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Failure Sampling with Optimized Ensemble Approach for the Structural Reliability Analysis 1 

of Complex Problems 2 

Christopher Eamon1 , Kapil Patki2, and Ahmad Alsendi3 3 

Abstract 4 

Failure sampling is a structural reliability method based on modified conditional expectation  5 

suitable for complex problems for which reliability index-based approaches are inapplicable 6 

and simulation is needed.  Such problems tend to have non-smooth limit state boundaries or 7 

are otherwise highly nonlinear. Previous studies recommended implementation of failure 8 

sampling with an extrapolation technique using Johnson's distribution or the generalized 9 

lambda distribution.  However, what implementation method works best is problem dependent.  10 

The uncertainty of which approach provides best results for a particular problem limits the 11 

potential effectiveness of the method.  In this study, a solution is proposed to this issue that 12 

eliminates this uncertainty.  The proposed approach is an optimized ensemble that forms a 13 

uniquely-weighted solution by utilizing the predictive capability of multiple curves to 14 

maximize accuracy for any particular problem.  It was found that the proposed approach 15 

produces solutions superior to the methods of implementing failure sampling previously 16 

presented in the literature.   17 
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Introduction 30 

 A large number of structural reliability analysis methods have been proposed in the last 31 

several decades.  The most common among these can perhaps be grouped into two broad 32 

divisions: simulation methods such as Monte Carlo Simulation (MCS) and its many variants; 33 

and analytical approaches that compute reliability index as a surrogate for direct evaluation of 34 

failure probability.  This latter group of methods includes the ubiquitous First Order Reliability 35 

Method (FORM), which has become very popular since its introduction in the late 1970s with 36 

an adjustment for non-normal random variables (Rackwitz and Fiessler 1978).  Although not 37 

as frequently used, Second Order Reliability Methods (SORM) have also been proposed 38 

(Breitung 1984), as well as similar reliability index based algorithms.  Such methods attempt 39 

to locate the most probable point of failure (MPP), the peak of the joint probability density 40 

function on the failure boundary of the limit state function in standard normal space.  Reliability 41 

index (β) is then typically calculated as the distance from the MPP to the origin, from which a 42 

simple transformation to failure probability can be obtained.   Although computationally 43 

efficient, usually offering vast reductions of computational effort for typical problems over 44 

simulation approaches, reliability index based methods cannot guarantee convergence to the 45 

true solution, unlike MCS if the sample size is sufficiently increased.  Rather, as reliability 46 

index methods rely upon an approximation of the limit state boundary at the MPP (a linear 47 

approximation in the case of FORM), nonlinearities in standard normal space in which β is 48 

calculated, either from inherent nonlinearities in the structural response considered for the limit 49 

state function, or when non-normal random variables are introduced, will result in some degree 50 

of error.  Although this error is often small, in some cases, particularly for complex nonlinear 51 

limit state functions, it can be unacceptably large (Eamon et al. 2005; Melchers 1999; 52 

Chiralaksanakul and Mahadevan 2005; Haldar and Mahadevan 2000).  For other complex 53 

problems, such as those that are highly nonlinear, discontinuous, or that have multiple local 54 
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MPPs, search algorithms are sometimes unable to identify the MPP, and the solution process 55 

fails completely (Patki and Eamon 2016; Eamon and Charumas 2011). 56 

 Although direct simulation such as MCS may approach the true solution as sample size 57 

is increased, the well-known drawback of such methods is the large computational demand for 58 

complex engineering problems, particularly such as those requiring finite element analysis for 59 

solution.  To increase efficiency, numerous variance reduction modifications were proposed to 60 

MCS, including stratified sampling (Iman and Conover 1982), importance sampling 61 

(Rubinstein 1981; Engelund and Rackwitz 1993), adaptive importance sampling (Wu 1992; 62 

Karamchandani et al. 1989), directional simulation (Ditlevesen and Bjerager 1988),  63 

dimensional reduction and integration (Acar et al. 2010); subset simulation (Au et al. 2007), 64 

and many others.   As with any approach, each of these methods has particular disadvantages.  65 

For example, stratified sampling, of which perhaps Latin Hypercube (Iman and Conover 1982) 66 

is among the most well-known, has not consistently shown significant reductions in 67 

computational costs for a variety of problems (Eamon et al. 2005).  Importance sampling, as 68 

with reliability index methods, which require identification of the MPP, may obtain inaccurate 69 

or no solution for complex problems.  Although directional simulation is extremely efficient 70 

for some problems, particularly for limit state boundaries that are spherical, efficiency is 71 

reduced when the limit state boundary takes on a common hyperplanar shape (Engelund and 72 

Rackwitz 1993).  More recent advancements, however, such as adaptive directional importance 73 

sampling, have maintained high efficiency for a variety of non-spherical limit state boundaries 74 

when the MPP can be located (Grooteman 2011; Shayanfar 2018). Subset simulation has been 75 

developed significantly in the last two decades, producing various alternative implementation 76 

approaches.   An important consideration with this method, however, is how the importance 77 

sampling density is determined, as high variance in the solution can be obtained with sub-78 

optimal selections (Au and Beck 2001; Au et al. 2007). 79 
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  Rather than using a more efficient reliability analysis method, the underlying problem 80 

itself can be simplified. One systematic way to achieve this is with use of a response surface, 81 

where a computationally demanding limit state function evaluation can be replaced with a more 82 

simple, analytical surrogate function (Gomes and Awruch 2004; Cheng and Li 2009).  The 83 

response surface can then be used with a variety of traditional reliability analysis methods to 84 

provide fast probabilistic solutions.  Alternative surrogate models include those developed 85 

from polynomial chaos expansion, Kriging, genetic algorithms, and artificial neural networks 86 

