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(1.2) Uniform Integrability

(1.2.1) Main Properties

(1.2.2) Mean Convergence

(1.2.3) Convergence in Norm

Exercise 1.8. Consider the Lebesgue measure on the interval (0,∞) and define
the functions fi = (1/i)1(i,2i) and gi = 2i1(2−i−1,2−i) for i ≥ 1. Prove that (a)
the sequence {fi : i ≥ 1} is uniformly integrable of any order p > 1, but not
of order 0 < p ≤ 1. On the contrary, show that (b) the sequence {gi : i ≥ 1}
is uniformly integrable of any order 0 < p < 1, but the sequence is not equi-
integrable of any order p ≥ 1.

Proof. Since 0 ≤ fi(x) ≤ f(x) with f(x) = min{1, 2/x} and f belongs to
Lp(]1,∞[) for every p > 1, the sequence {fi : i ≥ 1} is uniformly integrable
of any order p > 1. Clearly, for 0 < p ≤ 1, the difficulty is the tightness
condition. If A is a subset of (1,∞) with finite Lebesgue measure then the
Lebesgue dominate convergence implies

lim
i

∫
A

|fi(x)|pdx = 0, ∀p > 0,

and because∫
(0,∞)

|fi(x)|pdx = i1−p ≥ 11−p > 0, ∀i ≥ 1, 0 < p ≤ 1,

we deduce that for every ε > 0 and any set A ⊂ (1,∞) with finite Lebesgue
measure there exists an index i ≥ 1 such that∫

Ac
|fi(x)|pdx > ε,

i.e., the sequence {fi : i ≥ 1} is neither uniformly integrable nor equi-integrable
of order 0 < p ≤ 1. Note that fi(x)→ 0 as i→∞ for every x in (0,∞).

If 0 < p < 1 then∫
(0,∞)

|gi|pdx = 2i(p−1) → 0 as i→∞,

which show that the sequence {gi : i ≥ 1} is uniformly integrable of any order
0 < p < 1. However, if p ≥ 1 then open interval Ii = (2−i−1, 2−i) satisfies∫

Ii

|fi(x)|pdx = 2i(p−1) ≥ 1 ∀i ≥ 1

but the Lebesgue measure of Ii vanish as i→∞, which proves that the sequence
{gi : i ≥ 1} is not equi-integrable integrable of order p ≥ 1. Note that gi(x) = 0
for every x ≥ 1 and gi(x)→ 0 as i→∞ for every x in (0,∞).
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(1.3) Vector-valued Integrals

(1.3.1) Metric Space of Measurable Functions

(1.3.2) With Values in a Banach Space
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Exercises - Chapter (2)
Basic Functional Analysis

(2.1) Previous Background

(2.1.1) Simple Spectral Analysis

(2.1.2) Three Basic Results

(2.1.3) Introduction with Examples

Exercise 2.1. Given a domain E in the Euclidean space Rd and 0 < α < 1 we
say that a function f : E → R is Hölder continuous in E with exponent α if
there exists a constant C such that |f(x)− f(y)| ≤ C|x− y|α, for every x, y in
E (and the limiting case α = 1 is called Lipschitz continuous), and the smallest
of all those constant C is denoted by [f ]α,E , i.e.,

[f ]α,E = sup
x,y∈E, x 6=y

{
|f(x)− f(y)| |x− y|−α

}
.

For the limiting case α = 0, we use C0(E) = C(E). Now, denote by C0,α(E)
the space of all Hölder (Lipschitz) continuous functions on E. Sometime, the
notation C0,α(E) = Cα(E), with 0 < α < 1, could be used. Assume E a
bounded set and prove that C0,α(E) are Banach spaces with the norm

‖f‖α,E = [f ]α,E + sup
x∈E
|f(x)|, 0 < α ≤ 1

Consider also the case when E is unbounded and discuss the spaces Cn,αb (E)
defined as a combination of Cnb (E) and C0,α(E).

Proof. The only point to discuss is the completeness of the space. For this
purpose, let {un} be a Cauchy sequence in C0,α(E), i.e., ‖un − um‖α,E → 0 as
n,m → ∞. Because this sequence is also a Cauchy sequence in C0(E), there
exists a function u such that un(x) → u(x) in the uniform norm. Thus, given
ε > 0 find N = N(ε) such that ‖un − um‖α,E < ε, for every n,m ≥ N , and
write ∣∣[un(x)− um(x)]− [un(y)− um(y)]

∣∣ ≤ [un − um]α,E |x− y|α ≤ ε|x− y|α,

273



274 Solutions: A.2. Basic Functional Analysis

send m → ∞ to deduce
∣∣[un(x) − u(x)] − [un(y) − u(y)]

∣∣ ≤ ε|x − y|α, which
implies that the convergence is also in the C0,α(E) norm.

The interested reader may remark that (e.g., see Kufner et al. [76]) the
space C0,α(E) is not separable, even when E is compact. Also note that the
interpolation inequality

[f ]α′,E = sup
x,y∈E

{
|x− y|−α

′
|f(x)− f(y)|

}
≤

≤
(

sup
x,y∈E

{
|x− y|−α|f(x)− f(y)|

})α′α (
sup
x,y∈E

|f(x)− f(y)|
)1−α′α ≤

≤ 2
(
[f ]α,E

)α′
α
(

sup
x∈E
|f(x)|

)1−α′/α
, ∀f ∈ C0,α(E),

shows that if 0 ≤ α′ < α ≤ 1 then C0,α(E) ⊂ C0,α′(E) ⊂ C0(E). Usually, the E
is a compact domain, so that any continuously differentiable functions belongs
to C0,α(E), any 0 < α ≤ 1, For instance, (1) an absolutely continuous function
f on a bounded interval I ⊂ R with a derivative almost everywhere equal to an
element f ′ in Lp(I), with p > 1, belongs to C0,α(I) for any 0 < α ≤ 1−1/p; (2)
the inequality (

√
x−√y)2 ≤ x+ y − 2 min{x, y} = |x− y| shows that function

f(x) =
√
x belongs to C0,α(I), for any 0 < α ≤ 1/2 with 0 in I, but it does not

belongs to C0,β(I) for any 1/2 < β ≤ 1; (3) the function f(x) = 1/ln|x| and
f(x) = 0, for x within the interval I = [−1/2, 1/2] is a continuous function that
does not belong to any C0,α(I), 0 < α ≤ 1.

If the domain E is unbounded then a continuous function on the closure E
is not necessarily bounded, so that the notation C0,α

b (E) is necessary, the above

argument shows that C0,α
b (E) is a Banach space too. Moreover, instead of only

bounded, we may impose other conditions, e.g., “vanishing at infinite”, i.e.,
functions f such that for every ε > 0 there exists a compact set K = Kε ⊂ E
such that ‖f‖α,ErK ≤ ε.

The space Cn,αb (E) are defined in the same way, the space of all function f
defined on the domain E with real (or complex) values which are continuously
differentiable and bounded on E up to the order n, and all derivative of order
n belongs to C0,α

b (E). As expected, this space is a complete endowed with the
norm

‖f‖Cn,αb (E) =

n∑
k=1

‖∂kf‖C0
b (E) + ‖∂nf‖C0,α

b (E),

where ∂k means all derivatives of order k. Sometimes, for 0 < α < 1 the
notation Cn+α

b (E) is used, but we remark the differences between the spaces

Cn,1b (E) and Cn+1
b (E).
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(2.2) Compactness and Separability

(2.2.1) Linear Functionals

(2.2.2) Nonlinear Functional

Exercise 2.2. With the notation of Exercise 2.1, let {fn} be a bounded se-
quence in the Hölder space C0,α(K) with K ⊂ Rd and 0 < α ≤ 1. Prove that
if 0 < α′ < α and K is compact then there exists a subsequence {fnk} and a
function f in C0,α(K) such that fnk → f in C0,α′(K).

Proof. Because the topology in C0,α(K) is sequential, this statement is equiv-
alent to the following: any bounded set in C0,α(K) is relative compact in
C0,α′(E).

From Arzela-Ascoli Theorem 2.9 follows that there exists a a subsequence
{fnk} and a continuous function f such that fnk → f uniformly on the compact
set K ⊂ Rd. Since ‖fn‖α,K ≤ C for some constant,

|fnk(x)− fnk(y)| ≤ C|x− y|α, ∀x, y ∈ K, ∀k

which shows that f belongs to C0,α(K). Moreover, the interpolation estimate

[g]α′,K ≤
(
[g]α,K

)α′/α(
sup
x,y∈K

|g(x)− g(y)|
)1−α′/α

, ∀g ∈ C0,α(K),

applied to the function g = fnk − f yields ‖fnk − f‖α′,K → 0 as desired.

(2.2.3) Baire Category Arguments

(2.3) Three Essential Principles

(2.3.1) Uniformly Boundedness Principle

(2.3.2) Open Mappings Theorem

(2.3.3) Closed Graph Theorem

Exercise 2.3. Let V be a finite-dimensional linear subspace of a topological
vector space X and p be a continuous seminorm on X such that p(v) = 0
and v in V imply v = 0. Take a basis {v1, . . . , vn} in V and consider the
continuous linear mapping c = (c1, . . . , cn) from Rn into X defined by Tc =
c1v1 + · · · + cnvn. First (1) minimize the real-valued function c 7→ p(Tc) over
the region {c : |c1|+ · · ·+ |cn| = 1}, and then (2) prove the estimate

|c1|+ · · ·+ |cn| ≤ Kp(Tc), ∀c ∈ Rn

for some constant K > 0. Finally, (3) deduce that T−1 : V → Rn is also
continuous and therefore V is closed in X.

[Preliminary] Menaldi November 11, 2016
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Proof. (1) Note that the region R = {c ∈ Rd : |c1|+ · · ·+ |cn| = 1} is compact
and the function f : c 7→ p(Tc) is continuous and strictly positive, so the
minimum value 1/K is positive, i.e., f(c) ≥ 1/K for every c in R.

(2) Since f is positive homogeneous, f(rc) = |r|f(c) for every scalar r.
Given any c 6= 0 in Rn define 1/r = |c1|+ · · ·+ |cn| to see that rc belongs to R,
which yields

|c1|+ · · ·+ |cn| =
1

r
≤ Kf(c) = Kp(Tc), ∀c ∈ Rn,

as desired.
(3) In view of the above estimate, the inverse T−1(v) = c if v = c1v1 +

· · · + cnvn is a continuous linear function from V into R with the norm c 7→
|c1|+ · · ·+ |cn|, and the argument is complete, see also Remark 2.15.

Exercise 2.4. On a given topological vector space X, (1) recall the definition
of sequentially compact and bounded sets, and (2) prove that any sequentially
compact set A ⊂ X is also a bounded set. Next, (3) show that every topological
vector space X having a compact neighborhood of zero is finite dimensional.

Proof. (1) Recall that in a topological vector space X, a set K is called sequen-
tially compact if every sequence in K has a convergence subsequence, and a set
B is called bounded if for every neighborhood U of zero there exists a scalar
s > 0 such that B ⊂ tU , for every t > s. It is clear that if X is a lctvs then
the definition of bounded set becomes: for every neighborhood U of zero there
exists a scalar t > 0 such that B ⊂ tU , and if the space X is a normed space
then this is equivalent to supx∈B ‖x‖ <∞. Moreover, in a topological space, a
set F having the property

∀{xk} ⊂ F, xk → x implies x ∈ F

is called sequentially closed. It is clear that any closed set F is sequentially
closed, and if the converse holds true then the topology is called a sequential
topology. Certainly, any compact set is sequentially compact, and the converse
holds true in any sequential topology. Similarly, a set is called (sequentially)
relative compact (or pre-compact) if its (sequential) closure is compact. A
typical example of a sequential topology is the one given by a metric.

Note that in a metric space (X,d) a set B is called d-bounded if its diameter
d(B) = sup{d(x, y) : x, y ∈ B} is finite, and in general, this notion does not
agree with the concept of a bounded set in a topological vector space (e.g., if
d is an invariant metric on X then d′(x, y) = d(x, y)/

(
d(x, y) + 1

)
is another

invariant metric yielding the same topology where the diameter of the whole
space is finite). However, both definition agree on a normed space.

(2) Let K be a sequentially compact subset of a given topological vector
space X. To prove that K is bounded, choose a neighborhood U of zero and
suppose that for every n > 0 there exists a point xn in K r tnU, with tn > n.
Because K is sequentially compact, there is a subsequence xnk → x. However,

[Preliminary] Menaldi November 11, 2016
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(1/tn)xn does not belongs to U and the continuity of the scalar multiplication
implies that (1/tnk)xnk → 0, which is a contradiction.

(3) Take an open set O containing the origin with a compact closure O. The
family {x+ 1

2O : x ∈ X} is an open cover of O, which must have a finite subcover,

i.e., there exit x1, . . . , xn in X such that O ⊂ (x1 + 1
2O)∪· · ·∪ (xn+ 1

2O). If Y is
the vector space spanned by {x1, . . . , xn} then O ⊂ Y + 1

2O, and because Y is a
subspace, 1

2O ⊂
1
2Y + 1

4O = Y + 1
4O and O ⊂ Y + 1

2O = Y +Y + 1
4O = Y + 1

4O,
and, by induction, O ⊂ Y + 2−kO, for every k ≥ 1. If y belongs to Y + 2−kO
for every k ≥ 1 then y = yk + 2−kzk with yk in Y and zk in O. In view of (2),
O is bounded, i.e., for every open set V there exists s > 0 such that O ⊂ tV ,
for every t ≥ s, and so 2−kzk belongs to 2−ktV = V , if t = 2k, which means
that 2−kzk → 0. Hence, y belongs to the sequential closure of Y , and so, y
belongs to Y = Y , after invoking Remark 2.15. This shows that O ⊂ Y . Now,
for any x in X, the continuity of the multiplication implies that the sequence
{xk = (1/k)x, k ≥ 1} converges to zero, and so, (1/k)x belongs to O for any k
sufficiently large, i.e., x belongs to kO ⊂ kY = Y , which proves that X = Y .

(2.3.4) Hahn-Banach Theorem

(2.4) More on Lebesgue Spaces

(2.4.1) Weak Convergence

(2.4.2) Totally Bounded Sets

Exercise 2.5. If A is a totally bounded set of a normed space (X, ‖ · ‖) then
prove that the convex hull (or convex envelope) co(A) of A (i.e., the smallest
convex set containing A) is also totally bounded. In particular, the closed convex
hull of a compact set of a Banach space is also compact. Hint: Use the following
argument (1) if F ⊂ X is a finite set then the convex hull co(F ) of F is a totally
bounded set. Next, let A be a totally bounded subset of X and let B1 be an
open balls containing the origin. By using the previous result, (2) find a finite
set F such that A ⊂ F +B1 and deduce that co(A) lies inside K +B1 for some
totally bounded set K. Now, take any two open balls B1 and B containing the
origin and satisfying B1 + B1 ⊂ B. Finally, because K is totally bounded, (3)
find another finite E such that co(A) ⊂ (E + B1) + B1 ⊂ E + B, and deduce
that co(A) is indeed totally bounded.

Proof. (1) First, note that x belongs to co(F ) if and only if x is a convex
combination of points in F , i.e., if and only if there exist n ≥ 2, ai in [0, 1], and
points xi, for i = 1, . . . , n such that

∑n
i=1 ai = 1 and x =

∑n
i=1 aixi. Thus, if

F is a finite set, say F = {x1, . . . , xn}, then consider the dyadic approximation
in [0, 1], i.e., Dk = {j2−k : j = 0, 1, . . . , 2k}, k = 1, 2, . . . , with Dk(a) =
max{d ∈ Dk : d ≤ a}, and the finite set Fk =

{
y =

∑n
i=1 dixi : di ∈ Dk, 1 =∑n

i=1 di
}
⊂ co(F ). Hence, for any point x in co(F ) there exist ai in [0, 1] such

that
∑n
i=1 ai = 1 and x =

∑n
i=1 aixi. For each ai define di = Dk(ai) for

[Preliminary] Menaldi November 11, 2016
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i = 1, . . . , n − 1 and dn = 1 − d1 − · · · − dn−1 to deduce that y =
∑n
i=1 dixi

belongs to Fk and

‖x− y‖ ≤
n∑
i=1

|ai − di| ‖xi‖ ≤ [2(n− 1)]2−k
(

max
i
‖xi‖

)
.

Therefore, given any ε > 0 there exists k such that [2(n − 1)]2−k < ε, which
implies that any point in co(F ) is within a distance less than ε from the finite
set Fk, i.e., co(F ) is totally bounded.

(2) Since the open B1 contains the origin, there exists ε > 0 such that
‖x‖ ≤ ε implies x is in B1, and because A is totally bounded there exits a finite
set F such that every point in A lies within a distance less than ε from F . This
yields A ⊂ F + B1. The ball B1 is convex, and in view of (1), the convex hull
K = co(F ) is totally bounded, therefore co(A) ⊂ K +B1.

(3) Because K is totally bounded and B1 is a ball containing the origin,
invoke the property (1) to find another finite set E such that K ⊂ E + B1.
Hence, the inclusion (2) implies co(A) ⊂ (E+B1) +B1 ⊂ E+B. Since the ball
B is also arbitrary, this shows that co(A) is totally bounded.

Finally, remark that in a Banach space (i.e., a complete normed space) a
set is totally bounded if and only if it is pre-compact. Recall that closure and
the interior of a convex set is convex, and that the convex hull of an open set
is open. However, the convex hull of a closed set is not necessarily closed. In a
finite-dimensional space, the convex hull of a compact set is compact.

Exercise 2.6. Banach-Saks Theorem states that if {fn} is a weakly convergence
sequence to f in Lp(Ω,F , µ), 1 ≤ p <∞ then there exists a subsequence {fnk}
such that the arithmetic means gk = (fn1

+ · · ·+fnk)/k strongly converges to f ,
i.e., ‖gk − f‖p → 0. Prove this result for a Hilbert space H with scalar product
(·, ·) and norm ‖ · ‖, in particular for p = 2. Hint: First reduce the problem
to the case where f = 0, and ‖fn‖ ≤ 1 for every n ≥ 1. Next, construct a
subsequence satisfying |(fni , fnk+1

)| ≤ 1/k, for every i = 1, . . . , k, and deduce
that ‖gk‖2 ≤ 3/k. see Riesz and Nagy [107, Section 38, pp. 80–81.].

Proof. First, if fn → f weakly then ‖fn‖p ≤ C, for every n, and then fn−f → 0
weakly. Hence, the sequence of functions f ′n = (fn − f)/(2C) converges weakly
to 0 and ‖f ′n‖p ≤ 1.

Now, let {fn} be a sequence weakly convergence sequence to 0 in a Hilbert
space H satisfying ‖fn‖ ≤ 1. Beginning with fn1 = f1, note that (f, fn)→ 0, as
n→∞, for every f in H, to choose fn2 such that |(fn1 , fn2)| ≤ 1, and next, by
induction, to choose fnk such that |(fni , fnk+1

)| ≤ 1/k, for every i = 1, . . . , k.
Define gk = (fn1

+ · · ·+ fnk)/k to check that

‖gk‖2 ≤
2

k2

k∑
i<j

|(fni , fnj )|+
1

k2

k∑
i=1

|(fni , fni)|,

and because the first sum has k(k− 1) terms, all bounded by 1/(k− 1) and the
second sum has k terms all bounded by 1, deduce that ‖gk‖2 ≤ 3/k. This shows
that the sequence gk strongly converges to 0.
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(2.5) Basic Interpolation Ideas

(2.5.1) Preliminary Interpolation

(2.5.2) Marcinkiewicz Interpolation Theorem

(2.5.3) Riesz-Thorin Interpolation Theorem

(2.5.4) Intermediate Spaces

[Preliminary] Menaldi November 11, 2016



280 Solutions: A.2. Basic Functional Analysis

[Preliminary] Menaldi November 11, 2016



Exercises - Chapter (3)
Elements of Distributions
Theory

(3.1) Locally Convex Spaces

Exercise 3.1. Use the argument in Exercise 2.5 to show that the closed convex
hull of a totally bounded subset A in a Fréchet space is a compact set.

Proof. Revise the arguments in Exercise 2.5 as follows. Let A be a totally
bounded subset A of a Fréchet space (X,d).

If F is a finite set then its closed convex hull (co)(F ) or the closured of its
convex hull co(F ) or the smallest closed convex set containing F , is indeed,
its convex hull co(F ). Indeed, if F = {x1, . . . , nn} and {zk} is a sequence
in co(F ) converging to z then zk =

∑n
i=1 a

k
i xi with aki in [0, 1]. Thus, there

exists a convergent subsequence {akji }, a
kj
i → ai as j →∞, which implies that

z =
∑n
i=1 aixi, i.e., the convex hull co(F ) is closed. Hence, F is a finite set then

it closed convex hull co(F ) is compact.
If B1 is an open ball set and A is totally bounded then there exists finite set

F ⊂ A such that A ⊂ F + B1/2. Hence, if z =
∑r
i=1 a

r
i zi with ai in [0, 1] and

zi in A then there exists xi in F such that zi−xi belongs to B1/2, which yields
co(A) ⊂ co(F ) + B1/2. Because co(F ) is compact we have co(F ) +B1/2 =
co(F ) + B1/2, i.e., co(A) ⊂ co(F ) + B1, and co(F ) = K is a compact convex
set in the Fréchet space X.

Next, if B1 and B are two balls containing the origin and satisfying B1+B1 ⊂
B then repeating the argument with the totally bounded set K, there exists a
finite set E such co(A) ⊂ (E + B1) + B1 ⊂ E + B. This proves that co(A) is
totally bounded, and because it is also closed, the closed convex hull co(A) it is
compact.

The concept of totally bounded is initially defined for a metric space, i.e., a
set A is totally bounded if for every ε > 0 there exists a finite subset F = Fε of
A such that all points in A are within a distance less than ε from the finite set
F . However, a locally convex topological vector space X which is not a Fréchet
space does not have a metric, a set A is totally bounded if and only if for every
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ε > 0 and for any continuous seminorm p there exists a finite set F = Fε,p such
that for any point x in A there exist a point y in F satisfying p(x − y) < ε.
The above argument extends to this case, i.e., the closed convex hull co(A) of a
totally bounded subset A in a complete locally convex topological vector space
X is a compact set.

As expected, in the case of an inductive topology X =
⋃
kXk, a set A in X

is totally bounded if and only if A is totally bounded in some Xk.

Exercise 3.2. Following Remark 2.16, let N be a closed (vector) subspace of a
locally convex topological vector space X with a separating family of seminorms
{pi : i ∈ I}. The quotient space X/N is the space of cosets x̄ = x + N. Verify
that X/N is a vector space and that {p̄i : i ∈ I} with

p̄i(x̄) = inf
x∈x̄

pi(x), ∀x̄ ∈ X/S

is a separating family of seminorms for X/N, i.e., X/N becomes a lctvs. Next
show that if X is complete, metrizable or separable then so is X/N .

Proof. To show thatX/N is a lctvs, the only question to discuss is the separating
property of the family of seminorms {p̄i}. To this purpose, first recall that a
point x belongs to the closure of N (in this case to N because N is closed) if and
only if every open set containing x intercept N , i.e., N ∩{y : pi(y−x) < ε} 6= ∅,
for every i in I and every ε > 0. Now, we proceed by contradiction, if the family
is not separating, i.e., there exists x̄ 6= 0 such that p̄i(x̄) = 0 for any i in I, then
any x in x̄ does not belongs to N and for every ε > 0 there exists n in N such
that pi(x+ n) < ε, which means that x belongs to the closure of N , which is a
contraction.

Since p̄i(x̄) ≤ pi(x) for every x in x̄, it is clear that if a sequence {xk} is
dense in X then the sequence {x̄k} is dense in X/N , i.e., if X is separable then
so is X/N . Moreover, because the family of seminorms have the same cardinal,
if X is metrizable then so is X/N .

To check the completeness, take a Cauchy sequence {x̄k} in X/N and, by
contradiction, suppose that there is not accumulation point, i.e., for every x̄,
there exists ε > 0, and i in I such that p̄i(x̄k − x̄) > ε, for every k, i.e.,
pi(xk − x) > ε, for every xk in x̄k and x in x̄. Hence, choosing xk and x so
p̄i(x̄k− x̄`)+1/(k+`) > pi(xk−x`), we obtain a Cauchy sequence {xk} without
accumulation point, which contract the fact that X is complete.

Exercise 3.3. Let A and B be two closed subsets of a topological vector space
X. Give an example where A + B = {a + b : a ∈ A, b ∈ B} is not necessarily
closed. Next show (1) if A or B is (sequentially) compact then A+B is closed
and (2) if A and B are independent closed vector subspaces, i.e., A ∩B = {0},
and X is F -space (complete and metrizable) then A + B is closed. Finally,
(3) deduce that if A and B are closed vector subspaces and A or B is finite
dimensional and X is F -space then A + B is also closed. What about the
general case? Hint: for (2) note that the mapping (a, b) 7→ a+ b is a one-to-one
application from A × B onto A + B, and use the open mapping theorem as
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in Remark 2.22 to deduce that any Cauchy sequence of the form {an + bn} is
pre-mapped from Cauchy sequences {an} and {bn}; for (3) use Remark 2.15
to know that any finite dimensional subspace of a topological vector space is
necessarily closed.

Proof. The sequences A = {n + 1/n : n ≥ 2} and B = {−n + 1/n : n ≥ 2} are
closed and unbounded subsets of R, but A+B does not contain the origin, yet,
(n+ 1/n) + (−n+ 1/n) = 2/n→ 0, which means that A+B is not a closed set.

(1) If A is closed and B is compact then take any sequence {an + bn = cn}
in A + B convergent to some limit c. Because {bn} ⊂ B and B is compact,
there exists a subsequence bnk convergent to some b in B, and the continuity
of the addition shows that ank = cnk − bnk must converge to some a. Since A
is closed, the limit a belongs to A, and then cnk = ank + bnk → a + b, proving
that the limit c belongs to A+B, i.e., A+B is a closed set.

(2) If A and B are independent (non-null) closed vector subspaces, i.e.,
a + b = 0 implies a = b = 0, then any element c in A + B can be uniquely
written as c = a+ b, with a in A and b in B. Because A and B are closed vector
spaces of a F -space, they are in themselves F -spaces, and A + B is metrizable
space, a priori, not necessarily complete. The open mapping Theorem 2.20 (in
the form of Remark 2.22) can be applied to the continuous and onto mapping
T : (x, y) 7→ x+ y, from the product space A×B into A+B, to deduce that T
is an open operator. This implies that if {cn = an + bn} is a Cauchy sequence,
so are {an} and {bn}. Hence, if an + bn = cn → c then {cn}, {an} and {bn} are
Cauchy sequences. Since the space X is complete, all sequences are convergent,
i.e., an → a and bn → b, and because A and B are closed, the limit points (a, b)
belong to A×B and c = a+ b. This shows that A+B is closed.

(3) In view of Remark 2.15, any finite dimensional subspace of a topological
vector space is closed. Now, if A and B are (non-null) closed vector subspaces
of a F -space X and A is finite dimensional then choose a base {x1, . . . , xr} for A
and if necessary, re-ordered the vectors in such a way that x1, . . . , xk belongs to
A ∩B, and xk+1, . . . , xr belongs to A but not to B. Denote by A′ the (closed)
vector space generated by the vector {xk+1, . . . , xr}. Because B is a vector
space, all linear combination of the vectors {x1, . . . , xr} belong to B, which
proves that A + B = A′ + B. Since A′ and B are linearly independent, apply
the previous result (2) to deduce that A′ +B is closed, i.e., A+B is closed.

Alternatively, because the image T (A×B) = A+B is necessarily a F -space,
the space A+B is complete, which implies that A+B is a complete subset of
the F -space X, and so A + B is closed. In this argument, the fact that A and
B are independent is not used, i.e., if A and B are two closed vector subspaces
then so is A+B.

Exercise 3.4. Prove that a locally convex (Hausdorff space) is normable (i.e.,
there exists a norm yielding the same topology) if and only if its zero vector
has a bounded neighborhood. For instance, the reader may consult the book
Al-Gwaiz [4, Theorem 1.6, p.15], among others.

[Preliminary] Menaldi November 11, 2016



284 Solutions: A.3. Elements of Distributions Theory

Proof. Recall that, by definition, a subset B of a topological vector space X is
bounded if it can be absorbed by any neighborhood of zero, i.e., for every open
subset O containing 0 there exists t > 0 such that B ⊂ tO = {tv : v ∈ O}.

It is clear that the unit open ball {x ∈ X : ‖x‖ < 1} is a bounded neigh-
borhood of the zero. Conversely, if X is a lctvs with a bounded neighborhood
U of zero then there exists a continuous seminorm p such that {x ∈ X : p(x) <
1} = B ⊂ U . To check that p is indeed a norm, take x such that p(x) = 0.
Since the ball B is a bounded neighborhood of zero, there exists r > 0 such
that rx belongs to B, and any neighborhood V of zero must absorb B, i.e.,
there exists t > 0 such that B ⊂ tV . Hence the vector y = (r/t)x belongs to
every neighborhood V of zero, and since the lctvs is a Hausdorff space (separate
points), the point y must be zero, i.e., x = 0, which means that p is a norm.

(3.1.1) Dual Spaces

(3.1.2) Inductive Limits

Exercise 3.5. On a barrel lctvs X and its dual space X ′, (1) show that a
weakly* bounded sequence in the dual space X ′ is also strongly bounded. Fi-
nally, assume that X satisfies the Heine-Borel property, i.e., every closed and
bounded set is compact, and (2) prove that any sequence is strongly convergence
in the dual space X ′ if and only if it is weakly* convergence.

Proof. (1) By definition, if {fn} is a weakly* bounded sequence then for every
x there exists a constant C = C(x) such that |〈fn, x〉| ≤ C, for every n, i.e.,
it is pointwise bounded. Because X is a barrel lctvs, the uniform bounded
principle Theorem 2.17 can be applied to deduce that the sequence {fn} is
equi-continuous, i.e., there exists a continuous seminorm p on X such that
|〈fn, x〉| ≤ p(x), for every x in X and any n, i.e., the sequence {fn} is strongly
bounded.

(2) We have to show that if a sequence {fn} is weakly* convergent then
it is also strongly convergent, i.e., if 〈fn, x〉 → 0 for every x then 〈fn, x〉 → 0
uniformly for x within any bounded set B of X. However, a weakly* convergence
sequence is weakly* bounded, and so, invoking (1), the sequence is also strongly
bounded, i.e., there exists a continuous seminorm p such that |〈fn, x〉| ≤ p(x),
for every x in X and n ≥ 1. Because B is relatively compact in X, for any ε > 0
there exists a finite number of points x1, . . . , xr in B such that p(x − xi) < ε
implies that x belongs to B. Therefore, the estimate

sup
x∈B
|〈fn, x〉| ≤ min

i
p(x− xi) + max

i
|〈fn, xi〉| ≤ ε+

r∑
i=1

|〈fn, xi〉|,

implies the desired conclusion.

(3.1.3) Test Function Spaces

Exercise 3.6. Similar to Exercise 2.1, discuss the spaces Cθ0 (Ω).
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Proof. The argument is similar to the one used on the space C0(Ω). First, define
the subspace spaces CθK (Ω) or Cθ0 (K) of functions in Cθ0 (Ω) with support in K
(or vanishing on the boundary ∂K and extended by zero). The seminorms

[f ]θ,Ω = sup
x,y∈Ω, x 6=y

{
|f(x)− f(y)| |x− y|−θ

}
,

for any compact domain K of Ω, and the sup-norm

‖f‖∞,Ω = sup
x∈Ω
|f(x)|,

make CθK (Ω) a Banach space (in particular, a complete lctvs). Then CθK (Ω) with
the above seminorms yield the inductive limit topology on Cθ0 (Ω), i.e., fn → f
if and only if (a) there exists a compact domain K of Ω such that all fn belong
to the same CθK (Ω), and (b) fn → fn in CθK (Ω). It is clear that this means that
(a) there exists a compact K of Ω such that fn(x) = 0 for every x outside K
and any n, and (b) ‖fn − f‖∞,K + [fn − f ]θ,Ω → 0 as n→∞.

Referring to Exercise 2.1, we deduce that the inclusion of Cθ0 (Ω) into Cθ
′

0 (Ω),
with 0 ≤ θ′ < θ ≤ 1 is compact and that Cθ0 (Ω) is not separable.

Exercise 3.7. Let Za be the space of (complex) entire functions f : C→ C of
exponential type a > 0, namely, for each k ≥ 0 there exists a constant Cp such
that

(1 + |z|)k|f(z)| ≤ Ckea|y|, ∀z = x+ iy ∈ C.

Consider the family of seminorms given by

pk(f) = sup{e−a|y|(1 + |z|)k|f(z)| : z = x+ iy ∈ C},

and discuss the “inductive limit generated”, see Friedman [45, Section 2.3, pp
33–34].

Proof. To define the inductive limits we consider the spaces Za,k of (complex)
entire functions f : C → C of exponential type a > 0 and such that e−a|y|(1 +
|z|)k|f(z)| → 0 as |z| → ∞. It is clear that pk(·) is a norm on Za,k, and because
the uniform limit of complex entire functions is a complex entire function, the
space Za,k is a Banach space. However in this case, Za,k ⊃ Za and Za is a
complete lctvs with the countable family of seminorms {pk(·) : k = 0, 1, . . .},
i.e., a Fréchet space. Thus, there is not need to introduce a inductive limit
generated. By the way, note that the only entire function with compact support
is the identically zero function.

(3.2) Calculus with Distributions

Exercise 3.8. Verify that for x in R, the expression

〈p.v.(1/x), ϕ〉 = lim
ε→0

∫
|x|>ε

ϕ(x)

x
dx =

∫ ∞
0

ϕ(x)− ϕ(−x)

x
dx,
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defines a distribution in R. Moreover, let f be a continuous function f in Rdr{0}
which is positively homogeneous of degree −d and has mean zero on the unit
sphere {x : |x| = 1}, i.e.,

f(λx) = λ−df(x), ∀x ∈ Rd, λ > 0 and

∫
|x|=1

f(x′)dx′ = 0,

where dx′ denotes the surface area measure on the unit sphere. Show that the
expression

〈p.v.(f), ϕ〉 = lim
ε→0

∫
|x|>ε

f(x)ϕ(x)dx,

defines a distribution in Rd.

Proof. Because the region {|x| > ε} is symmetric, we can write∫
|x|>ε

ϕ(x)

x
dx =

∫ ∞
ε

ϕ(x)− ϕ(−x)

x
dx,

which prove that the expression p.v.(1/x) defines a linear functional on D(R).
Moreover,

ϕ(x)− ϕ(−x) =

∫ 1

−1

xϕ′(xt)dt,

i.e.,

〈p.v.(1/x), ϕ〉 =

∫ ∞
0

dx

∫ 1

−1

ϕ′(xt)dt.

Thus, if a sequence {ϕn} in D(R) (actually, C1
0 (R) suffices) satisfies (1) there

exists r > 0 such that ϕn(x) = 0 if |x| > r for every n, and (2) ϕn → ϕ
and ϕ′n → ϕ′ uniformly, then 〈p.v.(1/x), ϕn〉 → 〈p.v.(1/x), ϕ〉, i.e., expression
p.v.(1/x) defines a distribution on R. This is usually refers to as the principal
value (valuer principal) of 1/x.

For higher powers, e.g., 1/x2, the improper (symmetric) integral defined as
the limit

lim
ε→0

∫
|x|>ε

ϕ(x)

x
dx

does not have a proper meaning, and the principal value is replaced by the
Hadamard finite part, i.e.

〈f.p.(1/x2), ϕ〉 =

∫ ∞
0

ϕ(x) + ϕ(−x)− 2ϕ(0)

x2
dx,
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and

〈f.p.(1/x3), ϕ〉 =

∫ ∞
0

ϕ(x)− ϕ(−x) + 2xϕ′(0)

x3
dx,

and so on for other powers. Note that in the distribution sense we have
[p.v.(1/x)]′ = f.p.(−1/x2), [f.p.(1/x2)]′ = f.p.(−2/x3), and so on.

Similarly, because f is homogeneous of degree n, by means of spherical
coordinates we obtain∫

|x|>ε
f(x)ϕ(x)dx =

∫ ∞
ε

ρd−1dρ

∫
|x|=1

f(ρx′)ϕ(ρx′)dx′ =

=

∫ ∞
ε

ρ−1dρ

∫
|x|=1

f(x′)[ϕ(ρx′)− ϕ(0)]dx′.

Essentially the same one-dimensional argument above yields

〈p.v.(f), ϕ〉 =

∫ ∞
0

dρ

∫
|x′|=1

f(x′)dx′
∫ 1

0

x′ · ∇ϕ(tρx′)dt,

which proves that the expression p.v.(f) is indeed a distribution in Rd.

Exercise 3.9. Consider the function x 7→ ln |x| as a distribution in Rd and
calculate its first order derivatives.

Proof. The function ln |x| is in L1(Rd) and its derivative in the distribution
sense with respect to x1 is given by

〈∂1 ln |x|, ϕ〉 = −
∫
Rd

ln |x| ∂1ϕ(x)dx

= − lim
ε→0

∫
Rd−1

dx′
∫
|x1|>ε

ln |x| ∂1ϕ(x′)dx1,

where x = (x1, x
′) and Rd−1 refers to the variable x′ = (x2, . . . , xd). Integrating

by parts,

−
∫
|x1|>ε

ln |x| ∂1ϕ(x)dx1 = ln |(ε, x′)|
(
ϕ(−ε, x′)− ϕ(ε, x′)

)
+

+

∫
|x1|>ε

x1

|x|2
ϕ(x)dx1.

Since

ϕ(−ε, x′)− ϕ(ε, x′) =

∫ 1

−1

ε∂1ϕ(tε, x′)dt,

the limit of the integral with ln |(ε, x′)| vanishes and we deduce that

〈∂1 ln |x|, ϕ〉 = lim
ε→0

∫
Rd−1

dx′
∫
|x1|>ε

x1

|x|2
ϕ(x)dx1 =

=

∫
Rd−1

dx′
∫ ∞

0

x1

|x|2
(
ϕ(x1, x

′)− ϕ(−x1, x
′)
)
dx.
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Note that

ϕ(x1, x
′)− ϕ(−x1, x

′) = x1

∫ 1

−1

∂1ϕ(tx1, x
′)dt,

and that x 7→ x2
1/|x|2 in a locally integrable functions. Briefly, the chain rule

yields ∂i ln |x| = xi
|x|2 and the derivative with respect to xi in the sense of distri-

bution of ln |x| is the principal value of x 7→ xi/|x|2, e.g.,

〈∂1 ln |x|, ϕ〉 =

∫
Rd−1

dx′
∫ ∞

0

x2
1

|x|2
dx1

∫ 1

−1

∂1ϕ(tx1, x
′)dt.

Remark the particular one-dimensional case, (ln |x|)′ = p.v.(1/x) as in the pre-
vious Exercise 3.8. Moreover, considering only the one-dimensional half-space,
i.e., ln(x+),

〈[ln(x+)]′, ϕ〉 = −〈ln(x+), ϕ′〉 = lim
ε→0

[ ∫ ∞
ε

1

x
ϕ(x)dx+ ϕ(0) ln ε

]
=

=

∫ ∞
0

1

x

(
ϕ(x)− ϕ(0)

)
dx,

i.e., (lnx+)′ = f.p.(1/x+) in D′(R), which means the Hadamard finite part. It is
clear that no singularity exists when (lnx)′ = 1/x is regarded as a distribution
in R+. In any case, note that p.v.(1/|x|) = f.p.(1/x+)− f.p.(1/x−).

Exercise 3.10. Discuss (a) the translation operator τh defined as τhϕ(x) =
ϕ(x+ h) with Ωh = h+ Ω and (b) the reflection operator ϕ̌(x) = ϕ(−x).

Proof. It is clear that the translation operator τh is a linear continuous mapping
from D(Ω) into D(Ωh), with Ω1 = h + Ω. If Tf is the distribution associated
with a locally integrable function f then

〈τhTf , ϕ〉 =

∫
Ω

f(x+ h)ϕ(x)dx =

∫
Ωh

f(y)ϕ(y − h)dy = 〈Tf , τ−hϕ〉.

Thus, for any distribution in Ω or equivalently, for any element in D′(Ω), the
translation operator is defined by 〈τhT, ϕ〉 = 〈T, τ−hϕ〉, for any ϕ in D(Ωh).
Hence, τh is also a linear continuous mapping from D′(Ω) into D′(Ωh). In
particular, if Ω = Rd then τh maps D′(Rd) into itself.

Considering test functions with support in a fixed compact K ⊂ Ω, i.e., on
the subspace DK(Ω), the translation τh can be regarded as a linear continuous
operator from DK(Ω) into itself provided h is sufficiently small, i.e., |h| smaller
than the distance from the compact K to the boundary ∂Ω.

The reflection operator ϕ̌(x) = ϕ(−x) makes sense as a linear continuous
mapping from D(Ω) into D(Ω̌), with Ω̌ = {−x : x ∈ Ω}. As in the case of
the translation operator, the reflection operator is defined for distribution by
transposition, i.e., 〈Ť , ϕ〉 = −〈T, ϕ̌〉, for any ϕ in D(Ω̌).

If Ω is symmetric, i.e., Ω̌ = Ω, then the reflection is a linear continuous
mapping from D(Ω) into itself, in particular, this applies to Ω = Rd.
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Exercise 3.11. For a unit vector e in Rd, consider the expression Λe,tϕ(x) =
[ϕ(x + te) − ϕ(x)]/t, for t > 0. Discuss (a) the directional rate operator Λe,t
as defined on either D(Rd) or D(Ω), and (b) extend the definition of Λe,t as
a linear continuous operator on the spaces of distributions, i.e., on D, E and
S. Moreover, also discuss (c) the iteration Λe,tΛe,−t written as Λ2

e,tϕ(x) =
ϕ(x + et) + ϕ(x − et) − 2ϕ(x)]/t2, and then (d) consider the continuity of the
directional derivative limt→0 Λe,t and the Hessian limt→0 Λ2

e,t as operator acting
on distributions.

Proof. (a) Considering the directional rate operator Λe,t as a linear continuous
on D(Rd) is immediately, while on the space D(Ω), two steps are necessary. For
instance, we may consider the inclusion D(Ω) ⊂ D(Rd) and define Λe,t from
D(Ω) into D(Rd), for every t > 0 and any unit vector e in Rd. Alternatively,
we may first consider the directional rate operator Λe,t as acting on the sub-
space DK(Ω), with t > 0 smaller than the distance from the compact K to the
boundary ∂Ω.

