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ABSTRACT  

 

Insects of the order Diptera are a popular biological model for understanding 

morphological trait evolution. One area of particular interest is the development of the compound 

eyes. While the development of ommatidia and photoreceptors has been thoroughly studied in 

this case, little attention has been paid to the interommatidial bristles (IOBs) present on the eyes 

of some dipteran families. A preliminary survey suggested that these bristles exhibit high 

variability among IOB families on multiple taxonomic levels and are not uniformly present or 

absent in any suborder of the Diptera. To confirm this observation, I conducted a literature 

search to quantify how many dipteran families uniformly possessed IOBs, lack IOBs, or include 

species with both trait states. This effort revealed a slight bias towards lack of IOBs in the 

Diptera. Parsimony and maximum likelihood ancestral state reconstructions showed that IOBs 

are likely to have been present on the eyes of early dipteran ancestors, despite the bias towards 

lack of IOBs in the extant families. The absence of IOBs is therefore speculated to be the result 

of frequent evolutionary losses. Finally, the comparison with the 371 other previously studied 

traits suggests that IOBs have experienced the highest number of loss events among known fly 

traits 
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INTRODUCTION 

 

 With 188 recognized families and around 10,000 genera (Yeats et al. 2007), the insect 

order Diptera, which represents all true flies, is one of the largest and most thoroughly studied 

insect orders in the world today. The focus placed on this order is partly due to the fact that it 

contains the species Drosophila melanogaster. As a model organism, Drosophila melanogaster 

is wildly popular in the scientific world to study development and molecular biology. 

Discoveries made using this species have helped us make great leaps in understanding human 

disease states such as Alzheimer’s disease and Parkinson’s disease. It is also used to make 

advancement in other fields such as ecology, genetics, population biology, and systematics 

(Powell 1997). The sheer amount of useful information provided by Drosophila melanogaster is 

precisely why it has been necessary to study and analyse the rest of the order Diptera. As 

Dobzhansky famously quoted, “Nothing in biology makes sense except in the light of evolution.” 

For every developmental process and biologically relevant piece of information provided by 

Drosophila melanogaster there is a rich and complete evolutionary history to back it up. 

Understanding how Diptera evolved is incredibly useful for understanding how one of the 

world’s most popular model organisms works.  Finally, even if Diptera did not include an 

important model organism, it would still be well studied because it is a massive order, rich in 

genetic and morphological variation that makes it an ideal animal group for evolutionary study. 

Evolutionary reconstructions have been created for many diperan traits with particular emphasis 

on molecular evolution due to its usefulness in disease studies (Beverley and Allan 1984). But 



Palmer 4 

there have also been studies into the evolution of external structures such as larval maxilla 

(Harbach and Peyton 1993) and genitalia  (Arnqvist 1998). Surprisingly, one particularly 

interesting trait has received almost no attention at all: The interommatidial bristles (IOBs).  

Like many insects, flies have compound eyes that consist of hundreds of identical subunits 

called ommatidia. Each ommatidium contains support cells, pigment cells, and a cluster of 

photoreceptor cells similar to those found in the human retina. Innervation of each ommatidium 

allows the brain to receive hundreds of picture elements which it can use to form a comprehensive 

image of the fly’s surroundings (Melamed and Trujillo-Cenóz 1967). As the name suggests, IOBs are 

bristles found between the ommatidia of compound eyes (Fig. 1A). They appear similar to touch 

receptor bristles elsewhere on the fly body in terms of structure (Perry 1968). However, there is 

currently no evidence to suggest that they serve a similar function.  