(ANN), among others (Gomes 2019; Guo et al. 2020).  Adaptive versions of such 87 

metamodeling techniques, particularly ANN, have shown to be effective for solving a variety 88 

of complex problems (Gomes 2019).  However, in some cases, the cost of forming a high-89 

fidelity surrogate model for a complex problem may outweigh the cost of using the original 90 

response with a reasonably efficient reliability method to begin with (Eamon and Charumas 91 

2011). 92 

 As an alternative solution for complex reliability problems, Eamon and Charumas 93 

(2011) proposed the modified conditional expectation, or failure sampling (FS) method, which 94 

was reported to accurately solve various complex limit states with reasonable computational 95 

effort. In general, the method uses conditional expectation to sample the complex (generally 96 

resistance) portion of the limit state function, then uses a numerical technique to estimate either 97 

its probability density function (PDF) or cumulative distribution function (CDF).  Failure 98 

probability can then computed directly by numerical integration over the failure region.  99 

Alternatively, additional resistance data for high reliability problems can be generated by 100 

extrapolation, where the original sample is fit to a flexible, multi-parameter curve to extend the 101 

tail region.  Clearly, the accuracy of this approach is a function of how well the PDF or CDF 102 

estimate and resulting curve fit are developed.  As might be expected, what implementation 103 

method works best is problem dependent.  Unfortunately, there is little a priori indication as to 104 



 5 

what method produces the greatest accuracy for a specific problem.  For example, Patki and 105 

Eamon (2016) examined various problems with the FS approach and generally recommended 106 

data extrapolation using Johnson’s Distribution, as they found it produced best results in many 107 

cases.  However, this is not always true, as using alternative flexible curves such as the 108 

generalized lambda distribution or the generalized extreme value distribution produced higher 109 

accuracy for some problems. The uncertainty of which approach provides best results for a 110 

particular problem limits the potential effectiveness of the method.  This issue is the focus of 111 

this study.  Here, an optimized ensemble approach is developed, with minimal additional 112 

computational effort, that forms a uniquely-weighted fit by utilizing the predictive capability 113 

of multiple curves that maximizes the accuracy of the FS method for any particular problem.   114 

  115 

Summary of Failure Sampling Method 116 

 The FS approach is fully described elsewhere (Eamon and Charumas 2011; Patki and 117 

Eamon 2016), whereas a brief summary is provided here.  The probability of failure pf of a 118 

limit state function g can be calculated by estimating a single-dimensional PDF of g and 119 

integrating the PDF over the failure region (i.e. where g < 0). Direct MCS can be used to 120 

generate the sample of g used to develop the PDF.  Of course, this approach will yield accurate 121 

results only when the PDF of g can be estimated accurately. However, for typical structural 122 

reliability problems, the large majority of the sample generated from MCS is far from the 123 

failure region, resulting in a problem for which it is difficult if not impossible to accurately 124 

integrate the failure region without a high number of simulations.  125 

 In the FS approach, the initial limit state function g(Xi), consisting of random variables 126 

Xi, is reformulated to a new limit state g*. g* is expressed in terms of a control random variable 127 

Q, and the function of remaining random variables (RVs), R(Xj). Setting  g* to zero to represent 128 

the failure boundary, the problem can be written as: 129 
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                          g* = R(Xj) - Q  = 0                                                        (1) 130 

Here g* is mathematically equivalent to original limit state function g.  Note that function R(Xj) 131 

need not be explicitly formed and could be evaluated from FEA or another complex numerical 132 

procedure. Moreover, there is no theoretical limitation in the selection of Q, although it is often 133 

chosen as a load RV in the physical problem for convenience of implementation. For greatest 134 

accuracy, it is best that Q is selected such that it is statistically independent of the remaining 135 

RVs Xj, a stipulation that can be satisfied for at least one RV by nearly all realistic structural 136 

reliability problems.  Further, it is advantageous to select this variable as that with the highest 137 

variance, if possible, which removes its associated uncertainty from the simulated data and may 138 

reduce the number of simulations required for the same accuracy.  If multiple RVs exist with 139 

the same variance, there is no theoretical advantage of selecting one over another as the control 140 

variable, and the choice reduces to that of convenience.  Once Eq. 1. is formed, values xj are 141 

simulated by a method such as MCS.  From Eq. 1., it can be seen that for a particular set of 142 

simulated values R(xj), q = R(xj).  That is, if a value q can be determined to satisfy Eq. 1, that 143 

value also equals a datum for the sample of R(xj). Note for complex problems, this generally 144 

requires a non-linear solver to determine q, as further discussed in a detailed summary of the 145 

procedure given below.  A value q is thus determined for each set of simulated values R(xj), 146 

thereby developing an equivalent, single-dimensional data sample for the potentially very 147 

complex, multi-variate R(Xj). Once the data sample for R(Xj) is generated, there is no need to 148 

evaluate the true response further (e.g. no need for further FEA, if that is how the limit state 149 

function is evaluated), and the bulk of the computational effort for a complex problem ends.  150 

Next, depending on the solution approach, a PDF or CDF estimate of R(Xj) is developed, from 151 

which pf of g* (and thus of the original limit state function g(Xi)) can then be found with a 152 

variety of methods.  As mentioned above, one approach is numerically integrating over the 153 

region with: 154 
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             𝑝𝑓 = ∫ 𝐹𝑅
∞

