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On the performance of a hybrid genetic

algorithm in dynamic environments

Quan Yuan ∗, Zhixin Yang

Department of Mathematics, Wayne State University,
Detroit, MI 48202, USA

Abstract

The ability to track the optimum of dynamic environments is important in many
practical applications. In this paper, the capability of a hybrid genetic algorithm
(HGA) to track the optimum in some dynamic environments is investigated for
different functional dimensions, update frequencies, and displacement strengths in
different types of dynamic environments. Experimental results are reported by using
the HGA and some other existing evolutionary algorithms in the literature. The
results show that the HGA has better capability to track the dynamic optimum
than some other existing algorithms.

Key words: Hybrid genetic algorithm (HGA), dynamic environments,
optimization

1 Introduction

Traditionally, research on optimization problems has been focused on station-
ary cases, i.e., problems are precisely given in advance and remain fixed during
the optimization processes. However, in many practical optimization problems,
a wide range of uncertainties should be taken into account [1–4]. For example,
the fitness evaluation is subject to noise, the design variables are subject to
perturbations or changes after the optimal solution has been determined (e.g.
due to manufacturing tolerances). The environmental conditions may change

∗ Corresponding author.
Email addresses: quanyuan@wayne.edu (Quan Yuan), zhixin.yang@wayne.edu

(Zhixin Yang).

Preprint submitted to AMC 20 September 2013



over time due to some factors such as the stochastic arrival of new tasks, ma-
chine faults, climatic changes, or financial issues. These problems are called
dynamic optimization problems.

In this paper, we focus on a situation that the fitness function is determinis-
tic at any point in time, but is dependent on time t. Usually, for stationary
optimization problems, the aim is to design an optimization algorithm that
can quickly and precisely locate the optimum solution(s) in the search space.
However, for dynamic optimization problems, the situation is quite different.
Since the optimum may change over time, this kind of optimization problems
has dynamically changing optima. An optimization algorithm used in this dy-
namic environments should be able to adapt itself during optimization. That
is, it should not only find the optima but also track their trace in the solution
space as closely as possible rather than requiring a repeated restart of the
optimization process.

A genetic algorithm (GA) is a generic population-based meta-heuristic opti-
mization algorithm. Candidate solutions to the optimization problem play the
role of individuals (parents) in a population. Some mechanisms inspired by bi-
ological evolution: selection, crossover and mutation are used. The fitness func-
tion determines the environment within which the solutions “survive”. Then
new groups of the population (children) are generated after the repeated ap-
plication of the above operators. GAs have attracted great interests in the past
decades. They are often used for solving stationary optimization problems and
there are also many successful applications. Since GAs only use fitness as an
indicator to operate individuals in population, they have implicit parallelism,
robustness, and better ability of global searching than other heuristics [5].
Moreover, GAs are population-based and stochastic algorithms. So they have
adaptivity in some way and researchers think they can be applied on dynamic
optimization problems after some modification.

Solving dynamic optimization problems using GAs has received increasing
interest. Some methods have been proposed in recent years. These methods
can be roughly grouped into three classes:

1. Modify or adapt some parameters of GAs [6–8].
2. Memorize the past using information of GAs [9–12], explicit/implicit mem-

ory [13–15], or multiple populations [16,17].
3. Maintain population diversity by, such as, inserting randomly generated in-

dividuals [18], niching [19], or reformulating the fitness function considering
the age of individuals [20] or the entropy of the population [21].

For more information, we refer to [22], [23], and the references there in.

Hybrid genetic algorithms (HGAs) belong to a type of GA in which a local
search is embedded as an auxiliary. The genetic search is in charge of the
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broad search, while the local search is referred to as the deep search. The
results obtained by the HGA are often better than those gained by a GA
without a local search [24]. It is naturally thought that a GA used in dynamic
environments can be embedded a local search to improve its performance.
And the local search can also help the algorithm track the trace of optima to
a certain extent. However, to the best of the authors’ knowledge, using HGA
in dynamic environments is studied by a few researchers. Garrett and Walker’s
work [25] is the only one the authors can find.

Recently, a new kind of HGA, which can solve a class of stationary optimiza-
tion problems, has been proposed by Yuan et al. [26]. A new strategy which
has adaptive ability is applied in this HGA. In this paper, we will investigate
the algorithm’s performance when it is applied in dynamic environments and
compare its performance with some other existing algorithms. The HGA is
described in Section 2. New dynamic environments are presented in Section
3. The results and conclusions are presented in Sections 4 and 5, respectively.