(b) By transposition, the directional rate operator Λe,t is defined as linear
continuous operator from D (or E , or S) into itself. If Tf is the distribution
associated with a locally integrable function f then

〈Λe,tTf , ϕ〉 =

∫
Rd

Λe,tf(x)ϕ(x)dx =

∫
Rd
f(y)Λ−e,tϕ(y)dy = 〈Tf ,Λ−e,tϕ〉.

for any ϕ in D = D(Rd). Thus, for any distribution in Rd or equivalently, for
any element in D′ ⊃ S ′ ⊃ E ′, the translation operator is defined by 〈Λe,tT, ϕ〉 =
〈T,Λ−e,tϕ〉, for any ϕ in D(Rd). Hence, Λe,t becomes a linear continuous map-
ping from D′ (or E ′, or S ′) into itself.

(c) Initially, Λe,t is defined for any unit vector e and any t > 0, but clearly,
this also make sense for any t < 0. The iteration

Λe,tΛe,−tϕ(x) = Λe,−tΛe,tϕ(x) =
ϕ(x+ et) + ϕ(x− et)− 2ϕ(x)

t2
,

which is denoted by Λ2
e,t is a linear continuous operator from D (or E , or S) into

itself. Moreover, again by transposition, the expression 〈Λ2
e,tT, ϕ〉 = 〈T,Λ2

e,tϕ〉,
defines Λ2

e,t as a linear continuous mapping from D′ (or E ′, or S ′) into itself.
Note the symmetry of Λ2

e,t and the fact that Λe,tΛ−e,t = Λ−e,tΛe,t = 0.
(d) Because the derivative operator is continuous, the limits as t → 0 are

well defined as linear continuous operators from D (or E , or S) into itself, and
also, from D′ (or E ′, or S ′) into itself. It is also clear that considering the unit
vector as a parameter (or even taken any vector, not necessarily of unit length)
the directional derivative limt→0 Λe,t = e · ∇ is linear in e and the the Hessian
limt→0 Λ2

e,t = (e · ∇)2 is bilinear in e. Actually, the directional derivative can
be regarded as the gradient operator, i.e., mapping real-valued functions (or
distributions) into vector-valued functions (or distributions), meaning (ei · ∇)
with {ei} an orthonormal basis in Rd. The Hessian can be regarded as mapping
real-valued functions (or distributions) into symmetric matrix-valued functions
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(or distributions), i.e., the Hessian matrix operator H = (Hij) can be defined
as Hij = (aij · ∇)2 − bij · ∇)2)/2, where the unit vectors aij and bij are given
by aij = (ei + ej)/

√
2 and bij = (ei − ej)/

√
2

(3.2.1) Positivity, Differentiability and Integrability

Exercise 3.12. Let f be a real-valued function defined on a convex open set
Ω of Rd. Recall that f is called convex whenever f(sx + ty) ≤ sf(x) + tf(y),
for every x, y in Ω and any s, t ≥ 0, s + t = 1. Also, f is called concave if −f
is convex. Assuming that f is twice continuously differentiable, (a) prove that
f is convex if and only if the Hessian matrix D2f is nonnegative definite, i.e.,
(v,D2f(x)v) ≥ 0 for every v in Rd and any x in Ω. Now, a function f is called
semi-convex (or semi-concave) if there exists a twice continuously differentiable
g such that f + g is convex (or concave). Prove that (b) if locally integrable
function f is semi-convex and also semi-concave then the Hessian matrix D2f ,
regarded as a matrix-valued distribution, is actually a locally bounded matrix-
valued function.

Proof. (a) This part is rather standard. For given x and y in Ω consider the
function F (r) = f

(
(1− r)x+ ry

)
= f

(
x+ r(y − x)

)
for any r in [0, 1]. Because

F (0) = f(x) and F (1) = f(y), it is clear that f is convex if and only if r 7→ F (r)
is convex in [0, 1] for every x, y. Now, the function of one variable F is twice
continuously differentiable and therefore, F is convex if and only if F ′′ ≥ 0.
Hence, by means of the chain rule, F ′(r) = (y − x)Df(

(
x + r(y − x)

)
and

F ′′(r) =
(
(y − x), D2

(
x + r(y − x)

)
(y − x)

)
≥ 0, for every r in [0, 1], i.e., f is

convex if and only if the Hessian matrix is nonnegative definite.
(b) We make use of the Hessian approximation Λ2

e,tϕ(x) = ϕ(x+et)+ϕ(x−
et)−2ϕ(x)]/t2 and its extension to distributions 〈Λ2

e,tT, ϕ〉 = 〈T,Λ2
e,tϕ〉, for any

ϕ in D(Rd). Note that any convex function satisfies Λ2
e,tf(x) ≥ 0 for every x

and t > 0. The Hessian of a distribution T is denoted by the matrix-valued
distribution D2T of by the real-valued distribution D2T (u, v), for any vector u,
v in Rd.

If f is a semi-convex function then there exists a twice continuously differ-
entiable function g such that f + g is convex. Therefore Λ2

e,t[f(x) + g(x)] ≥ 0
for every x and t > 0. Considering the distribution Tf induced by f we deduce

〈lim
t→0

Λ2
e,tTf , ϕ〉 ≥ −〈lim

t→0
Λ2
e,tg, ϕ〉 = −

∫
Ω

(e,D2g(x)e)ϕ(x)dx,

for every test function ϕ ≥ 0. This proves that D2Tf (e, e) + (e,D2g(·)e) ≥
0. Moreover, if f is also semi-concave then there exists a twice continuously
differentiable function h such that f + h is concave. This yields Tf (e, e) +
(e,D2h(·)e) ≤ 0. Invoking Proposition 3.20, the distribution Tf can be identified
with a locally integrable function, denoted by D2f , which coincides with the
pointwise Hessian of f . Note that pointwise Hessian of a convex (or concave)
function f is defined as the monotone limit of Λ2

e,tf(x), for every x. It is clear
that the limit Λ2

e,tf(x) exists also when f is semi-convex or semi-concave.
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In general, we say that a distribution T is convex (or concave) if

〈Λ2
e,tT, ϕ〉 = 〈T,Λ2

e,tϕ〉 ≥ 0, ∀t > 0, e,

for any ϕ ≥ 0 in D(Rd). This implies that Λ2
e,tT is a nonnegative measure for

every t > 0 and so is the limit distribution limt→0 Λ2
e,tT = D2T (e, e). Because

Λ2
e,tϕ(x) =

∫ 1

0

dr

∫ 1

−1

(
e, ϕ(x+ trse)e

)
ds,

we deduce that T is a convex (or concave) distribution if and only if D2T (e, e)
is a nonnegative (nonpositive) Radon measure, for every unit vector e in Rd,
i.e., D2T (e, e) is a nonnegative (nonpositive) element of the dual space C0

0 (Ω)′.
Next, recall that a (signed) Radon measure µ can be identified with an

element in C0
0 (Ω)′, and that the restriction of an element T of C0

0 (Ω)′ to any
compact K ⊂ Ω is actually identified with a (signed) Radon measure on K.
Thus, a distribution T is semi-convex (or semi-concave) if there exists an element
S in the dual space C0

0 (Ω)′ such that T+S is a convex (or concave) distribution.
This means that the only semi-convex (or semi-concave) distributions are the
elements of the dual space C0

0 (Ω)′, i.e., distributions of order zero.

Exercise 3.13. Give more detail on assertion (e) above, namely, use Proposi-
tion 3.20 to show that for any open interval I in R and any element T in D′(I)
we have (1) if T ′ ≥ 0 then T = Tf is the distribution associated to some in-
creasing function f ; (2) if T ′′ ≥ 0 then T = Tf is the distribution associated to
some convex function f . Moreover, (3) if T ′ is a signed Radon measure on any
compact sub-interval of I then T = Tf is the distribution associated to some
function f with bounded variation on every compact sub-interval of I (i.e., f
has locally bounded variation on the open interval I); and finally (4) if T ′′ is
a signed Radon measure on any compact sub-interval of I then T = Tf is the
distribution associated to some function f which is a difference of two convex
functions.

Proof. Proposition 3.20 applied to T ′ ≥ 0 implies that the distribution T ′ = µ
is actually a (non-negative) Radon measure on I. Thus, if a belongs to I then
the cad-lag non-decreasing function f defined by x 7→ µ([a, x]) for x ≥ a and
x 7→ µ([x, a[) for x < a satisfies

〈T ′, ϕ〉 =

∫ +∞

−∞
ϕ(x) df(x), ∀ϕ ∈ D(R),

where the integral can be also considered in the Riemann-Stieltjes sense, where
integration by parts shows that

〈T ′, ϕ〉 = −
∫ +∞

−∞
ϕ′(x) f(x) dx ∀ϕ ∈ D(R).
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On the other hand, if ϕ0 is a test function satisfying∫ +∞

−∞
ϕ0(x) dx = 1

then the distribution T can be represented as

〈T, ϕ〉 = 〈T, ϕ0〉〈1, ϕ〉+ 〈T ′,
∫ ·
−∞

[〈1, ϕ〉ϕ0(x)− ϕ(x)] dx〉,

which yields

〈T, ϕ〉 = 〈T, ϕ0〉〈1, ϕ〉+

∫ +∞

−∞
[ϕ(x)− 〈1, ϕ〉ϕ0(x)]f(x) dx,

i.e., except for a constant T is identified with f , namely, with

g = f + 〈T, ϕ0〉 −
∫ +∞

−∞
ϕ0(x)f(x) dx

we have T = Tg.
Similarly, if the second derivative T ′′ ≥ 0 then T ′ is identified with a non-

increasing function g in view of the previous assertion (1). Therefore, an an-
tiderivative f of g can be identified with T , and f is convex because f ′ = g is a
non-increasing function.

Now again, if T is a distribution (element in D(I)) such that its first deriva-
tive T ′ = µ is a signed Radon measure on any compact sub-interval of I then
choose a in I to see that the cad-lag function f defined by x 7→ µ([a, x]), for
x ≥ a, and x 7→ µ([x, a[), for x < a, has bounded variation on each compact
sub-interval of I and satisfies

〈T ′, ϕ〉 =

∫ +∞

−∞
ϕ(x) df(x), ∀ϕ ∈ D(R),

where the integral can be also considered in the Riemann-Stieltjes sense, where
integration by parts shows that

〈T ′, ϕ〉 = −
∫ +∞

−∞
ϕ′(x) f(x) dx ∀ϕ ∈ D(R).

Then except for a constant, the distribution T is identified with f , which has
locally bounded variation on the interval I. Thus f = f+ − f−, where each f+

and f− ia a non-increasing function, and T = c+Tf+
−Tf− for some constant c

A similar argument as above shows that if T is a distribution (element in
D(I)) such that its second derivative T ′′ = µ is a signed Radon measure on any
compact sub-interval of I then T is identified with the difference of two convex
functions.
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Exercise 3.14. For the powers distributions |x|z = exp(z ln |x|), (x+)z =
exp(z ln(max{x, 0}}) and (x−)z = exp(z ln(−min{x, 0}}) in D′(R), remove the
singularity at 0 to show that they are well defined for any z in C, which is not
a negative integer, e.g., see Al-Gwaiz[4, Section 2.8, pp. 63–72].

Proof. Only one case need consideration, namely, the one-dimensional distribu-
tion induced by the power function (x+)z. The other cases are deduced from
this one.

For a test function ϕ, use Taylor polynomials of order n to write

ϕ(x) =

n−1∑
k=0

xk
ϕ(k)(0)

k!
+ xn

∫ 1

0

(1− t)(n−1) ϕ
(n)(tx)

(n− 1)!
dt,

where ϕ(k)(x) is the k-derivative. If z = a+ ib with −2 < a+ n < −1 for some
n = 0, 1, . . ., then the function x 7→ (x+)z+n is a locally integrable function and
the expression

〈
(x+)z, ϕ(x)−

n−1∑
k=0

xk
ϕ(k)(0)

k!
1x≤1

〉
=

=

∫ 1

0

xz+ndx

∫ 1

0

(1− t)n−1

(n− 1)!
ϕ(n)(tx)dt

defines a distribution in R. Moreover the expression

〈
(x+)z,

n−1∑
k=0

xk
ϕ(k)(0)

k!
1x≤1

〉
=

n−1∑
k=0

∫ 1

0

xz+k

k!
ϕ(k)(0)dx =

n−1∑
k=0

ϕ(k)(0)

k!(z + k)

also defines a distribution in R. Hence, adding both expressions, the power
function (x+)z is a distribution if z is not a negative integer.

If z = −n for some integer n ≥ 1 then the finite part of the power dis-
tribution (x+)−n can be defined as follows. First take a test function χ such
that χ(x) = 1 if −1/2 < x < 1/2 and χ(x) = 0 if |x| > 1. Because (x+)−n =
(x+)−nχ(x) + (x+)−n

(
1 − χ(x)

)
and the functions x 7→ (x+)−n

(
1 − χ(x)

)
is

locally integrable, to define power distribution (x+)−n, we need only to give the
meaning of (x+)−nχ(x) as its finite part. Therefore

〈f.p.(x+)−nχ(x), ϕ(x)〉 =
〈

(x+)−nχ(x), ϕ(x)−
n−1∑
k=0

xk
ϕ(k)(0)

k!

〉
=

=

∫ 1

0

χ(x)dx

∫ 1

0

(1− t)(n−1)

(n− 1)!
ϕ(n)(tx)dt,

which is indeed an element in D′(R). The fact that a test function χ was chosen
instead of 10<x<1 is needed to be able not to discuss the situation near x = 1.
Indeed, the pointwise product (x+)−nχ(x) is defined for any (non necessarily
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smooth) pointwise function χ, but as a distribution T = f.p.(x+)−nχ make (a
priori) sense only when χ is a test function, i.e., 〈Tχ, ϕ〉 = 〈T, χϕ〉.

Note that also we have

〈f.p.(x+)−1, ϕ(x)〉 = lim
ε→0

[ ∫ ∞
ε

(x+)−1ϕ(x)dx− ln(ε)ϕ(ε)
]

=

= −〈ln(x+), ϕ′(x)〉,

and recalling the expression of the pointwise n-derivative (lnx)(n) = (−1)n−1(n−
1)!x−n, and the (iterated) integration by parts∫

u v(n)dx =

n−1∑
k=0

(−1)ku(k)v(n−k−1) + (−1)n
∫
u(n)v dx,

we deduce

〈f.p.(x+)−n, ϕ(x)〉 = lim
ε→0

[ ∫ ∞
ε

(x+)−nϕ(x)dx+ (−1)n ln εϕ(n−1) +

+

n−1∑
k=1

(−1)k−1ε−k
ϕ(n−k−1)(ε)

(k − 1)!

]
= (−1)n(n− 1)!〈ln(x+), ϕ(n)(x)〉,

i.e., the n-derivative of the logarithm is given by
(

ln(x+)
)(n)

= (−1)n−1(n −
1)! f.p.(x+)−n in the distribution sense D′(R).

Exercise 3.15. With the previous notation on fractional integrals, verify that
Φν ?Φµ = Φν+µ and deduce that Iνt I

µ
t = Iν+µ

t . Moreover, if p, q belong to [0,∞)
and 0 < ν < 1 then Iνt is a bounded operator from Lp into Lq if 1 < p < 1/ν
and q = p/(1− pν), i.e., such that∫ ∞

0

dt
∣∣∣ ∫ t

0

(t− s)ν−1f(s)ds
∣∣∣q ≤ C ‖f‖qp,

for some a constant C = Cp,q,ν .

Proof. Recall that Φν(t) = tν−1/Γ(ν) and the Gamma function is given by (3.7).
Thus, to show that Φν ? Φµ = Φν+µ calculate(

Φν ? Φµ
)
(t) =

1

Γ(ν)Γ(µ)

∫ t

0

(t− s)ν−1sµ−1ds

with the change of variable s = tx to get(
Φν ? Φµ

)
(t) =

1

Γ(ν)Γ(µ)
tν+µ−1

∫ 1

0

(1− x)ν−1xµ−1dx.

The conclusion follows from the classic equality involving the Gamma and the
Beta functions, namely∫ 1

0

(1− x)ν−1xµ−1dx = B(ν, µ) =
Γ(ν)Γ(µ)

Γ(ν + ν)
.
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To prove this equality, begin exchanging the order of integration in the convo-
lution ∫ ∞

0

dx

∫ x

0

e−(x−y)(x− y)ν−1e−yyµ−1dy =

=

∫ ∞
0

dx

∫ ∞
y

e−(x−y)(x− y)ν−1e−yyµ−1dx = Γ(ν)Γ(µ).

Next, observe that the change of variable y = xt yields∫ x

0

e−(x−y)(x− y)ν−1e−yyµ−1dy = e−xxν+µ−1

∫ 1

0

(1− t)ν−1tµ−1dt,

and the desired equality follows.
Since

Iνt f =
1

Γ(ν)

∫ t

0

(t− s)ν−1f(s)ds,

the previous relation implies that Iνt I
µ
t = Iν+µ

t . Given 1 < p < 1/ν, to apply
Hölder inequality note that q = p/(1− νp) satisfies 1/p+ 1/q = 1,∣∣∣ ∫ t

0

(t− s)ν−1f(s)ds
∣∣∣q ≤ ‖f‖qp ∫ t

0

(t− s)(ν−1)qds =
‖f‖qp

(ν − 1)q + 1

with (ν − 1)q + 1 = (1− p)/(1− νp) > 0 and C = (1− νp)/(1− p).

(3.2.2) Support and Finite Order

Exercise 3.16. Show that the expressions 〈T, ϕ〉 =
∑
k 2kϕ(1/k) and 〈S, ϕ〉 =∑

k 2kϕ(k)(1/k) define two distributions (0, 1) ⊂ R, where T is of order 0 while
S is not of finite order. Check that the support of each of them is not compact.
Can you modify the above expressions to produce a distribution which is not of
finite order and has a compact support?

Proof. It is clear that the support of the distributions T or S is the set K =
{1/k : k = 1, 2, . . .}, which is not compact. Indeed, if ϕ is supported outside of
K (i.e., the support of ϕ is a subset of (0, 1)rK) then 〈T, ϕ〉 = 0 and 〈S, ϕ〉 = 0,
because ϕ(n)(1/k) = 0 for every k = 1, 2 . . . and order n of derivative.

Since∑
k

|ϕ(1/k)| ≤ 2n sup
1/n<x<1

|ϕ(x)|, ∀ϕ ∈ D(]1/n, 1[),

T is a distribution of order 0, while the estimate∑
k

|ϕ(k)(1/k)| ≤ 2n sup
1/n<x<1,m≤n

|ϕ(m)(x)|, ∀ϕ ∈ D(]1/n, 1[),

shows that S is also a distribution. It is also clear that S can not be of finite
order.

Finally, Proposition 3.28 proves that there is no distribution with compact
support which is not of finite order.
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Exercise 3.17. Let {xk} be a sequence of points in Ω such that the distance
from xk to the boundary ∂Ω goes to zero, or such that |xk| → ∞ if Ω = Rd.
Define 〈T, ϕ〉 =

∑
k ϕ(xk) and 〈S, ϕ〉 =

∑
k ∂

k
1ϕ(xk). Discuss if T and S are

distributions, and if so, find their order and support.

Proof. Given a compact set K of Ω, there is only a finite number of points {xk}
in K, which is denoted by n(K). Thus, the estimates∑

k

|ϕ(xk)| ≤ n(K) sup
x∈K
{|ϕ(x)|}, ∀ϕ ∈ DK(Ω)

and ∑
k

|∂k1ϕ(xk)| ≤ n(K) sup
x∈K, k≤n(K)

{|∂k1ϕ(x)|}, ∀ϕ ∈ DK(Ω)

show that T and S are elements in D′(Ω), and that T belongs to the dual space
C0

0 (Ω)′, i.e., T is a distribution of order 0.

It is also clear that the support of both distributions is the non compact set
{xk}. Certainly, S is not a distribution of finite order.

Exercise 3.18. Consider the distribution 〈T, ϕ〉 =
∑
|α|≤n cα∂

αϕ(x0), where

cα are constants, and x0 is a point in Ω. (a) Verify that the support of T is the
point x0 and that the order is n if for some α with |α| = n we have cα 6= 0.
(b) Prove that the only distributions on Ω with support equal to a simple point
{x0} are finite linear combinations of the derivative of the Dirac delta at x0,
i.e., as T above.

Proof. (a) If ϕ is a test function with support inside an open subset Ω′ of Ω,
and x0 does not belong to Ω′ then the function all its derivatives vanish at x0,
i.e., ϕ(x0) = ∂αϕ(x0) = 0. Hence, the support of T is the singleton {x0}. It is
clear that the order of T is max{|α| : cα 6= 0} ≤ n.

(b) If a distribution T has a singleton {x0} as its support then Proposi-
tion 3.28 implies that T must be of finite order since its support is a compact
set, i.e., there exists n and a constant C > 0 such that

|〈T, ϕ〉| ≤ C
∑
|α|≤n

sup
x∈Ω
{|∂αϕ(x)|}, ∀ϕ ∈ C∞(Ω).

Now, take a sequence {χk} of test functions such that χk = 1 if |x− x0| ≤ 1/k
and write ϕ =

(
1− χk

)
ϕ+ χkϕ to obtain 〈T, ϕ〉 = 〈T, χkϕ〉. If ∂αϕ(0) = 0 for

every multi-index α of order |α| ≤ n then

sup
x∈Ω
{|∂α

(
χkϕ(x)

)
|} → 0.

Actually, this is the argument of Proposition 3.31.
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Therefore, for the function ψ(x) = ϕ(x) −
∑
|α|≤n x

α∂αϕ(0)/α! we deduce

that 〈T, ψ〉 = 0, i.e.,

|〈T, ϕ〉| =
∑
|α|≤n

cα∂
αϕ(0), with cα = 〈T, x

α

α!
〉,

as desired.

Exercise 3.19. Verify that if u is a function in Cn(Rd) then, for any |α| ≤ n,
the function defined by Uα(x, x) = 0 and

Uα(x, y) =
∣∣∣∂αu(x)−

∑
|β|≤n−|α|

∂α+βu(y)(x− y)β

β!

∣∣∣∣∣x− y∣∣|α|−n, ∀x 6= y,

is continuous on Rd×Rd. Actually, the converse of is called Whitney’s Extension
Theorem, i.e., given continuous functions uα, |α| ≤ n, on a compact set K of
Rd, define the functions Uα(x, y) on K ×K by means of the above expression
replacing ∂αu(x) with uα(x) and ∂α+βu(y) with uα+β(y). If Uα are continuous
on K ×K then there exits a function u in Cn(Rd) such that ∂αu = uα and∑

|α|≤n

sup
K
|∂αu| ≤ C

[ ∑
|α|≤n

sup
K×K

|Uα|+
∑
|α|≤n

sup
K
|uα|

]
,

for some constant C depending only on K, e.g., see Hörmander [68, Section 2.3,
pp. 44–52].

Proof. A first key fact is the following: if K is a compact set then there exists
a smooth partition of the unity

∑
i χi = 1 on Rd rK such that no point is in

the support of infinity many functions χi, the diameter of the support of χi is

at most twice the distance to K, and |∂αχi(x)| ≤ Cα
(
dK(x)

)−|α|
, for every x

in RdrK, where dK(x) is the distance form the point x to K. This is based on
the co-called cutoff functions, e.g., see Hörmander [68, Section 1.4, pp. 25–32].

The fact that the functions Uα are continuous is only a re-statement of Taylor
formula for a continuously differentiable function of order n−|α|. The converse
is the interesting part, i.e., Whitney’s Extension Theorem.

(3.2.4) Avoiding Inductive Limit

Exercise 3.20. By means of the inequality (3.9), prove the inclusions S ⊂
D
Lp
⊂ D

Lq
⊂ Ḃ, for any 1 ≤ p ≤ q < ∞ as well as the density of D in any of

those spaces.

Proof. Recall that, for 1 ≤ p <∞

D
Lp

= {ϕ ∈ C∞(Rd) : ∂αϕ ∈ Lp(Rd), ∀α},
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and Ḃ is the space of functions ϕ in C∞(Rd) such that for any multi-index α
we have

∂αϕ ∈ L∞(Rd) and sup
|x|≥r

|∂αϕ(x)| → 0 as r →∞.

Also, a function ϕ belongs to S if and only if ϕ is in C∞(Rd) and for any
multi-index α and any n ≥ 0 we have

sup
x∈Rd

{
|∂αϕ(x)|(1 + |x|2)n

}
<∞.

The estimate (3.9) write as: for any a > 0 there exists a constant C = Ca,d such
that

|ϕ(x)| ≤ C
∑
|α|≤d

∫
|x−y|≤a

|∂αϕ(y)|dy, ∀ϕ ∈ Cd(Rd).

If ϕ belongs to S then

|∂αϕ(x)| ≤
{
|∂αϕ(x)|(1 + |x|2)n

}
|(1 + |x|2)n,

and choosing n sufficiently large, this implies that ϕ belongs to D
Lp

. Because
the elements of D

Lp
are smooth functions, ∂αϕ is locally bounded for any multi-

index α, which is also expressed by the estimate (3.9). Actually, by means of
Hölder inequality∫

|x−y|≤a
|∂αϕ(y)|dy ≤ C

(∫
|x−y|≤a

|∂αϕ(y)|p dy
)1/p

,

for some constant C (depending on a, p and d), which implies that D
Lp
⊂ D

L∞ .
Therefore because Lp∩L∞ ⊂ Lq, we obtain D

Lp
⊂ D

Lq
for every 1 ≤ p < q ≤ ∞.

Moreover, the same estimate (3.9) implies that ϕ(x) → 0 as |x| → ∞, i.e.,
D
Lp
⊂ Ḃ.

It is clear the countable family of seminorm ‖∂αϕ‖p makes D
Lp

(and Ḃ with
p =∞) a Fréchet space, for 1 ≤ p ≤ ∞.

If an increasing sequence {ϕk} in D(Rd) satisfies ϕk → 1 in E(Ω) then
ϕkϕ→ ϕ in S or D

Lp
or Ḃ, depending on where the function ϕ belong to. Thus,

the density is proved. However, note that D(Rd) is not dense D
L∞ , which is

usually denote by B, without the ‘dot’. For instance, the interested reader may
check the book by Schwartz [112, Section VI.8, pp. 199–205], among others.

(3.3) More Operations and Localization

(3.3.1) Product of Distributions

Exercise 3.21. Complete the previous statements: show that (1) D(Ω1) ⊗
D(Ω2) is dense in D(Ω1×Ω2); (2) T1⊗T2 can be uniquely extended to a distri-
bution in Ω1×Ω2; and (3) the support of the tensor product of two distributions
T1 ⊗ T2 is the Cartesian product of their support supp(T1)× supp(T2).
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Proof. Recall that D(Ω1) ⊗ D(Ω2) is the vector space generated by the ten-
sor product functions ϕ1 ⊗ ϕ2, with ϕi in D(Ωi), where ϕ1 ⊗ ϕ2(x1, x2) =
ϕ1(x1)ϕ2(x2), and xi belongs to Ωi ⊂ Rdi , i = 1, 2.

Given a function ϕ in D(Ω1 × Ω2), Weierstrauss’ Approximation Theorem
ensures the existence of a sequence {pn(xi, x2) : n ≥ 1} of polynomials such that
pn (as well as any derivative) converges to ϕ, uniformly over any compact subset
of Ω1 × Ω2. Now, choose functions αi in D(Ωi) such that α1(x1)α2(x2) = 1 for
any x = (x1, x2) belonging to the support of ϕ. Under these conditions, the
function ϕn(x) = α(x1)β(x2)pn(x1, x2) belongs to the vector space D(Ω1) ⊗
D(Ω2) and the sequence {ϕn} converges ϕ in the topology of D(Ω1 × Ω2), i.e.,
(1) is true.

The tensor product T1 ⊗ T2 of two distributions Ti in D(Ωi), i = 1, 2, is
initially defined on the vector (tensor) space D(Ω1)⊗D(Ω2) as

〈T1 ⊗ T2, ϕ1 ⊗ ϕ2〉 = 〈T1, ϕ1〉〈T2, ϕ2〉, ∀ϕi ∈ D(Ωi), i = 1, 2,

and the density shown in (1) proves that the extension must be unique. More-
over, since x1 7→ 〈T2, ϕ(x1, ·)〉 belongs to D(Ω1), the expression

〈T1 ⊗ T2, ϕ〉 = 〈T1〈T2, ϕ(x1, x2)〉〉, ∀ϕ ∈ D(Ω1 × Ω2),

is also valid. Furthermore, if ϕn → ϕ in D(Ω1 × Ω2) then the projections
ϕn(·, x2) and ϕn(x1, ·) also converge to ϕ(·, x2) and ϕ(x1, ·), i.e., the converge
〈T2, ϕn(x1, ·)〉 → 〈T2, ϕ(x1, ·)〉, is not only pointwise, but also in the topology
of D(Ω1). Hence,

〈T1 ⊗ T2, ϕn〉 → 〈T1 ⊗ T2, ϕ〉, as n→∞,

proving the continuity of T1 ⊗ T2.

Regarding the support of the tensor product T1⊗T2, it is clear that if ϕ has
its support in (Rd1 rΩ1)×Ω2 or in Ω1× (Rd1 rΩ2) then the product expression
implies that 〈T1 ⊗ T2, ϕ〉 = 0, i.e., supp(T1)× supp(T2) contains the support of
T1 ⊗ T2. Conversely, if a point x0 = (x0

1, x
0
2) belongs to supp(T1) × supp(T2)

then there exist ϕi satisfying ϕi(x
0
i ) 6= 0, and 〈Ti, ϕi〉 6= 0, i = 1, 2, which yields

〈T1 ⊗ T2, ϕ1 ⊗ ϕ2〉 6= 0.

Hence, the equality (3) is obtained.

Exercise 3.22. Reconsider the previous question as follows: If T is a distribu-
tion in Ω1 × Ω2 then we can define a continuous linear operator T : D(Ω2) →
D′(Ω1) by the formula

〈T ψ,ϕ〉 = 〈T, ϕ⊗ ψ〉, ∀ϕ ∈ D(Ω1), ψ ∈ D(Ω2).

Prove that the application T 7→ T is injective and surjective.
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Proof. The main argument is the density of the vector (tensor) space D(Ω1)⊗
D(Ω2), considered as a subspace of space of test functions D(Ω1 × Ω2).

Indeed, if T = T̃ then

〈T, ϕ⊗ ψ〉 = 〈T̃ , ϕ⊗ ψ〉, ∀ϕ ∈ D(Ω1), ψ ∈ D(Ω2),

i.e., T = T̃ .
Similarly, if T is continuous linear operator T : D(Ω2)→ D′(Ω1) then define

〈T, ϕ⊗ ψ〉 = 〈T ψ,ϕ〉, ∀ϕ ∈ D(Ω1), ψ ∈ D(Ω2).

Thus T is a linear continuous functional initially define on the vector (tensor)
space D(Ω1)⊗D(Ω2), which is considered as a subspace of D(Ω1×Ω2). Hence,
by density, it can be extended to a distribution on Ω1 × Ω2.

Exercise 3.23. Let x = (x′, xd) a point in Rd, with x′ in Rd−1, and Rd+ =

Rd−1 × [0,∞). If f belongs to C∞(Rd+) we denote its zero-extension to the

whole Rd by f, i.e., f(x′, xd) = f(x′, xd) if xd ≥ 0, and f(x′, xd) = 0 if xd < 0.
Consider f as a distribution on Rd and prove that its first derivative in the
normal direction xd, is given by the formula ∂df = ∂df + J, where

〈J, ϕ〉 =

∫
Rd−1

f(x′, 0)ϕ(x′, 0) dx′, ∀ϕ ∈ D(Rd).

Moreover, by means of the Dirac function, give a formula for the n-derivative
in the normal direction xd, ∂

n
dϕ, in term of a tensor product of distributions.

Furthermore, obtain a similar formula in general, for any derivative ∂αϕ for any
multi-index α.

Proof. Indeed, by definition,

〈∂df, ϕ〉 = −〈f, ∂dϕ〉 = −
∫
Rd+
f(x′, xd) ∂dϕ(x′, xd) dx′dxd,

and by means of the integration by parts, this is equal to∫
Rd−1

dx′
[
f(x′, 0)ϕ(x′, 0) +

∫ ∞
0

∂df(x′, xd)ϕ(x′, xd) dxd

]
,

which prove the first part.
Using the Dirac function δ in the variable xd, i.e., as a distribution

〈δ, ϕ〉 = ϕ(0), ∀ϕ ∈ D(R),

the relation just proved ∂df = ∂df+J becomes ∂df = ∂df+1⊗δ, where number
1 is understood as (or identified with) the distribution 1 on Rd−1, i.e.,

〈1, ϕ〉 =

∫
Rd−1

ϕ(x′) dx′, ∀ϕ ∈ D(Rd−1),
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and ⊗ is the tensor product of distributions. Certainly, an iteration yields

∂nd f = ∂nd f +

n∑
k=1

1⊗ δ(k−1), ∀n = 0, 1, . . . ,

where δ(k) is the derivative of order k, with k = 0 meaning the initial Dirac
distribution δ.

For a multi-index α = (α′, αd) the formula becomes

∂αf = ∂αf +

αd∑
k=1

1⊗ δ(k−1),

since ∂βf = ∂βf , for any multi-index β = (β1, . . . , βd−1, 0).

(3.3.2) Convolution of Distributions

Exercise 3.24. Recall the differential operator ∆ =
∑d
i=1 ∂

2
i . A fundamental

distributional solution associated with the iterated Laplacian ∆k is a distribu-
tion E = Ekd on Rd such that ∆k(E?δ) = δ, where δ is the Dirac delta measure,
〈δ, ϕ〉 = ϕ(0). Verify that E = |x|2k−d(akd ln |x| + bkd) is a fundamental distri-
butional solution associated δk in Rd, where one of the constants akd or bkd
vanishes, namely, if 2k− d < 0 or d is odd then akd = 0, and otherwise bkd = 0.
Note that if 2k − d > 0 then E belongs to C2k−d−1 and complete the following
argument. First, consider a distribution T with compact support and verify
that T = E ? (∆kT ). Next, if ∆kT is a distribution of order n (i.e., it belongs
to the dual space of Cn) with a compact support and 2k − d− 1 ≥ n then T is
the distribution associated to the function x 7→ 〈∆kT,E(x − ·)〉, and therefore
T belongs to Cn.

Proof. First note that for dimension d = 1, a fundamental solution for the k-
order (ordinary) differential equation F (k) = δ is the Heaviside function F1 = H,
H(x) = 1 if x > 0 and H(x) = 0 otherwise (to which a constant may be added)
for k = 1. Now for k = 2, any indefinite integral of H plus a constant solves
F ′′ = δ, for instant, F2(x) = xH(x) or F2(x) = xH(x) − x/2 = |x|/2. Thus,
Fk(x) = xk−1H(x)/(k−1)! is a fundamental solution for the differential equation
of order k ≥ 1.

On this context, it may be important to consider the so-called singular sup-
port of a distribution T , i.e., the set of points having no open neighborhood to
which the restriction of T is a C∞ function. Recall that a function f defined in
Rd r {0} is called homogeneous of degree n if f(rx) = rnf(x) for every r > 0
and almost every x in Rd r {0}. Thus, also related is the concept of homo-
geneous distributions T of degree n, i.e., a distribution in Rd r {0} such that
〈T, ϕ〉 = rn〈T, ϕr〉, for any ϕ in D(Rdr{0}) and r > 0, where ϕr(x) = rdϕ(rx).
Hence, our interest is on homogeneous fundamental solutions E with the sin-
gular support {0}. For instance, the reader may be interested in checking the
book Hörmander [68] and Schwartz [112].
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Now going back to our problem, for order k = 1, E12(x) = ln(|x|)/(2π) and
E13(x) = 1/(4π|x|), solve ∆E = δ in Rd, for dimension d = 2 and d = 3. As
an example, note that E(x) = exp(−r|x|)/(4π|x|) solves the elliptic PDE (r −
∆)E = δ in R3. For a dimension d ≥ 3 the expression E1d(x) = cd|x|2−d/(2−d),
where 1/cd = 2πd/2/Γ(d/2 is the area of the unit sphere in Rd, solves (−∆)E = δ
in Rd, for any dimension d ≥ 3.

To check this, use polar coordinates to write the Laplacian operator ∆ in
dimension 2 as

∆f =
1

r
(r∂rf) +

1

r2
∂2
θf =

1

r
∂rf + ∂2

rf +
1

r2
∂2
θf,

where x = r cos θ, y = r sin θ, and r2 = x2 + y2, and use spherical coordinates
to write the Laplacian operator ∆ in dimension 3 as

∆f =
1

ρ2
∂ρ(ρ

2∂ρf) +
1

ρ2 sin θ
∂θ(sin θ∂θf) +

1

ρ2 sin2 θ
∂2
φf,

where x2 + y2 + z2 = ρ2, x2 + y2 = r2, and z = r cosφ. Thus dimension d ≥ 2,
in general,

∆f = ∂2
|x|f +

(d− 1)

|x|
∂|x|f +

1

|x|2
∆Sd−1f,

where ∆Sd−1 is the Laplace-Beltrami (or spherical Laplacian) operator on the
(d − 1)-sphere Sd−1 = {x ∈ Rd : |x| = 1}, and again the radial term can be
written as |x|1−d∂|x|(|x|d−1∂|x|f). All this means that the Laplacian ∆ becomes

∂2
r + (d−1)

r ∂r for homogeneous distributions T = T (r), with r = |x| > 0, i.e.,
the one dimensional Euler ODE t2y′′+ (d− 1)ty′ = 0, t > 0, with characteristic
equation m2 + (d− 2)m = 0, which has the roots m = 0 and m = 2−d, distinct
only when d ≥ 3. Hence, this ODE has y(t) = c1 + c2t

2−d (or c1 + c2 ln t if
d = 2) as the general solution. Therefore, the proposed expression of E yields
E(r) = r2k−d(akd ln r + bkd) satisfied akd = 0 for k = 1 (i.e., ∆) and d ≥ 3.

If k = 2 then on homogeneous functions f the Laplacian square becomes

∆2f = |x|1−d∂|x|
(
|x|d−1∂|x|[|x|1−d∂|x|(|x|d−1∂|x|f)]

)
and the above argument could be developed. However, let us consider only the
case k = 1, i.e., E12(x) = ln(|x|)/(2π) and E1d(x) = cd−1|x|2−d/(2− d), d ≥ 3.
In both cases, an integration by parts yields

〈∂iE,ϕ〉 = −〈E, ∂iϕ〉 = lim
ε→0

∫
|x|≥ε

E(x)∂iϕ(x) dx =

=

∫
Rd
E(x)∂iϕ(x) dx+ lim

ε→0

∫
|x|=ε

E(x)ϕ(x)(xi/|x|) dx′,

where the surface integral in dx′ is comparable to ε if d ≥ 3 and to ε ln ε if
d = 2, so that it vanishes as ε → 0. This proves that the distribution ∂iE(x)
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can be identified with the locally integrable function cdxi|x|−d. Next, apply the
divergence theorem to the last term of the equality

〈∆E,ϕ〉 = 〈E,∆ϕ〉 = lim
ε→0

∫
|x|≥ε

(
E(x)∆ϕ(x)− ϕ(x)∆E(x)

)
dx

to obtain

〈∆E,ϕ〉 = lim
ε→0

∫
|x|≥ε

∇ ·
(
E∇ϕ− ϕ∇E

)
dx =

= − lim
ε→0

∫
|x|=ε

(
E∇ϕ− ϕ∇E

)
·
( x
|x|
)

dx′ = ϕ(0),

where the normalization constant cd is determined.

A similar argument can be used with the expression

E(x, t) = (4πt)d/2 exp
(
− |x|

4t

)
, t > 0,

and E(x, t) = 0 for t < 0 to show that E is locally integrable in (x, t) belonging
to Rd+1, that E belongs to C∞(Rd+1 r {0}), and that (∂t −∆)E = δ.

Finally, if T is a distribution with a compact support then E ? T is defined
and

E ? (∆kT ) = (∆kE) ? T ) = δ ? T = T.

Therefore, if ∆kT is a distribution of order n (i.e., it belongs to the dual space
of Cn) with a compact support and 2k − d − 1 ≥ n then T is the distribution
associated to the function x 7→ 〈∆kT,E(x− ·)〉, and thus T belongs to Cn.

An application of this last assertion is the following: First, if Ω is an open
convex subset of Rd then an element T in D′(Ω) is called convex if τhT +τ−hT −
2T ≥ 0 for every h in Rd with |h| sufficiently smaller [i.e., τh is the translation
operator 〈τhT, ϕ〉 = 〈T, τ−hϕ〉, and τhϕ(x) = ϕ(x + h), and 〈T, τ−hϕ + τhϕ −
2ϕ〉 ≥ 0, for any ϕ in D(Ω) and |h| smaller than the distance form the support
of ϕ to the boundary ∂Ω]. Now, to prove that a distribution T in Ω is convex
if and only if the Hessian D2T is nonnegative definite, i.e., 〈h · D2Th, ϕ〉 =
〈T, h ·D2ϕh〉 ≥ 0, for every h in Rd and any ϕ ≥ 0 in D(Ω). Indeed, referring
to Exercises 3.12 and 3.13, the only missing point is to show that in the above
statement, the distribution T is necessarily a function. To this purpose, multiply
T by a cutting test function to see that T may be assumed to have a compact
support. Since ∆T is a locally finite signed measure, i.e., belongs to C0, the
previous argument shows that indeed, the distribution T can be identified to
a continuous function, i.e., the only convex distributions are indeed continuous
functions.

Exercise 3.25. Verify the correctness of the following examples of convolutions:
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a.- Riesz potentials: Rα, 0 < α < d, and for any ϕ in D(Rd),

(−∆)−α/2ϕ(x) = Rα ? ϕ(x) = Cα,d

∫
Rd
|x− y|−(d−α)ϕ(y)dy,

where Cα,d = Γ((d− α)/2)/[2απd/2Γ(α/2)] is a normalizing constant.

b.- Calderon-Zygmund integro-differential operator, for any ϕ in D(Rd),

(−∆)1/2ϕ(x) = Cd

d∑
i=1

lim
ε→0

∫
|x|≥ε

(xi − yi)|x− y|−d−1∂iϕ(y)dy,

where Cd = Γ((d + 1)/2)π−(d+1)/2 is again a normalizing constant. Note the
singular integral and recall that the limit is called the principal value of the
integral.

c.- The Newtonian potential for d ≥ 3 is defined by

(−∆)−1ϕ(x) = (N ? ϕ)(x) =
1

(d− 2)ωd

∫
Rd
|x− y|2−dϕ(y)dy,

where ωd = 2πd/2/Γ(d/2) is the surface area of the unit sphere. For d = 2
(d = 1) we use the kernel (1/2π) ln(|x− y|) (|x|/2). *If ∆ = ∂2

1 + · · ·+ ∂2
d is the

usual Laplacian then verify that ∆(N ? ϕ)(x) = 0 for every x in Rd.
d.- Double layer potential, for any ϕ in D(Rd−1), with x = (x′, xd)

N ? (ϕ(x′)⊗ δ′(xd)) =
1

ωd

∫
Rd−1

xdϕ(y′)(|x′ − y′|2 + x2
d)
−d/2dy′.

