v, v € R?. To
avoid the technical troubles of maximization, we look at the log-likelihood functional

on a discrete subset,

I'y = {’Y: o= (5§mo, 5}%‘1 M, ..o, 6?,;7715_2,5ng_1)} (3.7)

where m = (mg, m1, ..., mg—~1) is a G-tuple of integers. We think of (3.6) as a
Taylor’s expansion of the unknown boundary function 7(z1) at z; = a. For any
T € B(#,L,t), the derivatives of 7 and, respectively, its Taylor's coeflicients are

bounded,
Ir@)l <1, P e < Ly, 7P (@0)| < Loy oo 179D ()| € Loy, 0<3 <1,
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with some constants Ly,..., Lg—;. Thus, we can take into account ouly those

integers mg, mq,..., ma_; in (3.7) which are also bounded,

0<mo <85, [mi| S Lisy® Y 0, [mpoy | < Lag 85t (3.8)

Observe that the total number of such polynomials does not exceed Lg 6;,‘6(3“)/ 2

where the constant Ly = Ly(3) does not depend on N . Denote the set of polyno-
mials (3.6) with the coeflicients v € Ty satisfying {3.8) by Mz . We will select our
maximum likelihood estimator from this set Mg.

To define the maximum likelihood estimator of the value 7(a) at the fixed point

T1 = a, we need the log-likelihood (3.3} only within the strip
Snla) = [a—dn,a+ on)x{ty, 1 - 1p].

The maximum likelihood estimator 73 = 7'} is defined as the “point” of maxi-

i,

() = g mox [ Zeea| ) duader. (3.9)
F)eMa JSx(a)

Due to the properties of the Wiener sheet, a unique peint of maximum exists with
probability 1. We take the value of 13 at xy = a for the maximum likelihood
estimator of the boundary function 7(a). Introduce another likelihood function by
L= L(F) = L(7|7,0) = ||A9||—2j [ Z(z1,2217) — Z{x1, 30| 7)]dzpdey .
Sn(a)

Note that £ cannot be used for estimation since it involves the unknown terms 7
and #. On the other hand, this modified likelihood function £(7) differs from the
integral one in (3.9) by only terms that do not depend on 7. It immediately implies
that the point of maximum 73{a) in (3.9) coincides with the point of maximum
of L({#). The asymptotic performance of the latter is much easier to study. The
next lemma shows that at any * fixed, the value of the modified likelihood £(7)} has
the Gaussian distribution with the explicit formulas for expectation and variance.
Introduce the Lij-norm of the difference of ¥ and the true boundary function 7
reduced to the interval [a — én ,a — dn] by

atdn

di{(f, 1) = ] [#(z1) — 7(z1)|dxy .

—én

Lemma 3.3. Let the assumptions of Lemma 3.2 hold. Then there exist random

variables @y = oy(T,7,80) and a5 = as5(7,7,8), measurable with respect to the

11



o-olgebra Fy, end vanishing in Py -probability uniformly over T € Mg, 0 €
O(en), and 7 € Z(B,L %), ie, |ag] — 0 and |o5]| — 0 as N — oo, such
that, conditionally on Fo, the random variable L = L(7|7,0) has the Gaussian

distribution,
1 . 16 2 5 s
L~ N(- 5(1+a4)d1(7, ), E(l-l—ag,)eNdl(r, 7))
where £% = N/||Agj4.

For the true boundary function 7(z;} define its approximate Taylor’s polynomial
70 (z1) at 21 = a by the formula

m0: L) m(0:8-1)
o — B om0 g0 ... b
™ z1) = Oy + o5 i (x1—a)+---+on G- 1)

(z1—a)?~! (3.10)
where the integers m(®? are given by
ml09 = [5}'\767(0(&)] . i=0,1,...,0—1.
Define the vector of these integers,
m0 = (m(o‘ 0 w1 m(o’ﬁ_l)), mi® e 78,
The Taylor approximation (3.10) is a convenient tool to describe the distance be-
tween the actual function 7(z;) and its estimator ¥y (x;). First, we state a trivial

result about the distance between a boundary function and its Taylor’s approxima-

tion.

Lemma 3.4. Let 7 € 5(8, L, o) and let 7O(xy) be its approzimate Taylor polyno-
mial defined by (3.10). Then there exists a constant Cp > 0 which depends only on
the class 23, L, tg) such thai

di(r, 70y < or o5t = orel.

The following theorem describes the rate of convergence of the maximum likelihood

estimator 75 (a).