2 The hybrid genetic algorithm

In this section, we will describe the HGA in [26]. Consider the following opti-
mization problem:

min f(x) s.t.x ∈ S (1)

where S is an n-dimensional box constraint, i.e., S = {x = (xi)n×1 ∈ Rn|ai ≤
xi ≤ bi, i = 1, · · · , n }, and f(x) is a continuous and multimodal function on
S.

Let

xi =
(ai + bi)

2
+

(ai − bi)

2
sin yi , yi ∈ R , i = 1, . . . , n.

Then problem (1) can be transformed into an unconstrained optimization
problem

min f(y) s.t.y ∈ Rn (2)

For the HGA used in this study, an individual Xi is an object variable y.

The following steps of the HGA are proposed:

Step 1 (Initialization) Define the population size N and the maximal gener-
ation number; randomly generate N feasible individuals as the initial

population
−→
X (0) = {X1, X2, · · · , XN}; set the initial generation num-

ber tgen = 0.

Step 2 (Local-search) Perform a local search for every individual Xi in
−→
X (tgen)

to obtain the local optimum X#
i .
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Step 3 (Evaluation) Evaluate Xi in
−→
X (tgen) by f(X#

i ), Xi itself is not changed.
Step 4 (a) Selection: Choose N pairs of parents.

(b) Reproduction (Crossover or Mutation): for pairs of parents Y1

and Y2, who have the same fitness value and have some local
optimum X#

i , a mutation step is performed to generate a child;
otherwise, a crossover step is performed.

Selection and reproduction will generate a new population.
Step 5 Stop the algorithm if the maximal generation number is reached, or

let tgen = tgen + 1, and return to Step 2.

We use a traditional optimization method, such as the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) algorithm, in Step 2. Tournament selection is per-
formed in Step 4(a). In Step 4(b), the method of crossing two parents Y1 and
Y2 is as below:

Y ′ = αY1 + (1− α)Y2 (3)

where α is a random number satisfying 0 ≤ α ≤ 1.

The mutation step should be designed in order to let the individuals have the
chance to be better. But excessive mutation will destruct some good individ-
uals. So in the HGA, the mutation step is executed as

Y ′ = Y + π · (Y1 − Y2) (4)

where Y is either one of the two parents. If the norm ‖Y1 − Y2‖, where ‖ · ‖
denotes the Euclidian norm, is too small, a random d = (d1, . . . , dn) is gener-
ated where each di is taken 1 or −1. We take this mutation step because in
the later stage of the HGA, some individuals will tend to converge. And the
norm ‖Y1 − Y2‖ in (4) will decrease. At this situation, the mutation step will
be less destructive to some good individuals.

The mechanism of the crossover and mutation operations are based on avoid-
ing “premature”. Yuan et al. in [26] tried to let the population scatter on the
feasible set. They considered two individuals are “similar” if a local search can
find the same local optimum starting from both of them; in another words,
they belong to the same local optimums “neighborhood”. If two parents se-
lected by a GA are similar, the mutation step is executed to generate a new
child. The GA tries to explore a new area of the feasible domain. Otherwise, if
two parents are not similar, a crossover step is performed. The crossover and
mutation steps may find a better region that includes a better local optimum,
and which can be found by a local search. A further detailed discussion of the
HGA in [26] can be found in [27].

The following aspects are the motivations that we obtained by reviewing the
steps of the HGA mentioned above.

• From the mechanism of the crossover and mutation operations, we can find

4



that the algorithm is self-adapted and can maintain the population’s diver-
sity. This characteristic may be utilized in dynamic environments.

• The HGA will find the global optimum successfully only if the points ob-
tained from the algorithm drop into the neighborhood of the global opti-
mum. Therefore, when the environment has changed, if the global optimum
is varied slightly, the HGA could still track it successfully because of the
function of the local search.

Based on these motivations, we will make a slight revision of the HGA and
apply this HGA in some dynamic environments. The details are mentioned in
the next Section.

3 Dynamic environments

The dynamic optimization problem can be described as:

min f(x, t) x ∈ S, t ∈ T (5)

The problem depends on both x and an additional parameter t ∈ T (the
time). Generally, the objective function might be different after each function
evaluation. In this paper, we assume that the functional change is observ-
able and the objective function remains constant within specific time intervals
[tk, tk+∆tk) (k = 0, 1, 2, . . .). Moreover, the dynamics of the objective function
and the dynamics of the genetic algorithm are synchronized by identifying t
with the number of evaluations of the algorithm and by keeping f constant.
Furthermore, ∆tk =: ∆g (∆g denotes the number of the evaluations between
the time intervals) is also assumed to be constant, such that the objective
function changes every ∆g evaluations in case of a genetic algorithm.