*Verify that u(x′, xd) = 2N?(ϕ(x′)⊗δ′(xd)), which is called the Poisson integral
formula, yields a solution of the Dirichlet problem ∆u = 0 in Rd and u(·, 0) = ϕ
in Rd−1.

e.- Single layer potential, for any ϕ in D(Rd−1), with x = (x′, xd)

N ? (ϕ(x′)⊗ δ(xd)) =
1

(d− 2)ωd

∫
Rd−1

ϕ(y′)(|x′ − y′|2 + x2
d)

1−d/2dy′,

*Verify that the ∂d of the single layer potential is equal to double layer potential.

Questions marked with * could not be so simple. The reader may want to check
the book by Stein [113] for a detail account of Singular Integrals.

Proof. (a) Let us consider Riesz potentials. The kernel is the function k(x) =
Cα,d|x|−d+α with x in Rd and 0 < α < d. Because α > 0, the kernel Rα =
k is a locally integrable function. Indeed, by spherical coordinates, a direct
computation shows that the integral of k is actually equal to 1, which determines
the value of the constant Cα,d, namely,

Cα,d

∫
|y−x|≤a

|x− y|−(d−α)dy = Cα,d

∫ a

0

r−d+αωdr
d−1dr = aα, and

Cα,d

∫
|y|≤a

|x− y|−(d−α)dy ≤ (3a)α1{x∈B2a} + (|x| − a)−d+αad1{x 6∈B2a},
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for any a > 0, where ωd is the surface measure (area) of the unit sphere in
Rd. Thus, this function k belongs to L1

loc(Rd) and so it can be identified with
a distribution in Rd, i.e., an element of D′(Rd). Therefore, if ϕ is a bounded
function with a compact support in Rd then the convolution expression yields
a bounded function x 7→ (Rα ? ϕ)(x) which vanishes like |x|−d+α as |x| → ∞.

If we take α ≤ 0 then the kernel k is no more a distribution, since it is not
locally integrable. On the other hand, if α ≥ d then the kernel k is at least a
continuous function and the interest in the convolutions properties is limited.
The notation (−∆)−α/2ϕ come from the fact that the Laplacian ∆ = ∂2

1+· · ·+∂2
d

and the Fourier transform F (as discussed later, see Chapter 5) for tempered
distributions S(Rd) enjoy the relation

F(−∆ϕ)(x) = 4π2|x|2F(ϕ)(x), ∀x ∈ Rd, ∀ϕ ∈ S(Rd),

and so, with this tool, most of the formal calculations become valid in this
sense. In particular, the Fourier transform of the function x 7→ Cα,d|x|−d+α is
ξ 7→ (2π|ξ|)−α.

Recall Young inequality for the convolution, see Proposition B.65,

‖f ? g‖r ≤ ‖f‖p‖g‖q, 1 ≤ p, q, r ≤ ∞, 1/p+ 1/q − 1/r = 1,

where ‖ · ‖p denotes the norm in Lp(Rd), and now, express the kernel k(x) =
C(α, d)|x|−d+α as

k = k1 + k∞, with k1(x) = k(x)1|x|≤1, ∀x ∈ Rd,

then k ? f = k1 ? f + k∞ ? f . Since k1 belongs to L1(Rd) the first convolution
operator f 7→ k1?f maps Lp(Rd) into itself, i.e., ‖k1?f‖p ≤ ‖k1‖1‖f‖p, for every
f in Lp(Rd). Similarly, it is clear that k∞ belongs to Lq(Rd), for any 1 ≤ q <∞
such that (−d + α)q < −d, which is equivalent to α < d(1/p − 1/r), with the
notation of Young inequality. This, for any 1 ≤ p <∞, we can find 1 < r <∞
such that (−d+α)q < −d with 1/q = 1−1/p+1/r, i.e., ‖k∞?f‖r ≤ ‖k∞‖q‖f‖p.
Therefore, the expression defining the convolution (k ? f)(x) is meaningful for
almost every x in Rd as an absolutely convergence integral, for any f in Lp(Rd),
1 ≤ p < ∞. More effort is needed to show the Hardy-Littlewood-Sobolev
inequality, namely, for any 1 < p < q < ∞, 1/q = 1/p − α/d, there exists a
constant Cp,q such that

‖k ? f‖q ≤ Cp,q‖f‖p, ∀f ∈ Lp(Rd),

For instance, the interested reader may take a look at the classic book by
Stein [113, Section V.1, pp. 117–121].

(b) Previously, the Riesz potentials (Rα ? ϕ)(x) are defined for any test
function ϕ in D′(Rd) without any further considerations, as a convergent integral
for every x in Rd. Now, the Calderon-Zygmund integro-differential operator is
defined as the singular integral

(−∆)1/2ϕ(x) = Cd

d∑
i=1

∫
Rd

(xi − yi)|x− y|−d−1∂iϕ(y)dy,
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with Cd = Γ((d+ 1)/2)π−(d+1)/2, which needs some previous analysis. Indeed,
even for a test function ϕ, the above integral is not absolutely convergent due
to the kernel k(x) =

∑
i xi|x|−d−1, which is not locally integrable, and so, it is

not directly interpreted as a distribution. The technique of the principal value
can be used to check that

(−∆)1/2ϕ(x) = Cd

d∑
i=1

lim
ε→0

∫
|x|≥ε

(xi − yi)|x− y|−d−1∂iϕ(y)dy =

= Cd

d∑
i=1

∫
Rd

(xi − yi)|x− y|−d−1[∂iϕ(y)− ∂iϕ(x)]dy.

Indeed, because the kernel k satisfies k(x) = −k(−x) (i.e., it is an odd function)
and integrable outside its only singularity (i.e., the origin x = 0) we have∫

|x|≥ε
(xi − yi)|x− y|−d−1∂iϕ(x)dy = 0,

and now, the singularity at y = x of the functions

y 7→ (xi − yi)|x− y|−d−1[∂iϕ(y)− ∂iϕ(x),

for i = 1, . . . , d, are integrable, actually of order −d+ 1.
The notation (−∆)1/2 come from the fact that the Laplacian and the Fourier

transform mentioned above. The assertion that the Fourier transform of the
singular kernel x 7→ Cdxi|x|−d−1 is the function ξ 7→ iξi/|ξ|, combined with the
formula F(∂iϕ)(ξ) = −2πiξi F(ϕ)(ξ), shows that the Fourier transform (symbol)
of the Calderon-Zygmund integro-differential operator is indeed (2π|ξ|).

It is clear that to study these operators, the derivative ∂iϕ can be replaced by
ϕ (which is referred to as the Riesz transform), and then consider a composition
with the partial differential operator ∂i. Thus, the simplest example of this type
of operators is the Hilbert transform

Hϕ(x) =
1

π
lim
ε→0

∫
|y|≥ε

ϕ(x− y)

y
dy =

1

π

∫
R

ϕ(x− y)− ϕ(x)

y
dy.

The Hilbert and Riesz transforms, and in general convolution (or non) with
Calderon-Zygmund kernels define bounded operators in from Lp into itself, any
1 < p <∞. Certainly, this generalizes the Fourier transform technique used to
handle the case L2. The interested reader may take a look at the classic book
by Stein [113, Section III.1, pp. 54–60] and references therein.

(c) For d ≥ 3, the Newtonian potential has a kernel N(x) = k(x) =
|x|2−d/(d− 2)ωd, with ωd = 2πd/2/Γ(d/2); while for d = 2 (or d = 1) the kernel
is given by (1/2π) ln(|x− y|) (or |x|/2). Thus, there are specific properties that
may change with the dimension d. Usually dimension d ≥ 3 is assumed and the
cases d = 2 or d = 1 are studied separately or left for the reader. In any case,
the kernel is locally integrable and everything has a clear meaning in the sense
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of distributions. It appears very naturally when trying to solve the PDE (partial
differential equation) −∆u = f in Rd (Poisson equation), i.e., find a function u
for a given function f . By means of the Fourier transform, this PDE becomes
4π2|ξ|2F(u)(ξ) = F(f)(ξ), which is solved by writing u = F−1((2π|ξ|)−2)?f , i.e.,
a solution u is the convolution with the kernel k which is the Fourier inverse
of the function ξ 7→ (2π|ξ|)−2, and computations show that this kernel is as
above. Based on the fact that the Fourier transform is a homeomorphism on
the space of tempered distributions, all this argument is valid either on the
space of test function rapidly decreasing S(Rd) or on its dual space S ′(Rd),
under some extra conditions on f , i.e., for any f in either S(Rd) or S ′(Rd) such
that the function ξ 7→ (2π|ξ|)−2F(f)(ξ) belongs to either S(Rd) or S ′(Rd), the
Newtonian potential u = (−∆)−1f belongs to either S(Rd) or S ′(Rd) and it
satisfies Poisson equation −∆u = f . Note that for f = 0, the solutions of the
equation −∆u = 0 are the so-called harmonic functions, so that the uniqueness
questions regarding the Poisson equation is not a simple task.

The Newtonian kernel N(x) is a smooth function outside of the origin, and
a routine calculation shows that ∆N(x) = 0 for any x 6= 0. Thus, the difficulty
is when taking a second derivative inside the integral sign, e.g. can we calculate
the limit

lim
hi→0

∫
Rd

[∂iN(x+ h− y)− ∂iN(x− y)]f(y)dy =

∫
Rd
N(y)∂2

i f(x− y)dy.

Note that the derivative kernel ∂iN is locally integrable, but the second deriva-
tive kernel ∂2

iN is singular in the sense that it cannot be regarded as a distribu-
tion corresponding to a locally integrable function. In general, the singularity
in the integral defining the convolution with the kernel ∂2

ijN is non locally in-
tegrable and should be removed by some ’cancellation’ property, i.e.,∫

|x−y|≥ε
∂2
ijN(x− y)dy = 0, ∀x ∈ Rd,

and if f is a Hölder continuous function, namely, |f(x)− f(y)| ≤ C|x− y|α, for
every x, y in Rd and for some α in (0, 1), then

lim
ε→0

∫
|x−y|≥ε

∂2
ijN(x− y)f(y)dy =

∫
Rd
∂2
ijN(x− y)[f(y)− f(x)]dy,

which is a local property as |x− y| is small, i.e., ∂2
ijN(x− y) has a non-locally

integrable singularity of order |x− y|−d and with a Hölder continuous function
f , this becomes an integrable singularity of order |x − y|−d+α. Therefore, to
actually show that if f is Hölder continuous (and some boundedness or inte-
grability assumptions as |y| → ∞) then the Newtonian potential u = N ? f is
twice-continuously differentiable with Hölder continuous second derivatives and
−∆u = f in Rd.

Moreover, if f is a continuous function with a compact support then the
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expression

(N ? f)(x) =
1

(d− 2)ωd

∫
Rd
|x− y|2−df(y)dy =

=
1

(d− 2)ωd

∫
Rd
|y|2−df(x − y)dy,

is a smooth function for every x outside the support of f . Actually, the equality

(N ? f)(x)−N(x)

∫
Rd
f(y)dy =

=
1

(d− 2)ωd

∫
Rd

[
|x − y|2−d − |x|2−d

]
f(y)dy,

and more work (and assumptions, in particular, that f is radial symmetric)
shows that the integral on the right-hand side vanishes, i.e., N ? f is equal to
a constant times the Newtonian kernel N , which is interpreted in physics as
follows: the potential energy of a small mass outside a much larger spherically
symmetric mass distribution is the same as if all of the mass of the larger object
were concentrated at its center. The interested reader may take a look at the
books DiBenedetto [30], Evans [42], Hellwig [67], among other textbooks.

(d) In the double layer potential, the notation x = (x′, xd) means that the
actual kernel k(x) is written as k(x′ − y′, xd) = xd(|x′ − y′|2 + x2

d)
−d/2/ωd and

considered only for xd 6= 0, usually for xd > 0. This is not a singular integral,
but it becomes singular when xn → 0, either from the right or from the left. If
the starting point is the Newtonian kernel N(x) = |x|2−d/(d−2)ωd then k(x) =
∂dN(x′, xd), which justify the notation (k?ϕ)(x′, xd) = N?(ϕ(x′)⊗δ′(xd)) in the
sense of distributions, i.e., if ϕ is a test function in Rd then δd = δ(xd)ϕ means
the distribution ϕ 7→ ϕ(x′, xd) and δ′d = δ′(xd)ϕ means the distribution ϕ 7→
∂dϕ(x′, xd), both as acting only on the variable xd. Therefore for a distribution
Φ on Rd−1 with compact support, and identifying N with a distribution given
through a locally integrable kernel N, this reduces to (δ′dN) ?Φ = N ? (Φ⊗ δ′d),
i.e., due to the convolution, the action of δ′d on ϕ is regarded as acting on
N to produce δ′dN = ∂dN = k, the kernel used in the double layer potential
convolution.

If u denotes the double layer potential corresponding to a continuous func-
tion f (with some boundedness or integrability assumptions as |y| → ∞) in
Rd−1, then u(x′, xd) is a smooth function for any x′ in Rd−1 and satisfies
−∆′u(x′, xd) = 0, for any xd 6= 0, where ∆′ is the Laplacian operator in the
variable x′ of Rd−1, moreover 2u(x′, xd)→ ±f(x′) as xd → 0, depending on the
side whether xd > 0 or xd < 0. To show this fact, calculations begin with a
Hölder continuous function f and the property

2

ωd

∫
Rd−1

xd(|x′ − y′|2 + x2
d)
−d/2dy′ = 1,

which can be proved by means of the Fourier transform. Among other books, the
interested reader may check Stein [113, Section III.2, pp. 60–68] and references
therein.
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Actually the rule is as follows: if Ω is a domain in Rd with a smooth boundary
∂O and for a point a is a point in the boundary ∂O and n(y) denotes the exterior
unit normal vector on the boundary at y, then the limits

u+(a′, ad) = lim
x→a,x∈O

∫
∂O

(
n(y) · ∇N(x− y)

)
f(y′)dσ(y)

and u−(a′, ad) (when x→ a is kept outside of O) exist and the following jump
relation

u±(a′, ad) = ±1

2
f(a) +

∫
∂O

(
n(y) · ∇N(a− y)

)
f(y′)dσ(y)

holds true, where dσ(y) is the area measure on the (d−1)-dimensional manifold
∂O and nabla ∇ is the gradient operator. The interested reader may take a
look at the textbook by DiBenedetto [30, Chapter III, pp. 116–160].

(e) It is clear that the kernel for the single layer potential is k = N ,
the Newtonian potential integrated in Rd−1. Thus the convolution expression
defining the single layer potential N?ϕ(x′)⊗δ(xd) is a better singularity then the
one defining the double layer potential, but we are interested in the derivative
of this single layer potential, i.e., similarly, the justification for the notation for
the single layer potential is the equality (δdN) ?Φ = N ? (Φ⊗ δd), and with this
notation it should be clear that ∂d(δdN) = δ′dN . If u denotes the single layer
potential corresponding to a continuous function f (with some boundedness
or integrability assumptions as |y| → ∞) in Rd−1, then u(x′, xd) is a smooth
function for any x′ in Rd−1 and satisfies −∆′u(x′, xd) = 0, for any xd 6= 0, where
∆′ is the Laplacian operator in the variable x′ of Rd−1, moreover 2∂du(x′, xd)→
±f(x′) as xd → 0, depending on the side whether xd > 0 or xd < 0.

Certainly, all this is related to the fundamental solutions and the Green
functions corresponding to elliptic PDE in the half-space Rd+ = {(x′, xd) ∈ Rd :
xd > 0}. Key tools in this analysis are first the Green identity: if u, v are in
C2(Ō) for a smooth open domain O ⊂ Rd then the divergence theorem yields∫

O
v(x)∆u(x)dx = −

∫
O
∇v(x) · ∇u(x)dx+

∫
∂O

v(x)n(x).∇u(x)dσ(x),∫
O

[
v(x)∆u(x)− u(x)∆v(x)

]
dx =

=

∫
∂O

[
v(x)n(x) · ∇u(x)− u(x)n(x) · ∇v(x)

]
dσ(x),

and by approximation, these equalities hold true for any u, v in C2(O)∩C1(Ō)
such that ∆u and ∆v are in L∞(O). Next, Stokes identity: if u in C2(O)∩C1(Ō)
such that ∆u is in L1(O) then for any x in O, we have

u(x) =
1

(d− 2)ωd

∫
O
|x− y|2−d∆u(x)dx+

+
1

(d− 2)ωd

∫
∂O

[
|x−y|2−dn(y)·∇u(y)−u(y)n(y)·∇|x−y|2−d

]
dσ(y),
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whenever d ≥ 3, while the Newtonian kernel |x − y|2−d/(d − 2)ωd becomes
ln |x− y|/2π when d = 2. Note that this is an ’implicit’ representation formula
for smooth function, but not more work is necessary to construct the actual
Green function. For instance, the interested reader may check the textbook by
DiBenedetto [30, Chapter II, pp. 55–115] regarding the Laplace equation.

Exercise 3.26. Let {Tk} be a sequence of distribution converging to 0 in
D′(Rd), and let S be another distribution. Prove the if either (a) S has a
compact support or (b) the supports of {Tk} are contained in a fixed compact
set, then S ? Tk → 0 in D′(Rd).

Proof. Because the strong and the weak* topologies on the dual space of distri-
bution D′(Rd) coincides, the fact that Tk → 0 translates into 〈Tk, ϕ〉 → 0, for
every ϕ in D(Rd). By definition

〈Tk ? S, ϕ〉 = 〈Tk,x, 〈Sy, ϕ(x+ y)〉〉 =

= 〈Sx, 〈Tk,y, ϕ(x + y)〉〉 = 〈Tk ⊗ S, ϕ⊕〉,

where ϕ⊕(x, y) = ϕ(x+ y) and ϕ is any element in D(Rd).
Thus, if S has a compact support then there exists a test function ϕ0 such

that S = ϕ0S and

〈Tk ? S, ϕ〉 = 〈Tk,x, 〈Sy, ϕ0(y)ϕ(x+ y)〉〉,

which implies that the function ψϕ : x 7→ 〈Sy, ϕ0(y)ϕ(x+ y)〉 is a test function,
for every ϕ in D(Rd), i.e., ψϕ belongs to D(Rd). Hence, Tk → 0 yields 〈T, ψϕ〉 →
0 as desired.

Similarly, if the supports of {Tk} are contained in a fixed compact set then
there exists a test function ϕ0 such that Tk = ϕ0Tk and

〈Tk ? S, ϕ〉 = 〈Tk,x, ϕ0(x)〈Sy, ϕ(x+ y)〉〉,

which implies again that the function ψϕ : x 7→ ϕ0(x)〈Sy, ϕ(x + y)〉 is a test
function, for every ϕ in D(Rd), and the conclusion follows as above.

(3.3.3) Local Structure

(3.3.4) Recap on Inductive Limits
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Exercises - Chapter (4)
Introduction to Sobolev
Spaces

(4.1) Density and Extension

(4.1.1) Regularity on the Domain

(4.1.2) Lipschitz Transformation

(4.2) Imbedding and Compactness

(4.2.1) Some Typical Estimates

(4.2.2) General Imbedding

(4.3) Traces on the Boundary

(4.3.1) In Half-space

(4.3.2) In a Smooth Domain

(4.3.3) Spaces on the Boundary

(4.4) Fractional Order Spaces

(4.4.1) Discussion and Definition

(4.4.2) Basic Properties
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Exercises - Chapter (5)
Basic Fourier Transform

(5.1) Smooth Functions

(5.2) Tempered Distributions

Exercise 5.1. First, prove that Fourier transform commute with the tensor

product, i.e., if the T1 and T2 are two tempered distributions then T̂1 ⊗ S2 =
T̂1 ⊗ T̂1. Secondly, for the convolution of two distributions, prove that if T
belongs to S ′(Rd) and S belongs to E ′(Rd) then the convolution T ? S belongs
to S ′(Rd), the Fourier transform Ŝ is identified with a smooth function, namely,

ξ 7→ 〈S, e−2πiξ·〉, and T̂ ? S = T̂ Ŝ.

Proof. The fact that Fourier transform commute with the tensor product is
based on the property of the exponential and the translation, and the fact that
the tensor product T1 ⊗ T2 is initially defined on the product space D(Rd1) ⊗
D(Rd2) and then uniquely extended to the space D(Rd1+d2), i.e., the equalities

〈T̂1 ⊗ T2, ϕ1 ⊗ ϕ2〉 = 〈T1 ⊗ T2, ϕ̂1 ⊗ ϕ2〉

and ϕ̂1 ⊗ ϕ2 = ϕ̂1 ⊗ ϕ̂2, yield the desired conclusion.
Recall that the convolution of two distributions T and S is defined

〈T ? S, ϕ〉 = 〈Tx, 〈Sy, ϕ(x+ y)〉〉 = 〈Sx, 〈Ty, ϕ(x+ y)〉〉

for any ϕ in element in D(Rd), as long as this make sense, i.e., one of the
distribution should have a compact support. Thus, under the assumptions of
the second part of this of this exercise, we must establish that for every element
ϕ in S(Rd), the function x 7→ 〈S, ϕ(x+ ·)〉 belongs to S(Rd).

Since S is distribution with a compact support, S is an element of E ′(Rd)
and therefore, there is an index k, a compact set K ⊂ Rd, and a constant C
such that∣∣〈S, ϕ〉∣∣ ≤ C sup

y∈K, |α|≤k

{∣∣∂αϕ(y)
∣∣}, ∀ϕ ∈ D(Rd),
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which means that

(1 + |x|2)n/2
∣∣〈S, ϕ(x+ ·)〉

∣∣ ≤ C sup
y∈K

{
(1 + |x|2)n/2(1 + |x+ y|2)−n/2

}
×

× sup
y∈K, |α|≤k

{
(1 + |x + y|2)n/2

∣∣∂αϕ(x + y)
∣∣},

for every element ϕ in D(Rd). Moreover, because

(1 + |x|2)n/2

(1 + |x+ y|2)n/2
≤ 2n/2(1 + |y|2)n/2, ∀x, y ∈ Rd,

we deduce

sup
x∈Rd, |α|≤n

{
(1 + |x|2)n/2

∣∣〈S, ∂αϕ(x+ ·)〉
∣∣} ≤

≤ Ck,K sup
x∈Rd, |α|≤k+n

{
(1 + |x|2)n/2

∣∣∂αϕ(x)
∣∣},

with

Ck,K = C sup
y∈K

{
2n/2(1 + |y|2)n/2

}
,

and for every ϕ in D(Rd). This effectively establishes that the function x 7→
〈S, ϕ(x+ ·)〉 belong to S(Rd), ϕ in D(Rd), i.e., the convolution T ?S belongs to
S ′(Rd).

Now, since S belongs to E ′(Rd) and the function (ξ, x) 7→ e−2πi(ξ·x) is
smooth, by definition of the Fourier transform

〈Ŝ, ϕ〉 = 〈S, ϕ̂〉 =

∫
Rd
ϕ(x)〈Sξ, e−2πi(ξ·x)〉dx,

i.e., the distribution Ŝ is identified with the function ξ 7→ 〈S, e−2πiξ·〉. Next,
the equalities

〈T̂ ? S, ϕ〉 = 〈T ? S, ϕ̂〉 = 〈Tx, 〈Sy, ϕ̂(x+ y)〉〉

and

〈Sy, ϕ̂(x+ y)〉 =

∫
Rd
ϕ(y)〈Sξ, e−2πi(ξ+x)·y〉dy =

=

∫
Rd
ϕ(y)e−2πi(x·y)〈Sξ, e−2πi(ξ·y)〉dy,

yield

〈Tx, 〈Sy, ϕ̂(x+ y)〉〉 =

∫
Rd
ϕ(y)〈Tx, e−2πi(x·y)〉〈Sξ, e−2πi(ξ·y)〉dy,
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which is clearly valid for any ϕ in D(Rd), under the assumption that the tem-
pered distribution T has a compact support, i.e., we have proved the equality

T̂ ? S = T̂ Ŝ as long as both distributions T and S are in E ′(Rd).
Finally, if kε is a smooth kernel with compact support then T ? kε → T

in S ′(Rd) and the continuity of the Fourier transform allows us to complete
proof.

(5.3) Integrable Functions

(5.4) Periodic Functions

(5.5) Fourier Multiplier
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Exercises - Chapter (6)
Besov and Sobolev Spaces

(6.1) Hilbert Sobolev Spaces

(6.1.1) In the Whole Space

(6.1.2) In Continuous Domains

(6.1.3) Trace Operator

(6.2) Riesz and Bessel Potentials

(6.2.1) Initial Discussion

(6.2.2) Bessel Kernel and Potentials

(6.2.3) Fundamental Solutions

(6.3) Besov and Sobolev Relations

(6.3.1) Besov spaces

(6.3.2) Bessel Potential Spaces

(6.3.3) Traces on Besov Spaces
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Appendix B

Measure and Integration

This ‘background’ chapter is not an integral part of this book, it is included
only by convenience for the reader. In the following chapters, it is assumed
that the reader is somehow familiar with measure theory and integral, e.g., by
having taken a first course in real analysis with some topics taken from a typical
textbook such as, DiBenedetto [31], Dshalalow [35], Dudley [36], Folland [44],
Jones [70], Pollard [102], Royden [108], Stein and Shakarchi [115], Taylor [124],
Wheeden and Zygmund [133], or many others.

Therefore, this Chapter is a summary of the essential material discussed in
the book [89]. Our objective is to describe three independent ways for con-
structing measures, namely, the outer approach (or Caratheodory’s arguments)
in Section 2, the inner approach (or compact technique) in Section 3, and fi-
nally, the Lebesgue integral is presented in Section 4. Then, in Section 4, a
quick discussion (mainly definition) of the integral and some complements in
Section 5.

B.1 Classes of Sets

Let Ω be a nonempty set and 2Ω be the parts of Ω, i.e., set of all subsets of Ω.
Clearly, if Ω has n elements then 2Ω has 2n elements, but our interest is when Ω
has an infinite number of elements, for instance if Ω is countable infinite (i.e., it
is in a one-to-one relation with the positive integers) then 2Ω has the cardinality
of the continuum. A class (collection or family or system) of sets is a subset of
2Ω, that by convenience, we assume it contains the empty set. Note that ∅ ⊂ Ω
and ∅,Ω ∈ 2Ω. Typical operations between two elements A and B in 2Ω are the
intersection A ∩B, the union A ∪B, the difference ArB and the complement
Ac = Ω r A. The union and the intersection can be extended to any number
of sets, e.g., if Ai ∈ 2Ω for i in some sets of indexes I then we have

⋃
i∈I Ai

and
⋂
i∈I Ai. Sometimes, to simplify notation we write A + B or

∑
i∈I Ai (for

disjoint unions) to express the fact that A + B = A ∪ B with A ∩ B = ∅ or∑
i∈I Ai =

⋃
i∈I Ai with Ai ∩Aj = ∅ if i 6= j.
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B.1.1 First Properties

Definition B.1. Given classes P, L, R and A of subsets of Ω, each containing
∅, we say that

• P is a π-class if A,B ∈ P implies A ∩B ∈ P,

• L is a `-class (or additive class) if (a) A,B ∈ L with A ∩ B = ∅ implies
A ∪B ∈ L and (b) A,B ∈ L with A ⊂ B implies B rA ∈ L,

• R is a ring if A,B ∈ R implies (a) ArB ∈ R and (b) A ∪B ∈ R,

• A is algebra if (a) A ∈ A implies Ac ∈ A and (b) A,B ∈ A implies A∪B ∈ A.

Finally, a π-class S is called (1) a semi-ring if A,B ∈ S with A ⊂ B implies
BrA =

∑n
i=1 Ci with Ci ∈ S, (2) a semi-algebra if A ∈ S implies Ac =

∑n
i=1 Ci

with Ci ∈ S, and (3) a lattice if A,B ∈ S implies A ∪B ∈ S.

From the definitions, it is clear that any interception of π-classes, `-classes,
lattices, rings or algebras is again a π-class, an `-class, a lattice, a ring or an
algebra. Therefore, given any subset G of 2Ω we may define the π-class, `-class,
lattice, ring or algebra generated by G, e.g., the algebra A(G) generated by G is
indeed the intersection of all algebras containing G.

A semi-ring of interest for us is the class S of intervals of the form (a, b],
with a, b real numbers. For instance, an carefully discussion on semi-rings can
be found in Dudley [36, Section 3.2, pp. 94–101]. Another point to remember
is that if K = `(P) is the smallest `-class containing a given π-class P then K is
also the ring generated by P. Moreover, if Ω ∈ K then K is the smallest algebra
containing P.

Definition B.2. A σ-algebra (or σ-field) A is a class containing ∅ which is
stable under the (formation of) complements and countable unions, i.e., (a) if
A ∈ A then Ac ∈ A and (b) if Ai ∈ A, i = 1, 2, . . . then

⋃∞
i=1Ai ∈ A. Similarly,

a σ-ring A is a non-empty class stable under differences and countable unions,
i.e., (c) if A,B ∈ R then ArB ∈ R and (b) as above.

The classes mostly used are the σ-algebras. Any ring (or algebra) with a
finite number of elements is a σ-ring (or σ-algebra). It is relatively simple to
generate (and identify) a π-class, an `-class, a ring or an algebra, this is not the
same for the σ-classes, because transfinite induction is involved.

The concept of monotone classes is used to clarify the distinction between
algebras (or rings) and σ-algebras (or σ-rings). A monotone class (of subset
of Ω) is a subset M of 2Ω stable under countable monotone unions and inter-
sections, i.e., (a) Ai ∈ M, Ai ⊂ Ai+1, i = 1, 2, . . . then

⋃∞
i=1Ai ∈ M and (b)

Ai ∈M, Ai ⊃ Ai+1, i = 1, 2, . . . then
⋂∞
i=1Ai ∈M.

Proposition B.3. Let K = M(R) be the smallest monotone class containing
a given ring R. Then K is also the σ-ring generated by R. Moreover, if Ω ∈ K
then K is the smallest σ-algebra containing R.

Proof. For every K ∈ K define the class of sets ΦK = {A ∈ K : A r K,K r
A,A∪K ∈ K}. Clearly, (a) A ∈ ΦK if and only if K ∈ ΦA, and (b) the relations
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(∪iAi)rK = ∪i(AirK), (∩iAi)rK = ∩i(AirK), Kr (∪iAi) = ∩i(KrAi),
Kr(∩iAi) = ∪i(KrAi), (∪iAi)∪K = ∪i(Ai∪K) and (∩iAi)∪K = ∩i(Ai∪K)
imply that ΦK is a monotone class for any fixed K.

In particular, if K = R ∈ R then A ∈ R implies A ∈ ΦR. Thus R ⊂ ΦR
and because K is the smallest monotone class containing R we have K ⊂ ΦR.
This is K ∈ K implies K ∈ ΦR, or equivalently R ∈ ΦK , for every R ∈ R.
Hence R ⊂ ΦK and again, because K is the smallest monotone class containing
R we have K ⊂ ΦK , but this time for every K ∈ K. This proves that for any
A,K ∈ K we have ArK,K rA,A ∪K ∈ K, i.e., K is a ring.

Finally, we conclude by noting that a σ-ring is a σ-algebra if and only if it
contains Ω.

• Remark B.4. From Propositions B.3 follows that if P is a π-class thenM(P)
is the smallest σ-algebra containing P.

The notation σ(K) means the smallest σ-algebra containing a given class K,
or the σ-algebra generated by K. It is clear that if K is finite then σ(K) is also
finite.

Let R be the union of all σ-rings R(Ec) generated by a countable subclass Ec
of a given a class E in 2Ω containing the empty set. Since R is indeed a σ-ring,
we have R = R(E), the σ-ring generated by the whole class E . Thus, for a given
A in R(E) there exists a countable subclass Ec (depending on A) such that A
belongs to R(Ec). If we can keep the same countable subclass for every set A
then the σ-ring R(E) is called separable. Moreover, we say that a σ-algebra F
is countable generated or separable if there exists a countable class K such that
F = σ(K).

Frequently, the previous Propositions are combined in the so-called argument
of monotone class as follows. A λ-class (or σ-additive class) is a subset D of 2Ω

stable under the formation of countable monotone unions, monotone differences
and it contains Ω, i.e., (a) Ai ∈ D, Ai ⊂ Ai+1, i = 1, 2, . . . then

⋃∞
i=1Ai ∈ D,

(b) if A,B ∈ D with A ⊂ B then B rA ∈ D and (c) Ω ∈ D. From the equality
A + B = (Ac r B)c we deduce that a λ-class is stable under the formation of
countable disjoint unions.

Proposition B.5 (monotone argument). Let D be a λ-class and P be a π-class.
Then D is a σ-algebra if and only if D is also stable under finite intersections.
Moreover, if P ⊂ D then σ(P) ⊂ D.

Proof. To verify the first part, because Ω ∈ D we remark that D is stable under
complement. Next, we note that any countable unionA = ∪iAi can be expressed
as A = ∪iBi, with Bn =

⋃n
i=1Ai =

(⋂n
i=1A

c
i

)c
which satisfy Bi ⊂ Bi+1, for

every i. So, if D is also a π-class then Bn belongs to D, and D is stable under
countable union, i.e., a D is indeed a σ-algebra.

For the second part, if λ(P) denotes the smallest λ-class containing P then,
for every E ∈ λ(P), define the class of sets ΦE = {A ∈ λ(P) : A ∩ E ∈ λ(P)}.
An argument similar to those of Propositions B.3 proves that ΦE = λ(P) is a
σ-algebra, i.e., λ(P) = σ(P). Therefore σ(P) ⊂ D.
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• Remark B.6. Recall the distribute formula: Given a family {Fi,j : i ∈ Ij , j ∈
J} of subsets of Ω, verify the distributive formula⋃

j∈J

⋂
i∈Ij

Fi,j =
⋂
k∈K

⋃
j∈J

F kj and
⋂
j∈J

⋃
i∈Ij

Fi,j =
⋃
k∈K

⋂
j∈J

F kj ,

where K =
∏
j∈J Ij , i.e., {ij : j ∈ J}, and F kj = Fij ,j . It is clear that if J is

finite and each Ij is countable then K is a countable set, however, if for instance,
Ij = {0, 1} for every j in an infinite set of indexes J then K = {0, 1}J is not a
countable set of indexes.

• Remark B.7. Recalling that
∑

denotes disjoint union of sets, for a given semi-
ring (or ring or algebra) E ⊂ 2X , we consider the class F =

{∑∞
k=1Ek : Ek ∈ E

}
of subsets in 2X . First, if A =

⋃∞
i=1Ai with Ai ⊂ Ai+1 and Ai in E then A =∑∞

i=1Bi, with B1 = A1, B2 = A2rB1, . . . , Bn = AnrBn−1, and because E is a
semi-ring, each Bi is a finite disjoint union of elements in E , i.e., A is a countable
disjoint union of sets in E , which proves that F =

{⋃∞
k=1Ek : Ek ∈ E

}
. Now,

if Fj =
⋃
iEi,j then F =

⋃
j Fj =

⋃
i,j Ei,j is a countable union of sets in E and

therefore, F belongs to F , i.e., F is stable under countable unions. However,
the distributive formula of Remark B.6 can only be used to show that F is
stable under finite intersections, since

⋂∞
j=1

∑∞
i=1Ei,j =

∑
k∈K

⋂∞
j=1E

k
j , where

K = IJ , Ekj = Eij ,j , but K is not a countable set of indexes. Thus, if A =⋃∞
i=1Ai and B =

⋃∞
j=1Bj with Ai and Bj in E Ar B =

⋃∞
i=1

⋂∞
j=1(Ai r Bj),

where each difference Ai r Bj is a finite disjoint union of elements in E , but⋂∞
j=1(Ai r Bj) is not necessarily in F , i.e., F may not be stable neither under

countable intersection not under differences. Therefore F , which is stable under
countable unions and finite intersections, may be strictly smaller than the σ-ring
generated by E .

Given a non empty set Ω (called space) with a σ-algebra F , the couple
(Ω,F) is called a measurable space and each element in F is called a measurable
set. Moreover, the measurable space is said to be separable if F is countable
generated, i.e., if there exists a countable class K such that σ(K) = F . An atom
of a σ-algebra F is a set F in F such that any other subset E ⊂ F with E in
F is either the empty set, E = ∅, or the whole F , E = F . Thus, a σ-algebra
separates points (i.e., for any x 6= y in Ω there exist two sets A and B in F such
that x ∈ A, y ∈ B and A ∩ B = ∅) if and only if the only atoms of F are the
singletons (i.e., sets of just one point, {x} in F).

B.1.2 Topology Included

Recall that a topology on Ω is a class T ⊂ 2Ω with the following properties: (1)
∅,Ω ∈ T , (2) if U, V ∈ T then U ∩V ∈ T (stable under finite intersections) and
(3) if Ui ∈ T for an arbitrary set of indexes i ∈ I then

⋃
i∈I Ui ∈ T (stable under

arbitrary unions). Every element of T is called open and the complement of an
open set is called closed. A basis for a topology T is a class bT ⊂ T such that
for any point x ∈ Ω and any open set U containing x there exists an element
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V ∈ bT such that x ∈ V ⊂ U, i.e., any open set can be written as a union of
open sets in bT . Clearly, if bT is known then also T is known as the smallest class
satisfying (1), (2), (3) and containing bT . Moreover, a class sbT containing ∅ and
such that

⋃
{V ∈ sbT } = Ω is called a sub-basis and the smallest class satisfying

(1), (2), (3) and containing sbT is called the weakest topology generated by sbT
(note that the class constructed as finite intersections of elements in a sub-basis
forms a basis). A space Ω with a topology T having a countable basis bT is
commonly used. If the topology T is induced by a metric then the existence of
a countable basis bT is obtained by assuming that the space Ω is separable, i.e.,
there exists a countable dense set.

Given a family of spaces Ωi with a topology Ti for i in some arbitrary family
of indexes I, the product topology T =

∏
i∈I Ti (also denoted by ⊗iTi) on the

Cartesian product space Ω =
∏
i∈I Ωi is generated by the basis bT of open

cylindrical sets, i.e., sets of the form
∏
i∈I Ui, with Ui ∈ Ti and Ui = Ωi except

for a finite number of indexes i. Certainly, it suffice to take Ui in some basis

bTi to get a basis bT , and therefore, if the index I is countable and each space
Ωi has a countable basis then so does the (countable!) product space Ω. Recall
Tychonoff’s Theorem which states that any (Cartesian) product of compact
(Hausdorff) topological spaces is again a compact (Hausdorff) topological space
with the product topology.

On a topological space (Ω, T ) we define the Borel σ-algebra B = B(Ω) as
the σ-algebra generated by the topology T . If the space Ω has a countable basis

bT , then B is also generated by bT . However, if the topological space does not
have a countable basis then we may have open sets which are not necessarily in
the σ-algebra generated by a basis. The couple (Ω,B) is called a Borel space,
and any element of B is called a Borel set.

Similar to the product topology, if {(Ωi,Fi) : i ∈ I} is a family of measurable
spaces then the product σ-algebra on the product space Ω =

∏
i∈I Ωi is the σ-

algebra F =
∏
i∈I Fi (also denoted by ⊗iFi) generated by all sets of form∏

i∈I Ai, where Ai ∈ Fi, i ∈ I and Ai = Ωi, i 6∈ J with J ⊂ I, finite. However,
only if I is finite or countable, we can ensure that the product σ-algebra

∏
i∈I Fi

is also generated by all sets of form
∏
i∈I Ai, where Ai ∈ Fi, i ∈ I. For a finite

number of factors, we write F = F1 × F2 × · · · × Fn. Sometimes, the notation
F = ⊗i∈IFi is used (i.e., with ⊗ replacing ×), to distinguish from the Cartesian
product (which is rarely used for classes of sets).

Proposition B.8. Let Ω be a topological space such that every open set is a
countable union of closed sets. Then the Borel σ-algebra B(Ω) is the smallest
class stable under countable unions and intersections which contains all closed
sets.

Proof. Let B0 be the smallest class stable under countable unions and intersec-
tions which contains all closed sets. Since every open set is a countable union of
closed sets, we deduce that B0 contains all open sets. Define Φ = {B ∈ B(Ω) :
B ∈ B0 and Bc ∈ B0}. It is clear that Φ is stable under countable unions and
intersections, and it contains all closed sets. The minimal character of B0 implies
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that Φ = B0, and because Φ is also stable under the formation of complement,
we deduce that B0 is a σ-algebra, i.e., B0 = B(Ω).

For instance, if d is a metric on Ω then any closed C can be written as
C =

⋂∞
n=1{x ∈ Ω : d(x,C) < 1/n}, i.e., as a countable intersection of open sets,

and by taking complement, any open set can be written as a countable union
of closed sets. In this case, Proposition B.8 proves that the Borel σ-algebra
B(Ω) is the smallest class stable under countable unions and intersections which
contains all closed (or open) sets.

On a topological space Ω we define the classes Fσ (and Gδ) as the countable
unions of closed (intersections of open) sets. Thus, any countable unions of
sets in Fσ is again in Fσ and any countable intersections of sets in Gδ is again
in Gδ. In particular, if the singletons (sets of only one point) are closed then
any countable set is an Fσ. However, we can show (with a so-called category
argument) that the set of rational numbers is not a Gδ in R = Ω.

In R, we may argue directly that any open interval is a countable (disjoint)
union of open intervals, and any open interval (a, b) can be written as the
countable union

⋃∞
n=1[a+ 1/n, b− 1/n] of closed sets, an in particular, we show

that any open set (in R) is an Fσ. In a metric space (Ω,d), a closed set F can
be written as F =

⋂∞
n=1 Fn, with Fn = {x ∈ Ω : d(x, F ) < 1/n}, which proves

that any closed set is a Gδ, and by taking the complement, any open set in a
metric space is a Fσ.

Certainly, we can iterate these definitions to get the classes Fσδ (and Gδσ)
as countable intersections (unions) of sets in Fσ (Gδ), and further, Fσδσ, Gδσδ,
etc. Any of these classes are family of Borel sets, but in general, not every Borel
set belongs necessarily to one of those classes.

