


Morgenstern (1981) expressed the moisture inflow V as propor-

tional to the temperature gradient in the frozen fringe as

follows:

V ¼ ðSPÞðTgradÞ(1)

where:

V¼moisture inflow rate, cm/s,

Tgrad¼ temperature gradient, �C/cm, and

SP¼ segregation potential, cm2/�C/s.

In Konrad and Morgenstern’s analysis (1981), the SP was

the ratio of two measurable quantities, the moisture inflow rate

and the temperature gradient across the active system for con-

stant temperature boundary conditions, both determined at the

formation of the final ice lens.

In Eq 1 SP is assumed to be a single-valued function, deter-

mined at only one point of the experiment. However, both the

temperature gradient and the moisture inflow rate are variable

during the experiment. If these variations are incorporated in

Eq 1, it is clear that the segregation potential is not well repre-

sented by a single constant-value parameter. One unique feature

of the present research is that we have extended the use of the

segregation potential concept. The revised term is generalized

segregation potential (w, cm2/�C/s). The generalized segregation

potential w was a time-variant function, dependent on both

temperature gradient and moisture inflow rate. It was previ-

ously shown that both these parameters are related to the freez-

ing rate, and thus w is also dependent on the freezing rate as

shown in Fig. 11.

Although there is a clear relationship between generalized

segregation potential and freezing rate, the form of that rela-

tionship is dependent on the experimental soil characteristics.

Various curve-fitting techniques were evaluated to determine

the functional relationship for each of the three soils in these

experiments. The following are the best-fit relationships.

For clay,

w ¼ 47:771e�0:0069F(2)

For silt,

w ¼ 45:132e�0:0071F(3)

FIG. 9

Time variant curves of moisture inflow and freezing rate for

each sample.
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For fine sand,

w ¼ 1:8298F�0:8851(4)

where:

F¼ freezing rate, cm/s, and

w¼ generalized segregation potential, cm2/�C/s.

Other terms are defined as in Eq 1.

Applying Eq 1 for this new term of generalized segregation

potential, we arrive at

V ¼ wTgrad(5)

With Eqs 2 through 5, the moisture inflow can be estimated

for any time during the frost progression.

VALIDATION OF THE MODEL OF MOISTURE INFLOW

The moisture inflow predicted using Eq 5 and functional rela-

tionships of Eqs 2 through 4 for clay, silt, and fine sand were

compared to the measured values of moisture inflow for this

experiment (Fig. 12). The predicted values corresponded well to

the measured values in the early stages of freezing. With the

progression of freezing, the predicted moisture inflow exceeded

the measured values. However, toward the latter stages of the

freezing process, the predicted values again closely reflected the

observed moisture inflow values. The maximum deviation

between the measured and predicted values for the clay, silt,

and sand experiments was 11.5 %, 26.0 %, and 40.0 %, respec-

tively. However, during the early and late portions of the experi-

ments, the average deviations were much smaller (on the order

of 5 %).

FIG. 10

Liquid water content of the samples in initial, frozen, and

melt states.
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On the whole, the model was able to predict the moisture

inflow with reasonable accuracy.

Conclusions

The research presented in this paper provides important

insights into the development of subgrade ice layers in

permafrost areas. An experimental system was constructed to

monitor the initiation and progression of freezing and moisture

uptake by three different soil types. The observed features of the

time-variant characteristics of moisture inflow and frost pene-

tration were used to develop a predictive model of moisture

inflow. The specific conclusions of this research are the

following:

1. Excavation of a region of significant highway damage
along the Hoh Xil pass of Qinghai to Tibet revealed the
important contribution of ice lens development to the dis-
ruptive surface damage.

2. The observations from the experimental process con-
firmed the presence of three distinct stages of the freezing

process: the quick frost stage, the transition frost stage,
and the stable frost stage.

3. The moisture migration into the column was greatest for
large temperature gradients and early periods of freezing.
As freezing continued, the moisture inflow increased to a
maximum value. Following this peak, the freezing rate
declined and the moisture inflow decreased. By the con-
clusion of the experiment, a steady condition had been
achieved with moisture inflow reduced to negligible
values.

4. A new form of segregation potential was developed to
account for the time-variant nature of the process. The
new term, generalized segregation potential, was used in
the development of predictive models for moisture inflow.
The developed model reflects the observations reasonably
well, with maximum deviations occurring during the
transitional frost stage. However, during the early and late
portions of the experiments, the average deviations were
much smaller (on the order of 5 %). On the whole, the
model was able to predict the moisture inflow with rea-
sonable accuracy.

FIG. 11

Generalized segregation potential as a

function of freezing rate.

FIG. 12

Comparison between prediction and

measurement of moisture inflow.
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