An often used benchmark problem in some literature to test GA in dynamic
environments (such as [28]) is

f(x, t) =
n∑

i=1

(xi − δi(t))
2.

This benchmark is too simple for the HGA described in this paper. Instead,
three dynamical environments are derived from the model:

f(x) = 10n +
n∑

i=1

[x2
i − 10 cos(2πxi)], (6)

The figure of (6) when n = 2 on [−5.12, 5.12] × [−5.12, 5.12] is shown in
Figure 1. The global optimum is (0, 0, . . . , 0)T and the optimum value is 0.
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Fig. 1. The figure of (6) when n = 2 on [−5.12, 5.12]× [−5.12, 5.12]

The dynamical environments are generated by translating the base function
along three different types of dynamics (linear, circular, and random) based
on

f(x, t) = 10n +
n∑

i=1

[(xi − δi(t))
2 − 10 cos(2π(xi − δi(t))] (7)

where t ∈ N denotes the time counter; δ(t) = (δ1(t), . . . , δn(t)) denotes the
dynamical offset. The latter depends on three parameters, namely the update
type (linear, circular, and random), the update frequency ∆g (i.e., the number
of evaluations between each update of offset vector), and the severity s (i.e.,
a factor that determines the amount of the displacement per object variable).

The three different types of dynamics are defined as follows:

• Linear dynamics: δi(0) = 0, i ∈ {1, . . . , n}

δi(t + 1) =





δi(t) + s, (t + 1) mod ∆g = 0

δi(t), else
(8)

• Circular dynamics:

δi(0) =





0, i odd

s, i even
(9)

δi(t + 1) =





δi(t) + s · c(i, t), (t + 1) mod ∆g = 0

δi(t), else
(10)

where

c(i, t) =





sin
(

2πbt/∆gc
γ

)
, i odd

cos
(

2πbt/∆gc
γ

)
, i even

(11)
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Here, the expression bt/∆gc is the number of applications of the dynamics
within evaluations {0, 1, . . . , t} and γ represents the number of applications
of the dynamics required to cycle the values of the offset vector. Following
[28], γ = 25 is used in the experiments performed here.

• Random dynamics: δi(0) = 0∀i ∈ {1, . . . , n}

δi(t + 1) =





δi(t) + s ·Ni(0, 1), (t + 1) mod ∆g = 0

δi(t), else
(12)

Ni(0, 1) denotes a normally distributed random variable with expectation
zero and variance one.

In the three cases mentioned above, the update frequency ∆g determines
whether an update of δ will happen or not. The parameter s determines the
severity of the update in each dimension.

In order to let the HGA more suitable for dynamic environments, a slight
revision is made. When a change is detected (notice that we have assumed the
change is observable), in (4) we temporarily replace π as a random number
and Y1−Y2 a random vector in one generation to make the individuals scatter
on the solution set, then restore them.

4 Experimental results

We used the HGA on the benchmark mentioned in Section 3 and compared
the results with some algorithms in the literature. The first is a variation
of standard genetic algorithm with a memory module ( [12]). It is denoted
as SGA/M. Another algorithm introduces a number of random immigrants
when a change occurs [18]. In this paper, 25 random immigrants are migrated
into the current population, as suggested in [1]. This implementation of ran-
dom immigrants is accompanied by a memory module to enhance its perfor-
mance. It will be referred to as RI25/M. The third algorithm we used is the
hyper-mutation algorithm [6] in which a memory module is also included. This
implementation will be referred to as HM/M. The last algorithm, referred
to as ERS, is proposed in [25]. It unified genetic algorithm and a hill-climb
search in dynamic optimization and can be regarded as another HGA.

In the experiments, each test is run 20 times. We use the parameters same
as [12, 17] which are convenient for comparison. For all algorithms we use
a population size of 100, a crossover rate of 0.6, a mutation rate of 0.2. In
addition, we use SBX crossover and mutation with distribution index of 0.7.
Binary tournament selection is adopted in recombination and replace schemes.
In addition, it is also used in the selection of individuals for reevaluation. A
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single elitism is also used to preserve the performance of the best individual
at a given generation. A maximum fitness evaluations is set to 500 000 for all
implementations. Each dimension in decision space is bound between −50 and
50.

There are several performance indices that have been suggested to measure
the performance of dynamic evolutionary algorithms. In this paper, we use off-
line error variation [29] as means to quantify the performance of the proposed
algorithm.