B.1.3 Measurable Functions

Let (Ω,F) and (E, E) be two measurable spaces. A function f : Ω→ E is called
measurable if f−1(B) = {ω : f(ω) ∈ B} belong to F for any B in E . Since
A = {A ∈ E : f−1(A) ∈ F} is a σ-algebra, we deduce that if E = σ(K) then for
f to be measurable it suffices that K ∈ K implies f−1(K) ∈ F .

The particular case where E is a Lusin space (i.e., E is homeomorphic to
a Borel subset of a compact metrizable space or equivalently, E is a one-to-
one continuous image of a Polish space) and E = B(E) (its Borel σ-algebra)
is sufficiently general to accommodate all situations of interest, for instance a
complete metrizable space or a Borel set E ⊂ Rd is a typical example. Recalling
that a function f is continuous if and only if f−1(U) is open in Ω for any open
set U in E, we obtain that any continuous function is measurable (whenever
any open set in Ω belongs to F).

Suppose that E is a topological space where every open set O can be written
as countable union of open sets with closure contained in O, i.e., O =

⋃
iOi,

for a sequence of open set {Oi : i = 1, 2, . . .} satisfying Oi ⊂ O, e.g., a metric
space. If {fn} is a sequence of measurable functions with values in E such that
fn(x) → f(x) for every x ∈ Ω, then f is also measurable. Indeed, it suffices
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to write f−1(O) =
⋃
i

⋃
k

⋂
n≥k f

−1
n (Fi) for any open set O =

⋃
iOi in E, with

Oi open sets and Fi = Oi closed sets. Similarly, if d is a complete metric on
E and C is the subset of Ω where {fn(x)} converges then the expression C =⋂
k

⋃
m

⋂
n≥m{x ∈ Ω : d

(
fn(x), fm(x)

)
< 1/k} shows that C is a measurable

set, and therefore, the limit f(x) = limn fn(x) for x ∈ C can be extended to a
measurable function defined on the whole Ω.

The composition of measurable functions is clearly measurable and so, in
particular, if E is a vector (algebra) topological space (i.e., the sum, scalar
multiplication and product are continuous operations and E is endowed with
its Borel σ-algebra) then cf + g (fg) is measurable for any scalar c and any
measurable functions f and g. Thus, the class of measurable functions L0 =
L0(Ω,F ;E) is a vector space if E is so. Note that if E is not separable then
distinct notions of measurability may appear and a deeper analysis is necessary.

Sometimes we use measurable functions with values in either (−∞,+∞] or
[−∞,+∞) or R̄ = [−∞,+∞], i.e., extended real values. In this case, we have
to specify how to handle the symbols −∞ and +∞. The corresponding Borel
σ-algebra is obtained by simply adding the extra symbols, e.g., B̄ ∈ B(R̄) if
and only if B̄ ∩ R ∈ B(R). For a sequence {fn} of functions taking values in
[−∞,+∞) or R̄, the function f(x) = infn fn(x) is measurable if each fn is
so, and similarly with the sup, lim inf and lim sup . Essentially, all countable
operation preserves measurability. However, if {fi : i ∈ I} is a family of real-
valued measurable functions with an infinite non countable index I such that
fi ≤ C for some constant C and for every i ∈ I then the real-valued function
f(x) = sup{fi(x) : i ∈ I} is not necessarily measurable.

Let {fi : i ∈ I} be a family of functions fi : Ω → Ei, where (Ei, Ei) is
measurable space. We denote by σ({fi : i ∈ I}) the σ-algebra generated by the
class of sets {f−1

i (Bi) : Bi ∈ Ei, i ∈ I}, which is the smallest σ-algebra in Ω
such that every fi is measurable. It is clear that if fi is F-measurable for each
i then σ({fi : i ∈ I}) ⊂ F . Moreover, if Fi = σ(fi) is the σ-algebra generated
by {f−1

i (Bi) : Bi ∈ Ei}, a fixed fi, then σ(
⋃
i∈I Fi) = σ(fi : i ∈ I), where

σ(
⋃
i∈I Fi) is the smallest σ-algebra containing every Fi. A typical example of

this construction is the case where Ω =
∏
i∈I Ωi, Ei = Ωi, E = Fi and fi = πi

are the projections, i.e., πi : Ω → Ωi, πi(ω) = ωi for any ω = (ωi : i ∈ I).
It is easy to verify that the product σ-algebra F =

∏
i∈I Fi as defined in the

previous section satisfies F = σ({πi : i ∈ I}).
It should be clear that our main example is the Borel line (R,B(R)). The

space R has a nice topology, in particular, it is a complete separable metric
space (i.e., a Polish space). Even if the σ-algebra B(R) has the cardinality of
the continuum, and so it is much smaller than 2R, most of the sets (in R) we
encounter are Borel set and most functions are Borel function. This is to say
B(R) has a reasonable size with respect to the space R. Certainly, the same
remarks apply to (Rd,B(Rd)), which can be also viewed as a product space. We
this in mind, let us consider the following examples:

(1) The space R∞ or RN with N = {1, 2, . . .} is the space of all sequences
of real numbers. For instance, the family of (open) cylinder sets of the form
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C = (a1, b1)× · · · × (an, bn)×R×R× · · · , with ai < bi, is a basis of open sets
for the product topology. Therefore a sequence in R∞ (i.e., a double sequence
of real numbers) converges if each coordinate (or component) converges. This
space becomes a Polish space with the metric

d(x, y) =
∞∑
i=1

2−i|xi − yi|
1 + |xi − yi|

, ∀x = (xi), y = (xi) ∈ R∞.

The Borel σ-algebra B(R∞) is equal to the product σ-algebra B∞(R), which
is also generated by all sets of the form B1 × · · · × Bn × · · · , with Bi ∈ B(R)
for any i = 1, 2, . . . , i.e., we can impose any kind of Borel constraint on each
coordinate and we get a Borel set. In this case, again, the size of the Borel
σ-algebra B∞(R) is a reasonable, with respect to the space R∞.
(2) The space RT , where T is an infinite uncountable set (e.g., an interval in
R), is the space of all real-valued function defined on T. A basis for the product
topology is the family of open cylinder sets of the form C =

∏
t∈T (at, bt), with

at < bt for every t ∈ T, and −at = bt = +∞ for every t except a finite number.
Again, a sequence in RT (i.e., a sequence of real-valued functions defined on
T ) converges if each coordinate converges, i.e., the pointwise convergence, and
the topology becomes complicate. Moreover, the Borel σ-algebra B(RT ) is not
equal to the product σ-algebra BT (R), which is generated by open (or Borel)
cylinder sets as described in general early. It is not hard to show that elements
in BT (R) have the form B × RTrS (disregarding the order of indexes), with
B ∈ BS(R) for some countable subset S ⊂ T. This means that (product) Borel
sets in RT allow only a countable number of Borel constraint on each coordinate,
and for instance, we deduce the unpleasant conclusion that the set of continuous
functions is not a Borel set. In this sense, the product Borel σ-algebra BT (R)
is (too) small relative to the (too) big space RT . The Borel σ-algebra B(RT )
is larger, but attached to the pointwise convergence, which create other serious
complications.

(3) Usually, for a domain we mean a connected set which is the closure of its
interior. Thus, the set C(D) of all real-valued bounded continuous functions
defined on a domain D ⊂ Rd with the uniform convergence is a good example
of a Banach (complete normed) space. If D is bounded then the space C(D)
is separable, a very important property for the construction of the Borel σ-
algebra. When D is unbounded (e.g., D = Rd), we prefer to use the locally
uniform convergence. Actually, this is also the case when considering continuous
functions on an open set O ⊂ Rd. As discussed later Chapters, this space has
a nice topology, referred to as locally convex topological vector spaces. For
instance, as in the case of R∞, we may choose a increasing sequence {Ki} of
compact subsets of Rd such that either Rd =

⋃
iKi or O =

⋃
iKi to define a

metric

d(f, g) =

∞∑
i=1

2−i‖f − g‖n
1 + ‖f − g‖n

, ∀f, g ∈ C(Rd) or C(O),
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where ‖ ·‖n is the supremum norm within Kn. Thus, C(Rd) and C(O) are com-
plete separable metric spaces under the locally uniform convergence topology.
Actually, if X is a locally compact space, we may consider the space C0(X) of
real-valued continuous functions with compact support. Then, besides the Borel
σ-algebra on X, we may consider smaller σ-algebra which make all functions in
C0(X) measurable, i.e., the Baire σ-algebra on X. If X is a locally compact
Polish space (e.g., X is a domain or an open set in Rd) both σ-algebra coincide,
but this is not the case in general.

(4) As mentioned early, a Polish space Ω is a complete separable metric space,
i.e., the topology of the space Ω is also generated by a basis composed of open
balls B(x, r) = {y ∈ Ω : d(y, x) < r} for x in some countable dense set of Ω,
r any positive rational and there exists some metric (equivalent to d) which
makes Ω complete. For instance, Ω is a closed subset of R with the induced or
relative topology; or a more elaborated example Ω is the space of real-valued
continuous functions defined on some locally compact space with the locally
uniform convergence. Since, for any closed set F ⊂ Ω the function d(x, F ) =
inf{d(x, y) : y ∈ F} is continuous, we deduce that the Borel σ-algebra B(Ω) in
a Polish space is the smallest σ-algebra for which every real-valued continuous
function defined on Ω is measurable. This fact is not granted for a general
topological space and give rise to the Baire σ-algebra. To study stochastic
processes we use the so-called canonical sample space D([0,∞[) of cad-lag real-
valued functions, i.e., functions ω : [0,∞]→ R which are right-continuous with
left limit. This space is a Polish space with a suitable topology and metric.

B.1.4 Some Tools

Let us consider real-valued measurable functions defined on (Ω,F). A measur-
able function ϕ taking a finite number of values is called a simple function,
i.e., if ϕ takes only the values a1, . . . , an then ϕ(x) =

∑n
i=1 ai1Ai(x), where

Ai = f−1({ai}) and 1A(x) = 1{x∈A} is the characteristic function of the set A
(or indicator of the condition x ∈ A). Thus ϕ is a simple function if there exist
a finite number of measurable sets B1, . . . , Bn and values b1, . . . , bn such that
ϕ(x) =

∑n
i=1 bi1Bi(x), for every x ∈ Ω; and this presentation is by no means

unique. It is not so hard to show that f is a simple function if and only if
f−1

(
B(R)

)
is a finite sub σ-algebra of F .

The set of simple functions form an algebra and a lattice, i.e., if ϕ and ψ
are simple functions so are the their sum ϕ + ψ, their product ϕψ, their max
ϕ∨ψ, and their min ϕ∧ψ. A key point used later is the following approximation
result.

Proposition B.9. If (Ω,F) is a measurable space and f : Ω → [0,∞] is
measurable, then there exists a sequence of simple functions {fn} such that
0 ≤ f1 ≤ . . . ≤ fn ≤ . . . ≤ f , fn → f pointwise in Ω, and fn → f uniformly on
every set where f is bounded.

Proof. Take n and define F kn = f−1([k2−n, (k+ 1)2−n[) and Fn = f−1([2n,∞]),
for every k between 1 and 22n − 1,
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Because f is measurable F kn , Fn ∈ F . Now, set

fn(x) = 2n1Fn(x) +

22n−1∑
k=1

k2−n1Fkn (x), ∀x ∈ Ω.

By construction we have fn ≤ fn+1 for any n, and 0 ≤ f − fn ≤ 2−n on the set
where f ≤ 2n. Hence, conclusion follows.

If we apply the above arguments by components or coordinates then the pre-
vious approximation result remains true for a measurable function with values
in [0,∞]d.

Corollary B.10. Let G ⊂ 2Ω be π-class and V be a set of real-valued functions
defined on Ω with the following properties: (1) 1Ω ∈ V and 1A ∈ V, for every
A ∈ G, (2) if u, v ∈ V then αu + βv ∈ V for every α, β ∈ R, (3) if {vn} is
a monotone increasing convergent sequence of functions in V, i.e., vn ≤ vn+1

∀n and vn(x) → v(x), finite ∀x ∈ Ω, then v ∈ V. Then V contains all σ(G)
measurable functions.

Proof. Let A be the class of A ⊂ Ω such that 1A ∈ V. Since 1ArB = 1A −
1B if A ⊃ B and V is a vector space, the class A is stable under monotone
differences. Moreover, A is stable under monotone countable unions because V
is stable under the monotone increasing pointwise convergence. Hence A is a
λ-class containing G, and invoking Proposition B.5, we deduce σ(G) ⊂ A. Now,
writing any measurable function f = f+ − f− and applying Proposition B.9,
we conclude.

• Remark B.11. If {gi : i ∈ I} is a family of measurable functions then the σ-
algebra G = σ(gi : i ∈ I) generated by this family is countable dependent in the
following sense: For any set A in G there exists a countable subset of indexes J of
I such that A is also measurable with respect to σ(gi : i ∈ J). Indeed, to check
this, observe that the class of sets having the above property forms a σ-algebra.
Thus, if h is a measurable function on (Ω,G) assuming only a finite number
(or countable) of values (i.e., a simple function) then there exist a measurable
function k and a countable subset J of I such that h = k(gi : i ∈ J), i.e., k is
independent of the coordinates i in IrJ . Indeed, such a function h has the form
h =

∑
n an1An for some sequence {An} of disjoint measurable sets and some

sequence {an} of values. Each An is measurable with respect to σ(gi : i ∈ Jn)
for some countable subset of indexes Jn of I, and so, h is measurable with
respect to σ(gi : i ∈ J) for the measurable subset J =

⋃
n Jn of I. Therefore,

the function k can be taken measurable with respect to σ(gi : i ∈ J).

Given a measurable space (Ω,F), we may not necessarily know if a singleton
is measurable, i.e. {ω} ∈ F . However, we define the atoms of F as elements
A ∈ F such that A 6= ∅, and any B ⊂ A with B ∈ F results B = ∅ or B = A.
We can show that any measurable function must be constant on every atom,
and in general, the family (possible uncountable) of all atoms (of F) may not
generate F . For instance, the Borel σ-algebra B(Rd) contains all singletons, but,
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any uncountable Borel set with an uncountable complement does not belong to
the σ-algebra generated by {x} with x in Rd.

Perhaps, some readers could benefice from taking a quick look at Al-Gwaiz
and Elsanousi [5, Chapter 10, pp. 349–392], for a discussion on preliminaries of
the Lebesgue measure in R.

B.2 Caratheodory’s Arguments

It is rather simple to define a finitely additive measure. For instance the Jordan-
Riemann measure m in R, namely, A ⊂ 2R is the algebra of sets that can be
written as a disjoint finite union of intervals (closed, open, semi-open, bounded,
unbounded), say a generic interval different from R is denoted by I and has the
form (a, b), [a, b], [a, b) or (a, b] with a ≤ b, a, b ∈ [−∞,+∞], and m(I) = b− a,
m(R) =∞ and finally for A =

⋃n
i=1 Ii with Ii ∩ Ij = ∅ if i 6= j where we define

m(A) =
∑n
i=1m(Ii). A more difficult step is to show the σ-additivity and to

extend the definition of m to a σ-algebra (the Borel σ-algebra B(R) in the case
of the Jordan-Riemann measure).

B.2.1 Caratheodory’s construction

Definition B.12. A function µ∗ : 2Ω → [0,∞] is called an outer measure (or
exterior measure) on Ω if (1) µ∗(∅) = 0, (2) A ⊂ B implies µ∗(A) ≤ µ∗(B)
(monotone or isotone), and (3) µ∗(

⋃∞
n=1An) ≤

∑∞
n=1 µ

∗(An) (sub σ-additive).
Next a subset A ⊂ Ω is said to be µ∗-measurable if µ∗(E) = µ∗(E∩A)+µ∗(E∩
Ac), for every E ⊂ Ω, i.e., µ∗(E) ≥ µ∗(E ∩ A) + µ∗(E ∩ Ac), in view of the
sub-additivity.

Theorem B.13. If µ∗ is an outer measure on Ω and F is the class of all
µ∗-measurable sets then F is a σ-algebra and the restriction µ of µ∗ to F is a
complete measure.

Proof. First, because the definition of µ∗-measurability is symmetric in A and
Ac, the class F is stable under the formation of complement. Next, if A,B ∈ F
and E ⊂ Ω, by the subadditivity we have

µ∗(E) = µ∗(E ∩A) + µ∗(E ∩Ac) = µ∗(E ∩A ∩B)+

+ µ∗(E ∩A ∩Bc) + µ∗(E ∩Ac ∩B) + µ∗(E ∩Ac ∩Bc) ≥
≥ µ∗(E ∩ (A ∪B)) + µ∗(E ∩ (A ∪B)c).

Hence A ∪ B ∈ F , i.e., the class F is an algebra. Moreover, if A,B ∈ F and
A ∩B = ∅ then

µ∗(A ∪B) = µ∗((A ∪B) ∩A) + µ∗((A ∪B) ∩Ac) = µ∗(A) + µ∗(B),

i.e., µ∗ is finitely additive on F .
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To show that F is a σ-algebra we have to prove only that F is stable under
countably disjoint unions. Thus, for any sequence {Aj} of disjoint sets in F ,
define Bn =

⋃n
j=1Aj and B =

⋃∞
j=1Aj to get

µ∗(E ∩Bn) = µ∗(E ∩Bn ∩An) + µ∗(E ∩Bn ∩Acn) =

= µ∗(E ∩An) + µ∗(E ∩Bn−1), ∀E ⊂ Ω,

and by induction, this yields µ∗(E ∩Bn) =
∑n
j=1 µ

∗(E ∩Aj). Therefore

µ∗(E) = µ∗(E ∩Bn) + µ∗(E ∩Bcn) ≥
n∑
j=1

µ∗(E ∩Aj) + µ∗(E ∩Bc),

and as n→∞ we obtain

µ∗(E) ≥
∞∑
j=1

µ∗(E ∩Aj) + µ∗(E ∩Bc) ≥ µ∗
( ∞⋃
j=1

(E ∩Aj)
)
+

+ µ∗(E ∩Bc) = µ∗(E ∩B) + µ∗(E ∩Bc) ≥ µ∗(E),

i.e., all the above inequalities becomes equalities. Hence B ∈ F , and by taking
E = B we have µ∗(B) =

∑∞
j=1 µ

∗(Aj), i.e., µ∗ is countably additive on F .
Finally, if µ∗(A) = 0 then we have

µ∗(E) ≤ µ∗(E ∩A) + µ∗(E ∩Ac) = µ∗(E ∩Ac) ≤ µ∗(E), ∀E ⊂ Ω,

i.e., A ∈ F , and µ = µ∗
∣∣
F is a complete measure.

At this point, we need to discuss how we obtain an outer measure.

Proposition B.14. Let E ⊂ 2Ω and µ : E → [0,+∞] be such that ∅ ∈ E ,
µ(∅) = 0 and Ω =

⋃
n Ωn, for some sequence {Ωn} in E . Define

µ∗(A) = inf
{ ∞∑
n=1

µ(En) : En ∈ E , A ⊂
∞⋃
n=1

En

}
, ∀A ⊂ Ω. (B.1)

Then µ∗ is an outer measure on Ω. Moreover, if a set A ⊂ Ω satisfies µ(E) ≥
µ∗(E∩A)+µ∗(E∩Ac), for every E in E with µ(E) <∞ then A is µ∗-measurable.

Proof. Since ∅ ∈ E and Ω =
⋃
n Ωn, with Ωn ∈ E , the set function µ∗ is defined

for every A ∈ 2Ω and µ∗(∅) = 0. If A ⊂ B then any time we cover B with
elements in E also we cover A, and so the infimum satisfies µ∗(A) ≤ µ∗(B).

To check the sub σ-additivity, let {An} a sequence in 2Ω. The definition of
infinium ensures that for every ε > 0 and n there is a sequence {Enj } such that

An ⊂
∞⋃
j=1

Enj and

∞∑
j=1

µ(Enj ) ≤ µ∗(An) + 2−nε.
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Hence

∞⋃
n=1

An ⊂
∞⋃

j,n=1

Enj and µ∗
( ∞⋃
n=1

An
)
≤

∞∑
j,n=1

µ(Enj ) ≤ ε+

∞∑
n=1

µ∗(An).

Since ε is arbitrary, definition (B.1) yields a µ∗ sub σ-additivity, i.e., µ∗ is an
outer measure.

Finally, pick a set A ⊂ Ω satisfying µ(E) ≥ µ∗(E ∩ A) + µ∗(E ∩ Ac), for
every E in E with µ(E) <∞ (note that for µ(E) =∞ the inequality is trivially
satisfied). Pick any set F ⊂ Ω and a sequence {En} ⊂ E covering F . Since⋃
n(En ∩ A) ⊃ F ∩ A and

⋃
n(En ∩ Ac) ⊃ F ∩ Ac, the sub σ-additivity of µ∗

implies∑
n

µ(En) ≥
∑
n

µ∗(En ∩A) +
∑
n

µ∗(En ∩Ac) ≥

≥ µ∗(F ∩A) +
∑
n

µ∗(F ∩Ac),

and by taking the infimum over all covers we deduce µ(F ) ≥ µ∗(F ∩A)+µ∗(F ∩
Ac), which means that A is µ∗-measurable.

• Remark B.15. Recall the notation
∑
nEn to indicate a disjoint union, i.e.,∑

nEn =
⋃
nEn with En ∩ Em = ∅ if n 6= m. Assume that the class E is a

semi-ring and µ is additive on E , i.e., E =
∑n
i=1Ei, E and Ei belong to E yield

µ(E) =
∑n
i=1 µ(Ei). Then the outer measure µ∗ induced by µ by means of

(B.1) satisfies

µ∗(A) = inf
{ ∞∑
n=1

µ(En) : En ∈ E , A ⊂
∞∑
n=1

En

}
, ∀A ⊂ Ω.

Indeed, if {En : n ≥ 1} ⊂ E is a covering of A then define E′1 = E1, E′2 =
E2 r E1, and by induction

E′n = (En r En−1) ∪ (En r En−2) ∪ · · · (En r E1).

Because the class E is a semi-ring, we can write each E′n as a disjoint union

of sets in E , i.e., E′n =
∑kn
i=1E

′′
n,i. The additivity of µ implies that µ(En) ≥∑kn

i=1 µ(E′′n,i). Hence, {En,i : i = 1, . . . , kn, n ≥ 1} ⊂ E is a countable cover of
A satisfying

A ⊂
∑
n

kn∑
i=1

E′′n,i and
∑
n

µ(En) ≥
∑
n

kn∑
i=1

µ(E′′n,i),

which complete the proof.

Now, if we require that the initial µ is a σ-additive on some algebra E then
we close the circle, i.e., we are able to extend a measure (initially defined on an
algebra) to a σ-algebra.
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Theorem B.16. If µ is a measure on an algebra E and µ∗ is defined by (B.1)
then (a) µ∗|E = µ and (b) every set in A = σ(E) is µ∗-measurable and µ̄ = µ∗|A
is a measure. Moreover, if µ̄ is σ-finite (i.e., there exists {An} ⊂ A such that⋃∞
n=1An = Ω with µ̄(An) <∞) then µ̄ is uniquely determinate on A, i.e., if ν

is another measure on A such that ν|E = µ then ν = µ̄.

Proof. To show (a), take a generic element E ∈ E and for any countable cover

{En} ⊂ E define Fn = E∩(Enr
⋃n−1
i=1 Ei) to satisfy Fn ∈ E , E =

⋃∞
n=1 Fn, Fn∩

Fm = ∅ for n 6= m and Fn ⊂ En. Hence µ(E) =
∑∞
n=1 µ(Fn) ≤

∑∞
n=1 µ(En),

and since the cover is arbitrary, we deduce µ(E) ≤ µ∗(E). On the other hand,
choosing E1 = E and Ei = ∅ for i ≥ 2 we get µ∗(E) ≤ µ(E) + 0, i.e., µ(E) =
µ∗(E) for every E ∈ E .

To establish (b), we need to show that every set E ∈ E is µ∗-measurable.
Thus, take any F ⊂ Ω and ε > 0 and by definition of µ∗(F ), there exists a
countable cover {Fn} ⊂ E of F such that µ∗(F ) + ε ≥

∑∞
n=1 µ(Fn). Since

{Fn ∩ E} and {Fn ∩ Ec} cover F ∩ E and F ∩ Ec, the additivity of µ on E
implies

µ∗(F ) + ε ≥
∞∑
n=1

(
µ(Fn ∩ E) + µ(Fn ∩ Ec)

)
≥ µ∗(F ∩ E) + µ∗(F ∩ Ec),

and because ε is arbitrary, the set E is µ∗-measurable. Next, by means of
Theorem B.13, µ induces an outer measure µ∗. In turn, µ∗ yields a measure
µ̄ on the σ-algebra A∗ of µ∗-measurable sets. Since E ⊂ A∗ we deduce that
σ(E) = A ⊂ A∗. Moreover, by (a), µ∗|E = µ.

Let us prove that the extension to A is unique. Suppose that ν is another
measure such that ν|E = µ. For any A ∈ A and any sequence {Ei} ⊂ E
with A ⊂

⋃∞
i=1Ei we have ν(A) ≤

∑∞
i=1 ν(Ei) =

∑∞
i=1 µ(Ei), which yields

ν(A) ≤ µ̄(A). Setting E =
⋃∞
i=1Ei, we get ν(E rA) ≤ µ̄(E rA) and

ν(E) = lim
n→∞

ν
( n⋃
i=1

Ei

)
= lim
n→∞

µ
( n⋃
i=1

Ei

)
= µ̄(E).

If µ̄(A) < +∞, for any ε > 0 we can choose a cover {Ei} such that µ̄(E) <
µ̄(A) + ε, i.e., µ̄(E rA) < ε. Then

µ̄(A) ≤ µ̄(E) = ν(E) = ν(A) + ν(E rA) ≤ ν(A) + µ̄(E rA) ≤ ν(A) + ε,

and because ε is arbitrary, we have µ̄(A) = ν(A). Finally, if µ̄ is σ-finite then
Ω =

⋃∞
n=1An, with µ̄(An) < +∞, and we may assume that An ∩ Am = ∅ for

n 6= m. Hence for any A ∈ A we have

µ̄(A) =

∞∑
n=1

µ̄(A ∩An) =

∞∑
n=1

ν(A ∩An) = ν(A),

i.e., ν = µ̄.
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• Remark B.17. If E is a π-class (i.e., closed under finite intersections and
contains the empty set ∅) and µ is a (nonnegative) set function defined on E
then we say that µ is additive on E if for every ε > 0 and every F and E in E
there exists a sequence (possible finite) {En} ⊂ E such that F rE ⊂

⋃
nEn and

µ(F ) + ε > µ(F ∩ E) +
∑
n µ(F ∩ En). Similarly, we say that µ is a pre-outer

measure if (a) µ(∅) = 0, (b) E ⊂ F , E and F in E implies µ(E) ≤ µ(F ) (i.e.,
monotone on E), (c) E ⊂

∑
nEn, E and En in E implies µ(E) ≤

∑
n µ(En)

(i.e., sub σ-additive on E). Now, remark that in the proof of the precedent
Theorem B.16, we have also proved that (1) if E is a π-class and the initial
set function µ is additive then any set in the σ-algebra generated by E is µ-
measurable; and (2) if the initial set function µ is a pre-outer measure then
µ∗ = µ on E . In particular, if the initial set function µ can be extended to
a measure on the σ-algebra A = σ(E) generated by a class E (satisfying the
assumptions of Proposition B.14) then µ = µ∗ on E (but not necessarily on A);
and moreover, if E is a π-class then any set in A is µ∗-measurable.

B.2.2 From a Semi-Ring

If the initial set function µ is a finitely additive measure on a ring E then we
can define the outer measure µ∗, for any A ⊂ Ω, by

either µ∗(A) = inf
{

lim
n
µ(En) : En ∈ E , A ⊂

∞⋃
n=1

En, En ⊂ En+1

}
,

or µ∗(A) = inf
{∑

n

µ(En) : En ∈ E , A ⊂
∞∑
n=1

En

}
,

instead of using (B.1). Actually, the last expression with coverings in the form
of disjoint unions remains valid for a semi-ring E . Similarly, if µ is a measure
on a σ-algebra A then

µ∗(A) = inf
{
µ(E) : E ∈ E , A ⊂ E,

}
, ∀A ⊂ Ω,

yields an outer measure. Denoting by A∗ the σ-algebra of all µ∗-measurable
sets, we have a complete measure (µ̄,A∗) by taking µ̄ = µ∗|A∗ , which is an
extension of (µ,A), and a set N ⊂ Ω is negligible if and only if µ∗(N) = 0.

Recall the algebra A (ring) generated by a S semi-algebra (semi-ring) is the
class of finite disjoint unions, i.e., A ∈ A if and only if A =

∑n
i=1Ai for some

Ai ∈ S.

Proposition B.18. Let E be a semi-ring and µ : E → [0,∞) be a σ-additive
finite-valued set function. Then µ can be uniquely extended to σ-additive set
function on the σ-ring R generated by E . Moreover, a further unique extension
of the measure µ to the σ-ring R̄ of all (σ-finite) µ∗-measurable sets is also
possible. In particular, if there exists sequence {En} ⊂ E such that Ω =

⋃∞
n=1En

and µ(En) <∞, then µ can be uniquely extended to a measure on the σ-algebra
A generated by E . Furthermore, a set A ⊂ Ω is µ∗-measurable if and only if
µ(E) ≥ µ∗(E ∩A) + µ∗(E ∩Ac), for every E in E.
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Proof. If R0 is the ring generated by E then, recalling that any set in R0 can
be written as a finite disjoint union of elements in E , we extend the definition
of µ to R0,

µ(A) =

n∑
i=1

µ(Ei), A =

n⋃
i=1

Ei, Ei ∩ Ej = ∅ if i 6= j.

Because there is only a finite sum (or disjoint union), we deduce that µ remains
σ-additive on the ring R0. At this point, we revise the proof of Theorem B.16
(remarking that Fn∩Ec = FnrE ∈ R0, for every Fn, E ∈ R0) to check that the
algebra generated by E can be replaced by the ring R0 and the results remain
valid. Hence, µ has a unique extension to σ-ring R generated by E .

It is clear that if Ω =
⋃∞
n=1En and µ(En) <∞, for every n, then the σ-ring

R is indeed the σ-algebra A = σ(E).
Finally, Theorem B.16 also ensure a unique extension to the σ-ring R̄ of all

µ∗-measurable sets. Because the initial set function µ assume only finite values,
all set in σ-ring R̄ are σ-finite. In any case, the uniqueness of the extension is
only warranty on the σ-ring R̄ of all σ-finite µ∗-measurable sets.

It is also clear that because µ∗ = µ on E , Proposition B.14 yields the stated
characterization of a µ∗-measurable set in term of sets in the semi-ring E .

• Remark B.19. In the statement of Proposition B.18, we may initially assume
µ : E → [0,∞] and define E0 = {E ∈ E : µ(E) <∞}, which is again a semi-ring,
i.e., R is the σ-ring generated by E0. In general, a subset A of Ω is called σ-finite
relative to a set function µ defined on a class E ⊂ 2Ω if there exists a sequence
{En} in E such that A ⊂

⋃
nEn and µ(En) < ∞, for every n. Thus R is the

σ-ring generated by the σ-finite sets in E relative to µ. Therefore, if the initial
class E is a semi-algebra then we may be forced to define the semi-ring E0 as
above, which may not be a semi-algebra.

• Remark B.20. The reader can verify that only the finitely additive character
(instead of the σ-additivity) of the set function µ is used to prove that any set
in E is µ∗-measurable, that µ ≤ µ∗ on E and that a set A ⊂ Ω is µ∗-measurable
if and only if µ(E) ≥ µ∗(E ∩ A) + µ∗(E ∩ Ac), for every E in E . However, to
check that µ = µ∗ on E the σ-additivity is involved. Sometimes, a function
defined on a (semi-)ring is called content if it is additive and pre-measure if
it is σ-additive. In this context, finitely additive on a semi-ring E means that
µ(E) =

∑
i<n µ(Ei) whenever E =

∑
i<nEi with all sets in E , just the case of

two sets may not be sufficient.

• Remark B.21. Recall that if Si is a semi-ring (semi-algebra) in a measure
space (Ωi,Fi, µi), for i = 1, 2, then S = {S1 × S2 : Si ∈ Si, i = 1, 2}, is a semi-
ring (semi-algebra). Thus the product expression µ(S1 × S2) = µ1(S1)µ2(S2)
defines an additive measure on S (or in Cartesian product F1 ×F2), which can
be extended to the product σ-algebra F = σ(S1)⊗σ(S1), by the Caratheodory’s
extension Theorem B.16. However, to verify that µ∗ = µ on the semi-ring S,
we need to check that µ = µ1 × µ2 is indeed σ−additive on S. Actually, this
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will be address later by either the construction of the integral or a discussion
on inner measures (more tools are needed to prove this fact).

Summing up, the construction of a (σ-finite) measure on a σ-algebra A
begins with a σ-additive (set) function defined on a semi-ring E , which generates
A. Actually, the σ-algebra A∗ of all µ∗-measurable sets is usually strictly larger
than A = σ(E). Usually, the passage of a finitely additive measure defined on
an algebra to a σ-additive measure on the generated σ-algebra is called Hopf’s
extension theorem, e.g., see Richardson [106, Section 2.4, pp. 24–30].

• Remark B.22. The uniqueness argument can be restated as following: If E ⊂
2Ω is a π-class and µ and ν are two measures on A = σ(E) such that (1) µ = ν
on E and (2) there exists a monotone increasing sequence {En} of elements in
E satisfying Ω =

⋃
nEn and µ(En) = ν(En) < ∞ for every n, then µ = ν

on A. This assertion (and previous statements) about the unique extension of a
measure µ initially defined on a π-class E ⊂ 2Ω requires the σ-finite property of µ
with respect to E . In general, the assumption µ(E) <∞ (for every E ∈ E) yields
a unique measure on the σ-ringR generated by E , see also Remark B.19. Indeed,
a monotone argument shows that the class of sets in R which are included in
a countable union of sets in E is indeed the whole σ-ring R. Hence, we deduce
that µ = ν on R.

For instance, the reader may take a look at Taylor [122, Chapter 4, 177–225],
and many other textbooks.

B.3 Inner Measure Approach

In a way analogous to the outer measure in Section B.2 (using the Caratheodory
splitting method), we may develop the inner measure construction. However,
this section is not referred to for the typical Lebesgue measure defined in the
next section, it could be only used later, when topology is involved. Begin with

B.3.1 Inner Measures

Definition B.23. A function µ∗ : 2Ω → [0,∞] is called an inner measure (or
interior measure) on Ω if (1) µ∗(∅) = 0, (2) A ⊂ B implies µ∗(A) ≤ µ∗(B)
(monotone or isotone), and (3) A ∩B = ∅ implies µ∗(A ∪B) ≥ µ∗(A) + µ∗(B)
(super-additive). Next a subset A ⊂ Ω is said to be µ∗-measurable if µ∗(E) =
µ∗(E ∩A) +µ∗(E ∩Ac), for every E ⊂ Ω, i.e., µ∗(E) ≤ µ∗(E ∩A) +µ∗(E ∩Ac),
in view of the super-additivity.

Note that by induction, the monotony and super-additivity of µ∗ implies
µ∗
(∑∞

i=1Ai
)
≥ µ∗

(∑n
i=1Ai

)
≥
∑n
i=1 µ∗(Ai), and as n → ∞, we deduce a

property that could be called super σ-additivity. It is also clear that the sets ∅
and Ω are µ∗-measurable.

Proposition B.24. If µ∗ is an inner measure on Ω and A is the class of all
µ∗-measurable sets then A is an algebra and the restriction µ of µ∗ to A is a
complete finitely additive measure.
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Proof. First, because the definition of µ∗-measurability is symmetric in A and
Ac, the class A is stable under the formation of complement. Next, for any
A,B ∈ A and E ⊂ Ω, the equality

(E ∩Ac ∩B) ∪ (E ∩A ∩Bc) ∪ (E ∩Ac ∩Bc) = E ∩ (A ∩B)c

and the super-additivity of µ∗ imply

µ∗(E) = µ∗(E ∩A) + µ∗(E ∩Ac) = µ∗(E ∩A ∩B)+

+ µ∗(E ∩A ∩Bc) + µ∗(E ∩Ac ∩B) + µ∗(E ∩Ac ∩Bc) ≤
≤ µ∗(E ∩ (A ∩B)) + µ∗(E ∩ (A ∩B)c).

Hence A ∩ B ∈ A, i.e., the class A is an algebra. Moreover, if A,B ∈ A and
A ∩B = ∅ then

µ∗(A ∪B) = µ∗((A ∪B) ∩A) + µ∗((A ∪B) ∩Ac) = µ∗(A) + µ∗(B),

i.e., µ∗ is finitely additive on A.
Finally, if µ∗(A) = 0 and B ⊂ A with A in A then the monotony of µ∗

implies

µ∗(E) ≤ µ∗(E ∩A) + µ∗(E ∩Ac) =

= µ∗(E ∩Ac) ≤ µ∗(E ∩B) + µ∗(E ∩Bc), ∀E ⊂ Ω,

i.e., B ∈ A, and µ = µ∗
∣∣
A is a complete finitely additive measure.

The essential properties of an inner measure are captured by the expression

µ∗(A) = sup
{
µ∗(B) : B ⊂ A, µ∗(B) <∞

}
, ∀A ∈ 2Ω. (B.2)

Indeed, any set function µ∗ with µ∗(∅) = 0 satisfying the sup representation
(B.2) is monotone, super-additive, and semi-finite (i.e., for every set A with
µ∗(A) = ∞ there is a sequence {An} such that An ⊂ A and µ∗(An) → ∞).
Conversely, any semi-finite inner measure µ∗ satisfies (B.2).

B.3.2 Inner Construction

Similarly to the previous sections, our intension is to construct an inner measure
µ∗ (such that its restriction to the µ∗-measurable sets is a measure) out of a
finite-valued set µ : K → [0,∞) defined on a π-class K with µ(∅) = 0. A good
candidate is the following sup expression

µ∗(A) = sup
{ n∑
i=1

µ∗(Ki) :

n∑
i=1

Ki ⊂ A, Ki ∈ K
}
, ∀A ∈ 2Ω. (B.3)

Due to the supremum, there is not need to allow infinite series of sets inside A,
but because K is only a π-class, a finite union is needed. Moreover, contrary
to the case of a semi-ring, additivity on a π-class is almost meaningless and

[Preliminary] Menaldi November 11, 2016



B.3. Inner Measure Approach 337

replaced with the so-called K-tightness, i.e., for every K and K ′ in K with
K ′ ⊂ K we have µ(K) = µ(K ′)+µ∗(KrK ′), in other words, (a) µ is monotone
(i.e., µ(K ′) ≤ µ(K) if K and K ′ in K with K ′ ⊂ K) and (b) for every ε > 0
there exists a finite sequence of disjoint sets {Ki : i < n} ⊂ K such that∑
i<nKi ⊂ K rK ′ and µ(K) ≤ µ(K ′) + ε+

∑
i<n µ(Ki). An important role is

played by the lattice K̄ generated by K (i.e., the class of finite unions of sets in
K) and the class

F ∈ KF iff K ∈ K implies F ∩K ∈ K̄. (B.4)

In this context, if any decreasing sequence {K̄n} of finite disjoint unions of sets
in K, K̄n =

∑
i<mn

Kn,i, with
⋂
n K̄n = ∅ satisfies

∑
i<mn

µ(Kn,i)→ 0, then µ
is called σ-smooth on K at ∅. We are ready to state the main result

Theorem B.25. Let µ be a finite-valued set defined on a π-class K with µ(∅) =
0. Then µ∗ defined by (B.3) is an inner measure. Now, denote by A the algebra
of µ∗-measurable sets and assume that µ is K-tight. Then

A ∈ A iff µ(K) ≤ µ∗(K ∩A) + µ∗(K rA) ∀K ∈ K, (B.5)

the algebra A contains the class KF defined by (B.4), and µ∗
∣∣
K = µ. Moreover,

if µ is σ-smooth on K at ∅ then A is a σ-algebra and µ∗ is a semi-finite complete
measure on A, uniquely determined by µ on the K, i.e., if ν is another semi-
finite measure on a σ-algebra F with K ⊂ F ⊂ A such that ν

∣∣
K = µ then ν = µ∗

on F .

Proof. If E ⊂ F then the supremum defining µ∗(F ) is taken over a larger family,
so µ∗(E) ≤ µ∗(F ). When E ∩ F = ∅, each finite disjoint sequences {Ki} and
{K ′i} with

∑
iKi ⊂ E and

∑
iK
′
i ⊂ F we can construct another finite disjoint

sequence {K ′′i } with
∑
iK
′′
i ⊂ E ∪ F and

∑
i µ(K ′′i ) =

∑
i µ(Ki) +

∑
i µ(K ′i),

which means that µ∗(E) +µ∗(F ) ≤ µ∗(E∪F ). This shows that µ∗ is monotone
and super-additive on 2Ω, and thus (B.3) defines an inner measure µ∗. Therefore,
Proposition B.24 implies that µ∗ is an additive set function (i.e., a finite additive
measure) on algebra A of all µ∗-measurable sets.

Let A be a set satisfying µ(K) ≤ µ∗(K ∩ A) + µ∗(K r A) for any K in K.
Since µ∗ is super-additive and monotone, if

∑n
i=1Ki = K ⊂ E with Ki in K

then

n∑
i=1

µ(Ki) ≤
n∑
i=1

µ∗(Ki ∩A) +

n∑
i=1

µ∗(Ki rA) ≤

≤ µ∗(K ∩A) + µ∗(K rA) ≤ µ∗(E ∩A) + µ∗(E rA),

and taking the supremum over all finite disjoint sequences {Ki} we deduce
µ∗(E) ≤ µ∗(E ∩A) +µ∗(ErA). The reverse inequality follows from the super-
additivity, and therefore, A belongs to A. This shows (B.5) as desired. The fact
that K is stable under finite intersections was not used in the current (or the
previous) paragraph, but it is needed for later arguments.
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Step 1 (with tightness) From the definition of µ∗ follows that µ(K) ≤
µ∗(K) for every K in K. Now, if K ′′ belongs to K then apply the tightness
property to any set K in K and K ′ = K ∩K ′′ to get

µ(K) = µ(K ∩K ′′) + µ∗(K rK ′′) ≤ µ∗(K ∩K ′′) + µ∗(K rK ′′),

which implies, after invoking (B.5), that K ′′ belongs to the algebra A, i.e.,
K ⊂ A. Moreover, if F belongs to KF then for any set K in K, the intersection
K ∩F is a finite union of sets in K ⊂ A. Thus KrF = Kr (K ∩F ) and K ∩F
belong to the algebra A, and hence, the additivity of µ∗ yields

µ(K) ≤ µ∗(K) = µ∗(K ∩ F ) + µ∗(K r F )

which implies that F belongs to the algebra A, i.e., KF ⊂ A
To show that µ = µ∗ on K, pick K =

∑n
i=1Ki with all sets in K and use the

tightness condition with K and K ′ = K1 to obtain µ(K) = µ(K1)+µ∗(KrK1).
Since µ ≤ µ∗ on K, K r K1 =

∑n
i=2Ki and µ∗ is additive on A ⊃ K we

have µ∗(K rK1) ≥
∑n
i=2 µ(Ki), which yields µ(K) ≥

∑n
i=1 µ(Ki), the super-

additivity of µ. Therefore, the sup defining µ∗(K) is achieved for K and µ(K) =
µ∗(K) for every K in K, which means that µ = µ∗ is additive on K.