Theorem 3.1. Uniformly in 7 € Z(F,L %) and 8 € B{ey}, the normalized de-
viations 51_\,2’6 fB+1) | x(a) — T(a)| of the mazimum likelihood estimator (3.9} are
bounded in By _,-probability, that is

lim limsup  sup sup Pp - ((|IA6‘}|4/N)'3/W+1) [Th(a) — T(a)| > :r:) = 0.
T Nesoo reX(B,L ) 8€0(sn)

(3.11)
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Proof. Choose a large positive number 2z and take an integer £, & = 0,1,... . For

every k, define a “spherical layer” by
Ly = {'P,%e Mg k285 < di(7, 7)< (k+1)z5§+1}, (3.12)

where 7(® is the approximate Taylor polynomial of a true boundary function 7.

The next auxiliary result estimates the number of the integer points in each layer.

Lemma 3.5. For any true boundary function 7, the number vy, & > 1, of the
elements in Ly does not exceed A (kz)? with o positive constant A independent of z

ork.

Return to the proof of the theorem. The idea of the proof is standard for
the maximum likelihood estimators. In accordance with Lemma 3.3, the random
variable £ has a negative expected value proportional to di(#, 7} and a variance
with a small factor €% . Consider the random variable L)1, 8) with 7+ = 7@,
By Lemma 3.4, the distance dy(7(? | 1) = O(e%} is small. We want to show that
with a high probability, the random variable £(7(®) | 7,8} is bigger than — ze%, for
some large z, z > 0. On the other hand, if ¥ belongs to a “spherical layer” Ly
with a large &k, k > kg, where ky is fixed, then the distance di(¥, 7) is large, and
the probability of the random event £(|7,8) > —ze% is vanishing as z — 0.
Thus, the “point” of maximun, 73 , with a high probability must belong to one
of the “spherical layers” Ly with k < ky and z large enough. It implies that with
a high probability the distance di{t}, 7) has the magnitude O(e%) = O(dﬁ“).
Finally, as the following lemma shows, if the distance di1{73; , 7) has the magnitude
O(éﬁ?"l}, then the absolute deviation |75 (a) — 7(a)| at z1 = o has the magnitude

0(6%).

Lemma 3.6, Let 7 € Mg and 7 € (8, L,ty). Let for a given constant zy the
inequality holds, di (7, 1) < zg 61‘%"1. Then there exists e constant Cy = Cy(zp, )

independent of N and such that | #{a) — 1{a)| < Co 51%.

Now we are ready to proceed to the progrénﬁ announced above. Introduce the
random event Ay = {|aq| < 1/2; |as| < 1/2}. From Lemma 3.3, we find that

Py ~(Ag) — 1 as N — oo. Conditionally on Fp, the random variable £(r(® {7, 8)
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is Gaussian, so that

limn inf Pop (LT |7,0)> —z2e%) =

= liminf By [ AoPy - (L(7V|7,6) 2 —zck| 7))
— 0

For any + € Mg, put

(L+oagbdi(f,7) and on(f) = [%(14_&5)5%‘11(,},7)]1/2_

b =

pn(7) =
Take # = 719 | and compute the conditional probability,

By, (LD 7,8) > —2e%|F) =

LEOIr8) + pn(r) | 2k +wtr®) | Lo g ozek — nGO),
7 () o2 (r) ()

=g, r

where ®(-) is the standard normal cumulative distribution function. In accordance

with Lemma 3.4, on the random event A4g, the inequality holds

zed — pn(t®) S zed — (3/4)Crek > ey (s — Or)
on(r®) 7 [@4/t0) Cred ]

with ¢; = +/to/(24 Cr) . Thus,

lim inf Ep, [ AoPs, (LD |7,0)> —ze}|Fo)] > (1 (z — Cr))
—0Q

which implied that
Jim Vimind By, (£(r@|7,0) 2 —2e}) = 1. (3.13)
We want to show that uniformily over € and 7,
lim limsup Py, - ( Upske User, {L(F|7,8) > —ze% }) = 0. (3.14)
70 Nosoo -

Conditionally, given Fg, if the random event Ap oceurs then

Py, (L(F|T,0)> ~zeh|FRo) =1 - @(M).

on(?)
For any 7 € Ly, , we have that
an(?) = 5 A +an)di(r, ) > 7 [0, 79) - i, 7)] > 3 (k2 - Or)ek
and
() = 3 L+ an)ehei(F, 1) < T [(k+1)z + Crleky.
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Ifz>1andk>ky > 8+ 2Cy, then

~ - % _ _ .
wn () ZEN>1 tg kz — 4z C'T>1 tgkz 1- (4+Cr)/k > avha

on(?) T 8V6 VEztz+Cr — 8 V1+(1+Cr)/k
with @ = /2%y/24. Hence

Py . (L(7|7,0) > —zek|Fo) <1 — d(avkz).