−∞
(𝑞)𝑓𝑄(𝑞)𝑑𝑞                                                          (2)                                 155 

where FR refers to the CDF of R and fQ the PDF of Q.  Due to the sparsity of data with high-156 

reliability problems, numerical integration may lose accuracy.  Thus, an alternative approach 157 

is to use a flexible curve to represent the data sample for R(Xj), which can be used to  extend 158 

the tail region indefinitely. Once this is done, pf can be computed very quickly with any method, 159 

such as MCS, for example, as the original, potentially complex function g* is now represented 160 

analytically.   161 

 In summary, the FS approach offers several useful features:1) as the MPP is not used, 162 

problems for which the MPP cannot be located, or which is incorrectly located, and thus which 163 

are unsolvable or inaccurately solved by reliability index or importance sampling methods, can 164 

be addressed; 2) for complex problems of moderate reliability (i.e., reliability index from about 165 

3-5, within the range of typical structural components) that are poorly solved with many other 166 

methods, computational effort for FS is relatively low, often on the order of 1000 simulations, 167 

for reasonably accurate solutions; 3) the method is simple conceptually as well as to implement. 168 

As suggested above, as a simulation-based method, although FS is applicable to any type of 169 

problem, it becomes competitive when reliability-index based methods provide no or poor 170 

solutions, and for which other simulation methods require an unfeasibly large computational 171 

effort.  For simpler problem types, reliability index based solutions are generally more efficient. 172 

Although the FS approach was previously demonstrated to be effective, as noted above, an 173 

existing concern is that it is not clear what method of implementation works best for different 174 

problem types.  This is the issue that this study attempts to address.  175 

 176 

Optimized Ensemble Approach 177 

Rather than relying upon a single distribution to estimate pf with FS, this study proposes 178 

an ensemble approach to maximize the accuracy of the pf calculation from an optimal 179 
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combination of the multiple available possibilities.  Ensembles have used to increase the 180 

accuracy of various problems, most notably in metamodeling (Zerpa et al. 2005; Goel et al. 181 

2007; Acar and Rais-Rohani 2009; among others), where in much of this previous work, an 182 

ensemble of metamodels is generally represented as a weighted sum of two or more stand-183 

alone metamodels, each separately fitted to the same response using different techniques. The 184 

resulting hybrid metamodel takes advantage of the prediction ability of each individual stand-185 

alone metamodel to enhance the accuracy of response predictions.   186 

 In this paper, rather than using traditional metamodels, an ensemble of alternative 187 

CDFs of the resistance sample for R(Xj) is established, then the individual CDFs are assigned 188 

weight factors depending upon their anticipated accuracy.  Using a weighted sum formulation, 189 

a unique, problem-specific ensemble of CDFs can thus be formulated as follows: 190 

                          𝐹𝑅𝐸 =  ∑ 𝑤𝑖𝐹𝑅𝑇𝑖

𝑁

𝑖=1

                                                                  (3) 191 

where FRE is the final ensemble CDF of N stand-alone CDFs FRTi, and wi is the weight factor 192 

of ith stand-alone CDF.   In this study, three stand-alone CDFs are used, individually fit to the 193 

sampled data R(xj) as discussed in more detail below. The weight factors are subjected to the 194 

following constraint: 195 

∑ 𝑤𝑖 = 1

𝑁

𝑖=1

                                                                                   (4) 196 

The weight factors are determined by a sequential quadratic programming optimization process 197 

where the difference between the CDF formed directly from the sampled data, the "true" CDF, 198 

and the analytical representation, FRE, is minimized.  The CDF of the sampled data of M total 199 

points can be expressed as: 200 

𝐹𝑅(𝑠) =
𝑠

1 + 𝑀
                                                                              (5) 201 
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where FR(s) is the CDF value for datum s.  Although numerous goodness-of-fit metrics exist, 202 

the error between the true CDF and FRE is measured in this study using a generalized mean 203 

square error (MSE) metric given as: 204 

 𝑀𝑆𝐸 =  
1

𝑀
∑(𝐹𝑅𝐸(𝑠)

𝑀

𝑠=1

− 𝐹𝑅(𝑠))2                                             (6) 205 

The final optimization problem is to find the optimal values of design variables W = (w1, w2, 206 

...., wN)  that would 207 

  min  Err = MSE = f(W)     (7) 208 

  s.t. ∑ 𝑤𝑖 = 1𝑁
𝑖=1  209 

  0 ≤ wi  ≤ 1 210 

Prior to recommending MSE, the authors studied two alternative forms of goodness-of-fit: a 211 

log-based criterion to maximize differences in the lower resistance tail, similar to the Anderson-212 

Darling test (Ang and Tang 2007); as well as that based on the linear sum of differences in 213 

CDFs, as per Eamon and Charumas (2011).  It was found that both could produce better results 214 

than MSE in some cases, but significantly worse in other cases, and for problems with no 215 

apparently similar characteristics.  As opposed to the alternative metrics, which were less 216 

reliable overall, it was found that MSE tends to emphasize differences in weights, focusing the 217 

weighted response on a single dominant distribution.   218 

As three stand alone CDFs were used in this study, at the start of the optimization, the 219 

initial values for the weight factors W are set to 1/3. Once a data sample for R(Xj) is generated, 220 

the alternate CDFs are individually fit to the data and the weights are determined. A realized 221 

value for R(Xj), r,  is then represented as the weighted sum of the values ri taken from the stand 222 

alone CDFs, as determined in accordance with Eq. 3, which results in: 223 
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 𝑟 =  ∑ 𝑤𝑖𝑟𝑖

𝑁

𝑖=1

                                                                    (8) 224 

As with the original FS method, any reliability method such as MCS or FORM can then be 225 

used to quickly determine the pf estimate of g*, since R(Xj) is now represented as a fully 226 

defined, single dimensional random variable R.  For example, if MCS were used to solve Eq. 227 

1, a realized value r is determined by sampling each of the stand-alone CDFs (using the same 228 

random perturbation for each curve per simulation) to produce N values, which are then 229 

combined in accordance with Eq. 8. Note that, for a complex problem, it is the generation of 230 

the data sample for R(Xj) that requires calling the original limit state function (assumed to be a 231 

time-consuming FEA code or similar analysis tool), where the complex, multidimensional 232 

