
Wayne State University Wayne State University 

Chemical Engineering and Materials Science 
Faculty Research Publications Chemical Engineering and Materials Science 

1-27-2024 

Virtual Test Beds for Image-Based Control Simulations using Virtual Test Beds for Image-Based Control Simulations using 

Blender Blender 

Akkarakaran Francis Leonard 
Department of Chemical Engineering and Materials Science, Wayne State University 

Govanni Gjonaj 
Department of Chemical Engineering and Materials Science, Wayne State University 

Minhazur Rahman 
Department of Chemical Engineering and Materials Science, Wayne State University 

Helen E. Durand 
Department of Chemical Engineering and Materials Science, Wayne State University, 
helen.durand@wayne.edu 

Follow this and additional works at: https://digitalcommons.wayne.edu/cems_eng_frp 

 Part of the Controls and Control Theory Commons, and the Process Control and Systems Commons 

Recommended Citation Recommended Citation 
Leonard, A.F.; Gjonaj, G.; Rahman, M.; Durand, H.E. Virtual Test Beds for Image-Based Control Simulations 
Using Blender. Processes 2024,12,279. https://doi.org/10.3390/pr12020279 

This Article is brought to you for free and open access by the Chemical Engineering and Materials Science at 
DigitalCommons@WayneState. It has been accepted for inclusion in Chemical Engineering and Materials Science 
Faculty Research Publications by an authorized administrator of DigitalCommons@WayneState. 

http://digitalcommons.wayne.edu/
http://digitalcommons.wayne.edu/
https://digitalcommons.wayne.edu/cems_eng_frp
https://digitalcommons.wayne.edu/cems_eng_frp
https://digitalcommons.wayne.edu/chemical_engineering
https://digitalcommons.wayne.edu/cems_eng_frp?utm_source=digitalcommons.wayne.edu%2Fcems_eng_frp%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/269?utm_source=digitalcommons.wayne.edu%2Fcems_eng_frp%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/247?utm_source=digitalcommons.wayne.edu%2Fcems_eng_frp%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages


Citation: Leonard, A.F.; Gjonaj, G.;

Rahman, M.; Durand, H.E. Virtual

Test Beds for Image-Based Control

Simulations Using Blender. Processes

2024, 12, 279. https://doi.org/

10.3390/pr12020279

Academic Editors: Maurício Bezerra

De Souza, Jr. and Anthony Rossiter

Received: 5 September 2023

Revised: 29 December 2023

Accepted: 4 January 2024

Published: 27 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

processes

Article

Virtual Test Beds for Image-Based Control Simulations
Using Blender
Akkarakaran Francis Leonard , Govanni Gjonaj, Minhazur Rahman and Helen E. Durand *

Department of Chemical Engineering and Materials Science, Wayne State University, 42 W Warren Ave,
Detroit, MI 48202, USA
* Correspondence: helen.durand@wayne.edu

Abstract: Process systems engineering research often utilizes virtual testbeds consisting of physics-
based process models. As machine learning and image processing become more relevant sensing
frameworks for control, it becomes important to address how process systems engineers can research
the development of control and analysis frameworks that utilize images of physical processes.
One method for achieving this is to develop experimental systems; another is to use software that
integrates the visualization of systems, as well as modeling of the physics, such as three-dimensional
graphics software. The prior work in our group analyzed image-based control for the small-scale
example of level in a tank and hinted at some of its potential extensions, using Blender as the graphics
software and programming the physics of the tank level via the Python programming interface. The
present work focuses on exploring more practical applications of image-based control. Specifically, in
this work, we first utilize Blender to demonstrate how a process like zinc flotation, where images
of the froth can play a key role in assessing the quality of the process, can be modeled in graphics
software through the integration of visualization and programming of the process physics. Then, we
demonstrate the use of Blender for testing image-based controllers applied to two other processes:
(1) control of the stochastic motion of a nanorod as a precursor simulation toward image-based control
of colloidal self-assembly using a virtual testbed; and (2) controller updates based on environment
recognition to modify the controller behavior in the presence of different levels of sunlight to reduce
the impacts of environmental disturbances on the controller performance. Throughout, we discuss
both the setup used in Blender for these systems, as well as some of the features when utilizing
Blender for such simulations, including highlighting cases where non-physical parameters of the
graphics software would need to be assumed or tuned to the needs of a given process for the testbed
simulation. These studies highlight benefits and limitations of this framework as a testbed for
image-based controllers and discuss how it can be used to derive insights on image-based control
functionality without the development of an experimental testbed.