 

Figure 1: Examples of Fly Eyes with and without IOBs: These images show the difference between IOB presence 
and absence. A) Lens surface of D. melanogaster compound eye with regularly spaced IOBs a selection of which is 
highlighted by black arrows. B) Lens surface of the compound eye of the house fly Musca domestica with no IOBs. 
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The development of fly eyes has been the focus of many research efforts. Discoveries 

that have been made include the developmental process of ommatidia and the fact that common 

ancestors of insects and crustaceans were likely to have had ommatidia with focusing crystalline 

cones, and colour and/or polarization vision (Nilsson and Kelber 2007). The emphasis scientists 

have placed on eye evolution makes it curious that no one has paid particular attention to the 

IOBs. Further remarkable is that  IOBs are present on the eyes of Drosophila melanogaster, but 

absent on the eyes of other diptera species. This raises the question: how did IOBs evolve and 

for what purpose? To explore this variation, I hypothesized that IOBs were a hypervariable trait 

that was repeatedly lost and regained throughout the evolution of Diptera. Since the presence or 

absence of IOBs does not currently appear to affect the rest of fly morphology, it is possible that 

the trait is controlled in such a way that it is highly susceptible to evolutionary pressures. 

 

MATERIALS AND METHODS 

 

Data acquisition and trait state definition 

To compile IOB variability and quantify how many families possessed the trait for IOBs, 

I turned to the 107 families described in The Manual of Nearctic Diptera (McAlpine 1981) with 

its  detailed scientific fly morphology drawings by a single illustrator: Ralph Idema. Surveying 

the documentation of IOB presence vs absence in this comprehensive source, I identified four 

possible character states relating to IOBs: IOB present, IOB absent, Irregular eyes that could not 

have IOBs, and IOB variable. Families classified as IOB variable have the IOBs present in some 
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genera and absent in others. A single genus that did not match the rest was considered the 

threshold for whether or not a family qualified as variable.  

Confirmation of the character state analysis was done using the high resolution 

photographs available online at websites such as Bug Guide, a picture database hosted by The 

Iowa State University Department of Entomology (bugguide.net) and Bugwood Images, a 

grant-funded project that was started in 1994 by the University of Georgia’s Center for Invasive 

Species and Ecosystem Health (images.bugwood.org). Literature searches were also done to 

confirm IOB expression with particular attention was payed to large IOB variable families. For 

many fly families there are still genera and species that have not been studied in full detail. 

Useful morphological and phylogenetic information was found regarding Tachinidae (Cerretti 

2014), Stratiomyidae (Brammer 2007),  and Phoridae (Cook et al. 2004). 

 Character state Reconstruction 

 Character state reconstructions were performed using the phylogenetic software program 

Mesquite (Version 3.10; Maddison and Maddison, 2016). The character state information on 107 

fly families obtained from The Manual of Nearctic Diptera was entered into the program as a 

table. From there a phylogenetic tree was created based on (Wiegmann et al. (2011). In order to 

compare IOB ancestral reconstructions to the reconstructions of other characters, it was 

necessary to reduce the number of families analysed to the families documented in Lambkin et 

al. (2011). These limitations lowered the number of families from 107 to 35. Reconstructions 

were performed using parsimony and likelihood models. Unordered parsimony was used with 

the cost of state change set to 1. The likelihood model used was mk1(est), a one-parameter 
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Markov k-state model (Lewis, 2001). For the sake of simplicity, IOB ancestry was reconstructed 

through both of these methods under the assumptions that IOB variable families were either fully 

positive of fully negative. Outgroups were also defined to test the sensitivity of the 

reconstruction methods. A total of 8 reconstructions were conducted for the IOB trait with 

variations in reconstruction method used, how the IOB variable families were categorized, and 

positive or negative character of the outgroup.  

Trait Comparisons. 

Summary state changes were quantified in Mesquite using likelihood and parsimony 

reconstruction methods. The 371 morphological characteristics documented  in Lambkin et al. 

(2011) were entered into the taxa vs. character table in Mesquite. Each character was then 

analyzed for its average estimate of trait gains and losses.  

 

RESULTS 

 

Overview of IOB variability.  

Preliminary analysis of IOB presence and absence revealed that the trait is highly variable on 

multiple taxonomic levels. It varies not only between families, but also from genera to genera. 