Step 2 (σ-smooth) Even if we suppose that µ∗ is monotone continuous
from above on K at ∅ (i.e., σ-smooth), then µ∗ is σ-additive on the algebra
A, and therefore, Caratheodory extension Theorem B.16 ensures that µ∗ can
be extended to a measure on the σ-algebra generated by A, but a priori, the
extension needs not to be preserve the sup representation (B.3).

The next point is to show that A is a µ∗-complete σ-algebra, independent
of the fact that Caratheodory extension of (µ∗,A) yields a complete measure
(µ̄∗, Ā). Actually, the completeness of µ∗ comes from Proposition B.24.

Let us prove that µ∗ is σ-smooth on A at ∅, i.e., if {An} ⊂ A is a decreasing
sequence with

⋂
nAn = ∅ and µ∗(A1) < ∞ then µ∗(An) → 0. Indeed, the sup

definition (B.3) of µ∗ ensures that for any ε > 0 and for any n ≥ 1 there exist a
finite disjoint union K̃n of sets in K such that K̃n ⊂ An and µ∗(An)− ε2−n <
µ∗(K̃n). Define the decreasing sequence {K̃ ′n} with K̃ ′n =

⋂
i≤n K̃i (which can

be written as a finite disjoint union of sets in K) and use the σ-smoothness
property of µ to obtain µ∗(K̃

′
n)→ 0. Since the inclusion Anr K̃ ′n ⊂

⋃
i≤n(Air

K̃i) yields

µ∗(An r K̃ ′n) ≤
∑
i≤n

µ∗(Ai r K̃i) ≤
∑
i≤n

ε2−i ≤ ε,

and µ∗(An) = µ(K̃ ′n) + µ∗(An r K̃ ′n), we deduce that µ∗(An) → 0, i.e., µ∗ is
σ-smooth on A at ∅.

Step 3 (finishing) Now, to check that A is a σ-algebra, we have to show
only that A is stable under the formation of countable intersections, i.e., if
{Ai, i ≥ 1} is a sequence of sets in A then we should show that A =

⋂
iAi also

belongs to A. For this purpose, from the sup definition (B.3) of µ∗ and because
A contains any finite union of sets in K, for any ε > 0 and for any set K in K
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there exist a set A′ ⊂ K∩A in A such that µ∗(K∩A)−ε < µ∗(A
′). Thus, define

the decreasing sequence {Bn} with Bn =
⋂
i≤nAi to have

⋂
n

(
K∩Bn∩A′

)
= A′

and to use the σ-smoothness of µ∗ on A with the sequence (K ∩Bn ∩A′) rA.
Hence limn µ∗(K ∩Bn ∩A′) = µ∗(A

′), which yields

lim
n
µ∗(K ∩Bn) ≥ lim

n
µ∗
(
K ∩Bn ∩A′) = µ∗(A

′) > µ∗(K ∩A)− ε

and proves that limn µ∗(K ∩Bn) = µ∗(K ∩A). Recall that Bn is in A to have

µ(K) ≤ µ∗(K ∩Bn) + µ∗(K rBn) ≤ µ∗(K ∩Bn) + µ∗(K rA),

and, after taking n → ∞ and invoking the condition (B.5), to deduce that A
belongs to A, i.e., A is a σ-algebra.

The final argument is to show that µ∗ is σ-additive. Indeed, pick a sequence
{An} ⊂ A with A =

∑
nAn. If A is a set in A with finite measure µ∗(A) <∞

then the σ-smoothness property of µ∗ on A implies that µ∗
(
Ar

∑
i<nAi

)
→ 0,

i.e., µ∗(A) =
∑
n µ∗(An). If µ∗(A) = ∞, the sup definition (B.3) ensures

that there exists a sequence {A′k} ⊂ A such that A′k ⊂ A, µ∗(A
′
n) < ∞ and

µ∗(A
′
k) → ∞. Hence µ∗(A

′
k) =

∑
n µ∗(A

′
k ∩ An) ≤

∑
n µ∗(An), and as k → ∞

we deduce ∞ =
∑
n µ∗(An), i.e., µ∗ is σ-additive on the σ-algebra A.

The uniqueness of µ∗ is not really an issue, we have to show that if another
semi-finite measure ν on a σ-algebra F ⊂ A containing the class K and such
ν = µ on K then ν = µ∗ on F . Indeed, they both agree on any set of finite
measure, and for any set F in F with infinite measure there exists a sequence
{Fn} ⊂ F with ν(Fn) <∞, Fn ⊂ F and limn ν(Fn) = ν(F ), i.e., ν(F ) = µ∗(F )
too.

Note that the σ-smoothness on K at ∅ and the K-tightness assumptions are
really conditions on the π-class K̃ of all disjoint unions of sets in K. Indeed, it
is clear that if (a) µ is monotone on K and (b) µ is additive on K (i.e., µ(K) =∑
i<n µ(Ki) whenever K =

∑
i<nKi are sets in K) then µ can be extended (in

a unique way) to the π-class K̃ preserving (a) and (b) by setting µ(
∑
i<nKi) =∑

i<n µ(Ki). Therefore, K-tightness translates into three properties: (a), (b)

and (c) for every K ⊃ K ′ sets in K (could be in K̃) and every ε > 0 there exists
K̃ ⊂ KrK ′ in K̃ such that µ(K) ≤ µ(K ′) + ε+µ(K̃). Similarly, σ-smoothness
on K at ∅ translates into one condition: any decreasing sequence {K̃n} of sets
in K̃ such that

⋂
n K̃n = ∅ satisfies µ(K̃n)→ 0. With this in mind, there is not

loss of generality if in Theorem B.25 we assume that the π-class K is also stable
under the formation of finite disjoint unions.

• Remark B.26. If the class K contains the empty set ∅, but it is not necessarily
stable under finite intersections, then the sup-expression (B.3) defines an inner
measure µ∗. Hence, Proposition B.24 proves that µ∗ is a finitely additive set
function on the algebra A of µ∗-measurable sets. Moreover, if a subset A of Ω
satisfies µ(K) ≤ µ∗(K ∩A) + µ∗(K rA) for any K in K then A belongs to A.
However, it is not affirmed that K ⊂ A.
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• Remark B.27. If the finite-valued set function µ defined on the π-class K
can be extended to a (finitely) additive set function µ̄ define on the semi-ring
S generated by K then µ is necessarily K-tight. Indeed, first recall that µ̄
is additive on the semi-ring S if (by definition) µ̄(S) =

∑
i<n µ̄(Si), for any

finite sequence {Si, i < n} of disjoint sets in S with S =
∑
i<n Si also in

S. Thus, if K ⊃ K ′ are sets in K then K r K ′ is a finite disjoint unions of
sets in S, i.e., K r K ′ =

∑
i<n Si, and the additivity of µ̄ implies µ(K) =

µ(K ′) +
∑
i<n µ̄(Si). Hence, this yields the following monotone property: if∑

i<n Si ⊂ S with all sets in S then
∑
i<n µ̄(Si) ≤ µ̄(S), and as a consequence,

µ(K) = µ(K ′) +
∑
i<n µ∗(Si), i.e., µ is K-tight. Therefore, Proposition B.18 on

Caratheodory extension from a semi-ring and the previous Theorem B.25 can
be combined to show a σ-additive set function µ defined on a semi-ring S can
be extended to an inner measure by means of the sup expression (B.3) with K
replaced by S. In this case µ∗ ≤ µ∗ in 2Ω, and µ∗ = µ∗ on the completion of
the σ-algebra generated by S.

The interested reader may check the books by Halmos [63, Section III.14, pp.
58–62] and Pollard [102, Appendix A, pp. 289–300]. For instance, the books by
Cohn [28], Bogachev [19] and Mattila [87] could be used for even further details.

B.4 Examples and Convergence

First the prototype Lebesgue measure is presented and then some quick dis-
cussed on convergence in measure is necessary.

B.4.1 Lebesgue Measures

Three approaches for the construction of measures have been described, first the
outer measure, which begins with almost not assumptions (Caratheodory’s con-
struction Theorem B.13 and Proposition B.14), but they are really useful under
the semi-ring condition of Proposition B.18. Next, the inner measure, which
begins from a π-class (Proposition B.24 and Theorem B.25), but it is mainly
used in conjunction with topological spaces. Finally, there is another more ge-
ometric approach, the so-called Hausdorff construction, which is not discussed
here. Certainly, all three can be used to construct the Lebesgue measure in Rd.

As we have seen early, the Borel σ-algebra B(Rd) can be generated by the
class Id of all d-dimensional intervals as

]a, b] = {x ∈ Rd : ai < xi ≤ bi, i = 1, . . . , d}, ∀a, b ∈ Rd, a ≤ b,

in the sense that ai ≤ bi for every i. The class Id is a semi-ring in Rd and
clearly, we can cover the whole space with an increasing sequence of intervals in
Id. Sometimes, we prefer to use a semi-algebra of d-intervals, e.g., adding the
cases ] −∞, bi] or ]ai,+∞[ for ai, bi ∈ R, among others, under the convention
that 0∞ = 0 in the product formula below. Therefore, to define a σ-finite
measure on B(Rd) (via the Caratheodory’s construction Proposition B.18) we
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need only to know its (nonnegative real) values and to show that it is σ-additive
on Id.

Proposition B.28. The Lebesgue measure m, defined by

m
(
]a, b]

)
=

d∏
i=1

(bi − ai), ∀a, b ∈ Rd, (B.6)

is σ-additive on Id.

Proof. Using the fact that for any two intervals ]a, b] and ]c, d] in Id such that
]a, b]∩]c, d] = ∅ and ]a, b]∪]c, d] belongs to Id there exists exactly one coordinate
j such that ]aj , bj ]∪]cj , dj ] =]aj ∧ cj , bj ∨ dj ] and ]ai, bi] =]ci, di] for any i 6= j,
it is relatively simple to check that the above definition produces an additive
measure, and to show the σ-additivity, we use the character locally compact of
Rd. Indeed, let I, In ∈ Id be such that I =

∑∞
n=1 In, and for any ε > 0 define

Jn = Jn(ε) = {x ∈ Rd : an,i < xi ≤ bn,i + 2−nε},

for In =]an, bn]. It is clear that there is a constant c > 0 such that bn,i−an,i ≤ c,
for every n, i, which yields the estimate

0 ≤
∞∑
n=1

(
m(Jn)−m(In)

)
≤ C ε, ∀ε ∈ (0, 1], (B.7)

for a suitable constant C = C(c, d) depending only on c and the dimension d.
Similarly, if I =]a, b] and Iε = {x ∈ Rd : ai + ε < xi ≤ bi}, then m(Iε)→ m(I),
as ε decreases to 0.

Now, the interiors {J◦n(ε)} constitute a sequence of open sets which cover
the (compact) closure Īε, and therefore, there exists a finite subcover, namely
J◦n1

(ε), . . . , J◦nk(ε). Hence, Jn1
(ε), . . . , Jnk(ε) will cover Iε, and in view of the

sub-additivity we deduce

m(Iε) ≤
k∑
i=1

m(Jni) ≤
∞∑
n=1

m(Jn) ≤ C ε+

∞∑
n=1

m(In).

Because ε > 0 is arbitrary, we get m(I) ≤
∑∞
n=1m(In).

Finally, since I ⊃
∑k
n=1 In, the additivity implies m(I) ≥

∑k
n=1m(In), and

as k →∞ we conclude.

Usually, the measure m (or sometimes denotes by ` or `d to make explicit the
dimension d) considered on the Borel σ-algebra is called Lebesgue-Borel measure
and its extension (or completion) to the σ-algebra L of all m∗-measurable sets
is called the Lebesgue measure.

• Remark B.29. A direct consequences of this construction is the following list
of properties for the (outer) Lebesgue measure (`∗) ` on (Rd,L):
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(1) (a) any Borel set is measurable and that the boundary ∂I of any semi-open
(semi-close) d-interval I in the semi-ring Id has Lebesgue measure zero; (b) for
any subset A of Rd and any ε > 0 there is an open set O containing A such
that `∗(A) + ε ≥ `(O), and also there is a countable intersection of open sets G
containing A such that `∗(A) = `(G).

(2) (a) for any measurable set A with `(A) < ∞ and any ε > 0 there exits an
open set O with `(O) < ∞ and a compact set K such that K ⊂ A ⊂ O and
`(O rK) < ε; (b) for every measurable set A ⊂ Rd and any ε > 0 there exits
a closed set C and an open set O such that C ⊂ A ⊂ O and `(O r C) < ε.
Moreover, if Fσ denotes the class of countable unions of closed sets in Rd and
Gδ denotes the class of countable intersections of open sets in Rd then (c) for
any measurable set A there exits a set G in Gδ and a set F in Fσ such that
F ⊂ A ⊂ G and `(Gr F ) = 0.

(3) If İd denotes the class of open bounded d-intervals in Rd and the hyper-
volume set function m, i.e., of the form I = (a1, b1)× · · ·× (ad, bd), with ai ≤ bi
in R, i = 1, . . . , d, and m(I) = (b1−a1) · · · (bd−ad). Even if İd is not a semi-ring,
the outer measure

m∗(A) = inf
{ ∞∑
n=1

m(In) : In ∈ İd, A ⊂
∞⋃
n=1

In

}
, ∀A ⊂ Rd,

can certainly be defined, and Caratheodory’s construction Proposition B.14
yields the same Lebesgue measure as defined by means of Proposition B.28.

Also, the Borel σ-algebra B(Rd) can be generated by the class Kd of all
d-dimensional compact intervals as

[a, b] = {x ∈ Rd : ai ≤ xi ≤ bi, i = 1, . . . , d}, ∀a, b ∈ Rd, a ≤ b,

in the sense that ai ≤ bi for every i. This Kd is a π-class and Theorem B.25)
can be applied with

m
(
[a, b]

)
=

d∏
i=1

(bi − ai), ∀a, b ∈ Rd, (B.8)

provided m is additive or tight (B.5), which can be shown with argument similar
to those used in Proposition B.28.

The reader interested in the Lebesgue measure on Rd may check the books
either Gordon [56, Chapters 1 and 2, pp. 1–27] or Jones [70, Chapters 1 and 2,
pp. 1-63] where a systematic approach of the Lebesgue measure and measura-
bility is considered, in either a one dimensional or multi-dimensional settings.

From the definition of the Lebesgue measure, we can check thatm is invariant
under translations, i.e., for a given h ∈ Rd we have that E measurable implies
E + h = {x ∈ Rd : x− h ∈ E} measurable and m(E + h) = m(E). We will see
later that the same is true for a rotation, i.e. if r is an orthogonal d-dimensional
matrix and E is measurable then r(E) = {x ∈ Rd : r(x) ∈ E} is measurable
and m

(
r(E)

)
= m(E). Moreover, we have
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Theorem B.30 (invariance). Let T be an affine transformation from Rd into
itself with the linear part represented by a d-square matrix, also denoted by T .
Then for every A ⊂ Rd we have m∗

(
T (A)

)
= |det(T )|m∗(A), where det(T ) is

the determinant of the matrix T and m∗ is the Lebesgue outer measure on Rd.

Proof. First the translation part of the affine transformation has already been
considered, so only the linear part has to be discussed. Secondly, recall that
an elementary matrix E produces one of the following row operations (1) inter-
change rows, (2) multiply a row by a non zero scalar, (3) replace a row by that
row minus a multiple of another. Next, any invertible matrix can be expressed
as a finite product of elementary matrix of the type (1), (2) and (3). Thus, if T
is invertible, we need only to show the result for elementary matrix of type (2)
and (3), since the expression of the Lebesgue measure is clearly invariant under
a transformation of type (1).

Let T be an elementary matrix and for the reference d-interval J =]0, 1] ×
· · ·×]0, 1] define α = m(T (J)). If T is of type (2) and c is the corresponding
scalar then one (and only one) of the interval ]0, 1] becomes either ]0, c] or ]c, 0],
i.e., m(T (J)) = |c| = |det(T )|. On the other hand, if T is of type (3) then
we get also α = |det(T )|, e.g., T replaces row 1 by the result of row 1 plus
c times row 2, and working with d = 2, the reference square for J becomes
a rhombus T (J) with base and hight 1 (the c only twist the square). Here,
we need to verify that the measure of a right triangle is its area. This proves
that m(T (J)) = |det(T )|m(J). By iteration, T can be replaced by a product
of elementary matrices. In particular, the case of a dilation x 7→ rx we have
m(rJ) = rdm(J).

Let us now look at the general case m∗(T (A)) with A ⊂ Rd and T elementary
matrix. Again, to show this point we need to consider only the case of an open
set A. Note that T and it inverse T−1 are continuous, so that A is open (or
compact) if and only if T (A) is so. Thus, for a given open set A, first pave Rd
with d-intervals ]a1, a1 + 1]× · · ·×]ad, ad + 1], with ai integers, and select those
d-intervals inside A. Then pave each unselected d-interval with 2d d-intervals by
bisecting the edges of the original d-intervals, the resulting d-intervals have the
form ]a1/2, a1/2 + 1/2] × · · ·×]ad/2, ad/2 + 1/2], with ai integers. Now, select
those d-intervals inside A. By continuing this procedure, we have A =

⋃∞
k=1 Jk

where the Jk are disjoint d-intervals and each of them is a translation of a
dilation of the reference d-interval J, i.e., Jk = tk + rkJ. As mentioned before,
translation does not modify the measure and a (rk) dilation amplify the measure
(by a factor of |rk|d), i.e., m(Jk) = |rk|dm(J). Since T (Jk) = T (tk) + rk(T (J)),
the previous argument shows that m(T (Jk)) = |det(T )|m(Jk). Hence, by the
σ-additivity m(T (A)) = m(A).

Finally, if T is not invertible then det(T ) = 0 and the dimension of T (Rd)
is strictly less than d. As mentioned early, any hyperplane perpendicular to
any axis, e.g., π = {x ∈ Rd : x1 = 0} has measure zero, and then for any
invertible linear transformation (in particular orthogonal) S we have m(S(π)) =
|det(S)|m(π) = 0, i.e., any hyperplane has measure zero. In particular, we have
m(T (Rd)) = 0.
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• Remark B.31. As a consequence of Theorem B.30, for any given affine trans-
formation T from Rd into itself, we deduce that T (E) is m∗-measurable if and
only if E is m∗-measurable. Note that the situation is far more complicate for
an affine transformation T : Rd → Rn and we use the Lebesgue (outer) measure
(m∗) m on Rd and Rn, with d 6= n, see later sections on Hausdorff measure.

• Remark B.32. Recall that the diameter of a set A in Euclidean space Rd is
defined as d(A) = sup{|x − y| : x, y ∈ A}. If a set A is contained in a ball
of diameter d(A) then the monotony of the Lebesgue outer measure m∗ in Rd
implies

m∗(A) ≤ cd
(
d(A)/2

)d
, ∀A ⊂ Rd, (B.9)

where cd is the volume of unit ball in Rd, calculated later as

cd = π−d/2 Γ(d/2 + 1), Γ(α) =

∫ ∞
0

tα−1e−tdt,

with Γ(·) is the Gamma function. Certainly, any set A with diameter d(A) is

contained in a ball of radius d(A), which yields the estimate m∗(A) ≤ cd
(
d(A)

)d
.

However, an equilateral triangle T in R2 is not contained in a ball of radius
d(A)/2. For instance, a carefully discussion on the isodiametric inequality
(B.9) can be found in Evans and Gariepy [43, Theorem 2.2.1, pp. 69-70] or
in Stroock [118, Section 4.2, pp. 74-79 ].

B.4.2 Convergence in Measure

For functions from a measure space into a topological space we may think of
various modes of convergence. For instance, (1) fn → f pointwise a.e. (almost
everywhere) if there exists a set N ∈ F with µ(N) = 0 such that f(x) → f(x)
for every x ∈ Ω rN ; or (2) fn → f pointwise quasi-uniform (quasi-uniformly)
if for every ε > 0 there exists a set Ωε ∈ F with µ(Ω r Ωε) ≤ ε such that
fn(x)→ f(x) uniformly in Ωε. It is clear that (2) implies (1) and the converse
is not necessarily true. Also we have

Definition B.33. Let (Ω,F , µ) be a measure space and (E,d) be a metric
space. A sequence {fn}, fn : Ω → E, of measurable functions is a Cauchy
sequence in measure (or in probability if µ(Ω) = 1) if for every ε > 0 there exists
n(ε) such that µ({x ∈ Ω : d

(
fn(x), fm(x)

)
≥ ε}

)
< ε for every n,m ≥ n(ε).

Similarly, fn → f in measure, if for every ε > 0 there exists n(ε) such that
µ({x ∈ Ω : d

(
fn(x), f(x)

)
≥ ε}

)
< ε for every n ≥ n(ε).

Note that we may use the distance d(x, y) = | arctan(x) − arctan(y)|, for
any x, y in E = [−∞,+∞], when working with extended-valued measurable
functions, i.e., the mapping z 7→ arctan z transforms the problem into real-
valued functions. It is clear that for any sequence {xn} of real numbers we
have xn → x if and only if arctan(xn) → arctan(x), but the usual distance
(x, y) → |x − y| and d(x, y) are not equivalent in R. Actually, consider the
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sequence {fn(x) = (x + 1/n)2} on Lebesgue measure space (R,L, `) and the
limiting function f(x) = x2 to check that

`
(
{x ∈ R : |fn(x)− f(x)| ≥ ε}

)
= `
(
{x ∈ R : |x+ (1/n)| ≥ nε}

)
=∞,

for every ε > 0 and n ≥ 1, i.e., fn does not converge in measure to f . However,
if gn(x) = arctan

(
fn(x)

)
and g(x) = arctan(x2) then |gn(x) − g(x)| ≤ 1/n,

i.e, gn converges to g uniformly in R. Thus, on the Lebesgue measure space
(R,L, `), we have gn → g in measure, i.e., the convergence in measure depends
not only on the topology given to R, but actually, on the metric used on it.

• Remark B.34. It is simple to verify that if the sequence {fn}, fn : Ω→ E, of
measurable functions is convergent (or Cauchy) in measure, (Z,d

Z
) is a metric

space and ψ : E → Z is a uniformly continuous function then the sequence {gn},
gn(x) = ψ(fn(x)) is also convergent (or Cauchy) in measure. Thus, in particular,
if (E, | · |

E
) is a normed space then for any sequences {fn} and {gn} of E-valued

measurable functions and any constants a and b we have afn + bgn → af + bg
in measure, whenever fn → f and gn → g in measure. Moreover, assuming
that the sequence {gn} takes real (or complex) values, (a) if the sequences are
also quasi-uniformly bounded, i.e., for any ε > 0 there exists a measurable
set F with µ(F ) < ε such that the numerical series {|fn(x)|

E
} and {|gn(x)|}

are uniformly bounded for x in F c, then deduce that fngn → fg in measure.
Furthermore, (b) if gn(x)g(x) 6= 0 a.e. x and the sequences {fn} and {1/gn} are
also quasi-uniformly bounded then show that fn/gn → f/g in measure. Finally,
(e) verify that if the measure space Ω has finite measure then the conditions on
quasi-uniformly bounded are automatically satisfied.

For the particular case when E = Rd the convergence in measure means

lim
n
µ
(
{x ∈ Ω : |fn(x)− f(x)| ≥ ε}

)
= 0, ∀ε > 0,

and if fn(x) = 1{|x|>n} then fn(x) → 0 for every x in Rd, but `
(
{x ∈ Rd :

|fn(x)| ≥ ε}
)

= ∞, with the Lebesgue measure `, i.e., the pointwise almost
everywhere convergence does not necessarily yields the convergence in measure.
However, we have

Theorem B.35. Let (Ω,F , µ) be a measure space, E be a complete metric space
and {fn} be a Cauchy sequence in measure of measurable functions fn : Ω→ E.
Then there exist (1) a subsequence {fnk} such that fnk → f pointwise a.e. and
(2) a measurable function f such that fn → f in measure. Moreover, if fn → g
in measure then g = f a.e.

Proof. Given ε > 0 define X(ε, n,m) = {x ∈ Ω : d
(
fn(x), fm(x)

)
≥ ε} to

see that for ε = 2−1 > 0 we can find n1 such that µ
(
X(ε, n1,m)

)
< ε for

every m ≥ n1. Next, for ε = 2−2 > 0 again, we can find n2 > n1 such that
µ
(
X(ε, n2,m)

)
< ε for every m ≥ n2. By induction, we get nk < nk+1 and

Ak = X(2−k, nk, nk+1) with µ(Ak) < 2−k, for every k ≥ 1.
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Now, if Fk =
⋃∞
i=k Ai then µ(Fk) ≤

∑∞
i=k 2−i = 21−k. On the other hand,

if x 6∈ Fk then for any i ≥ j ≥ k we have

d
(
fnj (x), fni(x)

)
≤

i−1∑
r=j

d
(
fnr+1(x), fnr (x)

)
≤

i−1∑
r=j

2−r ≤ 21−k, (B.10)

i.e., {fni(x)} is a Cauchy sequence in E, for every x 6∈ Fk.
Define F =

⋂
k Fk to have µ(F ) ≤ µ(Fk), for every k, i.e., µ(F ) = 0. If x 6∈ F

then x belongs to a finite number of Fk and therefore, because E is complete,
there exists the limit of {fnk(x)}, which is called f(x). If x ∈ F we set f(x) = 0.
Hence fnk → f almost everywhere.

Let i→∞ in (B.10) to have d
(
fnk(x), f(x)

)
≤ 21−k for every x 6∈ Fk. Since

µ(Fk) ≤ 21−k → 0, we deduce that fnk → f in measure, and in view of the
inclusion

{x : d
(
fn(x), f(x)

)
≥ ε} ⊂ {x : d

(
fn(x), fnk(x)

)
≥ ε/2} ∪

∪ {x : d
(
fnk(x), f(x)

)
≥ ε/2}, ∀ε > 0,

the whole sequence fn → f in measure. Moreover, in view of

{x : d
(
f(x), g(x)

)
≥ ε} ⊂ {x : d

(
fn(x), g(x)

)
≥ ε/2} ∪

∪ {x : d
(
fn(x), f(x)

)
≥ ε/2}, ∀ε > 0,

if fn → g in measure then f = g a.e.

• Remark B.36. In a measure space (Ω,F , µ), take a measurable set A ∈ F
with 0 < µ(A) ≤ 1 and find a finite partition A =

⋃k
i=1Ak,i with 0 < µ(Ak,i) ≤

1/k, for every i. If {ak} and {bk} are two sequences of real numbers then we
construct a sequence of functions {fn} as follows: the sequence of integers
{1, 2, 3, . . . , 10, 11, . . .} is grouped as {(1); (2, 3); (4, 5, 6); (7, 8, 9, 10); . . .} where
the k group has exactly k elements, i.e., for any n = 1, 2, . . . , we select first
k = 1, 2, . . . , such that (k − 1)k/2 < n ≤ k(k + 1)/2 and we write (uniquely)
n = (k − 1)k/2 + i with i = 1, 2, . . . , k to define

fn(x) =

{
ak if x ∈ ArAk,i,

bk if x ∈ Ak,i.

Assuming that ak → a as k → ∞ and |bk − a| ≥ c > 0 for any k, we have
µ
(
{|fn − a| ≥ ε}

)
= µ(Ak,i) ≤ 1/k ≤ 2/

√
n for every 0 < ε < c, i.e., fn → f

in measure with f(x) = a for every x. However, for every x ∈ A there exist
i, k such that x ∈ Ak,i and fn(x) = bk, i.e., fn(x) does not converge to f(x).
Moreover, for any given b ≤ a ≤ b, we can choose bk so that lim infn fn(x) = b
and lim supn fn(x) = b, for every x ∈ A.

Sometimes we begin with a known notion of convergence to define closed
sets in a space X. For instance, if we know that the “convergence xn → x”
satisfies the following (Kuratowski) three axioms (1) uniqueness of the limit;
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(2) for very x in X, the constant sequence {x, x, . . .} converges to x; (3) given
a sequence {xn} convergent to x, every subsequence {xn′} ⊂ {xn} converges
to the same limit x; then we can define the open sets in the topology T as the
complement of closed set, where a set C is closed if for any sequence {xn} of
point in C such that xn → x results x in C. Next, knowing the topology T we

have the “convergence xn
T→ x,” i.e., for any open set O (element in T ) with

x ∈ O there exists an index N such that xn ∈ O for any n ≥ N. Actually, this

means that xn
T→ x if and only if for any subsequence {xn′} of {xn} there exists

another subsequence {xn′′} ⊂ {xn′} such that xn′′ → x. Clearly, if xn → x then

xn
T→ x. If the initial convergence xn → x comes from a metric, then we can

verify that xn → x is equivalent to xn
T→ x, but, in general, this could be false.

For instance, let (Ω,F , µ) be a measure space with µ(Ω) < ∞, and consider
the space X of real-valued measurable functions (actually, equivalent classes
of functions because we have identified functions almost everywhere equal),
with the almost everywhere convergence xn(ω) → x(ω) a.e. ω. By means of

Theorem B.35 we see that xn
T→ x if and only if xn → x in measure.

• Remark B.37. Assume that (Ω,F , µ) is a measure space, (E, d) a metric space
and {fn} a sequence of measurable functions fn : Ω→ E. It is relatively simple
to show that if {fn} converges to some function f pointwise quasi-uniform then
fn → f in measure.

Recall the definition of Borel (outer) measure µ (e.g., the Lebesgue mea-
sure): for every set F with finite outer measure µ∗(F ) < ∞ and any constant
ε > 0 there exists an open set O ⊃ F with µ(O r F ) < ε. Now, let us com-
pare the pointwise almost everywhere convergence with the pointwise uniform
convergence and the convergence in measure. We have

Theorem B.38 (Egorov). If µ(Ω) < ∞ then pointwise almost everywhere
convergence implies pointwise quasi-uniform convergence, i.e., if a sequence
{fn} of measurable functions taking values in a metric space (E,d) satisfies
fn(x) → f(x) a.e. in x, then for every ε > 0 there exists an index nε and a
set F ∈ F with µ(F ) < ε such that d

(
fn(x), f(x)

)
< ε for every n ≥ nε and

x ∈ F c = Ω r F. Moreover, if µ is a Borel measure then F = O is an open set
of Ω.

Proof. Even if this is not necessary, we first prove that assuming a finite mea-
sure, pointwise almost everywhere convergence implies convergence in mea-
sure. Indeed, given a sequence {fn} and a function f, define X(ε, fn, f) =
{x ∈ Ω : d

(
fn(x), f(x)

)
≥ ε} to check that fn(x) → f(x) if and only if

x 6∈ Fε =
⋂∞
n=1

⋃∞
k=nX(ε, fk, f) for every ε > 0. Since X(ε, fn, f) ⊂ Fε,n =⋂n

k=1

⋃∞
i=kX(ε, fi, f), we have µ

(
X(ε, fn, f)

)
≤ µ(Fε,n), and therefore

lim sup
n

µ
(
X(ε, fn, f)

)
≤ lim

n
µ(Fε,n), ∀ε > 0.

If fn → f pointwise almost everywhere then µ(Fε) = 0 for every ε > 0, and if
also µ is a finite measure then µ(Fε,n)→ µ(Fε) = 0.
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To show the quasi-uniform convergence, let k, n be positive integers and set

Ak(n) =

∞⋃
m=n

{x : d
(
fm(x), f(x)

)
≥ 1/k} =

∞⋃
m=n

X(1/k, fm, f).

It is clear that Ak(n) ⊃ Ak(n + 1) for any k, n, and the almost everywhere
convergence implies that µ(Bk) = 0 with

⋂∞
n=1Ak(n) = Bk. Since µ(Ω) < ∞

we deduce µ(Ak(n)) → 0 as n → ∞. Hence, given ε > 0 and k, choose nk
such that µ(Ak(nk)) < ε2−k and define F =

⋃∞
k=1Ak(nk). Thus µ(F ) < ε, and

d
(
fn(x), f(x)

)
< 1/k for any n > nk and x /∈ F . This yields fn → f uniformly

on F c.
Finally, if µ is a Borel measure then we conclude by choosing an open set

O ⊃ F with µ(O) < 2ε.

As mentioned early, if the measure is not finite then pointwise almost ev-
erywhere convergence does not necessarily implies convergence in measure. The
converse is also false. It should be clear (see Remark B.37) that quasi-uniform
convergence implies the convergence in measure, so that Theorem B.38 also
affirms that if the space has finite measure then pointwise almost everywhere
convergence implies convergence in measure.

• Remark B.39. Another consequence of Egorov Theorem B.38 is the approxi-
mation of any measurable function by a sequence of continuous functions. In-
deed, if µ is a finite Borel measure on Ω and f is µ∗-measurable function with
values in Rd then there exists a sequence {fn} of continuous functions such that
fn → f almost everywhere, see Doob [34, Section V.16, pp. 70-71].

B.4.3 Almost Measurable Functions

For a given measure space (Ω,F , µ), we denote by L0 = L0(Ω,F ;E) the space of
measurable functions f : Ω→ E, where E is a measurable space. However, once
a measure µ is defined on F and a measure space (Ω,F , µ) is constructed, we
may complete the σ-algebra F to get a complete measure space (Ω,Fµ, µ) and to
make use of L0(Ω,Fµ;E), also denoted by L0(Ω, µ;E), instead of L0(Ω,F ;E).
If E is a vector space, to check that L0(Ω,F ;E) is indeed a vector space we
need to know that the sum and the scalar multiplication on E are Borel (or
continuous) operations, e.g., when E is topological vector space or when E is
separable metric space of real (or complex) functions.

Recall that the abbreviation a.e. means almost everywhere, i.e., there exists
a set N (which can be assumed to be F-measurable even if F is not µ-complete)
such that the equality (or in general, the property stated) holds for any point
ω in Ω rN. Thus, assuming that F is complete with respect to µ we have: (a)
if f is measurable and f = g a.e. then g is also measurable; (b) if {fn} are
measurable and fn → f a.e. then f is also measurable. If F is not necessarily
µ-complete then a function f measurable with respect to Fµ, the µ-completion
of F , is called µ-measurable. Now, if ϕ is a µ-measurable simple function then
by the definition of the completion Fµ there exists another F-measurable simple

[Preliminary] Menaldi November 11, 2016



B.4. Examples and Convergence 349

function ψ such that ϕ = ψ a.e., and since any measurable function is a pointwise
limit of a sequence of simple functions, we conclude that for every µ-measurable
function f there exists a F-measurable function g such that f = g a.e.

Therefore, we are interested to study measurable functions defined (almost
everywhere) outside of an unknown set of measure zero, i.e., f : Ω r N → E
measurable with µ(N) = 0. To go further in this analysis, we use E = Rn, n ≥ 1
or R = [−∞,+∞], or in general a (complete) metric (or Banach) space E with
its Borel σ-algebra E . Clearly, the case E = Rn, n ≥ 1 is of main interest, as
well as when E is a infinite dimensional Banach space.

We endow L0(Ω,F ;E) with the topology induced by convergence in measure.
This topology does not separate points, so to have a Hausdorff space we are
forced to consider equivalence class of functions under the relation f ∼ g if and
only if there exists a set N ∈ F with µ(N) = 0 and f(ω) = g(ω) for every
ω ∈ Ω r N. Thus, the quotient space L0 = L0/∼ or L0(Ω,F , µ;E) becomes
a Hausdorff topological space with the convergence in measure. Actually, we
regard the elements of L0 as measurable functions defined almost everywhere, so
that even if L0(Ω,F ;E) may not be equal to L0(Ω,Fµ;E), we are really looking
at L0 = L0(Ω,Fµ, µ;E) = L0(Ω, µ;E). Note that for the quotient space L0

(where the elements are equivalence classes) we may omit the σ-algebra F from
the notation, while for the initial space L0 we may use the whole measure space
(Ω,F , µ). Note that if Ω0 is a measurable subset in a measure space (Ω,F , µ)
then we may define the restriction to Ω0, of F and µ to form the measure space
(Ω0,F0, µ0), and for instance, we may talk about functions measurable on Ω0.

Definition B.40. When the space E is not separable, we need to modify the
concept of measurability as follows: on a measure space (Ω,F , µ) a function
with values in a Borel space (E, E) is called measurable if (a) f−1(B) belongs
to F for every B in E and (b) f(Ω) is contained in a separable subspace of
E. Also, functions measurable with respect to the completion Fµ are called µ-
measurable. An equivalence class of µ-measurable functions is called an almost
measurable function, which is considered defined only almost everywhere, i.e.,
a function whose restriction to the complement of a null set is a measurable
function. This space L0(Ω,F , µ;E) = L0(Ω,Fµ, µ;E) of E-valued measurable
functions defined almost everywhere is denoted by L0(Ω, µ;E) and by L0, when
the meaning is clear from the context. Certainly, “equality” in L0 means µ-
almost everywhere pointwise equality.

In most of the cases, E is a metric space and E is its Borel σ-algebra. The
imposition of a separable range f(Ω) is rather technical, but necessary most of
the time. Most of the time, we have in mind the typical case of E being a Polish
space (mainly, the extended Rd), so that this condition is always satisfied.

Proposition B.41. Let (Ω,F , µ) be a measure space and (E,dE) be a metric
space. If f and g are two almost measurable functions from Ω into E, we define

dµ(f, g) = inf
{
r > 0 : µ

(
{ω ∈ Ω : dE(f(ω), g(ω)) > r}

)
≤ r
}
.
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Then (1) the map (f, g) → dµ(f, g) is a metric on L0 = L0(Ω,F , µ;E); (2)
on has dµ(fn, f) → 0 if and only if fn → f in measure; (3) the metric dµ is
complete in L0 whenever dE is complete in E.

Proof. Note that to have dµ(f, g) fully define, we should contemplate the pos-
sibility of having µ

(
{ω ∈ Ω : dE(f(ω), g(ω)) > r}

)
=∞ for every r > 0, in this

case, we define dµ(f, g) =∞. Thus, to make a proper distance we could replace
dµ(f, g) with dµ(f, g) ∨ 1, or equivalently re-define

dµ(f, g) = inf
{
r ∈ (0, 1] : µ

(
{ω ∈ Ω : dE(f(ω), g(ω)) > r}

)
≤ r
}
,

with the understanding that inf{∅} = 1.
First, we can check that dµ satisfies the triangular inequality and becomes a

metric (or distance) in L0. Now, by definition, there exists a decreasing sequence
rn = rn(f, g) such that rn → dµ(f, g) and µ

(
{ω ∈ Ω : dE(f(ω), g(ω)) > rn}

)
≤

rn, the monotone continuity from below of the measure µ shows that

µ
(
{ω ∈ Ω : dE(f(ω), g(ω)) > dµ(f, g)}

)
≤ dµ(f, g),

i.e., convergence in measure is given as the convergence in the metric dµ. Finally,
we conclude by applying Theorem B.35.

Consider S0 = S0(Ω,F ;E) ⊂ L0 and S0 = S0(Ω, µ;E) ⊂ L0, the subspaces
of all simple functions, (i.e., measurable functions assuming only a finite number
of values). We may also consider S0(Ω,Fµ;E) if needed. Clearly, S0 is not
closed (nor complete) in L0. For instance, if E is a separable metric space then
for any element f in L0(Ω, µ;E) there exists a sequence {fn} ⊂ L0(Ω, µ;E) and
a null set N such that fn is a measurable function assuming only a finite number
of values (i.e., fn is an almost everywhere simple function), and dE(fn(ω), f(ω))
decreases to 0 as n→∞ for every x ∈ ΩrN. Hence, if µ(Ω) <∞ then fn → f
in measure, i.e., dµ(fn, f)→ 0 as n→∞.

Because it is desirable to approximate any function in L0 by a sequence of
function in S0, we have modified a little the definition of measurable functions
when E is not separable, by adding almost separability of the range. Moreover,
the topology in L0 should be slightly modified, i.e., convergence in measure on
every set of finite measure.

Even when the (complete) metric space E and the σ-algebra F are separable,
the separability of the (complete) metric space L0 is an issue, because some
property of the measure µ are also involved.

If E is a Banach space (i.e., complete normed space) with norm | · |E then
the function

dµ(f, 0) = inf
{
r > 0 : µ

(
{ω ∈ Ω : |f(ω)|E > r}

)
≤ r
}

is not necessarily homogeneous, for instance if f = 1F with F ∈ F then
d(cf, 0)µ = c ∧ µ(F ), for every c ≥ 0. Nevertheless, dµ(cf, 0) ≤ (1 ∨ |c|)dµ(f, 0)
and therefore cf → 0 if f → 0. Moreover, if µ

(
{ω ∈ Ω : f(ω) 6= 0}

)
< ∞ then

for every ε > 0 there exist δ > 0 such that µ
(
{ω ∈ Ω : dµ(f(ω), 0) > 1/δ}

)
< ε
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and therefore dµ(cf, 0) ≤ ε whenever |c| < εδ. Thus, besides L0(Ω, µ;E) being
a complete metric space, it is not quite a topological vector space, i.e., the vec-
tor addition is continuous but the scalar multiplication is continuous only on
functions vanishing outside of a set of finite measure.

If E = R then L1(Ω,F , µ) = L1(Ω,F , µ;R) is the vector space of real-valued
integrable functions, where the expression

‖f‖1 =

∫
Ω

|f |dµ

defines a semi-norm, i.e., we need to consider equivalence class of functions
and consider the quotient space L1(Ω, µ) as a subspace of L0(Ω, µ), and ‖ · ‖1
becomes a norm on L1(Ω, µ). It is simple to verify that L1(Ω, µ) is a closed
subspace of the complete space L0(Ω, µ), therefore L1(Ω, µ) is complete, i.e.,
L1(Ω, µ) results a Banach space. Note that if R̄ = [−∞,+∞] then L0(Ω, µ; R̄)
is not necessarily equal to L0(Ω, µ;R), but, since any integrable function is finite
almost everywhere, we do have L1(Ω, µ; R̄) = L1(Ω, µ;R).