R(Xj)  is transformed to an equivalent single RV via the original FS process.  Once the data 233 

sample for R(Xj) is established, the computational effort required for all further calculations, 234 

including the developments of the alternative CDFs and their weight factors, as well as to 235 

estimate pf of g*, is comparatively trivial (generally seconds of real time on a modern desktop 236 

computer). In this study, after the data sample for R(Xj) was established and the ensemble CDF 237 

weights determined to complete Eq. 3, MCS was used in conjunction with Eq. 8 to compute pf 238 

of g*. The procedure can be summarized as follows:  239 

The original limit state function is rewritten in the form of Eq. 1. 240 

1. Values for RVs within R(Xj) are determined by simulation.  In this study, direct 241 

MCS is used, although other techniques are also possible (Patki and Eamon 2014).   242 

A single realized value R(xj)  is thus determined. 243 

2. The required value for Q necessary to satisfy Eq. 1 is determined.  For a simple 244 

problem for which the limit state can be explicitly written, q can readily be found 245 

to be given by R(xj), as from Eq. 1, R(xj) = q.  For more complex problems, where 246 

Eq. 1 may be implicit, a nonlinear solver is required to determine q.  An example 247 
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of this scenario is for problems that involve a finite element procedure, where the 248 

relationship between the measured response in the limit state function (for example, 249 

stress or displacement) and the value of q, as a function of values for the remaining 250 

variables xj, cannot be explicitly established.  In practice, Eq. 1 would then be 251 

solved by incrementing the value of q until the specified failure criterion (such as a 252 

stress or displacement limit) is achieved. 253 

3. The simulation process is repeated (i.e. steps 2 and 3) until the desired sample size 254 

is generated.  As with most simulation methods, increasing the sample size 255 

generally improves results.  However, in this study, 1000 simulations were used.  256 

At the conclusion of this step, the actual limit state function (which may be 257 

computationally expensive to evaluate) is no longer used in the problem solution. 258 

4. Since q = r on the failure boundary, the values determined for Q also must equal 259 

corresponding values for R(Xj); conceptually, values of resistance.   Independent 260 

curves (CDFs) are then fit to the (1000 point) data sample for R(Xj), essentially 261 

reducing the potentially complex resistance function into a representative single 262 

random variate (albeit at this point, represented by a set of i alternative CDFs). 263 

These CDFs are the individual member functions (FRTi) of the ensemble.   264 

5. Using Eqs. 3-7, weights wi are assigned to each CDF by optimization.  The final 265 

optimized CDF of resistance is then represented by Eq. 3. 266 

6. Assuming that Q is an RV with known parameters, Eq. 1. can now be explicitly 267 

expressed as: g* = R – Q.  This simple, two RV limit state function can be solved 268 

with any reliability method such as MCS, importance sampling, FORM, SORM, 269 

etc, as desired.   Here, note that regardless of the method used, i different values 270 

(i.e. the number of curves used to construct the ensemble) for RV R are required for 271 

solution.  For example, if using a simulation approach such as MCS, for one 272 
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simulation, the same initially generated uniform random value would be used to 273 

resolve each of the alternative values ri from CDFs FRTi.  The final realized value r 274 

is then given by the weighted sum of the realizations, per Eq. 8.  275 

To simplify the approach further, it was observed that in many problems a single CDF 276 

often dominates the solution with a high weight relative to the other curves considered.  In this 277 

case, good results can often be obtained by simply using the single dominant curve, forgoing 278 

the ensemble.  Thus, an effective simplified approach to determine values for R can be 279 

implemented as follows: 280 

  R = RT ,  wT ≥ Th 281 

  R = Ens,    wT < Th      (9) 282 

where RT is a value of R determined from the single dominant distribution; Ens is the ensemble 283 

approach, given by Eq. 8; wT is the weight of the dominant distribution found from the 284 

minimization of MSE per Eqs. 6 and 7; and Th is the dominant weight threshold to forgo the 285 

ensemble.  The choice of Th is subjective, representing a desired balance between accuracy and 286 

additional complexity, and is best left to the analyst. However, for many problems the authors 287 

have found good results for threshold weights as low as Th = ¾, as will be discussed below. 288 

In general, the ensemble approach is intended for problems for which the MPP cannot 289 

be located or the failure boundary is not well represented with a FORM/SORM approximation, 290 

and direct simulation methods are too costly.  Limitations of the ensemble approach include 291 

the need for statistical independence of the control variable; the need for a nonlinear solver to 292 

set g* = 0 for implicit problems; and most importantly, the need for the surrogate distribution 293 

to accurately represent the CDF of R.  Although seemingly challenging, the latter condition 294 

may be satisfied even for relatively complex problems, provided that some prior knowledge of 295 

the response is available.  For example, if, say, a unique limit state boundary exists such as a 296 

truncated or multimodal form, then such a distribution type may be included within the 297 



 13 

ensemble, using one or more of the numerous representations of such distributions available in 298 

the literature.  Alternatively, if only one troublesome distribution type is present, it may be 299 

taken as the control variable, removing it from the response to be fit.   300 

Another issue to consider is that, as with any approximate approach, there is no 301 

guaranteed method to obtain the error associated with the reliability estimate, which would 302 

require knowledge of the true solution beforehand.  However, as with most MCS-based 303 

approaches, it has been shown that increasing the number of simulations using the FS method 304 

produces estimates that tend to converge to the true solution (Eamon and Charumas 2011).  305 

Thus, although it is not possible to directly quantify the error associated with the proposed 306 

approach, it can at least be ensured that the number of simulations used is sufficient by 307 

increasing this number until subsequent results do not significantly differ.   308 