If z is so large that avkz > 1, then the elementary inequality 1 — ®(z) <
exp(—22/2), = > 1, implies

o

. alkz
Py, (Uiok User, {£(F]7,6) = ~2e% }) £ D v exp(— 5 )<
k=kg

2 oo 200

2) = A2 exp(~ L) 30 48 p( - L R0)Zy
2 2

k=kp k=kq

where Lemma 3.5 has been applied. The latter infinite sum is finite,
Zkﬁexp ?(k ~ k@)z Zkﬁexp a? (k - ko)):01 < oo,
2
k= k[) k=ky

Finally, combining these estimates, we find that the limit in (3.14) is zero,

lim limsup Pa,, ( Upsk, Yser, {£(F|7,0) > —ze% 1) <

200 N—oo

aZkoz

< lim Cy A 2P exp{ — } =0.

The interpretation of the inequalities (3.13) and (3.14) is immediate. For an ar-
bitrarily small p, p > 0, there exists a positive number zp such that with the
probability at least 1 — p, the maximum likelihood estimator T3 belongs to one of
the layers Ly with & < kg and z = z,.. In its turn, this fact and the definition of the
layers Ly guarantee that dy (7}, 7O} < (kg +1) 2. 6§r+1 . Applying Lemma 3.6 with
z¢ = (ko + 1) z., we obtain the inequality

limsuplimsup Py - (51}2’8/(’3“) | v (a) — T(a)| = :E) <

=00 N—roo

< limsuplPy - (|7-J,*\‘,(Q) —~7(a)} > C*eirﬁ/(‘ﬁ"'l)) <p.

Since p is arbitrarily small, the limit as © — oo on the left-hand side of (3.11) exists

and equals zero. This proves the theorem. O

Adaptation to unknown 6. As mentioned ahove, Theorem 3.1 guarantees the rate

28/(B+1)

of convergence e uniformly over all the boundary functions 7 € %(8, L, tg)
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but only locally in #. Under our assumption, # must belong to ©(ex) defined by
a chosen sequence £y . It is understandable since the bandwidth &y is defined in
terms of this sequence. Now, the question arises: Is it possible to substitute an
unknown €% = N/||A8||* by an estimate obtainable from observation (2.2) so that
an analogue of Theorem 3.1 would stay valid uniformly over all §'s 7 We will show
that under some restrictions, the answer to this question is positive.

Let ©p be a set of &, # € R2Y | for which the convergence in (2.5) is uniform.

An example of such a set &y can be presented by
O0 = {0: v VN < || AG)® <¢w N}

where a sequence of positive numbers 1y is given in advance, ¥y — 0 as N — co.
Note that in this example, the sequence 1y can decrease in whatever slow rate.
There is a strip in the unit square K not yet used in our considerations, 7y =
[0,1] % [to/2,%0] . Take 7 =1 in (3.3), and define a statistic totally computable from
the observations (2.2) :
* 4 : A
Qn = — Z(zy,20|F =1} doo dxy.
to J7;

The following lemma is the immediate consequence of Lemma 3.3.

Lemma 3.7. Conditionally on Fq, the random varieble Q3 is Gaussian,
* 8
Qv ~ N (18817 (1 +02), o en [A0])

and Qy = A2 (1 + o) where ag — 0 in Py -probability uniformly over T €
(8,L,t), and 6 € g .

The statistic Q% can serve as a empirical substitution for |Ag||%. As a Gaussian
random variable, it may take negative values and values whatever close to zero.
That is why, we replace Q% by a truncation to define an empirical analogue of the
bandwidth éy = si{(’@ +1) by

& = min [(N/ Q) 0y 1-a]

and put
Syla) = [a ~ 8y, a+ y] x[to, 1 — to]. {3.15)

The truncation in the definition of §}; guarantees that the strip Sy (a) lies entirely

within the unit square with probability 1. The strip S} (a) serves as a substitution
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for Sn(a} which is not computable from the data in the multi-channel model. It is
worthy to mention that 63 and the'strip Sx(a) are Fo-measurable while the white

noise in (2.2}, {Wj($1 ,T2), (%1,%9) € Si{a)} is independent of Fy .