B.5 Integration Theory

Recall that a simple function ϕ : Ω → R is a measurable functions assuming
a finite number of values, i.e., a linear (finite with real coefficients) combina-
tion of characteristic functions. Any simple function has a standard repre-
sented as ϕ(x) =

∑n
i=1 ai1Ei(x), with ai 6= aj for i 6= j and {Ei} a finite

sequence of disjoint measurable sets. Denote by S = S(Ω,F) the set of all
simple functions on a measurable space (Ω,F). Clearly S is stable under the
addition, multiplication, max (∨) and min (∧), i.e., if ϕ,ψ ∈ S and a, b ∈ R then
aϕ+ bφ, ϕψ, ϕ ∨ ψ,ϕ ∧ ψ ∈ S. Also, we have seen in Theorem B.9, that simple
functions can be used to approximate pointwise any measurable function.

Once a measure space (Ω,F , µ) has been given, it is clear that for any mea-
surable set F we should assign the value µ(F ) as the integral of the characteristic
function 1F . Then, by imposing linearity, for a simple function ϕ(x) we should
have ∫

Ω

ϕ(x)µ(dx) =

n∑
i=1

aiµ
(
ϕ−1({ai})

)
,

under the convention that the sum is possible, i.e., we set a×(+∞) = 0 if a = 0,
a× (±∞) = ±∞ if a > 0, a× (±∞) = ∓∞ if a < 0, and the case ±∞∓∞ is
forbidden. Hence, we can approximate any nonnegative measurable function f
by an increasing sequence of simple functions to have

lim
n

∫
Ω

f1f<2n dµ = lim
n

22n−1∑
k=0

k2−nµ
(
f−1([k2−n, (k + 1)2−n[)

)
,

which is always meaningful, and then writing f = f+− f− we treat the general
case. Details of these arguments follow.

[Preliminary] Menaldi November 11, 2016



352 Appendix B. Measure and Integration

B.5.1 Definition and Properties

Let (Ω,F , µ) be a measurable space. If ϕ : Ω→ [0,∞) is a simple function with
standard represented as ϕ(x) =

∑n
i=1 ai1Ei(x), with ai 6= aj for i 6= j and {Ei}

a finite sequence of disjoint measurable sets, then we define the integral of ϕ
over Ω with respect to the measure µ as∫

Ω

ϕdµ =

∫
Ω

ϕ(ω)µ(dω) =

∫
Ω

ϕ(ω) dµ(ω) =

n∑
i=1

aiµ(Fi),

under the only convention 0× (+∞) = 0, since ϕ ≥ 0.

Proposition B.42. If ϕ and ψ are nonnegative simple functions then

(a)

∫
Ω

cϕdµ = c

∫
Ω

ϕdµ, ∀c ≥ 0,

(b)

∫
Ω

(ϕ+ ψ) dµ =

∫
Ω

ϕdµ+

∫
Ω

ψ dµ,

(c) if ϕ ≤ ψ, then

∫
Ω

ϕdµ ≤
∫

Ω

ψ dµ (monotony),

(d) the function A→
∫
A

ϕdµ is a measure on F .

Proof. The property (a) follows directly from the definition of the integral.
To check the identity (b) take standard representations ϕ =

∑n
i=1 ai1Fi and

ψ =
∑m
j=1 bj1Gj . Since Fi =

⋃m
j=1 Fi∩Gj and Gj =

⋃n
i=1 Fi∩Gj , both disjoint

unions, the finite additivity of µ implies∫
Ω

(ϕ+ ψ) dµ =

∫
Ω

m∑
j=1

n∑
i=1

(ai + bj)1Fi∩Gj dµ =

=

m∑
j=1

n∑
i=1

(ai + bj)µ(Fi ∩Gj) =

=

m∑
j=1

n∑
i=1

aiµ(Fi ∩Gj) +

m∑
j=1

n∑
i=1

bjµ(Fi ∩Gj) =

=

n∑
i=1

aiµ(Fi) +

m∑
j=1

bjµ(Gj) =

∫
Ω

ϕdµ+

∫
Ω

ψ dµ.

as desired.
To show (c), if ϕ ≤ ψ then ai ≤ bj each time that Fi ∩ Fj 6= ∅, hence∫

Ω

ϕdµ =

m∑
j=1

n∑
i=1

aiµ(Fi ∩Gj) ≤
m∑
j=1

n∑
i=1

bjµ(Fi ∩Gj) =

∫
Ω

ψ dµ.
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For (d), we have to prove only the countable additivity. If {Aj} are disjoint
and A =

⋃∞
j=1Aj then∫

A

ϕdµ =

n∑
i=1

aiµ(A ∩ Fi) =

n∑
i=1

∞∑
j=1

aiµ(Aj ∩ Fi) =

=

∞∑
j=1

n∑
i=1

aiµ(Aj ∩ Fi) =

∞∑
j=1

∫
Aj

ϕdµ,

and we conclude.

Definition B.43. If f is a nonnegative measurable function then we define the
integral of f of Ω with respect to µ as∫

Ω

f dµ = sup

{∫
Ω

ϕdµ : ϕ simple, 0 ≤ ϕ ≤ f
}
,

which is nonnegative and perhaps +∞. If f is a measurable function with valued
in [−∞,+∞], writing f = f+ − f−, then∫

Ω

f dµ =

∫
Ω

f+ dµ−
∫

Ω

f− dµ <∞,

whenever the above expression is defined (i.e., ±∞∓∞ is not allowed), and in
this case f is called quasi-integrable. If both integrals are finite then we say that
f is integrable.

By means of the previous proposition, part (c), implies that both definitions
agree on simple functions, and parts (a) and (c) remain valid if ϕ = f and ψ = g
for any integrable functions. To check the linearity, we use the following result.
Since f+, f− ≤ |f | = f+ + f−, given a measurable functions f, we deduce that
f is integrable if and only if |f | is integrable.

Sometimes, an integrable function (as above, with finite integral) is called
summable, while a quasi-integrable function (as above, with possible infinite
integral) is called integrable.

We keep the notation∫
A

f dµ =

∫
Ω

f 1A dµ, ∀A ∈ F

and the inequality

c µ
(
{|f | ≥ c}

)
≤
∫

Ω

|f |1{|f |≥c} dµ ≤
∫

Ω

|f |dµ, ∀c ≥ 0,

shows that if f is integrable then the set {|f | ≥ c} has finite µ-measure, for
every c > 0, and so the set {f 6= 0} is σ-finite. On the other hand, a measurable
function f is allowed to assume the values +∞ and −∞, but an integrable
function is finite almost everywhere, i.e., µ

(
{|f | =∞}

)
= 0.
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• Remark B.44. Instead of initially defining the integral for nonnegative simple
functions with the convention 0∞ = 0, we may consider only (nonnegative)
integrable simple functions in Proposition B.42. In this case, only (nonnegative)
measurable functions which vanish outside of a σ-finite set can be expressed as
a (monotone) limit of integrable (nonnegative) integrable simple functions, see
Proposition B.9.

A key point is the monotone convergence

Theorem B.45 (Beppo Levi). If {fn} is a monotone increasing sequence of
nonnegative measurable functions then∫

Ω

lim
n
fn dµ = lim

n

∫
Ω

fn dµ or

∫
Ω

(
sup
n
fn
)

dµ = sup
n

{∫
Ω

fn dµ
}
.

Proof. Since fn ≤ fn+1 for every n, the limiting function f is defined as taking
values in [0,+∞] and the monotone limit of the integral exists (finite or infinite).
Moreover∫

Ω

fn dµ ≤
∫

Ω

f dµ and lim
n→∞

∫
Ω

fn dµ ≤
∫

Ω

f dµ.

To check inverse inequality, for every α ∈ (0, 1) and every simple function ϕ such
that 0 ≤ ϕ ≤ f define Fn = {x : fn(x) ≥ αϕ(x)}. Thus {Fn} is an increasing
sequence of measurable sets with

⋃
n Fn = Ω and∫

Ω

fn dµ ≥
∫
Fn

fn dµ ≥ α
∫
Fn

ϕ dµ.

By means of Proposition B.42, part (d), and the continuity from below of a
measure, we have

lim
n

∫
Fn

ϕdµ =

∫
Ω

ϕdµ, and lim
n→∞

∫
Ω

fn dµ ≥ α
∫

Ω

ϕ dµ.

Since this holds for any α < 1, we can take α = 1. Taking the sup in ϕ we
deduce

lim
n

∫
Ω

fn dµ ≥
∫

Ω

f dµ,

as desired inequality.

The additivity follows from Beppo Levi Theorem, i.e., if {fn} is a finite or
infinite sequence of nonnegative measurable functions and f =

∑
n fn then∫

Ω

f dµ =
∑
n

∫
Ω

fn dµ.

Indeed, first for any two functions g and h, we can find two monotone increasing
sequences {gn} and {hn} of nonnegative simple functions pointwise convergent
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to g and h. Thus {gn + hn} is a monotone increasing sequence pointwise con-
vergent to g + h, and by means of Theorem B.45∫

Ω

(g + h) dµ = lim
n

∫
Ω

(gn + hn) dµ = lim
n

∫
Ω

gn dµ+ lim
n

∫
Ω

hn dµ =

=

∫
Ω

g dµ +

∫
Ω

hdµ.

Hence, by induction we deduce∫
Ω

( m∑
n=1

fn

)
dµ =

m∑
n=1

∫
Ω

fn dµ,

and applying again Theorem B.45 as m→∞ follows the desired equality.

• Remark B.46. Because the integral is unchanged when the integrand is mod-
ified in a negligible set, the results of Beppo Levi Theorem B.45 remain valid
for an almost monotone sequence {fn}, i.e., when fn+1 ≥ fn a.e., of measurable
functions non necessarily nonnegative, but such that f−1 is integrable.

Based on the monotone convergence, we deduce two results on the passage
to the limit inside the integral. First, Fatou lemma or lim inf convergence

Theorem B.47 (Fatou). If {fn} is a sequence of nonnegative measurable func-
tions then∫

Ω

lim inf
n

fn dµ ≤ lim inf
n

∫
Ω

fn dµ.

Proof. For each k we have that infn≥k fn ≤ fj for every j ≥ k, which implies
that ∫

Ω

inf
n≥k

fn dµ ≤
∫

Ω

fj dµ and

∫
Ω

inf
n≥k

fn dµ ≤ inf
j≥k

∫
Ω

fj dµ.

Hence, applying Theorem B.45 as k →∞ we have∫
Ω

lim inf
n

fn dµ =

∫
Ω

lim
k

inf
n≥k

fn dµ = lim
k

∫
Ω

inf
n≥k

fn dµ ≤ lim inf
n

∫
Ω

fn dµ,

i.e., the desired result.

Secondly, Lebesgue or dominate convergence

Theorem B.48 (Lebesgue). Let {fn} be a sequence of measurable functions
such that there exists an integrable function g satisfying |fn(x)| ≤ g(x), for
every x in Ω and any n. Then the functions f = lim supn fn and f = lim infn fn
are integrable and∫

Ω

f dµ ≤ lim inf
n

∫
Ω

fn dµ ≤ lim sup
n

∫
Ω

fn dµ ≤
∫

Ω

f dµ. (B.11)
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In particular,

lim
n

∫
Ω

fn dµ =

∫
Ω

f dµ.

provided f = f, i.e., fn converges pointwise to f.

Proof. First, note that the condition |fn(x)| ≤ g(x) (valid also for the limit f
or f) implies that fn (and the limit f or f) is integrable. Next, apply Fatou
lemma to g + fn and g − fn to obtain∫

Ω

(g + f) dµ ≤ lim inf
n

∫
Ω

(g + fn) dµ

and

lim sup
n

∫
Ω

(g + fn) dµ ≤
∫

Ω

(g + f) dµ,

Finally, using the fact that g is integrable, we deduce (B.11), which implies the
desired equalities.

• Remark B.49. We could re-phase the previous Theorem B.48 as follows: If
{fn} and {gn} are sequences of measurable functions satisfying |fn| ≤ gn, a.e.
for any n, and

gn → g a.e. and

∫
Ω

gn dµ→
∫

Ω

g,dµ <∞,

then the inequality (B.11) holds true. Indeed, applying Fatou lemma to gn+fn
we obtain∫

Ω

(g + f) dµ =

∫
Ω

lim inf
n

(gn + fn) dµ ≤

≤ lim inf
n

∫
Ω

(gn + fn) dµ =

∫
Ω

g dµ+ lim inf
n

∫
Ω

fn dµ,

which yields the first part of the inequality (B.11), after simplifying the (finite)
integral of g. Similarly, by using gn − fn, we conclude.

In the above presentation, we deduced Fatou and Lebesgue Theorems B.47
and B.48 from Beppo Levi Theorem B.45, actually, from any one of them, we
can obtain the other two.

• Remark B.50. A basic consequence of the previous definition of integral on
a measure space (Ω,F , µ) is the following list of properties:

(1) If f is an integrable function and N is a set of measure zero then∫
N

fdµ = 0.
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(2) If f is a strictly positive integrable function and E is a measurable set such
that ∫

E

fdµ = 0

then E is a set of measure zero.

(3) If an integrable function f satisfies∫
E

fdµ = 0,

for every measurable set E, then f = 0 a.e.

(4) If f is a measurable function and g is an integrable function such that |f | ≤ g
a.e., then f is also an integrable function.

(5) If h is a nonnegative measurable function then the integral expression

λ(A) =

∫
A

hdµ, ∀A ∈ F .

defines a measure on (Ω,F), which satisties∫
Ω

fdλ =

∫
Ω

fhdµ,

for every nonnegative measurable function f .

• Remark B.51. As mentioned early, the use of the concept “almost everywhere”
for a pointwise property in a measure space (Ω,F , µ) is very import, essentially,
insisting in a pointwise property could be unwise. For instance, the statement
f = 0 a.e. means strictly speaking that the set {x : f(x) 6= 0} belongs to F
and µ({x : f(x) 6= 0}) = 0, but it also could be understood in a large sense as
requiring that there exists a set N in F such that µ(N) and f(x) = 0 for every x
in ΩrN. Thus, the large sense refers to the strict sense when (F , µ) is complete
and certainly, both concepts are the same if the measure space (Ω,F , µ) is
complete. Sometimes, we may build-in this concept inside the definition of the
integral by adding the condition almost everywhere, i.e., using∫

Ω

f dµ = sup

{∫
Ω

ϕdµ : ϕ simple, 0 ≤ ϕ ≤ f a.e.

}
as the definition of integral (where the a.e. inequality is understood in the large
sense) for any nonnegative “almost” measurable function, i.e., any function f
such that there exist a negligible set N and a nonnegative measurable function
g such that f(x) = g(x), for every x in the complement N c. Therefore, parts
(1) and (2) of Remark B.50 are necessary to prove that the above definition of
integral (with the a.e. inequality) is indeed meaningful and non-ambiguous.

• Remark B.52. Certainly, it can be proved that every Riemann integrable func-
tion is Lebesgue measurable and both integrals coincide. Moreover, a bounded
function is Riemann integrable if and only if it is continuous almost every-
where.

[Preliminary] Menaldi November 11, 2016



358 Appendix B. Measure and Integration

B.5.2 Cartesian Products

As we have seen that we can change the values of an integrable function in a set
of measure zero without any changes in its integral, however, we need to know
that the resulting function is measurable, e.g., we should avoid the situation
g = f1Nc , where N is a nonmeasurable subset of a set of measure zero. In
other words, it is convenient to assume that the measure space is complete (or
complete it if necessary), see also Remark B.51.

Let (X,X , µ) be a σ-finite measure space and (Y,Y) be a measurable space.
A function ν : X×Y → [0,+∞] is called a σ-finite regular transition measure if

(a) the mapping x→ ν(x,B) is X -measurable for every B ∈ Y,
(b) the mapping B → ν(x,B) is a measure on Y for every x ∈ X,
(c) there exists increasing sequences {Xn} ⊂ X and {Yn} ⊂ Y such that⋃∞
n=1Xn = X,

⋃∞
n=1 Yn = Y,

ν(x, Yn) <∞, ∀x ∈ X,
∫
Xn

µ(dx) ν(x, Yn) <∞, ∀n. (B.12)

If µ(X) = 1 and ν(x, Y ) = 1 for every x ∈ X then ν is called a transition
probability measure. The qualification regular is attached to the condition (b), a
non regular transition measure would satisfy almost everywhere the σ-additivity
property, i.e., besides the condition ν(x, ∅) = 0, for every sequence of disjoint
set {Bk} ⊂ Y there exists a set A in X with µ(A) = 0 such that ν(x,

∑
k Bk) =∑

k ν(x,Bk), for every x in X rA.
Note the following two particular cases: (1) ν(x,B) = ν(B) independent of

x, for a given σ-finite measure ν on Y, and (2) ν(x,B) =
∑∞
k=1 ak(x)1fk(x)∈B ,

for sequences {ak} and {fk} of measurable functions ak : X → [0,∞) and
fk : X → Y, i.e., a sum of Dirac measures ν =

∑
k ak(x)δfk(x). Remark that,

for the case (2), the assumptions on transition measure ν are equivalent to the
measurability of the functions ak and fk, for every k.

For any E ⊂ X × Y and any x ∈ X, we define the sections as the sets
Ex = {y ∈ Y : (x, y) ∈ E} ⊂ Y (similarly Ey, by exchanging X with Y ). Note
that (E ∪F )x = Ex ∪Fx and (ErF )x = ExrFx, but we may have E ∩F = ∅
with Ex ∩Fx 6= ∅. Recall that the product σ-algebra X ×Y is generated by the
semi-algebra of rectangle A×B with A ∈ X and B ∈ Y.
Proposition B.53. Let ν(·, ·) be a σ-finite transition measure from σ-finite
measure (X,X , µ) into (Y,Y) as above, and let E be a set in product σ-algebra
X ×Y. Then (a) all sections are measurable, i.e., Ex ∈ Y, for every x ∈ X; (b)
the mapping x 7→ ν(x,Ex) is X -measurable and (c) the mapping

E → (µ× ν)(E) =

∫
X

µ(dx) ν(x,Ex), ∀E ∈ X × Y

is a σ-finite measure, in particular the expression

(µ× ν)(A×B) =

∫
A

ν(x,B)µ(dx), ∀A ∈ X , B ∈ Y,

uniquely determines the values of the product measure µ× ν.
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Proof. First remark that for any E = A × B the sections satisfy Ex = B if
x ∈ A and Ex = ∅ if x /∈ A. Hence ν(x,Ex) = 1A ν(x,B), for any rectangle E
and with the convention that 0∞ = 0.

Take increasing sequences {Xn} ⊂ X and {Yn} ⊂ Y as in (B.12). It is clear
that if the conditions (a) and (b) hold for E ∩ (Xn×Yn) instead of E, for every
n, then they should be valid for E. Thus we may assume

ν(x, Y ) <∞, ∀x ∈ X,
∫
X

µ(dx) ν(x, Y ) <∞,

without any loss of generality.
Let D be the class of sets E in X × Y for which the conditions (a) and (b)

are satisfied. Because (F ∪E)x = Fx ∪Ex and (F rE)x = Fx rEx, the family
D is a λ-class, which contains the π-class of all rectangle. Hence, a monotone
argument (see Proposition B.5) shows that D = X × Y.

To check (c), we need to verify that the product µ × ν is σ-additive on
the semi-algebra of measurable rectangle. To this purpose, note that if E =∑∞
k=1Ek, E = A×B and Ek = Ak ×Bk then

1A(x)1B(y) =

∞∑
k=1

1Ak(x)1Bk(y), ∀x, y

Thus, the σ-additivity of the measure ν(x, ·) implies

1A(x)ν(x,B) =

∞∑
k=1

1Ak(x)ν(x,Bk), ∀x ∈ X,

and the monotone convergence (Theorem B.45) yields∫
A

µ(dx) ν(x,B) =

∞∑
k=1

∫
Ak

µ(dx) ν(x,Bk), ∀A ∈ X , B ∈ Y.

At this point, either by Proposition B.18 or repeating the above argument with
any E ∈ X × Y and remarking that 1E(x, y) = 1Ex(y), we deduce

E → (µ× ν)(E) =

∫
X

µ(dx) ν(x,Ex) =

∫
X

µ(dx)

∫
Y

1E(x, y) ν(x, dy),

for every E ∈ X × Y, is a σ-finite measure.

• Remark B.54. It is clear that in Proposition B.53 we also proved that the
function y 7→ µ(Ey) is Y-measurable, and if the transition measure ν is actually
a measure on (Y,Y) then we deduce the equality∫

X

ν(Ex)µ(dx) =

∫
Y

µ(Ey) ν(dy), ∀E ∈ X × Y

as expected.
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By means of Proposition B.9, we can approximate a measurable functions
by a pointwise convergence sequence of simple functions to deduce from Propo-
sition B.53 that if f : X×X → R̄ is a X ×Y-measurable function then for every
y in Y, the section function x 7→ f(x, y) is X -measurable. Certainly, we may
replace the extended real R̄ by any separable metric space to deduce that the
sections of a product-measurable functions are indeed measurable. Note that
the converse is not valid in general, i.e., although if a contra-example is not easy
to get, we may have a non measurable subset E of X×Y such that the sections
Ex and Ey are measurable, for every fixed x and y.

Moreover, for any N ∈ X × Y we have (µ × ν)(N) = 0 if and only if its
sections Nx have ν(x, ·)-measure zero, for µ-almost every x, i.e., there exists a set
AN ∈ X such that µ(AN ) = 0 and ν(x,Nx) = 0, for every x ∈ X rAN . Hence,
if (λ,F) is the completion of the product measure µ× ν, and if f : X × Y → R̄
is F-measurable then there exists a X × Y-measurable function f̃ such that
λ({(x, y) : f(x, y) 6= f̃(x, y)}) = 0. Moreover, there exists a set N ∈ X ×Y with
λ(N) = 0 such that f(x, y) = f̃(x, y) for every (x, y) /∈ N. Thus we have

Corollary B.55. Let (λ,F) be the completion of the product measure µ× ν, as
given by Proposition B.53. If f : X×Y → R̄ is F-measurable then there exists a
set Af in X with µ(Af ) = 0 such that the function y → f(x, y) is Y-measurable,
for every x ∈ X rAf .

Proof. In view of the approximation by simple functions (see Proposition B.9),
we need to show the result only for f = 1E with E ∈ F .

Now, for a λ-measurable set E there exists sets E′, N ∈ X × Y such that
(E r E′) ∪ (E′ r E) ⊂ N, i.e., |1E − 1E′ | ≤ 1N . Because ν(x, ·) is σ-finite
regular transition measure, there is an increasing sequence {Yn} ⊂ Y such that
ν(x, Yn) < ∞ for every x ∈ X, for every n. Thus, ν(x, Yn ∩ Ex) < ∞ and
|ν(x, Yn ∩ Ex)− ν(x, Yn ∩ E′x)| ≤ ν(x,Nx), for every n and every x ∈ X. Since

0 = λ(N) =

∫
X

µ(dx) ν(x,Nx) =

∫
X

µ(dx)

∫
Y

1N (x, y)ν(x, dy),

there exists a set AE ∈ X with µ(AE) = 0 such that ν(x,Nx) = 0 for every
x ∈ X rAE . Hence ν(x,Ex) = ν(x,E′x), for every x /∈ AE .

• Remark B.56. Recall that the approximation of measurable functions by in-
tegrable simple functions (as in Proposition B.9) can only be used a in σ-finite
space, i.e., if the space is not σ-finite then there are nonnegative measurable
functions which are nonzero on a non σ-finite set, and therefore, they can not
be a pointwise limit of integrable simple functions. On the other hand, there are
ways of dealing with product of non σ-finite measures, essentially, only σ-finite
measurable sets (i.e., covered by a sequence {Ak × Bk : k ≥ 1} of rectangles
where each Ak and Bk is measurable and the product measure of

⋃
k Ak × Bk

is finite) are considered and the product measure is defined on a σ-ring, instead
of a σ-algebra. The difficulty is the measurability of the mapping x 7→ ν(x,Ex),
for an arbitrary measurable set E on the product space, for instance see Pol-
lard [102, Section 4.5, pp. 93-95].
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Theorem B.57 (Fubini-Tonelli). Let λ be the completion of the product mea-
sure µ× ν defined in Proposition B.53 and let f : X × Y → [0,∞] be a X × Y-
measurable (respect., λ-measurable) function. Then (a) the function f(x, ·) is
Y-measurable for every x in X (respect., for µ-almost everywhere x in X); (b)
the function

x 7→
∫
Y

f(x, y) ν(x, dy) is X -measurable

(respect., measurable with respect to the completion of µ); (c) we have∫
X×Y

f(x, y)λ(dx, dy) =

∫
X

µ(dx)

∫
Y

f(x, y) ν(x, dy). (B.13)

Proof. Let E ⊂ X × Y be a λ-measurable set, i.e., there exists E′, N ∈ X × Y
such that (E r E′) ∪ (E′ r E) ⊂ N and (µ × ν)(N) = 0. If f = 1E then
Proposition B.53 and Corollary B.55 proves the validity of the assertions for
this particular case, and so for any simple function. Next, we conclude by
approximating f by a monotone sequence of nonnegative simple functions.

If f : X × Y → R̄ is λ-integrable then f takes finite valued outside of a set
N ∈ X × Y with (µ × ν)(N) = 0. Applying (a), (b) and (c) for f+ and f− we
deduce that (1) f(x, ·) is ν(x, ·)-integrable for µ-almost everywhere x in X; (2)
the integral of f(x, y) with respect to ν(x, dy) is µ-integrable; (3) the iterate
integral reproduces the double integral, i.e., (B.13) holds.

In the particular case of a constant transition measure ν(x, ·) = ν(·), we may
consider also ν × µ and we deduce from (B.13) the exchange of the integration
order, i.e.,∫

X×Y
f(x, y)λ(dx, dy) =

∫
X

µ(dx)

∫
Y

f(x, y) ν(dy) =

=

∫
Y

ν(dy)

∫
X

f(x, y)µ(dx),

for every f either nonnegative and measurable or integrable in the product
space. This is the traditional Fubini-Tonelli Theorem.

It is clear that these arguments extend to a finite product, with suitable
transition measures. The reader may take a look at Ambrosio et al. [8, Chapter
6, pp. 83–118] and Taylor [122, Chapter 7, 324–347].

B.5.3 Some Inequalities

Now, let L0 = L0(Ω,F , µ;E) be the space of all almost measurable E-valued
functions, where (E, | · |E) is a Banach space. For 1 ≤ p ≤ ∞ and any f ∈ L0
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we consider

‖f‖p =
(∫

Ω

|f |pEdµ
)1/p

<∞, ∀1 ≤ p <∞,

‖f‖∞ = inf
{
C ≥ 0 : |f |E ≤ C, a.e.

}
,

(B.14)

where ‖f‖∞ = ∞ if µ
(
{x : |f(x)|E ≥ C}

)
> 0, for every C > 0. We define

Lp = Lp(Ω,F , µ;E) as the subspace of L0(Ω,F , µ;E) such that ‖f‖p <∞ and
for p = ∞ we add the condition (which is already included if p < ∞) that
{f 6= 0} is a σ-finite (i.e., a countable union of sets with finite measure). Recall
that elements f in L0 are equivalence classes (i.e., functions defined almost
everywhere), and that f takes valued in some separable subspace of E, when E
is not separable.

Most of what follows is valid for a (separable) Banach space E, but to sim-
plify, we consider only the case E = R or E = Rd, with the Euclidean norm is
denoted by | · |.

We have already shown that (L1, ‖ · ‖1) and (L∞, ‖ · ‖∞) are Banach spaces.
The general case 1 < p < ∞ requires some estimates to prove that ‖ · ‖p is
indeed a norm.

First, recalling that the − ln function is a strictly convex function,

ln(ax+ by) ≥ a lnx+ b ln y, ∀a, b, x, y > 0, a+ b = 1,

we check that the arithmetic mean is larger that the geometric mean, i.e.,

xayb ≤ ax+ by, ∀a, b, x, y > 0, a+ b = 1, (B.15)

where the equality holds only if x = y.
(a) Hölder inequality : for any p, q ≥ 1 with 1/p+ 1/q = 1 (where the limit

case 1/∞ = 0 is used) we have

‖fg‖1 ≤ ‖f‖p‖g‖q, ∀f ∈ Lp, g ∈ Lq, (B.16)

where the equality holds only if for some constant c we have |f |p = c |g|q, almost
everywhere. Indeed, if ‖fg‖1 > 0 then ‖f‖p > 0 and ‖g‖q > 0. Taking a = 1/p,
b = 1/q, x = |f |p/‖f‖pp and y = |g|p/‖g‖qq in (B.15) and integrating in µ, on
deduce (B.16).

If 1 ≤ p < r < q ≤ ∞ and f belongs to Lp ∩ Lq then f belongs to Lr and(
1/p− 1/q

)
ln ‖f‖r ≤

(
1/r − 1/q

)
ln ‖f‖p +

(
1/p− 1/r

)
ln ‖f‖q.

Indeed, for some θ in (0, 1) we have 1/r = θ/p+ (1− θ)/q and Hölder inequality
yields

‖f‖r = ‖fθf1−θ‖r = ‖frθfr(1−θ)‖r1 ≤
{
‖frθ‖p/rθ ‖fr(1−θ)‖q/r(1−θ)

}1/r

=
{
‖f‖rθp ‖f‖r(1−θ)q

}1/r
= ‖f‖θp ‖f‖1−θr ,
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and the desired estimate follows.
(b) Minkowski inequality : if 1 ≤ p ≤ ∞ then

‖f + g‖p ≤ ‖f‖p + ‖g‖p, ∀f, g ∈ Lp. (B.17)

Indeed, only the case 1 < p < ∞ need to be considered. Thus the inequality
|f + g|p ≤

(
|f | + |g|

)p ≤ 2p
(
|f |p + |g|p

)
shows that f + g belongs to Lp. With

q = p/(p− 1) we have ‖ |f + g|p−1 ‖q =
(
‖f + g‖p

)p−1
. Next, applying (B.16) to

|f + g|p = |f + g| |f + g|p−1 ≤ |f | |f + g|p−1 + |g| |f + g|p−1

we obtain (B.17).
Therefore (Lp, ‖ · ‖p) is a normed space, and the inequality

εpµ
(
{|f | ≥ ε}

)
≤ ‖f‖pp,

shows that if {fn} is a Cauchy sequence in Lp then it is also a Cauchy sequence
in L0. Hence Lp is complete, i.e., it is a Banach space.

• Remark B.58. If 0 < p < 1 and f, g belongs to Lp then f + g belongs to Lp

and

‖f + g‖pp ≤ ‖f‖pp + ‖g‖pp.

This follows from the elementary inequality (a + b)p ≤ ap + bp, for every a, b
in [0,∞) and 0 < p < 1, which is deduced from [a/(a + b)]p + [b/(a + b)]p ≥
a/(a + b) + b/(a + b) = 1. Hence Lp with the distance dp(f, g) = ‖f − g‖p,
0 < p < 1, is a (complete metric) topological vector space. Also we have

‖f + g‖p ≥ ‖f‖p + ‖g‖p, ∀f, g ∈ Lp, 0 < p < 1,

‖fg‖1 ≤ ‖f‖p‖g‖q, ∀f ∈ Lp, g ∈ Lq,

again 1/p+ 1/q = 1, but in this case q < 0. It is possible to show that

lim
p→0
‖f‖pp = µ

(
{ω ∈ Ω : f(ω) 6= 0}

)
,

lim
p→0
‖f‖p = exp

(∫
Ω

ln |f |dµ
)
, if µ(Ω) = 1 and f 6= 0 a.e.,

provided f belongs to some Lp(Ω,F , µ) with p > 0. Indeed, the first inequality
follows after splitting the integral over the regions 0 < |f(x)| ≤ 1 and |f(x)| > 1.
To check the second inequality, we assume |f | > 0 a.e. to show (with the help
of the mean value theorem) that

ln ‖f‖p = ‖f‖−qq
∫

Ω

|f |q ln |f |dµ,

for some q in (0, p). Hence, as in the argument to prove first inequality, we have

‖f‖−qq
∫

Ω

|f |q ln |f |dµ→
∫

Ω

ln |f |dµ.

Notice that if |f | > 0 on a set Ω0 with 0 < µ(Ω0) < 1 then we use the previous
argument on the space Ω0 with the measure A 7→ µ(A)/µ(Ω0).
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• Remark B.59. First, if (X,X , µ) and (Y,Y, ν) are two σ-finite measure spaces
then Minkowski’s integral inequality, states that[ ∫

X

∣∣∣ ∫
Y

f(x, y)ν(dy)
∣∣∣pµ(dx)

]1/p
≤
∫
Y

(∫
X

|f(x, y)|pµ(dx)
)1/p

ν(dy)

for any real-valued (µ × ν)-measurable function f. Moreover, this inequality
can be generalized in the following way. If f(x, y) is a nonnegative measurable
function on the product space X × Y and 1 ≤ p ≤ ∞ then∥∥∥∫

Y

f(·, y)ν(dy)
∥∥∥
Lp(X)

≤
∫
Y

∥∥f(·, y)
∥∥
Lp(X)

ν(dy),

where the integral in Y is regarded as a limit of sums, i.e., approximating f by
an increasing sequence of simple measurable functions and taking limit. This is
usually referred to as Minkowski inequality for integrals.

Based on Hölder inequality, we can define the duality paring

〈f, g〉 =

∫
Ω

f g dµ, ∀f ∈ Lp, g ∈ Lq, 1

p
+

1

q
= 1, (B.18)

which has the property |〈f, g〉| ≤ ‖f‖p‖g‖q.

Proposition B.60 (dual norm). For any function f in L0(Ω.F , µ) with σ-finite
support {f 6= 0} we have

‖f‖p = sup
{
〈f, g〉 : g ∈ Lq, with ‖g‖q = 1

}
, 1 ≤ p ≤ ∞, (B.19)

where 〈·, ·〉 is the duality paring (B.18), and the supremum is attained with
g = sign(f)|f |p−1‖f‖1−pp , if p <∞ and 0 < ‖f‖p <∞.

Proof. Temporarily denote by [|f |]p the right-hand term of (B.19). Thus Hölder
inequality yields [|f |]p ≤ ‖f‖p.

For p < ∞ and 0 < ‖f‖p < ∞ define g = sign(f)|f |p−1‖f‖1−pp to get
‖g‖q = 1, 1/p+1/q = 1, and 〈f, g〉 = ‖f‖p. On the other hand, if 0 < a < ‖f‖∞
then define the function g = sign(f)1A/µ(A) with A = {x : |f(x)| > a} to get
‖g‖1 = 1 and 〈f, g〉 ≥ a. Hence we have the reverse inequality ‖f‖p ≤ [|f |]p,
provided p =∞ or ‖f‖p <∞.

If ‖f‖p =∞ then f is a pointwise limit of a bounded µ-measurable bounded
functions fn such that µ

(
{fn 6= 0}

)
< ∞ and |fn| ≤ |fn+1| ≤ |f |. Then ‖fn‖p

increases to ‖f‖p =∞ and ‖fn‖p = [|fn|]p ≤ [|f |]p, i.e., [|f |]p =∞.

• Remark B.61. The above proof shows that we may replace the condition
‖g‖q = 1 by ‖g‖q ≤ 1 and the equality (B.19) remain true. Moreover, we may
take the supremum only over simple functions g in Lq satisfying ‖g‖q = 1, i.e.,

‖f‖p = sup
{
〈f, ϕ〉 : ϕ ∈ S1, with ‖ϕ‖q = 1

}
,

where S1 = S1(Ω,F , µ) is the space of simple functions, ϕ =
∑n
i=1 ai1Ai , with

{Ai} measurable and µ(Ai) <∞, for every i.

For instance, the reader may consult Folland [44, Section 193–197], Jones [70,
Chapter 12, pp. 277–291] for more details.
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B.5.4 Orthogonal Projection

Some of the properties valid in the Euclidean spaces Rn or Cn can be extended
to some infinite dimensional spaces, such as L2(Ω,F , µ;Rn) or L2(Ω,F , µ;Cn).
Perhaps, at this level, the reader should take a look at the beginning of the book
Halmos [65] for a short introduction to Hilbert spaces.

Our interest is on the orthogonal projection and the representation of linear
continuous functionals for the L2 spaces, but there is not more effort in doing
the arguments for a Hilbert space H, a special class of Banach spaces, where the
norm ‖ · ‖ is given via a bilinear (or sesqui-linear, when working with complex-
valued functions) continuous form (·, ·), called scalar or inner product. For
instance, for the L2 space over the complex number, we have

(f, g) =

∫
Ω

f(x) g(x)µ(dx), ∀f, g ∈ L2(Ω,F , µ;C),

and ‖f‖2 = (f, f), where the notation 〈·, ·〉 is reserved for the duality, even when
discussing real-valued functions f and the complex-conjugate operator f 7→ f
is not used. This special form of the norm yields the so-called parallelogram
equality ‖f+g‖2 +‖f−g‖2 = 2‖f‖2 +2‖g‖2, for every f, g ∈ H, and the identity
‖f + g‖2 − ‖f − g‖2 = 4(f, g) allows the re-definition of the scalar product in
term of the norm.

Actually recall that a Hilbert space is a vector space (on R or C) with a
scalar (or inner) product satisfying:

a. (f, f) ≥ 0, ∀f ∈ H, and (f, f) = 0 only if f = 0;

b. (af + bg, h) = a(f, h) + b(g, h), ∀f, g, h ∈ H and a, b ∈ R (or C);

c. (f, g) = (g, f), ∀f, g ∈ H;

plus the completeness axiom: every Cauchy sequence {fn} ⊂ H, i.e., (fn −
fm, fn − fm) → 0 as n,m → ∞, is convergent, i.e., there exists f ∈ H such
that (fn − f, fn − f)→ 0 as n,m→∞. Hence, by considering the nonnegative
quadratic r 7→ ‖f+rg‖2 and using the linearity we deduce the Cauchy inequality,

|(f, g)| ≤ ‖f‖ ‖g‖, ∀f, g ∈ H,

where the equality holds if and only if f and g are co-linear, i.e., f = cg or
cf = g for some constant c.

Two elements f, g in a Hilbert space H are called orthogonal if (f, g) = 0,
and we may define the orthogonal complement of any nonempty subset V ⊂ H
as V ⊥ = {h ∈ H : (h, v) = 0, ∀v ∈ V }. From the continuity and the linearity of
the scalar product we deduce that V ⊥ is a closed subspace of H.

Proposition B.62 (Orthogonal Projection). Let K be a closed convex set of
H. Then there exists a unique operator P : H → K such that f 7→ Pf satisfies

(Pf − f, k − Pf) ≥ 0, ∀k ∈ K. (B.20)

Moreover, we have the estimate ‖Pf − Pg‖ ≤ ‖f − g‖ for every f and g in H;
and if K is a closed subspace then P is linear and (B.20) becomes (Pf−f, k) = 0
for every k in K.
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Proof. First check the uniqueness. For any g in H, Pg satisfies

(Pg − g, k − Pg) ≥ 0, ∀k ∈ K.

Take k = Pf and add (B.20) with k = Pg to deduce (f − g, Pf − Pg) ≥
‖Pf − Pg‖2, which yields the estimate and the uniqueness. If K is a closed
subspace then k − Pf ∈ K if and only if k ∈ K, i.e., (B.20) is equivalent to
(Pf − f, k) = 0 for every k ∈ K and the linearity of P follows.

Next, for every fixed f in H, consider the nonlinear functional h 7→ I(h) =
(h− 2f, h) on H and set a = inf{I(h) : h ∈ K}. Since I(h) ≥ ‖h‖2 − 2‖f‖ ‖h‖,
we obtain a ≥ −‖f‖2 > −∞, and so we can find a minimizing sequence {hn} ⊂
K such that a ≤ I(hn) ≤ a + n−1, for every n ≥ 1. Because K is convex,
hn,m = (hn + hm)/2 belongs to K and we obtain

‖hn‖2 + ‖hm‖2 − 2‖hn,m‖2 = I(hn) + I(hm)− 2I(hn,m) ≤ 1/n+ 1/m,

after canceling the linear part of I. Hence, applying the parallelogram equality
we have

‖hn − hm‖2 = 2‖hn‖2 + 2‖hm‖2 − ‖hn − hm‖2 ≤ 2/n+ 2/m,

which proves that {hn} is a Cauchy sequence in K. The whole space H is
complete and K is closed, therefore, there exists h in K such that ‖hn−h‖ → 0.

Now, for every k in K we have h+ ε(k − h) in K, for any ε in [0, 1], and so
I
(
h+ ε(k − h)

)
≥ I(h), i.e.,

2ε(h− f, k − h) + ε2‖k − h‖2 ≥ 0.

Thus, dividing by ε and then vanishing ε, we get (B.20) with Pf = h.

Sometimes, we write P = PK to emphasize the dependency on K. Also, PK is
called the orthogonal projection overK. It is clear that PKf = f for every f inK,
i.e., PK is idempotent. If K is a closed subspace then Pf−f belongs to K⊥, i.e.,
f = Pf+(f−Pf), which means H = K⊕K⊥. For any nonempty subset V of H,
we have defined its orthogonal complement V ⊥ = {h ∈ H : (h, v) = 0, ∀v ∈ V },
but only when V = K is a closed subspace we obtain V = (V ⊥)⊥. Also, by
writing f = Pf + (f − Pf) we deduce (Pf, g) = (Pf, Pg) = (f, Pg), for every
f, g ∈ H, i.e., the projection is a symmetric operator.

If (H, ‖ · ‖) is a Hilbert space then we denote by H ′ its dual space, i.e., the
space of all continuous linear functionals T : H → K, with K = R or K = C.
We can check that H ′ endowed with the dual norm

‖Tf‖H′ = ‖Tf‖′ = sup
{
|Tf | : ‖f‖ ≤ 1

}
is a Banach space, and more detail is needed to see that ‖ · ‖′ satisfies the
parallelogram equality, and so, H ′ is a Hilbert space.

Thus, if f belongs to H we can define Φf : H → R, Φf(h) = (h, f), which
results an element in H ′. It is clear that the map f 7→ Φf is (sesqui-)linear from
H into H ′, and Cauchy inequality shows that ‖Φf‖′ = ‖f‖ for every f in H.
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Theorem B.63 (Riesz Representation). Let H a Hilbert space. If T : H → K,
with K = R or K = C, is a continuous linear functional then there exits f in H
such that T (h) = (h, f), for every h in H. Moreover, the application Φ defined
above is an isometry from H onto its dual H ′.