Keywords: process control; image-based control; digital twin

1. Introduction

Image-based control (IBC) focuses on the use of image sensors to capture state infor-
mation for the purposes of control. IBC systems are feedback control schemes in which
the measurements are obtained from data-intensive image-based sensors. The advances
and emergence of affordable camera sensors and image-processing algorithms [1] have
contributed to the increased exploration of IBC systems [2]. This includes applications in
autonomous driving systems [3], robot manipulators [4], and bioprocess monitoring [5,6].
Images have also been used in drug discovery [7]. The sensors in many process control
applications measure a single state of the system, such as temperature or pressure. Images
are able to capture significant information in a single observation, and offer the possibility
of creating a dense and relatively easy method to capture system states. Over the last few
decades, significant advances in image-based sensors and image processing algorithms

Processes 2024, 12, 279. https://doi.org/10.3390/pr12020279 https://www.mdpi.com/journal/processes

https://doi.org/10.3390/pr12020279
https://doi.org/10.3390/pr12020279
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/processes
https://www.mdpi.com
https://orcid.org/0000-0001-5286-0238
https://orcid.org/0000-0002-2857-4781
https://doi.org/10.3390/pr12020279
https://www.mdpi.com/journal/processes
https://www.mdpi.com/article/10.3390/pr12020279?type=check_update&version=2


Processes 2024, 12, 279 2 of 33

have been reported. This has led to an increase in studies of IBC systems and their capabili-
ties to enable real-time process control based on camera sensors to perceive the environment
and measure variables that would otherwise be impractical or time-expensive to measure
(e.g., concentration grade or cell counting). One of the uses of image sensors is object detec-
tion. Images have found use in robotics, in applications such as the control of autonomous
robots [8,9], drone flight control [10], manipulation of surgical robots [11], and spatial ex-
ploration with mobile devices [12]. In addition to classical controllers, vision-based control
strategies have also been studied using advanced controllers such as model predictive
controllers (MPC’s) [13,14]. In particular, image-based visual servoing control using a
nonlinear MPC was proposed in Lee et al. [13] as a vision-based obstacle avoidance strategy
in a dynamic environment for an unmanned aerial vehicle, where constraints related to
actuator and visibility limitations can be added to the control formulation. In the context
of visual feedback control, different control architectures integrated with a vision system
(e.g., a fixed camera sensor) have been utilized to improve the performance of autonomous
systems [4,15]. In Su and Zheng [4], for example, an image-based transpose Jacobian
proportional-integral-derivative (PID) control was proposed to address the asymptotic
regulation problem of robot manipulators with a vision-based feedback using Lyapunov’s
direct method and LaSalle’s invariance theorem. In chemical engineering, IBC implementa-
tion is largely applied to physical models and relies on experimentation to deliver results
and test optimal parameters. Image analysis systems were tested, for example, to monitor
an industrial boiler system [16] or estimate bubble size at a phosphorus oxide flotation
process [17]. The analysis of images for liquid crystal responses for sensing purposes was
explored in [18]. The use of convolutional neural networks (CNNs) to analyze images for
real time control has been used to develop frameworks for the safe implementation of
computer vision in process control [19] and to extract geometrical and pattern information
from images [20]. Image sensors have been evaluated for crystal size monitoring [21,22].
Specialized probes and lighting conditions can aid such studies. Drop size distributions
monitoring aimed to use image sensors [23]. In the work by Chen et al. [24], image sensors
are used to control combustion, using a principle component analysis (PCA)-based model
of flame images. Similar to PCA, dynamic mode decomposition (DMD) is also used to
create low-dimensional state representations of images that can be used in conjunction with
model predictive control (MPC) [25]. Although image-based closed-loop systems have
been performed and tested with real systems involving camera sensors [24,26], chemical
processes are often large-scale and complex, making it challenging to visually replicate a
next-generation manufacturing environment for the process industries without obtaining
data from an actual plant. In light of this, it can be more difficult for process systems
engineering researchers to test how new next-generation manufacturing concepts such
as image-based control algorithms might fare in an actual plant. A simulation-based test
environment for these systems would be desirable. Blender is a free and open source 3D
modeling and animation software that is managed by the Blender Foundation, with the
aim of providing the latest in animation technology to everyone free of charge and with the
ability for creators to own the projects that they create with it. It has been used to create
open source repositories for models of laboratory equipment [27], plugins for molecular
dynamics simulations [28], and toolboxes for the simulation of range scanners [29] and has
been used to develop models for packed beds [30].