According to data from The Manual of Nearctic Diptera, at least 24 Diptera families can be 

considered variable in this way. These include some large notable families such as scuttle flies 

(Phoridae), hoverflies (Syrphidae), and flesh flies (Tachinidae). However, despite the 
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surprisingly large number of families that were classified as IOB variable, the IOB negative 

character state is slightly more prevalent among Diptera families than either IOB positive or IOB 

variable states. Among the 107 families that were documented, 60.75% were characterized as 

being IOB negative (Fig. 2A). This is a significant majority when compared to either of the other 

states alone and it would still be the majority if IOB variable and positive families were 

considered one group.  

Interestingly, far less dramatic results were found when the focus was narrowed to 

include only the Diptera families included in the comprehensive morphological studies 

conducted by Lambkin et al. (2011). Of those 35 families, only 42.86% were IOB negative, a 

smaller percentage than IOB positive and variable combined (Fig. 2B). This difference is likely 

due to the greatly reduced sample size, but it remained necessary to study only the families for 

which extensive morphological information was available.  
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Figure 2: Quantification of IOB Character States. These graphs quantify the number of Diptera families 
representing each character state. IOB positive families have IOBs in all genera studied, while IOB negatives are 
consistently bare eyed. IOB variable denotes any family with at least one genera that is IOB positive and one that is 
IOB negative. Irregular eyed families are those whose unique morphologies make IOB presence/absence irrelevant, 
including Blephariceridae, Ptychopteridae, Braulidae, Nycteribiidae, and Streblidae. A) Analysis of all families 
covered in The Manual of Nearctic Diptera. B) Analysis of 35 families covered in The Manual of Nearctic Diptera 
(McAlpine 1981) as well as The phylogenetic relationships among infraorders and superfamilies of Diptera based 
on morphological evidence (Lambkin et al. 2011) 

 

Phylogenetic Analysis of IOB variation.  

Parsimony and likelihood reconstructions of IOB character state history yielded different results. 

Parsimony analysis showed high probabilities of IOB positive ancestors while likelihood 

analysis gave consistently lower probabilities. However, despite the differences in the two 

methods, both were able to determine conclusively that the IOB character state is outgroup 

sensitive. The presence of a positive outgroup increases the likelihood of early common 

ancestors being positive or variable for the IOB trait no matter what reconstruction method was 

used. (Fig. 3 and 4) Furthermore, because IOB presence is known to exist variably in 

Lepidoptera, one of the orders most closely related to Diptera, it can be assumed that the 

inclusion of a positive outgroup is the most accurate representation.  

All reconstructions showed a strong likelihood that the last common ancestors of all 

Diptera possessed IOBs. This was especially true in the more accurate  reconstructions that 

included an IOB positive outgroup. It was only with distance from the last common ancestor that 

higher likelihoods of IOB absence were observed, indicating that absence may be the derived 

trait. Notably, absence could still be seen across the entire phylogenetic tree as well as in most 

stages of evolution after the earliest common ancestors. 
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Figure 3: Parsimony Reconstruction of Ancestral IOB States. These phylogenetic trees were reduced to include 
only the 35 families for which there is morphological and phylogenetic data. Variable IOB families are considered 
IOB positive. Nodes are filled in according to the maximum parsimony likelihood of common ancestors being IOB 
positive. The scale on the bottom is measured in millions of years. A) Positive outgroup assumed. B) Negative 
outgroup assumed. 
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Figure 4: Likelihood Reconstruction of Ancestral IOB States. Nodes are filled in according to the 
maximum  likelihood probability of common ancestors being IOB positive. The scale on the bottom is measured in 
millions of years. A) Positive outgroup assumed. B) Negative outgroup assumed. 
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Comparison of trait variability   