Proof. It is clear that only the fact that Φ is onto should be shown, i.e., given
T we can find f. To this purpose, denote by Ker(T ) the kernel or null space of
T, i.e., all elements in h ∈ H such that T (h) = 0. If Ker(T ) = H then f = 0
satisfies Φ(f) = T, otherwise, there exits g 6= 0 in the orthogonal complement
Ker(T )⊥, and after diving by T (g) if necessary, we may suppose T (g) = 1. Now,
for any h in H we have T

(
h− T (h)g

)
= 0 and so h− T (h)g belongs to Ker(T ),

i.e., (h − T (h)g, g) = 0. This can written as T (h)(g, g) = (h, g), for every h in
H. Hence, f = g/(g, g) satisfies the desired condition.

Among other things this proves the

Corollary B.64. Let (Ω,F , µ) be a measure space and T : L2 → R be a linear
functional, which is continuous, i.e., for some constant C > 0,

|T (f)| ≤ C ‖f‖2, ∀f ∈ L2.

Then there exists a unique function g = gT in L2 such that

T (f) =

∫
Ω

fg dµ, ∀f ∈ L2,

and ‖T‖′ = ‖g‖2.

B.5.5 Lebesgue Spaces

First, to allow explicit calculation, recall that it can be proved that every Rie-
mann integrable function is Lebesgue measurable and both integrals coincide.
Moreover, a bounded function is Riemann integrable if and only if it is contin-
uous almost everywhere.

Now, perhaps the most typical measures are the Lebesgue measure in Rd
and the counting measure in N, with the corresponding Lp = Lp(Rd) space of
Lebesgue almost everywhere measurable real-valued functions with norm

‖f‖p =

∫
Rd
|f(x)|pdx <∞

and `p = `p(R) space of real-valued (or complex-valued or Rd-valued) sequences
x = {xn} such that

‖a‖p = ‖{an}‖p =

∞∑
n=1

|an|p <∞,
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with 1 ≤ p < ∞. Also L∞ = Lp(Rd) is the space of all Lebesgue essentially
bounded (i.e., almost everywhere measurable and bounded outside of a negligible
set) real-valued functions, namely

‖f‖∞ = inf
{
C > 0 : |f(x)| ≤ C, a.e.

}
,

where the infimum is ∞ if the function is not bounded outside a negligible set.
Similarly, `∞ = `∞(Rd) is the space of all bounded real-valued sequences with
the norm

‖a‖∞ = ‖{an}‖∞ = sup
{
|an| : n ≥ 1

}
.

Certainly, we have the spaces Lp(A) for any measurable non-negligible subset
A ⊂ Rd (of particular interest is the case when A = Ω an open set), Lp(Rd;C)
or Lp(Rd;Rn) (functions with complex values or with values in Rn), `p(R) or
`p(C) (sequences with complex values or with values in Rn, n ≥ 1). Moreover,
we may use `p(Z;R) the space of all double-sided sequence {an : n ∈ Z}, with
Z = {0,±1, . . .} the integers numbers. Actually, we may replace Z by any
countable set, or even any set of indexes I, where real-valued “sequences” means
functions a : I → R with countable support, i.e., such that {i ∈ I : ai 6= 0} is
finite or countable.

As we have seen, these are Banach spaces, which are separable if 1 ≤ p <∞.
If A have a finite measure then Lp(A) ⊂ Lq(A) for any 1 ≤ p < q ≤ ∞,
and on the contrary, `q ⊂ `p. In general, Lp ∩ Lq is a subspace of Lr for any
1 ≤ p ≤ r ≤ q ≤ ∞.

Recall the convolution defined on Rd by the expression

(f ? g)(x) =

∫
Rd
f(x− y) g(y) dy =

∫
Rd
f(y) g(x− y) dy, (B.21)

which is defined almost everywhere for any f (or g) in L1 and g (or f) in L∞. To
define the convolution we use the topological group structure (Rd,+). In general,
if (Ω,+) is a locally compact (abelian) group then a translation-invariant Radon
measure on Ω is called a Haar measure, and there is one and only one (up to
a multiplicative constant) Haar measure, e.g. see Folland [44, Section 11.1, pp.
339–348] or Cohn [28, Chapter 9, pp. 297-327]. For instance, the Lebesgue
measure is a Haar measure on (Rd,+) with the Euclidean topology and the
counting measure is a Haar measure on (Z,+) or (Rd,+) with the discrete
topology. Thus,

(a ? b)n =
∑
k

an−k bk =
∑
k

ak bn−k (B.22)

is a discrete version of (B.21). We are more interested in the continuous case.
If f and g have support in Rd+ = [0,∞)d, then we have

(f ? g)(x) =

∫
(0,x)

f(x− y) g(y) dy =

∫
(0,x)

f(y) g(x− y) dy,

where (0, x) = (0, x1) × · · · × (0, xd) is a bounded d-dimensional interval, and
so, with finite measure, i.e., the convolution can be considered in L1

loc.
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Proposition B.65 (Young Inequality). If f belongs to Lp(Rd) and g belongs
to Lq(Rd) then f ? g belongs to Lr(Rd) and

‖f ? g‖r ≤ ‖f‖p ‖g‖q,

provided 1 ≤ p, q, r ≤ ∞ and 1/p+ 1/q − 1/r = 1.

Proof. We integrate in y the expression

|f(x− y)g(y)| =
(
|f(x− y)|p/r|g(y)|q/r

)
×

×
(
|f(x− y)|p(1/p−1/r)

)
×
(
|g(y)|q(1/q−1/r)

)
and we apply Hölder inequality with the exponents r, p1 and q1 satisfying 1/p1 =
1/p− 1/r and 1/q1 = 1/q − 1/r, to obtain

|(f ? g)(x)|r ≤
(
(|f |p ? |g|q)(x)

)(
‖f‖r−pp

)(
‖g‖r−qq

)
.

Hence, integrating in x we deduce

‖f ? g‖rr ≤ ‖f‖pp ‖g‖qq ‖f‖r−pp ‖g‖r−qq = ‖f‖rp ‖g‖rq,

i.e., the desired estimate, for p, q, r finite.
Analogously, we treat the limiting cases when some of the exponents are

infinite.

The following properties proved for L1 can be extended to Lp, with 1 ≤ p <
∞

(a) The translation is continuous in Lp(Rd), i.e., if τaf(·) = f(· + a) then
‖τaf − f‖p → 0 as a→ 0, for every f in Lp.

(b) The space C0
0 of all continuous functions on Rd with compact support

is dense in Lp, i.e., for every ε > 0 and f in Lp(Rd) there exists gε in C0
0 (Rd)

such that ‖f − gε‖p < ε.
(c) The kernel convolution converges in Lp, i.e., ‖f ? kε− f‖p → 0 as ε→ 0,

for every f in Lp. Indeed, we apply Hölder inequality to the right-hand term of

|(f ? kε)(x)− f(x)| ≤
∫
Rd

(
|f(x− y)− f(x)| |kε(y)|1/p

)(
|kε(y)|1/q

)
dy,

with 1/p+ 1/q = 1, and we integrate in dx to obtain

‖f ? kε − f‖pp ≤ ‖kε‖
p/q
1

∫
Rd

dx

∫
Rd
|f(x− y)− f(x)|p |kε(y)|dy.

Exchanging the order of integration, and splitting the integral in dy into the
regions {|y| < δ} and {|y| ≥ δ} we have

‖f ? kε − f‖pp ≤ ‖k‖
p/q
1

[ ∫
{|y|<δ}

φ(y) |kε(y)|dy +

∫
{|y|≥δ}

φ(y) |kε(y)|dy
]
,
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where

φ(y) =

∫
Rd
|f(x− y)− f(x)|p dx.

The continuity of the translation (a) shows that φ(y) → 0 as |y| → 0, and so,
for every ε1 > 0 there exists δ > 0 such that∫

{|y|<δ}
φ(y) |kε(y)|dy ≤ ε1

∫
{|y|<δ}

|kε(y)|dy ≤ ε1‖k‖1 ≤ ε1.

Since φ is bounded, i.e., ‖φ(y)‖∞ ≤
(
2‖f‖p

)p
, we obtain∫

{|y|≥δ}
φ(y) |kε(y)|dy =

∫
{|y|≥δ/ε}

φ(εy)|k(y)|dy ≤

≤
(
2‖f‖p

)p ∫
{|y|≥δ/ε}

|k(y)|dy,

where the right-hand side tends to 0 as ε → 0. This proves that f ? kε → f in
Lp, as ε→ 0.

Based on these properties we have

Proposition B.66. Let Ω be an open subset of Rd and C∞0 (Ω) be the space of
all real-valued functions having derivatives of any order and compact supports.
Then C∞0 (Ω) is dense in Lp(Ω), for any 1 ≤ p <∞.

Proof. It is clear that we can find a sequence {Ωn : n ≥ 1} of open sets with
compact closure satisfying

Ωn ⊂ Ωn+1 ⊂ Ωn+1 ⊂ Ω, ∀n and
⋃
n Ωn =

⋃
n Ωn = Ω.

By means of the dominate convergence we check that∫
Ω

|1Ωn(x)f(x)− f(x)|pdx→ 0,

i.e., ‖1Ωnf−f‖p → 0 as n→∞. Hence, we are reduced to approximate functions
with compact supports.

Therefore, let f be a function in Lp(Ω) which vanishes outside of some
compact set K = Kf ⊂ Ω. It is then clear that there exists a continuous
function k with compact support inside Ω such that k = 1 on K and 0 ≤ k ≤ 1
on Ω. Now, for every ε > 0 there exists a continuous function gε with compact
support such that∫

Rd
|1K(x)f(x)− gε(x)|pdx < ε,

which implies that ‖f − kgε‖p < ε. Actually, by means of a convolution with a
smooth kernel, we can choose kgε in C∞0 (Ω).
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Proposition B.67. If 1 ≤ p < ∞ and A is a measurable subset of Rd then
Lp(A) is separable Banach space.

Proof. It is clear that only the case A = Rd needs consideration. Indeed, for any
function in Lp(A) can be extended by zero to be obtain an element in Lp(Rd)
and backward, any function f in Lp(Rd) becomes a function in Lp(A) by setting
g = 1Af, which is a continuous linear transformation.

There are several ways to check that Lp = Lp(Rd) is separable. For instance,
we may consider functions of the form p(x)1B where p are polynomials with
rational coefficients and B are closed balls centered at the origin of radius 1/n,
for n = 1, 2, . . . .

Alternatively, we may consider simple functions of the form
∑n
j=1 aj1Aj ,

where ai are rational numbers and {Aj} are disjoint d-intervals with rational

extremes, i.e., of the form
∏d
i=1]αi, βi], with αi and βi rational numbers. It is

clear that any simple function can be approximate in the Lp-norm with simple
functions of the above form.

• Remark B.68. It is clear some of the arguments used in the above Proposi-
tion B.67 can be applied to any Radon measure (F , µ) in Rd, so that Lp(Rd,F , µ)
is a separable Banach space.

The particular case L2(A) or L2(A;C) is a real or complex separable Hilbert
space with the scalar or inner product

(f, g) =

∫
A

f(x)g(x) dx or (f, g) =

∫
A

f(x)ḡ(x) dx,

where ḡ means the complex-conjugate. We denote by ‖ · ‖ = ‖ · ‖2 the corre-
sponding norm.

The following definitions apply to any Hilbert space, but we focus in L2. A
family of functions {ϕi : i ∈ I} is orthogonal if (ϕi, ϕj) = 0 for every i 6= j; it is
orthonormal if also ‖ϕi‖ = 1, for every i; and it is called complete if the only
function orthogonal to any ϕi is the zero, i.e., if (f, ϕi) = 0 for every i implies
f = 0. The (finite) linear combinations of elements in the family is called the
span, and a family of functions {ϕi : i ∈ I} is called a basis if its span is dense
in L2.

Proposition B.69. There exists a complete orthonormal basis for L2. More-
over, any orthonormal basis is countable and complete.

Proof. If {ϕi : i ∈ I} is an orthonormal basis then

‖ϕi − ϕj‖2 = (ϕi − ϕj , ϕ̄i − ϕ̄j) = ‖ϕi‖2 + ‖ϕj‖2 = 2,

for any i 6= j. Because L2 is separable, the set of indices I can be at most
countable.

If {ϕi : i ≥ 1} is a orthogonal basis and (f, ϕi) = 0 for every i then (f, ϕ) = 0
for any ϕ linear combination of elements in the basis, and so

‖f‖2 = (f, f̄ − ϕ̄) ≤ ‖f‖ ‖f − ϕ‖.
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Since linear combinations are dense in L2, the quantity ‖f − ϕ‖ can be made
arbitrary small, which implies that f = 0, i.e., {ϕi : i ≥ 1} is complete.

Finally, we apply the Gram-Schmidt procedure to a countable dense set
{φi : i ≥ 1} to obtain an orthonormal family {ϕi : i ≥ 1}, which is a basis
by construction. Thus, we get a complete orthonormal family or system or
basis.

It is clear that we have proved that any separable Hilbert space has a (count-
able) complete orthonormal basis {ϕi : i ≥ 1}.

Recall that `2(R) or `2(C) is the space of all real-valued or complex-valued

sequences a = {ai : i ≥ 1} such that ‖a‖2 =
(∑

i≥1 |ai|2
)1/2

is finite, which is a

separable Hilbert space with the scalar or inner product (a, b) =
∑
i≥1 aib̄i.

Proposition B.70. Let {ei : i ≥ 1} be a complete orthonormal basis in a
separable Hilbert space H, e.g., H = L2, with norm ‖ · ‖ and inner product
(·, ·). Then for any given element h in H the series hn =

∑n
i=1(h, ēi)ei, n ≥ 1,

converges to h and Parseval’s formula

‖h‖2 =

∞∑
i=1

|(h, ei)|2, ∀h ∈ H,

holds. Moreover, the mapping T : H → `2 defined by T (h) = {(h, ēi) : i ≥ 1} is
a linear isometry.

Proof. By means of the linearity of the inner product we have

‖hn − hm‖2 =

n∑
i=m+1

|(h, ei)|2 and ‖h− hn‖2 = ‖f‖2 −
n∑
i=1

|(h, ei)|2,

which proves that the sequence of partial sum {hn : n ≥ 1} is convergent to
some function g in L2. Since h−g is orthogonal to any ei, we deduce that h = g,
‖hn − h‖ → 0 and Parseval’s formula holds.

It is clear that T is linear and that T−1(a) =
∑
i≥1 aiei. Also, the parallelo-

gram identity ‖h+ g‖2 + ‖h− g‖2 = 2[(h, ḡ) + (g, h̄) shows that

(T (h), T (g)) =
∑
i≥1

(h, ei)(g, ei), ∀h, g ∈ H,

i.e., T preserves the inner product.

Perhaps the reader may want to take a look at the book Lieb and Loss [80,
Chapters 1 and 2, pp. 1–77] for a concrete review on the previous material.
Also, plenty of exercises can be found in the book by Gelbaum [51].
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B.5.6 Radon-Nikodym Derivative

Because measures can take infinite values, subtraction two measures is only al-
lowed when at least one of them is finite. Thus a signed measure ν is a σ-additive
set function on a measurable space (Ω,F) such that ν(∅) = 0. The σ-additivity
implies that ν takes values in either [−∞,+∞) or (−∞,+∞]; moreover, if
A =

∑∞
i=1Ai with Ai ∈ F and |ν(A)| <∞ then, by separating the positive and

the negative terms, we deduce that the series
∑∞
i=1 ν(Ai) is absolutely conver-

gence. Also, for any E ⊂ F measurable sets, the relation ν(F ) = ν(E)+ν(FrE)
shows that if |ν(F )| < ∞ then |ν(E)| < ∞ (i.e., finite values can only be ob-
tained by adding or subtraction real numbers. Hence it makes sense to say that
a signed measure ν is finite if |ν(Ω)| <∞, and similarly we define σ-finite signed
measures.

The σ-additivity property applied to finite measures can be considered in a
larger context, e.g, we may discuss measures with complex values (in C) or with
vector values in Rd or even more general with values in a topological vector space
(usually a Banach space or a locally convex space). Hahn-Jordan decomposition
affirms that if ν is a signed measure on (Ω,F) then there exists a measurable
set A ∈ F such that ν+(F ) = ν(F ∩A) and ν−(F ) = −ν(F ∩Ac) are measures
satisfying ν(F ) = ν+(F )− ν−(F ), for every F ∈ F . Certainly, the set A is not
necessarily unique, but the positive and negative variations measures ν+ and
ν− are uniquely defined.

Also we define the measure |ν|(A) = ν+(A) + ν−(A), which is called the
variation of ν. Note that a signed measure ν is finite (i.e., |ν(Ω)| < ∞) if and
only if |ν| is so, (i.e., |ν|(Ω) <∞), and similarly for the concept of σ-finite.

Definition B.71. Let µ and ν be two signed measures on a measurable space
(Ω,F). The signed measure ν is said to be absolutely continuous with respect to
µ and written ν � µ if for every F ∈ F with |µ|(F ) = 0 we also have ν(F ) = 0.
On the contrary, these two measures µ and ν are called (mutually) singular
and written µ ⊥ ν (or ν ⊥ µ) if there exits A ∈ F such that |µ|(A) = 0 and
|ν|(Ω rA) = 0.

It is clear that being singular is a symmetric property, while being absolutely
continuous is not. Moreover, µ ⊥ ν if and only if there exits A ∈ F such that
for every F ∈ F we have

F ∩A = ∅ ⇒ µ(F ) = 0 and F ⊂ A⇒ ν(F ) = 0,

i.e., ν = 0 on A and µ = 0 on Ω r A. Similarly, ν � µ if an only if for every
F ∈ F such that µ(E ∩ F ) = 0, for every E ∈ F , we have ν(E ∩ F ) = 0, for
every E ∈ F .

If f is a quasi-integrable function in (Ω,F , µ), i.e., f = f+−f− is measurable
and either f+ or f− is integrable, then the expression

F 7→
∫
F

f dµ, ∀F ∈ F
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defines a signed measure which is absolutely continuous with respect to µ. The
converse is precisely the Radon-Nikodym Theorem, and the Lebesgue decom-
position completes the argument, namely, any σ-finite signed measure ν, on a
σ-finite measure space (Ω,F , µ), can be written as ν = νa + νs, where νa � µ
and νs ⊥ µ.

Theorem B.72. Let (Ω,F , µ) be a σ-finite measure space. Suppose that ν is
a σ-finite signed measure on (Ω,F), which is absolutely continuous with respect
to µ. Then there exists a quasi-integrable function f such that

ν(F ) =

∫
F

f dµ, ∀F ∈ F ,

where the function f is uniquely defined except in a set of µ-measure zero.

Proof. First note that by means of the Hahn-Jordan decomposition, we can
write ν = ν+ − ν−, which effectively reduces the problem to the case of a σ-
finite measure ν. Now, we proceed in several steps:

(Step 1) Since ν is σ-finite, the whole space Ω can be written as a disjoint
countable union

⋃
n Ωνn with |ν(Ωνn)| <∞. Next, because µ is also σ-finite, each

Ωνn can be written as a disjoint countable union
⋃
k Ωµn,k with µ(Ωµn,k) < ∞.

Hence, relabeling the double sequence, we have Ω =
⋃
n Ωn, with Ωn ∩ Ωm = ∅

if n 6= m and |νn(Ωn)|+ µ(Ωn) <∞, for every n. Therefore, it suffices to show
the results for the case where ν and µ are finite measures.

(Step 2) If G is the class of nonnegative µ-integrable functions g such that

ν(F ) ≥
∫
F

g dµ, ∀F ∈ F ,

then there exits a function f in G such that∫
Ω

f dµ = sup
g∈G

∫
Ω

g dµ.

Indeed, first note that if g1 and g2 belongs to G then g1 ∨ g2 also belongs to G.
Thus, if {gn} is a maximizing sequence then fn = max{g1, . . . , gn} defines an
increasing sequence in G such that

lim
n

∫
Ω

fn = sup
g∈G

∫
Ω

g dµ.

The monotone convergence theorem ensures that f = limn fn belongs to G and
provides a maximizer.

(Step 3) If λ 6= 0 is a measure absolutely continuous with respect to µ then
there exists ε > 0 and A ∈ F with ν(A) > 0 such that λ(F ∩ A) ≥ εµ(F ∩ A),
for every F ∈ F . Indeed, let Ak the Hahn decomposition of the signed measure
λk = λ − (1/k)µ, i.e., λk(F ∩ Ak) ≥ 0 ≥ λk(F r Ak), for every F ∈ F . Set
A0 =

⋃
k Ak and B0 =

⋂
k Bk, with Bk = ΩrAk. Since 0 ≤ λ(B0) ≤ (1/k)µ(B0)
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we have λ(B0) = 0, and because λ is nonzero and A0 = Ω r B0, we deduce
λ(A0) > 0, i.e., there exists k such that λ(Ak) > 0. Hence, we choose A = Ak
and ε = 1/k, for this particular k.

(Step 4) To complete the proof we show that the measure

λ(F ) = ν(F )−
∫
F

f dµ, ∀F ∈ F

vanishes. To this purpose, assume λ 6= 0 and get a contradiction. Because
ν � µ implies λ � µ, we can use (Step 3) to get a measurable set A and a
ε > 0 such that ν(A) > 0 such that λ(F ∩ A) ≥ εµ(F ∩ A), for every F ∈ F .
Choose h = f + ε1A to get∫

F

hdµ =

∫
F

f dµ+ εµ(F ∩A) ≤
∫
F

f dµ+ λ(F ∩A) =

=

∫
FrA

f dµ+ ν(F ∩A) ≤ ν(F rA) + ν(F ∩A) = ν(F ),

which shows that h belongs to the class G and∫
Ω

hdµ =

∫
Ω

f dµ+ εµ(A) >

∫
Ω

f dµ,

i.e., a contradiction.

Sometimes, the function f satisfying the conditions of Theorem B.72 is de-
noted by dν

dµ and called the Radon-Nikodym derivative.

• Remark B.73. It is simple to show that for any µ and ν are two finite measures
on (Ω,F) we have ν � µ if and only if for every ε > 0 there exist δ > 0 such that
F ∈ F and µ(F ) < δ imply ν(F ) < ε. Indeed, by contradiction, suppose that for
some ε > 0 there is a sequence {Fn} of measurable sets such that µ(Fn) < 2−n

and ν(Fn) ≥ ε. If F0 =
⋂
n

⋃
k≥n Fk then we deduce µ(F0) ≤

∑
k≥n 2k = 2n−1

and ν(F0) ≥ ε, i.e., µ(F0) = 0 and we obtain a contradiction.

A generalization of Radon-Nikodym arguments yields the so-called Lebesgue
Decomposition: If µ and ν are a two σ-finite signed measures on a measurable
space (Ω,F) then there exist two σ-finite signed measures νa and νs such that
ν = νa+νs, νa � µ and νs ⊥ µ. Clearly, the pair νa, νs is uniquely determinate.

B.6 Essential Complements

It may be convenient to include a short discussion on change of variables for the
Lebesgue integral as well as a quick presentation on the Lebesgue measure on
manifolds.
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B.6.1 Change of Variables

Spherical coordinates can be used in Rd, i.e., every x in Rdr{0} can be written
uniquely as x = r x′, where 0 < r < ∞ and x′ belongs to Sd−1 = {x ∈ Rd :
|x| = 1}.

Theorem B.74. The Lebesgue measure dx in Rd can be expressed as a product
measure dr×dx′, where dr is the Lebesgue measure on (0,∞) and dx′ is a (sur-
face) measure on Sd−1. Moreover, for every nonnegative measurable function in
Rd we have∫

Rd
f(x) dx =

∫∫
(0,∞)×Sd−1

f(rx′) rd−1 dr × dx′. (B.23)

In particular, if f is homogeneous, i.e., f(x) = g(|x|), then∫
Rd
f(x) dx = ωd−1

∫ ∞
0

g(r)rd−1 dr,

where the value ωd−1 = 2πd/2/Γ(d/2) is the surface area of the unit ball, i.e.,
dx′(Sd−1) 1.

Proof. It is clear that for d = 2 (or d = 3) this is call polar (or spherical)
coordinates. Moreover, the crucial point is to define the surface measure dx′ on
Sd−1, which will agree with the (d − 1)-dimensional superficial measure in Rd
(i.e., Hausdorff measure, except for a multiplicative constant).

It is clear that

Υ : Rd r {0} → (0,∞)× Sd−1, Υ(x) = (r, x′), r = |x|, x′ = x/|x|

is a continuous bijection mapping with Υ−1(r, x′) = rx′. Then, given a Borel set
B in Sd−1 we define Ba = {rx′ : x′ ∈ B, r ∈ (0, a]}, i.e., Ba = Υ−1(]0, a]× E).
Thus, for the desired surface measure dx′ we must satisfies (B.23) for f = 1E1

,
i.e.,

`(E1) =

∫
Rd
1E1(x) dx = dx′(E)

∫ 1

0

rd−1 dr,

and therefore we can define dx′(E) = dx(E1), which results a measure on Sd−1.
On the other hand, Theorem B.30 shows that dx(Ea) = addx(E1) and thus

dx((]a, b]× E) = dx(Eb r Ea) =
bd − ad

d
dx′(E) = dx′(E)

∫ b

a

rd−1 dr,

i.e., with dx′ defined as above, we have the validity of equality (B.23) for any
function f = 1]a,b]×E . We conclude approximating any nonnegative measurable
function by a sequence of simple functions.

1Recall the Gamma function Γ(x) satisfying Γ(n + 1) = n(n − 1) . . . 1, for any integer n,
and Γ(1/2) =

√
π
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For instance, the interested reader may consult the book by Folland [44,
Section 2.7, pp. 77–81] for more details. Note that∫

{x∈Rd:|x|≤r}
dx =

πd/2

Γ(d/2 + 1)
rd and

∫
{x∈Rd:|x|=r}

dx′ =
2πd/2

Γ(d/2)
rd−1

are the volume and the surface area of a ball radius r.

• Remark B.75. This change-of-variables yields that the function x 7→ |x|−α is
Lebesgue integrable (a) on the unit ball B = {x ∈ Rd : |x| < 1} if an only if
α < d and (b) outside the unit ball Rd rB if and only if α > d.

More general, we have

Theorem B.76 (Change of variable). Let X and Y be open subsets of Rd and
T : X → Y be a homeomorphism of class C1. A function y 7→ f(y) is Lebesgue
measurable on (Y,Ly,dy) is and only if x 7→ f(T (x)) is Lebesgue measurable on
(X,Lx,dx). In this case, we have∫

Y

f(y) dy =

∫
X

f
(
T (x)

)
JT (x) dx,

where JT (x) = |det(∂xT (x))| denotes the Jacobian of T.

Based on Theorem B.30, we can easily prove the change of variable formula
for an affine transformation T. Indeed, it suffices to approximate f by a sequence
of simple functions. Some more preparation is required for a nonlinear homeo-
morphism of class C1, e.g., see Ambrosio et al. [8, Chapter 8, pp. 129–136] or
Jones [70, Chapter 15, pp. 494–510] or Knapp [74, Section VI.5, pp. 320–326]
or Schilling [111, Chapter 15, pp. 142–162]. Actually, essentially with the same
arguments, we can prove the following estimate: For any function T : X → Rd
with X an open subset of Rd, and for any set E ⊂ X where T is differentiable
at every point of E, we have

`∗
(
T (E)

)
≤
(

sup
E
JT
)
`∗(E),

where `∗ denotes the Lebesgue outer measure on Rd. This implies Sard’s The-
orem, i.e., the set of point x, where the function T (x) is differentiable and the
Jacobian JT (x) = 0, is indeed negligible. Moreover, if T is a measurable func-
tion from an open set X ⊂ Rd into Rd, i.e., T : X → Rd, which is differentiable
at every point of a measurable set E ⊂ Rd then

`∗
(
T (E)

)
≤
∫
E

JT (x) dx,

which implies a one-side inequality ≤ in the Theorem B.76, under the sole
assumption that T is only differentiable and f is a nonnegative Borel function.
The reader may take a look at Cohn [28, Chapter 6, pp. 167–195] for a carefully
discussion, and to Duistermaat and Kolk [37, Chapter 6, pp. 423–486] for a
number of details in the change of variable formula for the Riemann integral.
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By means of the change of variables formula, we can define the surface
measure of a n-dimensional C1-manifoldM with local coordinates chart T : O →
Rn and metric tensor given locally by a positive definite matrix a = (aij),
aij = (∂kTi)(∂kTj). Indeed, the expression

µ(O) =

∫
T (O)

√
det(a(x)) dx, ∀O open subset of M

is well defined and invariant within the manifold. For instance, if M is the graph
of a real-valued continuously differentiable function y = u(x) with x in Ω ⊂ Rn
then M is an n-dimensional manifold in Rn+1 and the map T (x) = (u(x), x)
provides a natural (local) coordinates with metric tensor given locally by the
matrix aij = δij + ∂iu∂ju. Thus

√
det(a(x)) =

√
1 + |∇u(x)|2, and

µ(M) =

∫
Ω

√
1 + |∇u(x)|2 dx

is the surface measure of M, in particular this is valid for the unit sphere Sn−1 =
{x ∈ Rn : |x| = 1}.

For instance, the interested reader may consult Taylor [124, Chapter 7, pp.
83–106] for more details. In general, the reader may take a look at the textbooks
by Apostol [9, Chapters 14 and 15, pp. 388–433] and Duistermaat and Kolk [38],
for a detail account of the multidimensional Riemann integral.

In a more delicate setting, the Lebesgue measure represents the volume in
Rd while the length and surface area are given by the Hausdorff measure, except
for a factor. Recall that on the Borel space Rd we denote by `n = cnhn, where
cn = 2−nπn/2/Γ(n/2 + 1), i.e., the n-dimensional surface measure, and `d is the
Lebesgue measure.

Let us recall the polar decomposition of a linear mapping T : Rd → Rn
into an symmetric linear map Rd∧n → Rd∧n and an orthogonal linear map
H : Rd∧n → Rd∨n such that T = HS if d ≤ n and T = SH∗ if d ≥ n.
Thus, the Jacobian J(T ) is defined as J(T ) = |det(S)|, the determinant (with
positive sign) of the symmetric (square) part of T. Next, based on Rademacher’s
Theorem, the differential Df of a given Lipschitz mapping f : Rd → Rn exits
as a linear map Df(x) : Rd → Rn, `d-almost every x. Hence, the Jacobian
of f is defined as the Jacobian of its differential Df (as a linear map), i.e.,
J(f, x) = J(Df(x)).

Theorem B.77. Let f : Rd → Rn be a Lipschitz function. Then for every `d-
measurable set E ⊂ Rd the mapping y 7→ `d−n

(
E ∩ f−1{y}

)
is `n-measurable,

we have the co-area formula∫
E

J(f, x) dx =

∫
Rn
`d−n

(
E ∩ f−1{y}

)
dy, when d ≥ n,

and the area formula∫
E

J(f, x) dx =

∫
Rn
`0
(
E ∩ f−1{y}

)
dy, when d ≤ n,

where dx = d`d(x) and dy = d`n(y), for x in Rd and y in Rn.
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It is clear that the area formula is used for the length of a curve (d = 1,
n ≥ 1), surface area of a graph or surface area of a parametric hypersurface
(d ≥ 1, n = d+ 1), and in general for submanifolds.

The both formulae generalize to change of variables, i.e., if g : Rd → R is an
`d-integrable function then∫

Rd
g(x) J(f, x) dx =

∫
Rn

[ ∑
x∈f−1{y}

g(x)
]

dy, when d ≤ n

and, the restriction of g to f−1{y}, denoted by g|f−1{y}, is `d−n-integrable for
`n-almost every y and∫

Rd
g(x)J(f, x) dx =

∫
Rn

dy

∫
f−1{y}

g(x) `d−n(dx), when d ≥ n.

Note that f−1{y} is a closed set in Rd for every y ∈ Rn.
The co-area formula can be used to compute level sets and polar (or spher-

ical) coordinates, e.g., if g : Rd → R is integrable then∫
Rd
g(x) dx =

∫ ∞
0

dr

∫
∂B(0,r)

g(x) `d−1(dx),

where ∂B(0, r) is the boundary (sphere) of the ball B(0, r) with radius r and
center at the origin 0, and again, we have∫

∂B(0,r)

g(x) `d−1(dx) =

∫
Sd−1

g(rx′) rd−1 dx′,

where Sd−1 = ∂B(0, 1) is the unit sphere in Rd and dx′ = `d−1(dx′). In spherical
coordinates this means∫

Ω

f(x)`d(dx) =

∫ ∞
0

dr

∫
{x∈Ω:|x|=r}

f(x)`d−1(dx) =

=

∫ ∞
0

rd−1dr

∫
{x′∈Rd:|x′|=1}

f(rx′)1{rx′∈Ω}`d−1(dx′).

(B.24)

Moreover, the center of the spherical coordinates may be different from the
origin 0. For instance, a prove of what was mentioned in this subsection can be
found Evans and Gariepy [43] or Lin and Yang [82].

The interested reader may also check the Appendix C in Leoni [79, pp 543-
579] for a quick refresh on Lebesgue and Hausdorff measure (and integration),
in particular, if A and B are two measurable sets in Rd such that A + B =
{a + b : a ∈ A, b ∈ B} is also measurable then Brunn-Minkowski’s inequality
reads as(

`d(A)
)1/d

+
(
`d(B)

)1/d ≤ (`d(A+B)
)1/d

. (B.25)
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This estimate in turn can be used to deduce the isodiametric inequalities. More-
over, if we denote by `∗d the Lebesgue outer measure in Rd then the reader may
find details (e.g., Stroock [118, Section 4.2, pp. 74-79 ]) on proving the so-called
isodiametric inequality (see Remark B.32)

`∗d(A) ≤ ωd
(
r(A)

)d
, ∀A ⊂ Rd,

where ωd = πd/2/Γ(d/2 + 1) is the Lebesgue measure of the unit ball in Rd, and
r(A) is the radius of A, i.e., r(A) = sup{|x− y|/2 : x, y ∈ A}.

For a later use, the above co-area formulae can be summarized as∫
Ω

f(x)|∇%(x)|dx =

∫
R

ds

∫
%−1(s)

f(x) `d−1(dx) (B.26)

where `d−1 is the (d − 1)-dimensional Hausdorff (Lebesgue) measure in Rd, Ω
is an open subset of Rd and % is a real-valued Lipschitz function defined on Ω.
More general, if % = (%1, . . . , %n) is a Lipschitz function defined on Ω with values
in Rn, for some n = 1, . . . , d− 1, then the formula (B.26) becomes∫

Ω

f(x)
√
∇%∗∇%dx =

∫
Rn

ds

∫
%−1(s)

f(x) `d−n(dx), (B.27)

where the Jacobian J(ρ, x) =
√
∇%∗∇% is written in term of the n × n square

matrix ∇%∗∇% =
(∑d

k=1 ∂k%i∂kρj
)
.

B.6.2 Lebesgue Measure on Manifolds

First we recall the concept of manifold. If U and V are two open sets in Rd
then a bijective mapping Φ : U → V which is continuously differentiable up to
the order k together with its inverse Φ−1 : V → U is called a homeomorphism
of class Ck (or a Ck diffeomorphism). If k = 0 then Φ and its inverse are just
continuous, and a (locally) Lipschitz homeomorphism (or a (local) bi-Lipschitz
mapping) is when Φ and Φ−1 are both (local) Lipschitz continuous functions,
i.e., for some constant C ≥ c > 0,

c|x− y| ≤ |Φ(x)− Φ(y)| ≤ C|x− y|, ∀x, y ∈ U

or if the ‘locally’ prefix is used, for any x and y in K, for any compact set
K ⊂ U , where the constants C and c may depend on K. Also the case k = ∞
(i.e., continuously differentiable of any order) is included. In this context, a
homeomorphism is also called a (local) change-of-variables or coordinates.

Definition B.78. A set S ⊂ Rd is called a Ck submanifold of Rd at x ∈ S of
dimension 1 ≤ m < d if there exists an open neighborhood U of x such that S∩U
is the graph of a mapping ψ of class Ck from an open set V ⊂ Rm into Rd−m,
i.e., for some orthogonal change-of-variables y = (y1, . . . , yd), y

′ = (y1, . . . , ym),

S ∩ U =
{

(y′, ψ(y′)) ∈ Rd : y′ ∈ V ⊂ Rm
}
,
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and ψ is continuously differentiable up to the order k. If this property holds for
every x in S, with the same constants k and m, but possibly a different choice
of the orthogonal coordinates (and ψ), then S is called a Ck submanifold (of
Rm) of dimension m. The m-dimensional linear space of all tangent vectors,
i.e., the graph of the (d−m)×m matrix gradient ∇ψ, namely,

graph
(
∇ψ(x′)

)
=
{

(y′,∇ψ(x′)y′) : y′ ∈ Rm
}
, with x = (x′, ψ(x′)),

is called the tangent space at the point x. The strictly positive function

y = (y′, ψ(y′)) 7→ Jψ(y′) =
√

det
(
∇φ(y′)∗∇φ(y′)

)
, φ(y′) = (y′, ψ(y′))

defined on S ∩U is called the Euclidean m-dimensional density function, where
(·)∗ means the transposed matrix, and det(·) is the determinant of a m × m
matrix. With obvious changes, continuous submanifolds (k = 0), C∞ subman-
ifolds, and (locally) Lipschitz submanifolds (ψ is locally Lipschitz) are also de-
fined. For (locally) Lipschitz submanifolds, the tangent space and the Euclidean
density may not be defined at every points.

Similarly, any open subset of Rd and any point in Rd can be regarded as
submanifolds of dimension m = d and m = 0, respectively. Certainly, instead of
calling S a Ck submanifold (of Rm) of dimension m, we may call S a manifold
of dimension m (in Rd). A typical example of a C∞ manifold is the sphere
Sd−1 = {x ∈ Rd : |x| = 1}. Indeed, for any x0 in Sd−1 there is at least one
coordinate nonzero, e.g, x0

1 > 0, and so,

x1 = ψ(x2, . . . , xd) =
√

1− x2
2 − · · · − x2

d

yields a local description. It is clear from the definition that a homeomorphism
Φ of class Ck preserves submanifolds, i.e., if S is a manifold then Φ(S) is also a
manifold.

• Remark B.79. The mapping φ(y′) = (y′, ψ(y′)) from V into Rd is injective and
of class Ck, and its inverse (y′, ψ(y′))→ y′ is necessarily continuous (actually, of
class Ck) and the d×m matrix gradient ∇φ = (Im,∇ψ)∗ is injective. Similarly,
the mapping g(y) = g(y′, r) = r − ψ(y′) from U into Rd−m satisfies S ∩ U =
{y ∈ U : g(y) = 0} and the (d −m) × d matrix gradient ∇g = (−∇ψ|Id−m) is
surjective, indeed, the number d−m of equation requires for a local description
of S is called the co-dimension. Moreover, these d−m coordinates can be flatted,
i.e., Φ(S ∩ U) = O × 0d−m, for a suitable homeomorphism Φ from U into Rd
and an open subset O of Rm. Actually, as long as we work within the class Ck

with k ≥ 1, these three functions φ, g and Φ are of class Ck and they provide an
equivalent definition of submanifold, via the implicit and the inverse function
theorems (which are not valid for Lipschitz functions). For instance, a set S is a
Ck submanifold of Rd at x ∈ S of dimension m if there exists an open set V of
Rm and an injective function φ : V → Rd such that (a) x belongs to φ(V ), (b)
φ and its inverse φ−1 are of class Ck, k ≥ 1, and (c) the matrix ∇φ(x) has rank
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m. Indeed, from such a function φ the implicit function theorem applies, and
after re-ordering the variables, the equation φ(y′) = z can be solved, locally,
as z = (y′, ψ(y′)) to fit Definition B.78. A function φ satisfying (a), (b), (c) is
called a local chart of S, and a family such functions is called an atlas of S.
Essentially, any property of an object acting on a manifold is defined in term of
an atlas and should be independent of the particular atlas used. It is clear that
atlas are preserved by homeomorphism of the same regularity.

Also note that the tangent space and the Euclidean density are independent
of the particular local coordinates (i.e., the choice of the m independent coordi-
nates and the function ψ) chosen. Setting φ(y′) = (y′, ψ(y′)), this means that if
φ̄(ȳ′) is another local coordinates (or charts) on an open subset V̄ of Rm then
the tangent space at the point x = φ(x′) = φ̄(x̄′) is given by

{∇φ(x′)y′ ∈ Rd : y′ ∈ Rm} = {∇φ̄(x̄′)ȳ′ ∈ Rd : ȳ′ ∈ Rm},

while, for the Euclidean density Jψ(y′) the invariance is expressed by the relation

Jφ̄(ȳ′) = Jφ(φ−1 ◦ φ̄(ȳ′))
∣∣det

(
∇(φ−1 ◦ φ̄(ȳ′))

)∣∣,
for any ȳ′ in φ̄−1(φ(V ) ∩ φ̄(V̄ )). Actually, any nonnegative function ρ defined
on S by local coordinates ρφ(y′) = ρ(φ(y′) that follows the above invariance is
called a density on S.

In particular, if m = d − 1 (i.e., the hyper-area) then ψ is real-valued,
φ(y′) = (y′, ψ(y′)), y′ in Rd−1, and

Jψ(y′) =
√

det
(
∇φ(y′)∗∇φ(y′)

)
=
√

1 + |∇ψ(y′)|2,

where ∇ψ is the gradient of ψ, i.e., the (d− 1)-dimensional vector of all partial
derivatives. This means that if y′ = (y1, . . . , yd−1) and yd = ψ(y1, . . . , yd−1)
then the vector

n(y′, ψ(y′)) = ±
(
− ∂1ψ(y′), . . . ,−∂d−1ψ(y′), 1

)[
1 + (∂1ψ(y′))2 + · · ·+ (∂d−1ψ(y′))2

]1/2 ,
represents the unit normal vector (field) to the surface S. This yields d − 1
independent tangential unit vectors ti, for i = 1, . . . , d− 1, i.e.,

t1 =

(
1, 0, . . . , 0, ∂1φ(y′)

)[
1 + (∂1φ(y′))2

]1/2 , . . . , td−1 =

(
0, 0, . . . , 1, ∂1φ(y′)

)[
1 + (∂d−1φ(y′))2

]1/2 ,
which are orthogonal to n as expected.

• Remark B.80. The concept of manifold applied to an open set Ω ⊂ Rd with
boundary ∂Ω could reads as follows: either (a) the boundary ∂Ω = S ⊂ Rd is a
(d− 1)-dimensional manifold satisfying Definition B.78 and

Ω ∩ U = {(y′, yd) ∈ Rd : yd < ψ(y′), y′ ∈ V ⊂ Rd−1},
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or (b) the closure Ω is a d-dimensional manifold with boundary ∂Ω = S, i.e., as
in Definition B.78 with φ : U → Rd,

Ω ∩ U = {y = (y′, yd) ∈ Rd : φd(y) < 0} and

S ∩ U = {y = (y′, yd) ∈ Rd : φd(y) = 0}.