Theorem 3.2.  Substituie oy in the definition of the maximum likelihood esti-
mator Ty by 8% . Then the statement of Theorem 3.1 stays true uniformly over

T € X(B,L,t,) and 6 € Og.

4 Lower bound
Recall, our model is (2.2):
Yi(z1,22) = 651y < 7(21)) + 0 L(mg = 7(x1)) + Wylz1, 22)

where 8 = {(6;,67),7=1,...,N} € R2N is unknown.

As in the upper bound, take a sequence of positive numbers ey such that
ey — 0 and enVN - 0 as N — oo, {4.1)

Introduce a prior set

YN < asp? < 2-—‘@} (42)

' 1
@(EN)ﬂ{B:BE]RzN:—z—EN .

and choose dy = E?\{('B +1)

Theorem 4.1. There exists a positive constant Cr, such that for any sequence ey
satisfying (4.1) and the sequence i defined above the lower bound holds:
limint inf  sup 6" Ep .| #nla) —7(a)| = C, (4.3)
00 TN 1, 0eB(en)

where the prior set ©(en) is defined by (4.2).

Proof. Consider a subset ©(0) (en) of ©(en) defined by

VN 2VN
@(O)(EN): {9 = (9"; = /_\93', 93’:0):1;\;1 : 5‘5 S ” Agn? S ""E'A'r—" .

By Ey  and Py r we understand the expectation and distribution of observations
in (2.2) for a given 7(z,) and ¢ = {(A#;,0),5=1,...,N}.
Put 0® = 0% = 1/(exyv/N) and introduce a sequence Ad; of the independent

normal random variables with zero-mesn and variance o2,

17



Denote by E(49 the expectation with respect to the distribution P(39) of these

normal random variables. Note that for NV large the following lower bound is true
N
1+ vN
PR (6 € O (ey)) = PAH (-—N <y A< 2—) =

= plad) (% < —Zj'v:l ; < 2) >1—e7 {4.4)
where (Z?{:l AQ?) /(N a?) is a standard chi-square random variable with N degrees
of freedom. Next, we will need two hypotheses on function 7(z;). Let 7o(z) = C for
z1 € [0,1) with a constant C' € (f,1 — tp) and let the other hypothesis differ from
To(x1) by 2 “bump” of height Jﬁr centered at a point & € (0,1), Le. let m{xy) =
C+ 6§, o (%=%), where gy > 0 is some test function, such that wo € E(8,L,%).

Notice that both, mp{z1) and 7 (z;) belong to our class of boundary functions
2(3,L,t0). Indeed, 1o (z1) € L(B,L,tp) trivially. By definition of (8, L, %)
gy e B(A,L,tp), then

|87 (1) = 87 (a1) | < Lo = b,
For (i} = Jﬁ wo (%ff) this gives the following:

|00 (1) — 0 (a)] =

B o—(B-1) (B-1) {T1L— G —(6-1) (-1 [ Z1—@a
[ (322) - e (42

Ti—a i —a

<bn -
N L BN 5

=L |z -

Hence, 11 (1) = C + 8y 90 (52) € 5(8,L ).

For the two hypotheses 7 (x1), 4 = 0,1 denote the sets
Gy ={(z1,12) €21 £1,0< 2y <1 (z)}

and by 5; = S(G;), i = 0,1 denote the cotresponding areas.

We impose the following condition on our hypotheses: we require that the dif-
ference between the areas 81 and Sp be of order €%, i.e. S — So = rpe%,. This
is the least difference when we can distinguish our two hypotheses. The positive
constant rp will guarantee the right constant L in the class T (3,L,%0).

Our goal is to prove the lower bound for an estimator of the true function 7(x;)

at a fixed point @ € (0,1) . For any estimator #x{a) the maximum of the expected
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losses can be estimated from below by the Bayes risk:

sup SN B, |#n(a) - T(a)] 2
TEE{ﬁ,L,ﬁu} y 969(0){51\;)

> sup S g 1 Fx(a) — 7(a)] >

re{m,mi}, e@D(ey)
- 1 . 1 .
2 6, B4 [1 {00 } (ElEe,m!TN(a) = 7o(a)| + 5B, | F(a) - n(a)i)] >