 309 

CDFs Considered 310 

In this study, CDFs are generated from the R(xj) data by three methods for use in Eq. 3: use 311 

of the generalized lambda distribution (GLD), Johnson’s distribution (JSD), and the 312 

generalized extreme value distribution (GEV).   Although any type and number of CDFs can 313 

be included in the analysis, the approach taken here is the use of a smaller number of highly 314 

flexible functions. 315 

 The GLD can represent many common distributions such as normal, lognormal, 316 

Weibull, and others. It is defined by location (λ1), scale (λ2), skewness (λ3), and kurtosis (λ4)  317 

parameters.  Various ways have been developed to estimate these parameters (Karian and 318 

Dudewicz 2011; Ozaturk and Dale; Asif and Helmut 2000).  The method of moments was used 319 

in this study (Karian and Dudewicz 2011). The PDF of the GLD is given by: 320 

𝑓𝑅𝑇(𝑥) =
𝜆2

[𝜆3𝑢(𝜆3−1) + 𝜆4(1 − 𝑢)(𝜆4−1)]
                           (10) 321 
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 The PDF is expressed in terms of a probability parameter u, which is related to random 322 

variable x through the inverse of the CDF, the quantile function: 𝑥 = 𝑄(𝑢) = 𝜆1 +323 

𝑢𝜆3−(1−𝑢)𝜆4

𝜆2
 . 324 

The Johnson’s system of distributions is also defined by four parameters and similarly 325 

has wide flexibility. This system is composed of multiple normalizing transformations: the 326 

bounded, or  ‘SB’ transformation, which models distributions bounded on either or both ends 327 

such as gamma and beta;  the semi-bounded ‘SL’ transformation, which models a lognormal 328 

distribution, and the unbounded ‘SU’ transformation which can model the normal, t, and other 329 

distributions.   A JSD distribution is defined with two shape parameters γ and δ, a location 330 

parameter ξ, and a scale parameter λj.   The Johnson’s PDF is given by: 331 

𝑓𝑅𝑇(𝑥) =
𝛿

𝜆𝑗√2𝜋
  𝑔𝑟

′ (
𝑥 −  ξ 

𝜆𝑗
) 𝑒𝑥𝑝 [ −

1

2
(𝛾 + 𝛿 𝑔𝑟 (

𝑥 −  ξ  

𝜆𝑗
)  )

2

]                          (11) 332 

 where function 𝑔𝑟 (
𝑥 − ξ 

𝜆𝑗
) is determined by the desired transformation (i.e. either SB, 333 

SL, or SU).  As with the GLD, multiple methods are available to determine JSD parameters.  In 334 

this study, the method of quantile estimators was used (Karian and Dudewicz 2011; George 335 

2007; Slifker and Shapiro 1980). 336 

 The GEV distribution is described by a location parameter μ, a scale parameter σ, and 337 

a shape parameter k.  Parameters can be determined using similar methods as those available 338 

for fitting the GLD or JSD, such as the method of moments, percentiles, or quantile estimators, 339 

the latter of which was used here.  The GEV resembles an extreme type distribution and is 340 

often used to model the smallest or largest values in a dataset.  Its PDF is given as:  341 

𝑓𝑅𝑇(𝑥) =  
1

𝜎
exp (− (1 + 𝑘

(𝑥 − 𝜇)

𝜎
)

−1
𝑘

) ((1 + 𝑘
(𝑥 − 𝜇)

𝜎
)

−1−
1
𝑘

)                  (12) 342 
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An example result of the ensemble approach implemented with the three curves above is given 343 

in Figure 1, which corresponds to example problem 3 discussed below.  In the figure, the three 344 

individual CDFs are shown, as well as the resulting ensemble.  In this problem, the ensemble 345 

CDF closely resembles the GEV curve, which dominated the solution (with weights of JSD, 346 

GEV, and GLD given by wJSD = 0.01, wGEV = 0.91, and wGLD = 0.08, respectively).   347 

 348 

Example Problems 349 

 To illustrate the ensemble approach, several example problems are considered.  These 350 

include three benchmark reliability problems and two complex engineering problems utilizing 351 

nonlinear finite element analysis.   Note that the benchmark problems can be expressed 352 

algebraically and are thus not of the complexity for which an FS approach is needed, nor for 353 

which it would represent the most efficient solution method.    However, these are included as 354 

their solution is readily verifiable and can provide useful  information as to the range of problem 355 

characteristics for which the ensemble approach can be effective.  As the purpose of the 356 

example problems is to examine the effectiveness of the ensemble approach rather than produce 357 

exact solutions, only 1000 simulations of the actual response function R(Xj) were used to 358 

generate the dataset to fit the stand-alone CDFs, even for those problems approaching a 359 

reliability index of 4 (with corresponding failure probability of about 1:30,000).  Although this 360 

produced reasonably accurate solutions for the problems considered, additional accuracy can 361 

generally be obtained with additional simulations.  In this study, once the ensemble CDF was 362 

formed, MCS was used to quickly compute pf of the resulting simple two RV limit state g* = 363 

R – Q (using 1x106-107 simulations, depending on reliability level), although a less expensive 364 

alternative method such as FORM would have produced solutions with no significant loss of 365 

accuracy as well.   Results are reported in terms of reliability index  𝛽 with the standard normal 366 

transformation β= -Φ-1(pf).  367 
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  368 

Problem Set 1: Benchmark Limit State Functions 369 

Engelund and Rackwitz (1993) proposed a series of unique limit state functions for 370 

method evaluation.  Two of these cases, a multiple reliability index function and a maximum 371 

function, were found by the authors of this study to be among the more difficult to solve 372 

accurately with traditional analytical methods such as FORM, and are evaluated below. In each 373 

of the benchmark problems, the reference solution (taken as the “exact” solution) was 374 

computed using a sample size of 1x109 with MCS. 375 

The multiple reliability index case represents a hyperbolic function with two reliability 376 

indices, and is given as:  377 

𝑔 =  𝑥1𝑥2 − 𝑘                                                                          (13) 378 

where x1 (taken as control variable) and x2 are normal RVs having mean values of 78064.4 and 379 