In the prior work published by our group [31], we proposed the use of Blender
for enabling the generation of images as part of a closed-loop image-based control test
paradigm. In that work, a simple example of level control in a tank was used to demonstrate
the use of Blender for closed-loop image-based control simulations. In this study, we
significantly extend this prior work to seek to gain further insight into the potential use
cases of Blender for chemical process control applications and also to better understand its
benefits and limitations over a wider range of process considerations. To do this, the paper
is structured to focus on three primary studies, which are the use of Blender in simulating
a precursor to a froth flotation process, a precursor to a controlled self-assembly process,



Processes 2024, 12, 279 3 of 33

and a reactor for a process with a weather monitoring system. The specific organization is
as follows: in the preliminaries, the method that is used in this work to acquire an optimal
policy for the self-assembly precursor system (which is a stochastic system), Bellman
optimization, and the basics of modeling objects and animation basics in Blender are
covered. The sections following the preliminaries then discuss the simulations carried
out to illustrate techniques to replicate physical phenomena and IBC systems in Blender.
First, the precursor to the froth flotation process is analyzed to focus on how the animation
acquired from Blender compares to results from a numerical integration technique to
ensure that physical phenomena are represented with an acceptable degree of accuracy.
The precursor simulation in this case is the simplified motion of a gas bubble in a liquid.
Second, the precursor simulation to controlled self-assembly is presented to discuss the
use of images to detect states that may be desired to be monitored using images as part of
a closed-loop process. The precursor simulation in this case is the Brownian motion of a
nanorod, simulated in a 2-dimensional space, with the aim of developing a control policy
that guides the rod to the center of the simulated space. The control policy is optimized
offline and the virtual camera in Blender is used to capture images every sampling period,
detect the position and orientation of the nanorod, and perform the optimal action. The
simulation functions as a precursor to more complex problems, such as those that involve
controlling multiple particles in a medium, as in colloidal self-assembly. Finally, an outdoor
tank reactor is simulated that is subject to sunlight as a disturbance in ambient conditions.
This simulation describes one of the more practical uses of image sensors for disturbances,
since weather effects might be identified through their effects on other system parameters.
Camera sensors can enhance the responsiveness of a control system by directly utilizing
image information to predict probable impacts on the process due to weather. The optimizer
used to control this system includes a disturbance model that accounts for the varying
sunlight, which correlates information from the image in order to update the control action.
The performance of this optimizer is compared to one that does not possess a similar
disturbance model.

Our main goal in this work is to analyze the capabilities of Blender for process en-
gineering applications and to explore its benefits and limitations with respect to such
applications and also to discuss how simulations that integrate the animation and visual-
ization capabilities of Blender with more typical process engineering considerations (e.g.,
numerical integration and control) might be developed. The goal is not to imply that
Blender is necessarily the best tool for such simulations (though we view its open-source
nature as a positive characteristic for research) but rather to discuss how such simulations
might be set up and developed and some of the considerations that must be taken into
account in building engineering-relevant simulations within it.

2. Preliminaries
2.1. Notation

R and Z+ represent the sets of real numbers and non-negative integers, respectively.
The variables denoted in bold (e.g., r, Dt) are tensors. The random variables described in
this work are normally distributed. For a random variable x, the mean is denoted by ⟨x⟩,
and the variance is denoted by ⟨x, x⟩. For a normally distributed vector r, the variance is
denoted with a transpose as ⟨r, r⊺⟩.

2.2. Stochastic Processes and Their Control

One of the examples of the use of Blender for integrated process modeling and vi-
sualization toward image-based control testing that is presented in this work involves
stochastic processes. We, therefore, highlight the key background on stochastic processes
and their control that comes up in the discussion of that system.