Summary parsimony reconstructions of the 371 characters studied in Lambkin et al. (2011) 

indicated that the IOB trait variation was best explained by an exceptionally high number of 

losses. In analyses run under the assumption that IOB variable can still be considered IOB 

positive, there was an average estimate of 10 full trait losses for different reconstruction 

approaches. That was the highest number of average estimated losses for any of the traits 

studied. (Fig. 5A) The next 6 most frequently lost traits included two other types of bristle, the 

Scutellar bristles and the setae on the subapical aboral surface of mandible. Another notable trait 

was the development of the upper calypter, a small structure located at the base of fly wings 

(Crosskey 1993). With an average estimate of 6 losses, it was the second most commonly lost 

trait.  

Results were less dramatic when parsimony analyses were run assuming that IOB 

variable families are negative for the trait. Considered in this light, it was less likely that dipteran 

ancestors possessed the trait and therefore less likely that it could be so frequently lost. IOB 

absence versus presence did not rank among the most commonly lost traits. It did however, 

continue to be closely associated with other bristle traits including the presence versus absence of 

Supra-alar bristles and Dorsocentral bristles. 

The same analyses with likelihood reconstructions of ancestral states made it difficult to 

quantify the number of times the IOB trait was gained and lost over the course of evolution. 

When variable families were assumed to be positive for the trait, Likelihood reported 0 cases of 
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either trait gain or loss. This could be due to the fact that likelihood analysis could not confirm 

that any dipteran ancestors were fully positive or negative for the trait. With no certainty of 

ancestral states it could not accurately assume that any trait gains or losses occurred. Strangely, 

when IOB variable families were considered negative, Likelihood did report a relatively high 

number of trait gains. (Fig. 5B) 

Character Trait change MP gain 
(V+ OG+) 

MP loss 
(V+ OG+) 

MP gain 
(V- OG+) 

MP loss 
(V- OG+) 

IOB Presence / Absence 2 10 5 2 

Upper calypter Developed / Not 
Developed 0 6 0 6 

Accessory gland Continuation with 
Vasa Deferentia 2 4 2 4 

Scutellar bristles Presence / Absence 1 4 1 4 

Subapical aboral 
surface of mandible 

Setae Presence/ 
Absence 0 4 0 4 

Mandibular chela: Presence / Absence 0 4 0 4 

Female Cerci 1 Segmented / 2 
Segmented 0 4 0 4 
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Character Trait change ML gain 
(V+ OG+) 

ML loss 
(V+ OG+) 

ML gain 
(V- OG+) 

ML loss 
(V- OG+) 

IOB Presence / Absence 0 0 5 0 

Head Retraction 
Retracted into Thorax / 

Not Retracted into 
Thorax 

4 0 4 0 

Body Segments 
With / Without 

Complete Secondary 
Divisions 

4 0 4 0 

Frons differentiated into frontal 
vitta and lateral fronto-orbital 

plates 
Presence / Absence 4 0 4 0 

Posterior anepisternal bristles Presence / Absence 4 0 4 0 

Suprasquamal ridge Setose / Bare 4 0 4 0 

Postmetacoxal bridge Presence / Absence 4 0 4 0 

 

Figure 5: Comparison of Estimated Trait Gains and Losses Across Dipteran Ancestry. The table 
shows the average number of estimated trait gains and losses over the course of dipteran evolution. Values have 
been rounded to the nearest whole number. A positive outgroup has been assumed for all characters. A) Values 
according to maximum parsimony. Yellow indicates the amount of estimated trait losses when variable families are 
considered positive. B) Values according to maximum likelihood. Yellow indicates the estimated trait gains when 
variable families are considered negative. 