0.0104, with corresponding standard deviations of 11709.7 and 0.00156, respectively, and 380 

constant k was taken as 480, 240, and 160 in this study to produce different reliability levels to 381 

investigate.  As shown in Table 1, although accuracy was effected when limiting to 1000 382 

simulations, the ensemble produced superior results to the GEV and GLD distributions alone, 383 

while the JSD fit produced no failures (weights: wGEV = 0.99; wJSD and wGLD < 0.01 for all 384 

values of k).  Note that even if a CDF was found to be ineffective by itself, such as the JSD and 385 

GLD in this case, it was still included in the ensemble.  However, it was found that curves that 386 

produced no failures resulted in an insignificant weight (i.e. near zero) in the ensemble, 387 

indicating, as expected, a poor fit to the data. Traditional FORM and MCS solutions are 388 

provided for comparison.  As expected, MCS could produce no failures (i.e. pf = 0) when 389 

limiting to 1000 simulations, while two different FORM algorithms were used to solve the 390 

problem (based on those of Rackwitz and Fiessler (1978) and Ayyub and Haldar (1984)), which 391 

resulted in different MPPs and correspondingly different reliability indices.  Here it should be 392 
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pointed out that the purpose of providing the FORM and MCS comparison solutions is not to 393 

suggest that all of the many available variants of these approaches are unable provide a 394 

satisfactory solution, but rather to illustrate that the example problems are reasonably 395 

challenging and provide some difficulty for traditional approaches.  396 

The maximum function, essentially a parallel system, is expressed as the maximum of 397 

several sub-functions, and results in a non-smooth limit state boundary.  It is given as: 398 

𝑔 = 𝑚𝑎𝑥(𝑔1, 𝑔2, 𝑔3,𝑔4)                                                          (14) 399 

where: 400 

                           𝑔1 =  2.677 −  𝑢1 − 𝑢2 401 

  𝑔2 =  2.500 −  𝑢2 − 𝑢3 402 

            𝑔3 =  2.323 −  𝑢3 − 𝑢4 403 

  𝑔4 =  2.250 −  𝑢4 − 𝑢5 404 

 405 

All ui are standard normal random variables (u1 taken as control variable).    The reference 406 

solution was obtained from a sample size of 1x109 using MCS. As shown in Table 2, FORM 407 

could not converge to a solution, while MCS (1000 simulations) produced no failures and GLD 408 

and GEV could not successfully fit the resistance data.  The ensemble thus defaulted to the JSD 409 

approach, which produced a reasonably low error (weights: wJSD  = 0.98; wGEV and wGLD ≈ 410 

0.01).   411 

A third analytical problem, a circular limit state function, is presented that considers 412 

non-normal random variables. In this example, random variables are considered to be either 413 

both lognormal or both extreme type I.  The limit state function is given as: 414 

  𝑔 =  𝑟2 −  𝑥1
2 − 𝑥2

2                (15) 415 

where r2 is taken as 7.0 for the lognormal case and 9.0 for the extreme I case.  For both cases, 416 

the means and standard deviations of the random variables were taken as 1.0 and 0.25, 417 

respectively (x1 taken as control variable).  Results are given in Table 3, where it can be seen 418 
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that the ensemble produced better results than the three individual distributions considered 419 

(weights: wGEV = 0.99; wGLD and wJSD  < 0.01 for both types of RVs).   420 

 421 

Problem 2: Nonlinear Truss with Complex Random Variable Set 422 

 This problem is based on that described in Eamon and Charumas (2011), and is meant 423 

to represent complexity within the range of that for which the FS approach was intended. As 424 

shown in Figure 2, a 10 member truss with a non-linear material model is subjected to a load 425 

P. Solution of the problem cannot be achieved with a closed-form analytical expression, and a 426 

finite element code (ABAQUS Version 6.11-2) using 10 two-node truss elements (8 total non-427 

zero degrees of freedom) was used to evaluate the response, as solved using the (implicit) 428 

Newton-Raphson approach with a residual convergence criteria of 0.005. The material assumed 429 

was steel, with a bilinear stress-strain curve and an elastic modulus E of 200 GPa. Random 430 

variables are the cross-sectional area (A), yield stress (σy), and post-yield modulus (E2) of each 431 

truss member, and load (P) (taken as control variable). Random variables are taken to have 432 

different types of distribution, level of  variance, and correlation, as summarized in Table 4.  433 

Note that for the normal RVs A and E2, negative values are theoretically possible during the 434 

simulation, potentially producing a physically impossible problem as well as a failed FEA 435 

solution attempt.  Since only 1000 simulations were used to generate the data sample for R(Xj), 436 

this did not occur (and represents an improbable result, as negative values occur at 10 and 20 437 

standard deviations from the means of A and E2, respectively).  However, for cases in which 438 

this would be a concern, alternative distributions or appropriate truncated RV types could be 439 

used. 440 

The failure criterion was defined as the state where the stress in member 1 reaches its yield 441 

stress. The resulting limit state function is given as: 442 

g = σy1 - σ1(P, σyj, E2i, Ai) for i = 1 to 10, j = 2 to 10                   (16) 443 
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The reference solution (β=3.50) was obtained from 1 x 106 MCS simulations. Note that 444 

although the limit state function was evaluated with a sample size of 1000, (the "nominal" 445 

number of calls), the actual number of function calls using the ensemble approach exceeded 446 

this value, due to the iterative process needed to find the root of g* = 0, as shown in Table 5; 447 

such iteration is not required for the explicitly formulated response functions in problem set 1, 448 

for which roots can be determined analytically.  Here a version of the bracketing method was 449 

used for solution (Suhadolnik 2012), with an error tolerance of 2%. For comparison, and to 450 

verify the suitability of problem complexity, a FORM solution was also attempted, and failed 451 

to provide a solution, as the MPP could not be located, even after using several different search 452 

algorithms and different starting points. Similarly, as expected, no solution could be obtained 453 

from MCS when limiting the actual number of function calls to that of the ensemble approach.  454 