Stochastic processes are defined with random variables, leading to a non-deterministic
behavior [32,33]. A process is said to have the Markov property if the probability of a future
state is equivalent regardless of whether all the previous states are known or if only the



Processes 2024, 12, 279 4 of 33

current state is known. A Markov decision process (MDP) is a subset of stochastic processes
based on Markov chains, where the probability of a future state of a process is dependent
on its current state. MDPs modify this definition by introducing a choice of action to be
taken, i.e., the probability of a given future state is dependent on both the current state and
the action taken in that state. A MDP is defined as a tuple of 4 sets: S, the state space of
the system; A, the set of actions available for control; P, the transition probabilities; and R,
the immediate reward of achieving a given state [34]. The reward set R is generally used to
define MDPs in the context of robotics, but in the chemical engineering applications in this
work, it is recast as a cost set C.

The control of an MDP is carried out with policy π : S 7→ A, which returns an action
to be executed when the process occupies a given state. The optimal policy π∗ is the one
that minimizes the infinite horizon objective function J(π), defined as:

J(π∗) = min

[
E

{
∞

∑
t=0

γtC(st)

}]
(1)

Dynamic programming can be applied to optimize this problem, and in this work,
Bellman’s optimality condition is used to arrive at an optimal policy. The value function
V : S 7→ R of state s is a representation of the cost of the current state as well as the cost
of any probable future states that can be accessed from the current one. The Bellman
optimality condition defines the optimal value function V∗ for an MDP recursively, as in
Equation (2) [35]:

V∗(s) = C(s) + γ min
a∈A

∑
s′∈S

P(s′|s, a)V∗(s′) (2)

A greedy algorithm can attempt to minimize the cost associated with the next action.
The transition probability P(s′|s, a) in Equation (2) captures the non-determinism of the
system by weighing the values V∗(s′) of future states s′ by the probability of acquiring that
future state, given the current state s and the action a taken at the time. S represents the
set of all possible states of the system. The discount factor γ penalizes the value of future
states by adding a fraction of the future states to the current one.

Equation (2) is recast as an update rule to perform value iteration, as in Equation (3),
known as the Bellman update rule [35]:

Vi+1(s) = C(s) + γ min
a∈A

∑
s′∈S

P(s′|s, a )Vi(s′) (3)

Here, i represents the index of iteration. Through repeated iterations, the value of
every state in the system is converged, resulting in an optimal value function V∗(s). This
algorithm presented here and used in this work is called value iteration and is one of
several algorithms used to optimize MDPs. The mapping of the value function from a
previous iteration Vi to the next Vi+1 is a contraction mapping, referred to as the Bellman
operator [35]. The action selected to minimize the value (and by extension the cost) forms
the policy of the system. Unlike the policy of deterministic systems that are trajectories
through time, the optimal policy π∗ : S 7→ A of stochastically controlled systems consists
of optimal actions connected to a given state of the system.

2.3. Modeling and Animation in Blender

Blender is a computer graphics software that is able to represent the three-dimensional
world spatially, represent it in action (i.e., animated), and interface such actions on the
visual world with codes through a Python coding interface that can be used to code typical
modeling strategies in chemical engineering (e.g., control laws or process physics). Blender
is an open-source program that can be downloaded for free and is licensed under the
GNU General Public License. This means that projects created with Blender are the sole
property of the user, which makes it of interest to evaluate for potential research purposes.
In Blender, three-dimensional worlds can be constructed by adding basic shapes (e.g.,



Processes 2024, 12, 279 5 of 33

cylinders and icospheres) and then, from there, performing operations (e.g., extrusion,
scaling, translating) to make them into models of various objects in three-dimensional
space. The movement of these objects can then be added, either by adding rigs to achieve
allowable motions of the object to give it more complex movements, or through, as is
performed in any cases in which animation is used in this work, translations, rotations,
and scalings of the original object throughout space. This section goes over the features of
Blender that make modeling possible and how they can be leveraged to simulate target
processes. Figure 1 details the information flow of the simulations described in this paper.
In each of the simulations, the objects in the 3D environment, materials, lighting, and
environment are initially designed in Blender and stored in a .blend file. Then, a Python
script (.py script) is used to encode the process dynamics, animation of object properties,
and image capture using the virtual camera. These images are stored in a local directory,
then loaded back into the script using Pillow [36], which is then used to analyze the image
data in order to perform state detection. Additionally, parameters of the process such
as calibration information, control policies that are optimized offline, or other physical
parameters can be loaded from the local directory through the Python script. In this work,
the parameters used for the simulation are stored as .mat files and are loaded into the
simulation using the savemat function, available in the SciPy library. After the script is run,
the results are stored in .mat files, and the video of the animation, as well as images from
the process, may be rendered from the .blend file.