Off-line error variation index [29] is the most commonly used performance
index in GAs in dynamic environments, and it is obtained as the average
of the error between the true optimal fitness and the best fitness at each
evaluation. It is mathematically expressed as:

eoff−line =
1

T

T∑

i=1

(ftrue − f i
best) (13)

where i is the evaluation counter; T is the total number of evaluations con-
sidered; ftrue is the true optimum solution that is updated whenever a change
occurs; and finally f i

best is the best individual out of the evaluations starting
from the most recent occurrence of the change until the current evaluation.

Firstly, we fix the severity s in (8)-(10), and (12) as 0.1, the update frequency
∆g = 5 000, and test different functional dimensions of (7). Secondly, we set
the functional dimension as 15, the same update frequency, and test all algo-
rithms on different severities (0.01, 0.1, and 0.5). Finally, we set the functional
dimension as 15, severity s = 0.1, and test all algorithms on different update
frequencies. Tables 1, 2, and 3 show off-line error variations after 50 000 eval-
uations of the HGA and other algorithms in the dynamic environments with
different moving types (linear, circular, and random). The best result in a com-
parison is emphasized as bold font. In all these cases, the HGA can achieve
much better performance than other algorithms mentioned in this paper.

5 Conclusions

An HGA proposed in [26] has been tested by different functional dimensions,
update frequencies, and displacement strengths in different types of dynam-
ics. Compared with some other existing evolutionary algorithms for dynamic
environments, the HGA has been illustrated its better capability to track the
dynamic optimum based on the results. This HGA can be an alternative for
dynamic optimization problems. A more detailed investigation of the working
principles of the HGA and how to apply this HGA to other kinds of dynamic
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Table 1
Off-line error variation after 50 000 evaluations in different dimensions (Severity
s = 0.1, update frequency ∆g = 5 000)

Moving
Type

Dimension SEA/Mem RI25/Mem HM/Mem ERS HGA

5 16.25 18.92 22.51 2.85 2.10

10 61.21 65.70 87.24 39.51 4.48

Linear 50 528.32 557.37 738.44 1015.1 25.43

100 1273.2 1422.7 1815.4 2757.5 48.31

200 2376.6 3349.8 3473.7 7772.9 88.90

5 26.22 23.65 25.01 3.27 0.73

10 107.37 96.96 103.61 32.94 1.95

Circular 50 1034.6 931.70 1019.2 904.96 20.39

100 2141.8 2135.9 2446.4 2685.8 23.07

200 4096.8 4792.2 4688.1 7183.0 46.87

5 22.10 20.42 22.18 3.65 2.39

10 86.17 94.61 99.41 33.52 5.87

Random 50 775.13 818.55 806.51 923.08 49.98

100 1478.6 1570.6 1855.4 2574.5 97.71

200 3384.7 3154.7 3676.5 6942.4 236.46

optimization problems (such as online optimization) will be the subjects of
further work.
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Table 2
Off-line error variation after 50 000 evaluations in different severities (Dimension
n = 15, update frequency ∆g = 5 000)

Moving
Type

Severity SEA/Mem RI25/Mem HM/Mem ERS HGA

0.01 93.00 102.61 173.89 61.77 1.63

Linear 0.1 98.18 114.26 177.60 85.00 6.83

0.5 116.79 179.30 177.07 114.12 22.48

0.01 111.20 101.06 173.58 104.59 0.09

Circular 0.1 194.73 191.84 215.23 99.91 2.27

0.5 343.03 307.68 312.17 113.23 10.94

0.01 112.40 137.16 176.21 81.97 8.99

Random 0.1 177.56 173.75 202.77 88.94 10.94

0.5 235.01 223.54 244.05 138.72 17.08

Table 3
Off-line error variation after 50 000 evaluations in different update frequencies (Di-
mension n = 15, severity s = 0.1)

Moving
Type

Update
frequency

SEA/Mem RI25/Mem HM/Mem ERS HGA

1000 111.93 106.91 151.39 44.24 85.15

Linear 2 500 75.26 83.73 105.28 28.67 19.29

10 000 72.13 56.70 88.43 25.72 0.33

1 000 132.45 135.09 179.36 42.23 44.40

Circular 2 500 92.49 96.32 115.54 34.56 9.81

10 000 73.27 84.02 85.90 33.40 1.31

1 000 111.78 119.19 186.77 43.72 15.36

Random 2 500 95.51 97.36 114.20 29.81 10.69

10 000 86.70 86.75 92.98 26.45 9.73
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