In this problem, the GEV dominated the solution (weights: wGEV =  0.753; wGLD =  0.0011; wJSD 455 

= 0.246), and thus the simplified threshold method was used for illustration in lieu of the 456 

complete ensemble, from which good results were obtained. 457 

 458 

Problem 3: Highly Nonlinear Column with Large Random Variable Set 459 

This problem is based on that given by Alsendi and Eamon (2020).  It represents a 460 

reinforced concrete bridge pier column subjected to a blast load initiated at the column base.   461 

The column base is fixed and the top is constrained by a beam element representing the pier 462 

beam cap, which is connected to two additional columns forming the pier structure, which are 463 

also modeled with beam elements  (not shown in Figure 3 for clarity).  The column is 3 m high 464 

and 760 mm square, and reinforced with 24 #8 vertical bars (6 bars per face) and #4 ties spaced 465 

at 300 mm.  An axial load is applied to the column representing the dead load portion of a two-466 

lane, two-span (15 m per span) continuous bridge with a superstructure of five steel girders 467 

(spaced at 2.7 m) and a 240 mm thick reinforced concrete deck that the column supports.   468 
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Resistance random variables are concrete compressive strength (f’c), yield stress (Fyl; 469 

Fyt), Young’s modulus (El; Et), and tangent modulus  (ETl; ETt) of the longitudinal bars (l) and 470 

ties (t).  Random variables associated with each longitudinal bar are taken as independent of 471 

each other, while those for transverse bars are taken as  perfectly correlated (for random 472 

variables of the same type), resulting in 75 total random variables characterizing steel 473 

uncertainties, as summarized in Table 6. Load random variables are those of the bridge gravity 474 

load and blast load.  Gravity (dead) load random variables are those of the prefabricated items 475 

such as the steel girders and diaphragms (DLp); the cast-in place items such as the deck and 476 

barriers (DLs); and the wearing surface (DLw).  Statistical parameters for concrete and steel 477 

yield strength are taken from Nowak and Szerszen (2003), while statistics for steel stiffness are 478 

taken from Galambos and Ravindra (1978), and those for gravity loads are taken from Nowak 479 

(1999).  The blast load random variables are the equivalent mass of TNT (kg) (Qw) and the net 480 

equivalency factor (Qe) (taken as control variable), where variation in Qw is meant to account 481 

uncertainty in charge weight construction and Qe accounts for uncertainty in the resulting blast 482 

pressure. Statistical parameters for these two random variables are taken from Netherton and 483 

Stewart (2010). All distributions are reported to be normal except Qe, which is triangular.  In 484 

total, 81 random variables were considered.    485 

In this problem, failure is defined as a horizontal displacement of the column base that 486 

exceeds 4.3 mm within the first 8 ms after the blast initiates (a rate of deformation associated 487 

with subsequent column collapse).   The resulting limit state function is given as: 488 

g = 4.3 – D(R, Q)     (24) 489 

where D is the maximum displacement of the column base resulting from the blast at a time of 490 

8 ms, and R and Q are the sets of resistance and load random variables given in Table 6.  491 

Response D was evaluated using a large strain, large displacement FEA approach, where the 492 

model had approximately 4800 8-node hexahedral (for concrete) and 2-node beam (for 493 
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reinforcement) elements.  Concrete was represented with the Holmquist-Cook model 494 

(Holmquist et al. 1993), which accounts for crushing and cracking due to accumulated damage 495 

under high rates of strain. Reinforcing steel is modeled with a kinematic, bi-linear material 496 

model, while the blast load time-pressure history was represented by the CONWEP method 497 

(Hyde 1988).  The problem was solved on 4 CPUs in parallel using the finite element code LS-498 

DYNA.  As this problem is significantly nonlinear, with the displacement response D fairly 499 

sensitive to parameter changes, as shown in Table 7, about twice the number of iterations were 500 

required to determine the root of the limit state function than for the nonlinear truss problem 501 

previously studied.  Consideration of a more sophisticated root finding algorithm than the 502 

bracketing method used may further reduce this requirement, however.  As shown in Table 7, 503 

the ensemble provided best results overall (weights: wGEV = 0.91; wGLD =  0.08; wJSD = 0.01), 504 

whereas GLD could not be fit to the resistance data, JSD produced a relatively high error, and 505 

FORM could not converge to a solution. 506 

 507 

Conclusion and Recommendations 508 

 Previous formulations of the failure sampling method were limited by uncertainty with 509 

the method of implementation, where the approach with greatest accuracy is highly problem-510 

specific.  In this study, a solution was proposed to this issue that reduces this uncertainty and 511 

increases the effectiveness of the method regardless of the problem considered.  It was found 512 

that the ensemble approach is suitable for complex responses and highly nonlinear limit state 513 

boundaries.  It was further found that the approach is expected to produce solutions at least as 514 

good, and often better, than the best single failure sampling implementation method previously 515 

presented in the literature.  Although the ensemble method is thus recommended for 516 

implementation of the failure sampling approach, significant opportunities exist for further 517 

development.    Among these, more rigorously exploring alternative goodness-of-fit metrics, 518 
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and formulating the ensemble using a different approach, are the most apparent to the authors.  519 