> 2B (B 1,(A) + B (A)] -

IR [3 {0 090c0)} (P4 + B ()] 2

23—1191("—“9} [P (A) + Py, (A)] — %’fEmﬂ) [1 {e ¢ 0O (ex) }] (4.5)
where we assumed without loss of generality that 0 < fn(z1) < 1. The random
event A = {l'rN(a) — 70(a)] > 65 /2} and A is its compliment. Using (4.1) and
(4.4), we find that the second term in (4.5) is vanishing
EAD [1{0¢0® (en)}] = 57720 (0 ¢ 6 (o))
exte™ <VNe™ 50, a N-oc
Thus, it is enough to show that the lower limit of the expectation

E4) [Py p (A) + 5 o, (A)] (4.6)

is bounded from below by a positive constant.
Define the two likelihood ratios and their expectations with respect to the distri-
bution PA? of the random variables Af;. Bince we have j = 1,2,..., N channels,

the likelihood ratios are

~ dPag 1
hi=p, . =

N
:eXp{Z[/L ABjodwgdml - %f@ ABQ(H,T)dmzdﬁl]}, 1=0,1.
j=1 i i

The corresponding expectations with respect to the distribution P{4% we denote by
Zy = EBI[Ag) and 71 = EBD[A].
With these notations we can rewrite (4.6) as

EAD [Bo,r (Ao 1(A)) + Eo,n (A1 1(A))] =
=Eo,n (201 (A)) + Eo,n (Z11(A)) =
> Ep,r (min{ Zy, Z1}) .
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The expectations Eq -, and Eg -, are identical since there is no difference between
the case when we have no jump at 7g(z1) or 71(z1). That is why, it is enough to

estimate from below the minimum of Z) and Zi:

Zo+ 4 izl—Zo[]=

Eg, 7 (min{ Zy, Z1}] = Eo,n [

2 2
=IE0,1.0IE(M)%E;L,?—,‘T? - %Eo,m|Z1 - Zy| =

=1 - %JEO,TOEW) [%ﬁﬂ % - IH =

=1- %E{M)IEM,TG % -1 =1- %\/E(M)EM,,D, % -1 2,

where the last inequality is due to the Schwarz inequality.
Since

VAl

dPag . r dlFy
E(49) ]EAG,TU [E’] — ]E(AB) ]EAB,TQ Af, Ty 0,7
0

dPor,  dPps m

=BG R, 2] = 1,
then

2 2
EAD Epg, o, gl - 11 = B4 Epp, [ﬁ] - 1.
0

Zy

Thus, we have

2
Eon (min{Zo, Z1}] > 1 - %\/]E(M)]EM,T“ [%] 1. @
o

We will now use the direct computations to calculate Zp and Zy:

N
1
FaX:) 2 —
Z; =Kl )exp{;:l: UfGiABjo—iffGiMj]}_

N
:E(Ag)exp{Z[Aij/; Wj—%Aengo]}, i=01.
=t :

First, for the sake of simplicity, we compute this expectation for one channel:

E(A9) exp{—%A@?Si+A9j /] Wj} =
a;
1 v : v
:—-—-—-Q?w_zf[aexp{v-gsi—l—y‘//a‘%}-exp{—@- dy =

o1 Ve L ff v\ g
—W/]Rexp{ 2(.5'14-02)-}-3; c,-WJ W =

. 2 . . 3
o (o, W) 1 / T ST P A
201 + 5:02) [ Vamo? Ja o F 252 1+ 500

1 o? . \? .
T exP{2(1+Si02) (/fc, Wj) }’ i=01

20
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Since j =1,..., N, then

2 N 2
= 8,02 % 7 _ // W, , i=0,1. (48

If 7o(z1) is the true boundary function, then

f Y; day day = 2835 + v/ So€) (4.9)
Go

and since S; — S = roe%; , then

f 'f’}dﬁldxg:/] Y}dzld$2+/f dewldmgz
Gy Go Gi\Gaq

= 70;0 + VSot™ 1 g e &1, (4.10)

where £§0) , Egl) are independent standard normal random variables. Next we will

use the following auxiliary resuit:

Lemma 4.1, Let £ ~ N(0,1) be a standard normal random variable.