 

DISCUSSION 

 

Taken together, my findings support the conclusion that the presence of IOBs is a highly 

variable but ancestrally well founded trait and that absence of IOBs in modern dipteran species is 

therefore a result of evolutionary loss. Character state quantification revealed that there are more 

families within Diptera that can be considered IOB negative than IOB positive. However, there 

is also a solid representation of families that vary by genera and do not fit firmly into either 

category. If such variable families are considered to have retained the trait, the difference 



Palmer 16 

between IOB negative and IOB positive families becomes far less significant. It was also notable 

that none of the character states observed were restricted to certain suborders of Diptera. Instead, 

all states seem to be spread over the phylogenetic tree fairly evenly. This implies that 

evolutionary loss or gain of IOBs can happen fairly quickly and circumstantially. If there is an 

ecological factor influencing how each family exhibits the trait, it is not yet known.  

Furthermore, the ancient origins of IOB presence were confirmed by both parsimony and 

likelihood reconstructions. This was less apparent when negative outgroups were introduced. 

However, since true outgroups of Diptera are confirmed to display IOB presence, it is safe to 

assume that the reconstructions showing a high likelihood of IOB positive ancestors were most 

accurate. In some cases gains are seen in the reconstructions. For example, Lauxaniidae, 

Acroceridae, and Bombyliidae are all IOB positive families within clades that are primarily IOB 

negative. The immediate ancestors of these families have relatively high likelihoods of being 

IOB negative. It can be speculated that such families may have regained IOBs even after earlier 

ancestors stopped expressing the genes that produce them. However, reconstruction reports of 

trait gains were not nearly as frequent as loss so it is far more likely that most IOB positive and 

variable families simply retained the trait. 

Comparison of IOB trait gain and loss to other morphological characteristics again 

proved this point by showing that the number of trait losses throughout evolution was 

exceptionally high compared to other traits that are likely more difficult to genetically alter. 

Some of the other most frequently lost traits included other types of bristles suggesting that a 

common genetic cause may be at play here. 
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 Evaluating the above conclusions for variability across traits, the bias produced by 

reducing the sample size must be acknowledged. Outgroup data proves that the earliest ancestors 

of Diptera were still highly likely to be IOB positive. However, the reconstructions may have 

looked very different if a greater pool of morphological data had been available to allow the 

inclusion of a more representative amount of IOB negative families. If IOB negative families 

were closer to 60% of the total families studied, there would have been a higher likelihood of 

bristleless ancestors. Therefore, it would have been easier to see instances of the trait being lost 

and regained. Future morphological studies of other fly families will be of great aid to 

corroborate our understanding of IOB variation as well as its ancestral states with regards to 

other traits.  

The limitations of parsimony and likelihood reconstructions are also a factor when 

evaluating the results of this experiment. Likelihood analyses are not commonly used for 

morphological studies because they work best with added genetic information. Parsimony, on the 

other hand, has been used to reconstruct the ancestry of everything from the coloration of 

blackbirds (Johnson and Scott 2000) to the shape of musical instruments (Tëmkin and Niles 

2007). Parsimony analysis does a much better job with purely morphological data and, therefore, 

produced the most accurate results. 

Future Objectives 

In order to determine why certain families would lose the IOB trait, the next logical step 

is to determine how IOBs are used. There is as yet no firm evidence to suggest that IOBs serve a 

sensory function. However, it has been observed that IOBs are innervated and have peripheral 
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projections (Chayka and Mazokhin-Porshnyakov 1986). If IOB neurons were traced it is possible 

that a linkage to the brain could be discovered. The presence or absence of such a linkage would 

tell us for certain whether or not IOBs produce a real sense in flies. Certain aspects of fly eye 

morphology such as photoreceptors have already been proven to be sensitive to ecological 

factors  (Gonzalez-Bellido et al. 2011). Determination of IOB sensory function is the first step 

toward understanding what sort of ecological factors might make the trait evolutionarily 

disadvantageous and why the it was lost so many times throughout evolution.  

Another possible continuation would be to analyse the genetic regulation of the top ten 

most frequently lost traits in order to determine if they are related by a single pathway. Because 

the Notch signalling pathway is so heavily involved in eye development, it is my hypothesis that 

IOB loss is somehow related to Notch expression. 
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