For example, rather than first fitting individual CDFs to the response data then finding the 520 

associated weights, perhaps a more universal optimization could be conducted where the 521 

individual curve parameters as well as the curve weights are taken as a single set of design 522 

variables in the same optimization process.  As all curve parameters are thus interrelated, the 523 

end result, a single unified curve, may offer greater ability to represent the response data than 524 

the weighted independently developed curves.  Such topics are to be further explored in the 525 

future. 526 

 527 

 528 

 529 

Data Availability 530 

 531 

Some or all data, models, or code that support the findings of this study are available 532 

from the corresponding author upon reasonable request.  533 
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Table 1. Hyperbolic Function Results. 649 

 no. of     k = 480     k = 240     k = 160 

method calls β %err β* %err β* %err 

Reference solution (MCS) 1x109 2.10 -- 4.15 -- 4.98 -- 

FORM** 8-40 2.18; 2.22  3.8; 5.7 4.32; 4.41 3.1; 6.2 5.19; 5.21 4.2; 4.6 

MCS 1000 2.10 0.0 NF -- NF -- 

GLD 1000 1.48 30 3.71 10.6 3.92 21 

JSD 1000 2.75 31 NF -- 5.27 5.8 

GEV 1000 2.11 0.48 4.31 3.9 5.22 4.8 

Ensemble 1000 2.11 0.48 4.24 2.1     5.18*** 4.0 
*NF = no failures.  **Results given for alternate algorithms; see text. For FORM, no. of call depends on 650 
problem and algorithm; range is given.  ***Increasing the number of simulations to 2000 produced β = 4.96 651 
(0.4% error). 652 
 653 

Table 2. Maximum Function Results.  654 

 method 

no. of 

calls 

 

β %err 

Reference solution (MCS) 1x109 3.53 -- 

FORM -- Fail* -- 

MCS 1000 NF -- 

GLD 1000 Fail** -- 

JSD 1000 3.46 1.98 

GEV 1000 Fail** -- 

Ensemble 1000 3.46 1.98 
*Solution could not converge.  **Could not fit the resistance data. 655 
 656 

 657 

Table 3. Circular Limit State Results.  658 

 659 

 660 

 661 
 662 
 663 
 664 

 665 

 666 

 667 

 668 

 669 

Table 4. Random Variables for Truss Problem. 670 

Random Variable Total Mean COV* ρ** Distribution 

area (A) 10 1290 mm2 0.05 0.30 normal 

yield stress (σy) 10 345 MPa 0.15 0.50 lognormal 

post-yield modulus (E2) 10 8280 MPa 0.10 0.70 normal 

load (P) 1 85 kN 0.35 -- extreme I 
*Coefficient of variation. 671 
**Correlation coefficient between random variables of the same type between different truss members. 672 
 673 

 674 

  Lognormal Extreme I 

 method 

no. of 

calls β %err β %err 

Reference Solution (MCS) 1x109 3.44 -- 3.66 -- 

MCS 1000 NF -- NF -- 

FORM 73 3.71 7.8 3.90 6.6 

GLD 1000 2.19 36 2.67 27 

JSD 1000 4.01 17 4.12 13 

GEV 1000 2.96 0.3 3.80 3.8 

Ensemble 1000 3.43 0.3 3.61 1.4 
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 675 

 676 

Table 5. Truss Problem Results. 677 

 method 

nominal 

no. of 

calls 

actual 

no. of 

calls β %err 

Reference solution (MCS) 1x106 1x106 3.50 -- 

FORM -- -- Fail -- 

MCS 3000 3000 NF -- 

GLD 1000 3000 3.01 14 

JSD 1000 3000 4.46 27 

GEV 1000 3000 3.48 0.57 

Ensemble 1000 3000 3.48 0.57 

 678 

 679 

Table 6. Random Variables for Column Problem. 680 

Random Variable (RV) Total Nominal value Bias factor* COV** 

Resistance RVs     

Concrete strength (f’c) 1 41 MPa 1.15 0.15 

Yield stress, long. bars  (Fyl) 24 414 MPa 1.14 0.05 

Yield stress, ties (Fyt) 1 276 MPa 1.145 0.05 

Young’s Modulus, long. bars (El) 24 200 GPa 1.0 0.04 

Young’s Modulus, ties (Et) 1 200 GPa 1.0 0.04 

Tangent modulus, long. bars (ETl) 24 20 GPa 1.0 0.04 

Tangent modulus, ties (ETt) 1 20 GPa 1.0 0.04 

     

Load RVs     

Weight, prefab items (DLp) 1 67 kN  1.03 0.08 

Weight, cast in place items (DLs) 1 387 kN   1.05 0.10 

Weight, wearing surface (DLw) 1 134 kN Mean=89 mm 0.25 

Charge weight (Qw) 1 47 kg 1.000 0.10 

Equivalency factor (Qe) 1 1.00 Mode=0.82 0.36 
*Ratio of mean to nominal value.    **Coefficient of variation.  Not available for DLw and  Qe as shown.   681 
 682 
 683 

Table 7. Column Problem Results.  684 

 685 

 method 

nominal 

no. of 

calls 

actual 

no. of 

calls β %err 

Reference solution (MCS) 1x106 1x106 3.89 -- 

FORM -- -- Fail -- 

MCS 6000 6000 NF -- 

GLD 1000 6000 Fail -- 

JSD 1000 6000 3.40 13 

GEV 1000 6000 4.01 3.1 

Ensemble 1000 6000 3.80 2.3 

 686 
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 687 

 688 

Figure 1. Example Ensemble of CDFs .  689 
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 700 

 701 

 702 

Figure 2. Ten Bar Truss. 703 

 704 

 705 

 706 
 707 

Figure 3. Column Subjected to Blast Load. 708 
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