Assume that numbers o and 8 are such that 1 — af? > 0. Then forany p e R

o 1 ap’
E o {2001 267} = o {
exp 2(# + f¢) } 7 P\ 51— af)
Now we are ready to estimate the expectation with respect to distribution Pag

on the right-side of (4.7). From (4.8)-(4.10) we find that

7 1*

Eno ,m [7{)] =

14 S()O' g2 . 2

- W =

H 1-{*.5'10'2 Eag o exp{1+510_2 (/j;*l ) 1+ Spo? (/]Go J)
N (©)

1+ Spo? [% ] o? (0) W
H 1+ 5102 Eag,m eXp § = 1+ Spo? TP T + 5107 [ VTNt 1

where u( = = Af; So + /So 5( ). Applying Lemma (4.1} with @ = ﬂ%%??’ A=

21



J/Toen and p = ugo) and averaging over £§1) we get

E VA 2_ 14 See2\" 1+ 5102 N/g_
Amlzo | T N1+ 5102 14 8102 — 202 rge%,

e T o ( (o))z} _
A8,m XP 1+ 8002 145102 — 202 7ge%, Hi -

=1

= (1 + 500'2)N (1+ .51]_(,1'2)_N/2 (]_ + 5’10-2 _ 20’2?'06%;)_ Nfz |

- n Baom e {22 (1 + /) } -

otrded, TV X an f (1) (0)
)™ fanen (3000581

2
1+ Sy e

where ,ug.l) = Af; Sy and

&0 a* o* ot roe%

2 T 14510 - 20%r0e8, | T+ 5002 (14 So02)(1+ S10? — 202 roel)

Note that o4 ros?v = 7p/N as N — oo, while the denominator of the latter forimula
approaches at 1, so ag ~ 2ry/N.
Once again, applying lemma (4.1) with ¢ = ag, f = /5 and p = ,ugl), and

averaging now over §§0) to obtain

21 2 047‘8641\; — N2 —~ N2 agS&”AGHz
sn 2] < (1 -aidy) - e (S0 )

(4.11)

For N large the first factor on the right-hand side of (4.11) is equivalent to

_N/2
1-— ,_O-iﬂ ~ exp T%E?{V S exp E& .
(1+ Spo?)? 2 2

The second factor in (4.11) has a finite limit:

2T03()
N

—NJ2
(1—0:05'0)_N/2~(1 ) ~ exp{rgSo} < o0, as N — co.

005(2)

Using the Lemma 4.1 one more time with ¢ = —-%
020

= 0and 8 = & the last

factor in (4.11} has expectation

E(A9) exp’ w - {1-= ag 30 e 1 - 2rp S2o? - N2
Pl 0050 S = T T a0 =T

~ exp{rgSsa?} =1 asN - oo. (4.12)
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Choose 19 = f_ll w(x)dx, so that

Z1? 2
ECOEpp o [71] < exp {%9} - exp {roSo} B4 exp{ry S20°} < 2.
0

Now the expectation of the minimum of Zy and Z; in (4.7) is bounded from

below by a positive constant
Epgn [min Z;, 2] > Cp 2 0.

Hence, the expectation in (4.6) is also bounded from below by the same constant.

This compietes the proof. O

5 Appendix

Proof. { Lemma 8.1) Add to the right-hand side of (3.2) the following sum inde-

pendent of 7

Mz

|A9|| = Yi(z1,2) [6] Lma < (1)) + 0] Lzz > (1)) |+
=1

+3 [(6’3")2 Lz < #z1)) + (87)" Lz 2 #(21))]) - (5.1)

After that, as the easy algebra shows, the right-hand side of (3.2} turns into the

right-hand side of (3.1). Next, the random feld in (3.1) satisfies,
N
y ~ 1 i " !
Z({z,x) = 1{zg < 7(z1)) AT 2 Z(G- —07) [6i1(zp < 7(21)) +

N
1 R 1 .

FOUe2 2 7o) = 50+ D] + Len < Fe)) g D 0 W, aa).
=1

Note that

. M .
W(z1,m2) = A0 > (85— 67) Wilz1,22)
i=1
defines a new standard Wiener sheet, and the stochastic term equals

1(.’1’:2 < ’f'(.’l?]_)) ”AGH_I W(:cl ,$2) .