Figure 1. Information flow for IBC simulations.

2.3.1. Object Creation and Sizing

Most three- and two-dimensional objects in Blender are categorized as “meshes”
and can be added to a scene. When an object is added, it appears at the location of the
cursor occupying the space of a 2 m × 2 m × 2 m cube. The location, size, and orientation
of an object can be found by selecting the object in the 3D viewport and navigating to the
object properties tab. The location of a new object can be specified relative to the location
of the cursor in meters, and its orientation can also be modified. The rotation of objects
in Blender is determined in Euler mode by default but can be changed to Quarternion
or Axis Angle mode. The scaling of objects in Blender is performed relative to the initial size
and, hence, does not use units. For example, to define a cuboid of size 2 m × 20 cm × 4 m,
the scale factors in the X, Y, and Z directions are set to 1, 0.1, and 2, respectively, from a
base-case cube that has been added to the scene. When implemented, the rendered output
would look like the image displayed in Figure 2, with the inset displaying the scale factors.
This implies that when setting physical parameters, a scaling factor relative to how objects
are scaled in the simulation must be included. By default, a newly created object is not
equipped with a material and, hence, appears white in the 3D viewport window when
the solid shading option is selected. Selecting an object and navigating to the material
properties tab, the object can be equipped with a material, which allows the specification



Processes 2024, 12, 279 6 of 33

of material properties like color and roughness. These properties specify how an object
appears in rendered images and animations and can be previewed by changing the shading
in the 3D Viewport to material preview or rendered.

Figure 2. Rendered output of rescaled cube, with inset added to show scale factors.

2.3.2. Object Property Animation Using Blender’s Python Interpreter

In order to animate a process, images are rapidly replaced in order to produce the illusion
of motion. These images are called frames, and the rate of replacement of frames determines
how smooth the animation appears to a viewer, termed as frames per second (FPS). For an
object translating from an initial to a final position, each frame captures the intermediate
position of the object as it moves. Instead of specifying what intermediate position the
object should occupy at each frame, only the initial and final positions are specified at their
corresponding frames in Blender. When the position, rotation, or scaling of an object is
specified in a frame, the frame is called a keyframe. Blender interpolates the intermediate
object properties between keyframes. The number of frames between keyframes is determined
by the time interval between keyframes and the FPS. In the projects described in the following
sections, keyframes are generated using Python scripts after determining the total runtime
for a simulation. Blender includes a version of Python, and many commonly used Python
packages can be installed. Script files may be stored within the project file (.blend file),
or locally as a Python script file (.py file) that can be loaded into the project and edited outside
of Blender. Most modifiable properties in the Blender interface possess a Python data path
that can be acquired by enabling Python Tooltips in the Preferences menu in Blender. Using
the corresponding data path of a property, Python scripts can be programmed to modify
object properties, insert keyframes, acquire data from intermediate frames, and render still
images to simulate IBC processes. Using Blender’s Python interpreter, any property that can
be accessed in the Properties window can be animated in this way.

2.3.3. State Detection Using Images

Animations in Blender are captured and rendered through a virtual camera, which can
be manipulated like any other object in the environment (e.g., it can be placed in different
locations in the scene or rotated). The camera can also be used to render images during
the running of Python scripts used to simulate processes. To load these images during the
runtime of the script in order to analyze them, Python libraries that provide this capability
can be loaded. In order to carry this out for image-based state detection in this work, a fork
of the Python Image Library, Pillow [36], is used to load images for analysis. This library
allows us to isolate the different color channels, cast them into arrays, and carry out the
necessary algorithms in order to carry out state detection. Setting surroundings and lighting
for objects in Blender can aid in state detection from images, as well as bring simulations
closer to representing physical processes. Light sources in Blender come in 4 types: Point,
Sun, Spotlight, and Area. Depending on the light source being simulated, these 4 types
can be modified, for example, by changing color and intensity, to more closely simulate a



Processes 2024, 12, 279 7 of 33

target process. Material properties also interact with lighting to produce reflections and
glare in the simulated process, which may or may not be desirable depending on the use
case. With these fundamentals in hand, the following sections detail Blender’s capabilities
in the context of several pathfinding examples for chemical process simulation.