In this case, the normal direction n is one-sided, i.e., the “graph” cannot tra-
verses the tangent plane. As mentioned early, both viewpoints (a) and (b) are
equivalent within the class Ck, k ≥ 1, but for only continuous or Lipschitz man-
ifolds, (a) implies (b), but (b) does not necessarily implies (a). For instance,
the reader is referred to Grisvard [60, Section 1.2, pp. 4–14].

Similarly, if m = 1 (i.e., the arc-length) then ψ takes values in Rd−1, φ(y′) =
(y′, ψ(y′)), y′ in R1, and

Jψ(y′) =
√

det
(
∇φ(y′)∗∇φ(y′)

)
=
√

1 + |dψ(y′)|2,

where dψ(y′) is the (d− 1)-dimensional vector of the first derivative of ψ. This
means that if y′ = y1, ψ = (ψ2, . . . , ψd) and ψ′ denotes the derivative, then the
vector

t(y1, ψ(y1)) = ±
(
1, ψ′2(y1), . . . , ψ′d(y1)

)[
1 + (ψ′2(y1))2 + · · ·+ (ψ′d(y1))2

]1/2 ,
represents the unit tangent vector (field) to the curve S. This means that for
d = 3, we have the arc-length with m = 1 and the area with m = 2, as expected.

To patch all the pieces of a submanifold we need a partition of the unity :

Theorem B.81 (continuous PoU). Let {Oα : α} be an open cover of S ⊂ Rd,
i.e., Oα are open sets and

⋃
αOα ⊃ S. Then there exists a continuous partition

of the unity subordinate to {Oα : α}, i.e., there exists a sequence of continuous
functions χi : Rd → [0, 1], i = 1, 2, . . . , such that the support of each function
χi is a compact set contained in some element Oα of the cover, and for any
compact set K of

⋃
αOα there exists a finite number k such that

∑k
i=1 χi = 1

on K.

Proof. First, if I and J are d-intervals (or d-rectangles) in Rd such that I is
compact, J is open with compact closure and I ⊂ J then there exists a contin-
uous function $ : Rd → [0, 1] satisfying $(x) = 1 for every x in I and $(x) = 0
for every x outside of J , actually, an explicit construction of the $ is clearly
available.

Second, consider a sequence of compact set Kn such that
⋃
nKn =

⋃
αOα

to deduce that for every x in Kn must belong to some open set Oα, and so,
there are d-intervals I compact and J open with compact closure such that x
belongs to the interior of I and I ⊂ J ⊂ J ⊂ Oα. By compactness, there exists
a finite number of Ii ⊂ Ji with the above property which form a finite cover
of Kn, i.e.,

⋃k
i=1 I̊i ⊃ Kn. Hence, there is a sequence of d-intervals Ii ⊂ Ji, Ii
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is compact, Ji is open with a compact closure contained in some Ωα, and such
that

⋃k
i=1 I̊i =

⋃
αOα.

Next, denote by $i a continuous function such that $ = 1 on Ii and $ = 0
outside Ji to define χ1 = $1 and

χi = (1−$1)(1−$2) · · · (1−$i−1)$i,

for i ≥ 2. The support of χi is certainly contained in some Ωα and since

k∑
i=1

χi = 1−
k∏
i=1

(1−$i), ∀k ≥ 1,

we deduce that
∑∞
i=1 χi = 1 on any compact K of

⋃
αOα, where the series is

locally finite, i.e., only a finite number of χi have support in K.

It is not hard to modify the argument so that the functions χi are of class
Ck, but to actually see that χi may be chosen of class C∞, we make use of the
fact that

g(x) =

{
0 if x ≤ 0

e−1/x if x > 0

is a function of class C∞.

Therefore, apply Theorem B.81 to the open cover {U} of the submanifold
S as in Definition B.78 to find a continuous partition of the unity {χi} with a
compact support contained in the open set Ui ⊂ Rd, and charts ψi defined on
an open set Vi ⊂ Rm such that

S ∩ Ui = {φi(y′) = (y′, ψi(y
′)) ∈ Rd : y′ ∈ Rm}.

Now, the Lebesgue measure defined on Rm can be transported to S. Indeed,
a nonnegative function f defined on a submanifold S in Rd of dimension m
is called integrable with respect to the surface Lebesgue measure σ(dx) if the
function

y′ 7→
∑
i

χi
(
φi(y

′)
)
f
(
φi(y

′)
)√

det
(
∇φi(y′)∗∇φi(y′)

)
is Lebesgue integrable on Rm and∫

S

f(x)σ(dx) =
∑
i

∫
Rm

χi
(
φi(y

′)
)
f
(
φi(y

′)
)√

det
(
∇φi(y′)∗∇φi(y′)

)
dy′

is the definition of the integral. These definition are independent of the par-
ticular partition of the unity and the charts chosen. Indeed, if φ and φ̄ have a
common image S0 then the formula for the change-of-variables y′ 7→ φ̄−1

(
φ(y′)

)
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in the m-dimensional integral yields∫
φ−1(S0)

f
(
φi(y

′)
)√

det
(
∇φi(y′)∗∇φi(y′)

)
dy′ =

=

∫
φ̄−1(S0)

f
(
φ̄i(ȳ

′)
)√

det
(
∇φ̄i(y′)∗∇φ̄i(ȳ′)

)
dȳ′,

as expected. In particular, any linear (affine) submanifold S in Rd of dimension
m can be represented as

S =
{

(y′, ψ(y′)) ∈ Rd : y′ ∈ Rm
}
, with ψ(y′) = a+ y′A,

where A is am×(d−m) matrix A of maximal rank and a is a row vector in Rd−m.
Hence, φ(y′) = (y′, a + y′A), ∇φ(y′) = (Im, A)∗, and det((∇φ(y′))∗∇φ(y′)) =
det(Im +AA∗), independent of y′, and it represents the m-volume of the image
{y′A ∈ Rd : y′ ∈ Q′ ⊂ Rm}, where Q′ is the unit cube in Rm. In general

σ(φ(Q)) =

∫
Q

√
det
(
∇φ(y′)∗∇φ(y′)

)
dy′,

for any cube Q ⊂ Rm inside the open set Dφ where the local chart φ is defined.
Actually, the above equality holds true for any Lebesgue measurable set A =
Q ⊂ Dφ in Rm and σ becomes a Borel measure on S ⊂ Rd, and except for
a multiplicative constant, this surface Lebesgue measure agrees with the m-
dimensional Hausdorff measure as discussed in next section.

For the case of the hyper-area (m = d − 1), if for instance, the local charts
are taken

φ(y1, . . . , yd−1) =
(
y1, . . . , yd−1, ψ(y1, . . . , yd−1)

)
then the surface Lebesgue measure has locally the form∫

Rd−1

f(y′, ψ(y′))
√

1 + |∇ψ(y′)|2 dy′, y′ = (y1, . . . , yd−1).

If the submanifold S is only (locally) Lipschitz then the Euclidean density is
defined almost everywhere in Rm, and the surface Lebesgue measure σ still
makes sense as a Borel measure on S.

In particular, if Ω is an open subset of Rd with a Lipschitz boundary ∂Ω (see
Remark B.80) then the surface Lebesgue measure dσ is can be used to define the
space L1(∂Ω), i.e., the space of functions f : Ω→ R such that the composition
function

y′ 7→
∑
i

χi(φi(y
′))f(φi(y

′))
√

det
(
∇φi(y′)∗∇φi(y′)

)
is integrable in Rd−1, for some local coordinates ψi : Vi → Rd, φi(y′) = (y′ψ(y′)),
and a subordinate partition of the unity {χi}. As mentioned early, all proper-
ties of function defined on the boundary ∂Ω are studied by local coordinates.
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Moreover, if Ω a bounded domain as above and F is a continuously differen-
tiable functions defined on the closure Ω with values in Rd then the divergent
theorem, i.e.,∫

Ω

∇Fd` =

∫
∂Ω

F · ndσ

holds true, where n is the outward unit normal vector defined almost everywhere
with respect to the surface Lebesgue measure σ. Similarly, with the integration-
by-parts or Green formula.

Recall that by definition complex-valued measures are finite measure, i.e.,
a complex measure µ has a real-part <(µ) and an imaginary-part =(µ) both
of which are finite real-valued measures on a measurable space (Ω,F). Thus,
following the complex numbers arithmetic, a real- or complex-valued measurable
function f is integrable with respect to a complex valued measure µ if and only if
the real-valued function |f | is integrable with respect to the real-valued measures
<(µ) and =(µ).

In general, every integral with complex values is reduced to its real and
imaginary parts, and then each one is studied separately and put back together
when the result make sense, i.e., both parts are finite and 5h3 complex plane
is identified with R2 for all practical use. Hence, of particular interest is the
integral over a complex Lipschitz curve, which treated as a generalization of the
Riemann-Stieltjes contour integral over a complex C1-curve, i.e., the complex
line integral∫

C

f(z)dz =

∫ b

a

f
(
x(t) + iy(t)

)(
a′(t) + iy′(t)

)
dt,

where the curve C is parameterized as z = x(t) + iy(t), with t from a to b and
Lipschitz functions t 7→ x(t) and t 7→ y(t).

For instance, the reader may check the textbook Amann and Escher [7, Sec-
tions VII.9 and VII.10, pp. 242–280 and Chapter XI–X, pp. 235–456] or Duis-
termaat and Kolk [38, Chapter 7, pp. 487–535] or Giaquinta and G. Modica [54,
Chapter 4, pp. 213–282] or Haroske and Triebel [66, Appendix A, pp. 245–249].
Regarding manifolds, depending on the reader interest, the following textbooks,
Auslander and MacKenzie [13], Berger and Gostiaux [17], Boothby [20], Gadea
and Muñoz Masqué [48], and Tu [132] could be consulted.

B.6.3 Smooth Approximations

By definition, for any integrable function f there exists a sequence {fk : k ≥ 1}
of simple functions such that ‖fk−f‖1 → 0, which implies that the vector space
of (integrable) simple functions is dense in L1, and in particular we deduce that
L1

0 ∩ L∞ is dense in L1. Also we have
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Proposition B.82. Given a Lebesgue integrable function f and a real number
ε > 0 there exists a continuous functions g such that∫

Rd
|f(x)− g(x)|dx = ‖f − g‖1 < ε,

and g vanishes outside of some ball, i.e., the space of continuous functions with
compact supports C0

0 is dense in L1.

Proof. Each real-valued measurable function f can be written as f = f+ − f−,
where f+ and f− are nonnegative m-measurable functions. By Proposition B.9,
for any nonnegative measurable function f± there exists an increasing sequence
{f±k : k ≥ 1} of simple functions such that f±k (x) → f±(x), for almost every-
where x in Rd, as k →∞. Hence, by the monotone convergence, we obtain

lim
k

∫
Rd
|f±k (x)− f±(x)|dx = 0,

whenever f is integrable in Rd. Now, for a fixed k, the simple function f±k is a
finite combination of expression of the form c1E , with E a (Borel) measurable
set of finite measure and c a real number. For each E and ε > 0 there exists
an open set U ⊃ E such that m(U r E) < ε. Since U is an open set in Rd,
there exists an non-overlapping sequence {Qi : i ≥ 1} of closed cubes such that
U =

⋃
iQi, which yields m(U) =

∑
im(Qi), and

lim
n

∫
Rd
|1U (x)− 1Fn(x)|dx = 0, with Fn =

n⋃
i=1

Qi.

Given ε > 0 and the cubes Fn, we can easily find a continuous function gε,n
such that∫

Rd
|gε,n(x)− 1Fn(x)|dx < ε.

Combining all, the desired approximation follows.

Alternatively, given an integrable function f, the dominated convergence
implies that, for every ε > 0 there exists r > 0 such that the function fr(x) =
1{|x|≤r}1{|f(x)|≤r}f(x) satisfies∫

Rd
|f(x)− fr(x)|dx ≤ ε

2
.

Now, for this r > 0, we apply Lusin’s Theorem (e.g., see Part I) to obtain a
closed set Cr ⊂ Br = {x : |x| ≤ r} such that fr is continuous on Cr and
m(Br r Cr) < ε/(5r). Next, essentially based on Tietze’s extension fr can be
extended to a continuous function gr on Rd satisfying the conditions: (a) |gr| ≤ r
on Rd and (b) the set Nr = {x ∈ Rd : gr(x) 6= fr(x)} is contained in some ball
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B and m(Nr) < ε/(4r). Hence∫
Rd
|f(x)− gr(x)|dx ≤

∫
Rd
|f(x)− fr(x)|dx+

+

∫
B

|fr(x) − gr(x)|dx ≤ ε

2
+ 2rm(Nr) ≤ ε,

and g = gr is the desired function.

The arguments used in proving Proposition B.82 can be extended to a more
general setting, e.g., replacing the Lebesgue measure m on Rd by a Borel mea-
sure µ on a metric space Ω. There are other arguments for approximation typical
in Rd, for instance, mollification and truncation.

Let us begin with the following results.

Proposition B.83. If f belong to L1 then

lim
a→0

∫
Rd
|f(x+ a)− f(x)|dx = 0,

i.e., the translation operator τaf = f(· − a) is continuous in L1.

Proof. Indeed, let us denote by K the collection of all functions f in L1 such
that ‖f(·+a)−f‖1 → 0 as a→ 0. It is simple to check that K is a closed vector
space, i.e.,

(a) if α, β ∈ R and f, g ∈ K then αf + βg ∈ K,
(b) if {fn : n ≥ 1} ⊂ K and ‖fn − f‖1 → 0 then f ∈ K.

Now, we use the same argument of Proposition B.82 to successively approximate
an integrable function by simple functions, next c1A with A measurable and
m(A) <∞ by c1U with a bounded open set U, and then for every ε > 0 and U
we find a finite union of non-overlapping cubes Q =

⋃n
i=1Qi with Q ⊂ U and

m(U r Q) < ε, to establish that the family of (simple) functions of the form∑n
i=1 ai1Qi , where the cubes Qi have edges parallel to the axis, can approximate

and integrable function in the ‖ · ‖1 norm.
Since the characteristic function of a d-interval (or a cube) belongs to K, we

deduce K = L1.
Alternatively, we may claim that any integrable function can be approxi-

mated in the ‖ · ‖1 norm by continuous functions with compact support (Propo-
sition B.82), which also belong to K.

For two integrable functions f and g we consider the convolution f ? g given
by the formula

(f ? g)(x) =

∫
Rd
f(x− y) g(y) dy =

∫
Rd
f(y) g(x− y) dy, ∀x ∈ Rd.

(B.28)
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It is clear that if either f or g is essentially bounded then x 7→ (f ? g)(x) is well
defined and ‖f ? g‖∞ ≤ ‖f‖1 ‖g‖∞. Moreover, we can also check the inequality
‖f ? g‖1 ≤ ‖f‖1 ‖g‖1, which means that the convolution f ? g is defined almost
everywhere, i.e., L1 is a commutative algebra with the convolution product.

Definition B.84 (locally integrable). A function f : Rd → R is called locally
integrable if for every x in Rd there exists an open neighborhood Ux such that f is
integrable in Ux, or equivalently, the restriction to any compact set in integrable.
This class of functions is denoted by L1

loc, and we say that a sequence of locally
integrable functions {fn : n ≥ 1} converges to f locally in L1 or in L1

loc, if

lim
n

∫
K

|fn(x)− f(x)|dx = 0,

for every compact set K of Rd. Similarly, L∞loc is the space of locally essentially
bounded functions, i.e., functions bounded almost everywhere on any compact
set. We also have the spaces of equivalence classes L1

loc and L∞loc.

Certainly, we mean f is Lebesgue measurable and f1K is in L1. This concept
of locally integrable can be used on locally compact spaces Ω with a Borel
measure (µ,B).

Also, recall that we say that a measurable function defined almost every-
where has compact support if it is equal to zero almost everywhere outside of a
ball. The sub-vector space of L1 (or L1) of all functions with compact support
is denoted by L1

0 (or L1
0), and similarly with L∞0 (or L∞0 ). The convolution f ?g

is also defined if f and g are only locally integrable and one of then has compact
support, i.e., f ∈ L1

0 and g ∈ L1
loc or g ∈ L∞loc implies f ?g ∈ L1

loc or f ?g ∈ L∞loc,
respectively.

In general, given two Lebesgue measurable functions f and g, we say that the
convolution f ?g is defined if the functions inside the integrals in the expression
(B.28) are integrable for almost every x. Remark that the convolution operation
commutes with the translation operator, i.e., τa(f ? g) = (τaf) ? g = f ? (τag).

Proposition B.85. Let f and g be two Lebesgue measurable functions in Rd.

(a) If f is integrable and g is essentially bounded then the convolution f ?g is a
bounded uniformly continuous function. Moreover, f is only locally integrable,
g is only locally essentially bounded, and either f or g has a compact support
then the convolution f ? g is a continuous function.

(b) Denote by ∂if the partial derivative of f with respect to xi. If f is es-
sentially bounded or integrable, g is integrable and the partial derivative ∂if is
a bounded function then the i-partial derivative of the convolution f ? g is a
bounded uniformly continuous function and ∂i(f ? g) = (∂if) ? g. Moreover, if f
and g are only locally integrable, either f or g has a compact support, and the
partial derivative ∂if is a locally bounded function then the i-partial derivative
of the convolution f ? g is continuous function and ∂i(f ? g) = (∂if) ? g.
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Proof. Consider the bound

∣∣(f ? g)(x+ a)− (f ? g)(x)
∣∣ ≤ ∫

Rd
|f(x+ a− y)− f(x− y)| |g(y)|dy,

where the integral is actually limited to the support of g. Thus, if g is essentially
bounded then Proposition B.83 proves most of the above claim (a). For the local
version of this claim, we remark that if f or g has a compact support then the
integral is only on a compact set K (as long as x remain in another compact
region) instead of Rd, and again, the continuity follows.

Next, by means of the Mean Value Theorem and the dominate convergence,
we obtain ∂i(f ? g) = (∂if) ? g and in view of (a), we deduce the claim (b).

Certainly, we can iterate the property (b) to deduce that ∂α(f?g) = (∂αf)?g,
for any multi-index α with |α| ≤ n, e.g., f belongs to Cnb and g is in L1.

Regarding the claim (b), we assume that the partial derivative ∂if exists
a any point, so that the Mean Value Theorem can be applied, however, the
expression (∂if) ? g is a continuous function even if ∂if is defined almost every-
where. Nevertheless, if we assume that ∂if is defined only almost everywhere
then we may have a non-constant function with ∂if = 0 a.e. (like the Cantor
function).

To end this section let us state (without proof)

Theorem B.86. Let f be a Lebesgue locally integrable function in Rd. Then
almost every point is a Lebesgue point for f, i.e., there exist a negligible N = Nf ,
|N | = 0, such that

lim
r→0

1

|B(x, r)|

∫
B(x,r)

|f(y)− f(x)|dy = 0, ∀x ∈ Rd rN,

where B(x, r) is the ball centered at x with radius r.

B.6.4 Partition of the Unity

First recall that the function

k(x) =

{
cr exp

[
−
(
r2 − |x|2

)−1]
if |x| < r,

0 otherwise,
(B.29)

for any given constant r > 0 and a suitable cr to meet the condition ‖k‖1 = 1,
is an example of a smooth kernel (in Rd) with compact support.

• Remark B.87. If k is an integrable kernel, i.e., an integrable function such
that ∫

Rd
k(x) dx = 1,
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and {kε : ε > 0} its corresponding mollifiers, i.e., kε(x) = ε−dk(x/ε), for every
x in Rd, then we have

lim
ε→0
‖f ? kε − f‖1 = 0, ∀f ∈ L1.

Moreover, if either f is essentially bounded in Rd or the kernel k satisfies

k(x) = α(x)|x|−d, a.e. x ∈ Rd, with α(x)→ 0 as |x| → ∞,

and f is uniformly continuous and bounded in a subset F of Rd, i.e, for every
ε > 0 there exists δ > 0 such that |x−y| < δ and x in F imply |f(x)−f(y)| < ε,
and supx∈F |f(x)| < ∞, then (f ? kε)(x) → f(x) uniformly for x in F, as
ε → 0. This is usually referred to as approximation by convolution smooth
functions.

Now, let K be a compact set in Rd and U be an open set satisfying U ⊃ K,
with compact closure U. If B1 = {x ∈ Rd : |x| ≤ 1} then for any δ > 0
sufficiently small we have K ⊂ R = K + δB1 ⊂ U, and so we can select ε > 0
such that K + εB1 ⊂ R and R + εB1 ⊂ U. Therefore, we may consider the
convolution 1R ? kε, where k is given by B.29 with r = 1. Since the support of
kε satisfies supp(kε) ⊂ B1 we deduce that there exists a function f = 1R ? kε
with derivatives of any order such that f = 1 on K and f = 0 outside U.

Another point is to use Remark B.87 with k given by (B.29) to show that
for any f in L1 and ε > 0 there exists a function g with derivatives of any order
such that ‖f − g‖1 < ε, i.e., the space C∞0 (Rd) =

⋂∞
n=1 C

n
0 (Rd) is dense in L1.

Theorem B.88. Let {Ωα : α} be an open cover of an open subset Ω of Rd, i.e.,
Ωα is open and Ω =

⋃
α Ωα. Then there exits a smooth partition of the unity

{χi : i ≥ 1} subordinate to {Ωα : α}, i.e., (a) χi belongs to C∞0 (Rd), (b) for
every i there exists α = α(i) such that χi(x) = 0 for every x in ΩrΩα, namely,
supp(χi) ⊂ Ωα, (c) 0 ≤ χi(x) ≤ 1 and

∑
i χi(x) = 1, for every x in Ω, where

the series is locally finite, namely, for any compact set K of Ω the set of indices
i such that the support of χi intercept K, supp(χi) ∩K 6= ∅, is finite.

Proof. (1) First we show that there exits a locally finite subordinate open cover
{Ui : i ≥ 1} with compact closure U i, i.e., for any compact set K ⊂ Ω the set
of indices {i ≥ 1 : Ui ∩K 6= ∅} is finite, and for every i ≥ 1 there exists α(i)
such that U i ⊂ Ωα(i).

Indeed, consider the compact sets

Kn = {x ∈ Ω : |x| ≤ n and d(x,Rd r Ω) ≥ 1/n},

for n ≥ 1, where d(x,A) = inf{|x − y| : y ∈ A}. We have Ω =
⋃
nKn,

Kn−1 ⊂ Ko
n, whereKo

n is the interior ofKn. For n ≥ 3 define Ωα,n = Ωα∩Ko
n+1∩

(ΩrKn−2), and remark that {Ωα,n : α} is a open cover of Ko
n+1∩(ΩrKn−2) ⊃

Kn∩ (ΩrKo
n−1). On the other hand, for each x in Kn∩ (ΩrKo

n−1) there exists

an open set Un(x) with closure Un(x) included in Ωα,n for some α(x). Hence,
the family {Un(x) : x} forms an open cover of the compact set Kn∩ (ΩrKo

n−1)
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and so, there exists a finite subcover, i.e., x1, . . . , xm, m = m(n) such that
{Un(xj) : j = 1, . . . ,m(n)} cover Kn ∩ (Ω r Ko

n−1), for every n ≥ 3. Thus,
the family {Un(xj) : j = 1, . . . ,m(n), n ≥ 3}, now denoted by {Ui : i ≥ 1}, is
countable and satisfies the required conditions.

(2) Next, we construct a continuous partition of the unity {fi : i ≥ 1}
subordinate to {Ui : i ≥ 1}, and so, also subordinate to {Ωα : α}. Indeed, we
apply again the above argument (1), with {Ui : i ≥ 1} instead of {Ωα : α},
to obtain another locally finite subordinate cover {Vi : i ≥ 1}, which (after
relabeling and deleting some U -open if necessarily) satisfies V i ⊂ Ui ⊂ Ωα,
α = α(i), for every i ≥ 1. Now, we use Urysohn’s Lemma to get a continuous
function gi satisfying gi(x) = 1 for every x in Vi and gi(x) = 0 for any x in
Rd rUi, i.e., supp(gi) ⊂ U i. Since the covers are locally finite, for any compact
set K of Ω there exists only finite many i such that Ui ∩ K 6= ∅ and so the
finite sum g(x) =

∑
i gi(x) defines a continuous function satisfying g(x) ≥ 1,

for every x in Ω. Hence, the family of continuous functions {fi : i ≥ 1}, with
fi(x) = gi(x)/g(x), is a partition of the unity subordinate to {Ui : i ≥ 1},
satisfying all the required conditions, except for the smoothness.

(3) To obtain a smooth partition we use the convolution with a smooth
kernel k having compact support defined by (B.29) for r = 1, as in Remark B.87
with kε. Indeed, again we apply (1) to get another locally finite subordinate cover
{Wi : i ≥ 1} which satisfies W i ⊂ Vi ⊂ V i ⊂ Ui ⊂ Ωα, α = α(i), for every i ≥ 1.
If 2εi = min{d(V i,Ω r Ui),d(W i,Ω r Vi)} then the convolution ϕi = 1Vi ? kεi
is an infinitely differentiable (smooth) function and, since supp(kεi) is included
in the ball centered at the origin with radius εi, we have

0 ≤ ϕi ≤ 1 in Rd, supp(ϕi) ⊂ U i, and ϕi = 1 on W i.

Moreover, the finite sum ϕ(x) =
∑
i ϕi(x) defines a smooth function satisfying

ϕ(x) ≥ 1, for every x in Ω. Hence, the family of smooth functions {χi : i ≥ 1},
with χi(x) = ϕi(x)/ϕ(x), is a partition of the unity subordinate to {Ui : i ≥ 1},
satisfying all the required conditions.

We note that in the above proof, we may go directly to (3) without using
(2). However, (1) and (2) are valid for σ-compact locally compact Hausdorff
topological spaces. Also, we may deduce (3) from (2) by using ϕi = gi ? kεi
with k as in (B.29) for r = 1 and 2εi = d(U i,Ω r Ωα(i)). Indeed, we remark
that gi(x) > 0 implies ϕi(x) > 0 and then ϕ(x) =

∑
i ϕi(x) > 0, for every

x in Ω. Alternatively, we may check that the functions gi in (2) can be chosen
infinitely differentiable, instead of just continuous. For instance, the reader may
consult Folland [44, Section 4.5, pp. 132–136] and Malliavan [86, Section II.1,
pp. 55–61].

B.6.5 Representation Theorems

When discussing signed measures, it was clear that a signed measure cannot
assume the values +∞ and −∞. However, a σ-finite signed measure µ make
sense, i.e., the measurable space (Ω,F) has a partition Ω =

∑
k Ωk such that
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the restriction of µ to Ωk, denoted by µk, is a finite signed measure. This is
essentially the situation of a linear functional on the space L1(Ω,F , µ) .

There are the various versions of the so-called Riesz representation theorems.
For instance, recall the definition of the Lebesgue spaces Lp = Lp(Ω,F , µ), for
1 ≤ p <∞ and its dual, denoted by (Lp)′, the Banach space of linear continuous
(or bounded) functional on Lp, endowed with the dual norm

[|g|]p = sup
{
〈g, ϕ〉 : ‖ϕ‖p ≤ 1

}
, ∀g ∈ (Lp)′,

where 〈·, ·〉 denote the duality pairing, i.e., g acting on (or applied to) ϕ, and
for the supremum, the functions ϕ can be taken in Lp or just a simple function,
actually, ϕ belonging to some dense subspace of Lp is sufficient.

Theorem B.89. For every σ-finite measure space (Ω,F , µ) and p in [1,∞),
the map g 7→ Tg, defined by

〈Tg, f〉 =

∫
Ω

g f dµ,

gives a linear isometry from (Lq, ‖ · ‖q) onto the dual space of (Lp, ‖ · ‖p), with
1/p+ 1/q = 1.

Proof. First, Hölder inequality shows that T maps Lq into (Lp)′ with [|Tg|]p ≤
‖g‖q. Moreover, by means of Proposition B.60 and Remark B.61 we have the
equality, i.e., [|Tg|]p = ‖g‖q, which proves that T is an isometry.

To check that T is onto, for any given element g in the dual space (Lp)′

define

νg(A) = 〈g,1A〉, ∀A ∈ F , µ(A) <∞.

Considering νg defined on measurable subsets A ⊂ F, for a fixed F in F with
µ(F ) <∞, we have a signed measure νg on F ⊂ Ω, which is absolutely contin-
uous with respect to µ. Thus Radon-Nikodym Theorem B.72 yields an almost
everywhere measurable function, still denoted by g

F
, such that

νg(A) =

∫
A

g
F

dµ, ∀A ∈ F , A ⊂ F.

By linearity, we have

〈g,1Fϕ〉 =

∫
F

g
F
ϕdµ,

for any simple functions ϕ. Again, Proposition B.60 and Remark B.61 imply
this implies the equality [|g1F |]p = ‖g

F
‖q, where g1F is the restriction of the

functional g to F, i.e., 〈g1F , f〉 = 〈g,1F f〉.
Since for some sequence {fn} of functions in Lp we have 〈g, fn〉 → [|g|]p,

there exists a σ-finite measurable set G (supporting all fn) such that

[|g|]p = sup
{
〈g,1Gϕ〉 : ‖ϕ‖p ≤ 1

}
, (B.30)
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and G =
⋃
nGn, for some monotone sequence {Gn} of measurable sets with

µ(Gn) <∞. SinceGn ⊂ Gn+1 implies g
Gn

= g
Gn+1

onGnrNn, with µ(Nn) = 0,
we can define a measurable function g

G
such that g

G
= 0 outside of G and

g
G

= g
Gn

on Gn rNn, for every n ≥ 1, i.e., we have

〈g,1Gϕ〉 =

∫
Ω

g
G
ϕdµ, for any simple function ϕ

Now, apply Proposition B.60 and Remark B.61 to deduce that [|g1
G
|]p = ‖g

G
‖q.

On the other hand, for any µ(F ) < ∞ with F ∩ G = ∅ we must have
νg(F ) = 0, i.e, g

F
= 0 almost everywhere. Indeed, if νg(F ) > 0 then

〈g,1F + 1Gϕ〉 = 〈g,1F 〉+ 〈g,1Gϕ〉

yields [|g|]p = 〈g,1F 〉+[|g1G|]p, which contradict the equality (B.30). This proves
that g = g1G and g = T (g

G
).

Recalling that a Banach space is called reflexive if it is isomorphic to its
double dual, we deduce that Lp(Ω,F , µ) is reflexive for 1 < p <∞. On the other
hand, if L1 is separable and L∞ is not separable then L1 cannot be reflexive,
since it can be proved that if the dual space is separable so is the initial space.

Given a Hausdorff topological space X, denote by C(X) the linear space of
all real-valued continuous functions on X. The minimal σ-algebra Ba for which
all continuous (and bounded) real functions are measurable is called the Baire
σ-algebra. If X is a metric space then Ba coincides with the Borel σ-algebra B,
but in general Ba ⊂ B. If X is compact then C(X) with the sup-norm, namely,
‖f‖∞ = supx |f(x)| becomes a Banach space. The dual space C(X)′, i.e., the
space of all continuous linear functional T : C(X)→ R, with the dual norm

‖T‖′∞ = sup
{
|T (f)| : ‖f‖∞ ≤ 1

}
is also a Banach space.

If X is a compact Hausdorff space then denote by M(X) the linear space of
all finite signed measures on (X,Ba), i.e., µ belongs to M(X) if and only if µ
is a linear combination (real coefficients) of finite measures, actually it suffices
µ = µ1 − µ2 with µi measures. We can check that

‖µ‖ = inf
{
µ1(X) + µ2(X) : µ = µ1 − µ2

}
defines a norm, which makes M(X) a Banach space. Moreover, we can write
‖µ‖ = |µ|(X), where |µ|(X) = µ+(X) + µ−(X) and µ = µ+ − µ−, with µ+

and µ− measures such that for some measurable set A we have µ+(A) = 0 and
µ−(X rA) = 0.

Theorem B.90. For every compact Hausdorff space X, the mapping µ 7→ Iµ,

Iµ(f) =

∫
X

fdµ1 −
∫
X

fdµ2, with µ = µ1 − µ2,

is a linear isometry from the space
(
M(X), ‖ · ‖

)
onto

(
C(X)′, ‖ · ‖′∞

)
.
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For instance, the reader may consult the book by Dudley [36, Theorems
6.4.1 and 7.4.1, p. 208 and p. 239] for a complete proof of the above theorems.
For the extension to locally compact spaces, e.g., see Bauer [15, Sections 28-29,
pp. 170–188], among others.

• Remark B.91. For locally compact space, the one-point (Alexandroff) com-
pactification of X yields the following version of Theorem B.90: If X is a locally
compact Hausdorff space then the dual of the space

(
C∗(X), ‖·‖∞

)
of all contin-

uous functions vanishing at infinity (i.e., f such that for every ε > 0 there exists
a compact Kε satisfying |f(x)|ε for every x in XrKε) is the space

(
M(X), ‖·‖

)
of all finite Borel (or Radon) measures on X. For instance the reader may check
Malliavin [86, Section II.6, pp. 94–100].

For a locally compact (Hausdorff) space X denote by C0(X,Rm) the linear
space of all Rm-valued continuous functions on X with compact support, i.e.,
f : X → Rm continuous and its supp(f) (the closure of the set {x ∈ X : f(x) 6=
0}) is compact. Recall that a (outer) Radon measure on X is a (signed) measure
defined on the Borel σ-algebra which is finite for every compact subset of X.

Theorem B.92. Let T : C0(X,Rm)→ R be a linear functional satisfying

‖T‖K = sup
{
T (f) : f ∈ C0(X,Rm), |f | ≤ 1, supp(f) ⊂ K

}
<∞,

for every compact subset K of X. Then µ defined by

µ(U) = sup
{
T (f) : f ∈ C0(X,Rm), |f | ≤ 1, supp(f) ⊂ U

}
,

for every open set U, is a Radon measure on X. Moreover, we have

T (f) =

∫
X

f σ dµ, ∀f ∈ C0(X,Rm),

where σ : Rm → R is a µ-measurable function such that |σ| = 1.

For instance, a proof of this result (for X = Rn) can be found in Evans and
Gariepy [43, Section 1.8, pp. 49–54]. A simplified version (of this section and the
previous one) is discussed in Stroock [118, Chapter 7, pp. 139–158]. In general,
the reader may check Folland [44, Chapter 7, pp. 211–233] for a discussion
on Radon measures and functional; and perhaps take a look at Kubrusly [75,
Chapter 12, pp. 223–246] for some more details.
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Notation

Some Common Uses:

N, Q, R, C: natural, rational, real and complex numbers.

i, <(·), I: imaginary unit, the real part of complex number and the identity
(or inclusion) mapping or operator.

1A: usually denotes the characteristic function of a set A, i.e., 1A(x) = 1 if x
belongs to A and 1A(x) = 0 otherwise. Sometimes the set A is given as a
condition on a function τ , e.g., τ < t, in this case 1τ<t(ω) = 1 if τ(ω) < t
and 1τ<t(ω) = 0 otherwise.

δ: most of the times this is the δ function or Dirac measure. Sometimes one write
δx(dy) to indicate the integration variable y and the mass concentrated at
the point x.

dµ, µ(dx), dµ(x): together with the integration sign, usually these expressions
denote integration with respect to the measure µ. Most of the times dx
means integration respect to the Lebesgue measure in the variable x, as
understood from the context.

ET , B(ET ), BT (E): for E a Hausdorff topological (usually a separable com-
plete metric, i.e., Polish) space and T a set of indexes, usually this denotes
the product topology, i.e., ET is the space of all function from T into E
and if T is countable then ET is the space of all sequences of elements in
E. As expected, B(ET ) is the σ-algebra of ET generated by the product
topology in ET , but BT (E) is the product σ-algebra of B(E) or gener-
ated by the so-called cylinder sets. In general BT (E) ⊂ B(ET ) and the
inclusion may be strict.

Most Commonly Used Function Spaces:

C(X): for X a Hausdorff topological (usually a separable complete metric, i.e.,
Polish) space, this is the space of real-valued (or complex-valued) continu-
ous functions on X. If X is a compact space then this space endowed with
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sup-norm is a separable Banach (complete normed vector) space. Some-
times this space may be denoted by C0(X), C(X,R) or C(X,C) depending
on what is to be emphasized.

Cb(X): for X a Hausdorff topological (usually a complete separable metric, i.e.,
Polish) space, this is the Banach space of real-valued (or complex-valued)
continuous and bounded functions on X, with the sup-norm.

C0(X): for X a locally compact (but not compact) Hausdorff topological (usu-
ally a complete separable metric, i.e., Polish) space, this is the separable
Banach space of real-valued (or complex-valued) continuous functions van-
ishing at infinity on X, i.e., a continuous function f belongs to C0(X) if
for every ε > 0 there exists a compact subset K = Kε of X such that
|f(x)| ≤ ε for every x in X rK. This is a proper subspace of Cb(X) with
the sup-norm.

C0(X): for X a compact subset of a locally compact Hausdorff topological (usu-
ally a Polish) space, this is the separable Banach space of real-valued
(or complex-valued) continuous functions vanishing on the boundary of
X, with the sup-norm. In particular, if X = X0 ∪ {∞} is the one-
point compactification of X0 then the boundary of X is only {∞} and
C0(X) = C0(X0) via the zero-extension identification.

C0(X), C0
0 (X): for X a proper open subset of a locally compact Hausdorff topo-

logical (usually a Polish) space, this is the separable Fréchet (complete
locally convex vector) space of real-valued (or complex-valued) continu-
ous functions with a compact support X, with the inductive topology of
uniformly convergence on compact subset of X. When necessary, this
Fréchet space may be denoted by C0

0 (X) to stress the difference with the
Banach space C0(X), when X is also regarded as a locally compact Haus-
dorff topological. Usually, the context determines whether the symbol
represents the Fréchet or the Banach space.

Ckb (E), Ck0 (E): for E a domain in the Euclidean space Rd (i.e, the closure of
the interior of E is equal to the closure of E) and k a nonnegative integer,
this is the subspace of either Cb(E) or C0

0 (E) of functions f such that all
derivatives up to the order k belong to either Cb(E) or C0

0 (E), with the
natural norm or semi-norms. For instance, if E is open then Ck0 (E) is a
separable Fréchet space with the inductive topology of uniformly conver-
gence (of the function and all derivatives up to the order k included) on
compact subset of E. If E is closed then Ckb (E) is the separable Banach
space with the sup-norm for the function and all derivatives up to the
order k included. Clearly, this is extended to the case k =∞.

B(X): for X a Hausdorff topological (mainly a Polish) space, this is the Banach
space of real-valued (or complex-valued) Borel measurable and bounded
functions on X, with the sup-norm. Note that B(X) denotes the σ-algebra
of Borel subsets of X, i.e., the smaller σ-algebra containing all open sets in
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X, e.g., B(Rd), B(Rd), orB(E), B(E) for a Borel subset E of d-dimensional
Euclidean space Rd.

Lp(X,m): for (X,X ,m) a complete σ-finite measure space and 1 ≤ p < ∞,
this is the separable Banach space of real-valued (or complex-valued) X -
measurable (class) functions f on X such that |f |p is m-integrable, with
the natural p-norm. If p = 2 this is also a Hilbert space. Usually, X
is also a locally compact Polish space and m is a Radon measure, i.e.,
finite on compact sets. Moreover L∞(X,m) is the space of all (class of)
m-essentially bounded (i.e., bounded except in a set of zero m-measure)
with essential-sup norm.

Lp(O), Hm
0 (O), Hm(O): for O an open subset of Rd, 1 ≤ p ≤ ∞ and m =

1, 2, . . . , these are the classic Lebesgue and Sobolev spaces. Sometimes we
may use vector-valued functions, e.g., Lp(O,Rn).

D(O), S(Rd), D′(O), S ′(Rd): for O an open subset of Rd, these are the classic
test functions (C∞ functions with either compact support in O or rapidly
decreasing in Rd) and their dual spaces of distributions. These are sep-
arable Fréchet spaces with the inductive topology. Moreover, S(Rd) =
∩mHm(Rd) is a countable Hilbertian nuclear space. Thus its dual space
S ′(Rd) = ∪mH−m(Rd), where H−m(Rd) is the dual space of Hm(Rd).
Sometimes we may use vector-valued functions, e.g., S(Rd,Rn).
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[76] A. Kufner, O. John, and S. Fuč́ık. Function Spaces. Noordhoff Interna-
tional Publishing, Leyden, 1977. 58, 274

[77] O.A. Ladyzhenskaya, V.A Solonnikov, and N.N. Uraltseva. Linear and
Quasilinear Equations of Parabolic Type. Am. Math. Soc., Providence,
Rhode Island, 1968. 181, 208, 247

[78] O.A. Ladyzhenskaya and N.N. Uraltseva. Linear and Quasilinear Elliptic
Equations. Academic Press, New York, 1968. 247

[Preliminary] Menaldi November 11, 2016



406 Bibliography

[79] G. Leoni. A First Course in Sobolev Spaces. American Mathematical
Society, Providence, RI, 2009. 160, 168, 181, 207, 247, 254, 256, 379

[80] E.H. Lieb and M. Loss. Analysis. Am. Math. Soc., Providence, Rhode
Island, 2nd edition, 2001. 372

[81] G.M. Lieberman. Second Order Parabolic Differential Equations. World
Scientific Publishing, Singapur, 1997. 181, 208, 247

[82] F. Lin and X. Yang. Geometric Measure Theory: An introduction. Science
Press Beijing, Beijing, 2002. 379

[83] J. Lindenstrauss and L. Tzafriri. Classical Banach Spaces. I and II.
Springer-Verlag, Berlin, 1977. 51, 148

[84] T.W. Ma. Banach-Hilbert Spaces, Vector Measures and Group Represen-
tations. World Scientific Publishing Co. Inc., River Edge, NJ, 2002. 41

[85] B.D. MacCluer. Elementary functional analysis. Springer, New York,
2009. 51

[86] P. Malliavin. Integration and Probability. Springer-Verlag, New York,
1995. 392, 395

[87] P. Mattila. Geometry of Sets and Measures in Euclidean Spaces. Cam-
bridge University Press, Cambridge, 1995. Fractals and rectifiability. 340

[88] V. Maz’ya. Sobolev Spaces with Applications to Elliptic Partial Differential
equations. Springer, Heidelberg, 2011. 165, 207

[89] J.L. Menaldi. Measure and Integration. Wayne State University, link:
http://digitalcommons.wayne.edu/mathfrp/22, 2015. vii, ix, 1, 23, 131,
319
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