Finally, find that

1
|/_\5|2 E g5~ 07) [6i1{zy < 7(m1)) + 071(my = T(z1)) — ~2-(€;-+93-’)] _
i

ey

qu

- 0 [ alo2 < (@) - 10 2 rle))] =

1

(Lzz < 7(21)) — Yz 2 7(21)})

.
1l

b= ==
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and the lemma follows. O

Proof. ( Lemma 3.2 ) First, note that Z(z1,z3#) in (3.3) is computable from the
data.
Put § = & — & ~ N(0,16/t) and n; = n; + 0} ~ N(0,16/to). Simplifying (3.3),

we obtain that
. N . 1
Ao aalf) = 1(as < (1) 3 048]~ (Vs za) -5 (G 0047
j=1

From (2.2}, the sum on the right-hand side of the latter equation can be written as

S (a6 +6) | 2ate2 < e 8= m) - } 16en 2 (o0) (205 +1) + W] =
=1

N
=S A0 [z < T(z1)) (1 +a2) — Uzz 2 7(m)) 1+ as)] + 41 Y (A6 + ) W(mn, z2),

j=1

Ml—‘

where Wz, z2) is a new standard Wiener sheet;

4 —g o i &my and o
= 2 a7 3= T
T Vi [20] T Jad s \/_

d’h;

+

-‘.Sl

with the independent standard (0, 1}-normal random variables

N N
£ = Vio[T6]| A8 Y A6;¢  and G = \/2/16 |46 7 Y Ady;.
j=1

=1

1 N
* AT & 7
j=1

Note that

N
16 16
Do (AG+8)? = A8)7 + HMI|§+ N)+ N— A8 14+ )+ — N,
° \/_ to
J=1
where _
o = 8¢ 16 x3— N
P VR lad] Tt AP
and x% = (to/16) Ej\;l !j? is the chi-square random variable with N degrees of

freedom. To complete the proof of the lemma, we have to show that the random
variables &/188, A/1A6), S, &my /1202, and (x} — N)/|A6? ave van-
ishing as N — oo. From the first condition in (2.5), we have that | A8]|? > VN,
so that the convergence to zero of the first two random variables is trivial. In what
concerns the last two random variables, some calculations are necessary. Recall that
(16/ty) €; 1; is the product of two independent standard normal random variables.

For whatever small v > 0, the Chernoff bound yields the inequalities,

N
16
Po,- (5712 &l 2 71001%) <2 exp (= [1801°) o, [ o3 ( Z &) |
j=1
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= 2enp(- ||A9||2)(Ee,f[exp(2N Ca])

-N,
— 2 exp( - \/._||A0|| y(1- ) /2$8exp(—%i|/_\6||2)—+0 as N =0,

the latter convergence to zero being uniform over those #'s for which the convergence
|28|>/v'N — oo is uniform. Similarly, for all N large,
Po,r (Ixk — N1z 7]06)?) <
N
< exp(— N2 4| A6]%) (Bo, - [exp (- N7V2 4 NTV2)])
N
+ exp(— N2 201) (Ba - [exp (N2 = N7V22) ]} =
N
= exp(~ N"Y2y]a0)2) ((exp( = N°V2 — (1/2) (1 —2N"Y2) )"+
N
+ exp(— N2 A0)7) (exp (N2 - (1/2) In(1 +2 N"V/2) ) =
=2 exp( ~ N"Y24[|A0)12) exp (N (N7? + o(N"1)) <8 exp(— N"12||A8)%)
where the Maclaurence’s expansion for the logarithm has been applied. This com-

pletes the proof. O

Proof. (Lemma 3.3) From Lemma 3.2 and the definition of £, we obtain that
aton -—tn
(f|7,8) = / f M) < 7(@1)) [ 2z, 22 F) - Z(zy 9| T)] dza dzi+
a— tn

a,+6N 1-ty
T A #w) 2 rhe) 2w 19) = Ao )z =

=fi:iN ] 1z : #{z1) < 7(z1)) [
/‘MN/ 1 Az 2 T(m) {

1 ) a+dy ) .
= — 5 dl(‘r,'r) (1 +O!4) + en [ !T(:El) —T(El)l W(.’El ,.’Cg) dxy

a—dn

(14 ) + en W(:El,:l:g)] dzy dz1+

MII-—‘ [\'.JI)—‘

(1+as) + eny W(z Jz)] dzy dx) =

where the random variable

a+dn
qn=dr (7, T)/ (#(@1) — r(@1)] [oe 1 (o : #wn) < 7(@) +

_§N

+agl(z ¢ #(@1) = 1{z1))] doy

is bounded, |a4| < |a2] + |as|. The variance of the Gaussian stochastic term

equals €% d1(, 7), where € is defined in Lemma 3.2,

16 N
o A0

tU ||A9||

(1+(1+ )i TN )

= A8}~ (1A8)7 (1+on) + 16N/to) =
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16 N to [Ag|?