3. Use of Blender for Modeling and Image-Based Control Tests of Self-Assembly and
Environment Recognition

Our prior work [31,37,38] provided a proof of concept that due to the properties of
animation, modeling, and coding available in Blender as described in Section 2.3, Blender is
a potentially viable option for simulating and testing image-based control laws. However,
despite the preliminary analyses of its capabilities as presented in Oyama et al. [31,37,38],
many aspects of its performance and interaction with the development of image-based control
testbeds remain to be explored and understood for chemical processes to provide a more
comprehensive guide to how to successfully develop an image-based control simulation
for evaluation purposes in Blender. For example, 3D modeling and animation in Blender
abstracts information from the user to make it more friendly for artists, including interpolating
movement during the animation process and using non-physical parameters in aspects such
as lighting source selection. For the purposes of replicating a chemical process, access to
some of this information and determining how to (and when to) manipulate it in a useful
manner are key to using Blender as a simulation tool. This section uses three process examples
that are precursors to more relevant image-based control simulations than the tank level
example in [31,37,38] to explore aspects of how one might work with Blender’s capabilities to
analyze whether an image-based control simulation has an appropriate setup. Specifically,
the following simulations are used for these analyses. First, a simulation of bubbles mov-
ing upward (a precursor to modeling their upward movement through a fluid as part of
moving toward the modeling of industrial processes such as mineral flotation) is presented.
Through this simulation, we analyze the extent to which allowing Blender to interpolate
motion between frames where positions and rotations are specified for animation impacts
the trajectory of the object compared to hard-coding the information more frequently. The
interpolated states are acquired by capturing frame data and are compared with results from
the numerical integration of the system model. Second, a nanorod moving stochastically
in a two-dimensional plane directed by the actions of an on–off controller that is actuated
based on image sensing is presented (considered to be a precursor toward simulations of
self-assembly in [39]). In this simulation, we demonstrate how Blender can be utilized to
identify challenges in properly sensing objects in image-based control, such as the color of
the background being difficult to distinguish from the color of the object such that image
processing may need to be more sophisticated to locate an object to which it is desired to apply
an optimal control action. Finally, Blender is used to model sunlight shining with different
strengths on a reactor, which is then mapped to different heat levels impacting the equipment.
Thus, Blender is used to model environmental disturbances to a system, which are then
identified through the image-based sensors and subsequently compensated. We discuss how
one might integrate Blender’s lighting models with non-physical parameters with process
modeling and build toward more comprehensive disturbance-handling in control through
the use of image sensors that can help to identify causes of changes in the process operation.
We compare the responses of the closed-loop system with and without the extra information
available from the image capture system to showcase the potential benefits of using Blender
for evaluating disturbance-handling techniques. This series of examples provides a deeper
look at the potential uses of Blender (and other similar graphics software) toward process
systems engineering use cases and how to analyze its benefits and limitations and overcome
limitations toward developing closed-loop image-based control tests.

3.1. Animation of Bubble Motion in Blender

This section presents our first demonstration of the use of Blender toward more realistic
image-based control applications than were outlined in [31,37,38], where only monitoring



Processes 2024, 12, 279 8 of 33

and control of tank level using a camera sensor was considered. In those simulations,
the tank level was only modeled in two dimensions (i.e., the level was modeled as a plane,
similar to drawings that might be made during a controls class but not representative of a
physical tank with multiple dimensions), and furthermore, processes such as tank level
often have robust measurement techniques through, for example, traditional level sensors
that make it less likely for image-based sensing to be used. In contrast, this section focuses
on modeling bubble motion in Blender, which is considered to be a precursor to modeling
a froth flotation process that could aid in facilitating tests of image-based controllers for a
process such as zinc flotation. Image analysis has been previously considered for processes
such as zinc flotation and studied using experimental systems [40–42]. In general, image
analysis can play an important role in industrial processing [1,43], and this section demon-
strates how to model systems in Blender toward representing relevant industrial processes.