= (1 4+ a5) with as = (1+w) —0 as N —o0.

to A6 16 N
Note that the convergence o5 — 0 is uniform over those 8’s for which the convergence
|A8Y%/N — 0 in (2.5) is uniform. |

Proof. (Lemma 3.4) Put p; = 6};‘3 7%(a) and note that | — mO9| <1, ¢ =
0,...,8- 1. The Taylor’s expansion of 7(z;) can be written as |
-1 fa —a\
T(z1) = dﬁr Z s ( 15N ) + Rem(z1) (5.2)

S
i=0 v

where the remainder term Rem(x), uniformly over 7 € (83, L ,4p), satisfies

L

[Rem(z1) | < (F:T)‘Taﬁr
for any @y such that |23 — a| < dy . Indeed, any function 7 € Z(3) admits the
expansion,
4 = i (z1—a\ oy lrB-Lzt) fat —a Al
) = o [Zﬁ( ) e () ]

with an intermediate point z7 located between z; and o. Note that
ot 00 (@]) — paa | < 8T PG@) - 7PN < L

Thus, the absolute value of the remainder term in (5.2) is bounded by

g 1O D@t — pp | (2t - e\ L 4
[Hem(a)] = O B 1) R R VI

a,+6N
dy(r, 7O = f 1 7(z1) — 7@ (z1) | das <
a—6n

B-1

atdpy e (041} T — @ i a+dy
55‘6 f Hi m ( ! ) dzi + f Rem(z) idz
N ; 5 5 v [ IRem(e) jdn
L
<(26w) (B8 + maﬁ] = Croftl,

O

Proof. (Lemma 3.5) Applying the definitions of # € Mg and 7%, we obtain that

otin | By fa—a! 2R mOY [z —a)\

di ,f.’.,.(o) :5ﬁ/ __z( i ) _ . ( 1 ) dry =
(7, 77) =oy b ; i SN ; il Sn !
S+1 o e 4 A+1 HE i
=4 / = dt:6+||q||/ | dt

NP RN
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with ¢ = (z; ~ a)/dn, an integer gz = m; — m®? i =0,...,8—1, and the

norm

|
-

g | g |

il

llgil =

Il
o

Note that the absolute values of the polynomial coefficients g;/(||g|| ¢!) do not exceed
1 and their sum is 1. The set P of polynomials with such coeflicients defines a

compact in accordance with the Arzella-Ascolli Theorem. Hence the minimum of

the latter integral over P is strictly positive,

i / 1 Z 1|qnz'

Indeed, if this minimum is zero, it would attain at some polynomial with non-zero

dt >re >0,

coefficients what is impossible. 'Thus, the number of points v in the layer Ly does

not exceed the number of the integer solutions (go, - .. , gp—1) of the inequality

—-15;6"“ ro(lgol + -+ [ge-al) < Sy rollalf S du(f, 79) < (R +1) 2031

or
E+1)(8-1)!
1QU|+"'+|%—1| < (_l(__) P
7o
So, each g; may take no more than 2(k + 1) {# — 1}z /ry values which yields the
bound v < (2(k +1)(8 —1)1z/rg)?, and for k > 1, the lemma follows with

=(4(8 - 1)Y/ro)”. O

Proof. ( Lemma 8.6 ) From Lemma 3.4, we have that dy(#,7(%) < (2 + C’T)5ﬁ,+l .
With the samne notations as in the proof of Lemma 3.5, the claim of the lemma
reduces to the following: Let f N Ez o @it fil]dt < 25 + Cp for a polynomial
with integer coefficients g;’s. Then there exists a constant Cj such that {go! < Cp.
But this statement is obvious because, as in Lemma 3.5, with some positive constant

7o the inequalities hold,

1 1
_(ﬁ_'_‘l),f'0|‘10| Sm?‘0(|%|+---+lqﬁm1|)$ 294 Cr,
that is [go| < (20 + Cr) (B — 1}/ro = Cp. a

Proof. ( Lemma 8.7) Apply Lemma 3.2. To finish the proof, it suffices to put
ag = ag + en /8/ty N(0,1) where A(0, 1) is a standard normal random variable.
Note that under the assumptions of the lemma, as — 0 and ep — 0 uniformly over

§e€8g. d
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Proof. ( Lemma 4.1 ) The direct integration gives us:

B (o {$0u+ 987 }] = = [ o (St 507w { -2 ) as

- e ) Lo { 5 (=

1 ap?
Vol " { 21— o) } |
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