Chemical engineering processes are generally described with systems of differential
equations that are integrated numerically. The results from numerical integration are
a collection of discrete state and time pairs, which can be used in model-based control
as predictions of future process conditions and thereby aid in selecting control actions.
In Blender, keyframes function as analogues to these discrete state–time pairs, and the
software creates intermediate frames by interpolating between the states. In this section,
Blender is used to animate the motion of an air bubble through water and determine how
much the interpolated states deviate from a numerically integrated result. The equations of
motion of a gas bubble in a fluid are modeled using Python to acquire the position of the
bubble over time. Some of the resulting state–time pairs are then used to set the keyframes
in Blender (i.e., to set the bubble location in these keyframes). The trajectory of the bubbles
resulting from the full set of state–time pairs obtained from numerical integration is then
compared with the results of using Blender with a subset of those state–time pairs for
setting keyframes and the remaining positions interpolated at times between keyframes.

The process of adding animation to objects in Blender involves inserting keyframes
corresponding to specific times (frames) in the simulation. A frame rate must be specified
in Blender; using that frame rate, one can compute the time corresponding to a given
frame so that specific times of visual events can be coded into Blender. Keyframes are
differentiated from regular frames by ensuring that a property of an object in Blender (e.g.,
its position or rotation) meets a designated value when the frame is displayed. Though it is
possible to specify properties of an object at every frame, this adds effort to the process of
animating the scene due to the high level of specificity required at every frame. Instead, it
may be desirable to add keyframes at every several frames instead of every frame. When
this is done, Blender interpolates object properties between the keyframes. This creates a
smoothing effect between keyframes to give an appearance of smooth motion to a viewer
of the animation. However, if the distance between keyframes is large, the interpolation
that Blender utilizes may not represent the path that an engineer expects the object to
take. Thus, one of the important considerations for developing closed-loop simulations
in Blender is determining how often to place keyframes to trade off between specifying
the details of the simulation at every frame timescale versus allowing Blender to perform
some interpolations. For example, for 24 frames per second, an object’s property could
be updated every frame (i.e., every 1/24 s) using values of the position from numerical
integration with a 1/24 s integration step, though a keyframe might be inserted once every
second, i.e., every 24th frame. This would ensure that at the start of every second, the object
property would match the value that it would have from integrating the dynamic model
of the system. However, over the 24 frames in between the keyframes, the value of the
object’s properties (e.g., position) would be interpolated if a video of the full scene was
rendered from Blender (i.e., they may not be exactly the values expected from the numerical
integration). This section uses the bubble modeling process to showcase how the difference
between frames and keyframes can lead to some differences in the trajectories compared to
the results of using numerical integration.



Processes 2024, 12, 279 9 of 33

3.1.1. Equations of Motion of a Bubble

In order to simulate the motion of the bubble, the dynamics of the system are first
acquired from the equations of motion [44]. The motion of gas bubbles in a liquid is the
result of a number of forces. Since this simulation is intended to function as a pathfinding
simulation for the use of graphics toward image-based control applications, the model used
in this case is simplified and only accounts for two possible forces on the bubble. Specifically,
only the net buoyant force (Fb) and drag force (Fd) are included. The net buoyant force in
the upward direction is described in Equation (4), where g is the gravitational acceleration
constant, Vbub is the volume of the gas bubble, ρ represents the density, and the subscripts
liq and bub refer to liquid and bubble properties, respectively:

Fb = gVbub(ρliq − ρbub) (4)

The drag force experienced by a gas bubble is dependent on the flow of the liquid
around the gas bubble, characterized by the Reynold’s number (Rebub). For low bubble
velocities near the initial conditions, the drag force (Fd) is described by Stokes’ Law for low
Reynold’s number, i.e., Rebub < 1.0. At higher bubble velocities, the flow around the bubble
can become turbulent, which results in a higher Reynold’s Number, i.e., Rebub ≥ 1.0. The
drag force in these cases is described by Equation (6), where Cd is the coefficient of drag,
which is dependent on the shape and size of the bubble (here, Cd = 0.2), rbub is the radius
of the spherical bubble, Abub is its surface area, and vbub is the speed of the bubble [45]:

Rebub =
2rbubρliqvbub

ηliq
(5)

Fd =

{
−6πηliqrbubvbub Rebub < 1.0
−0.5Cd Abubρbubv2

bub Rebub ≥ 1.0
(6)

The diffusion of the gas within the bubble to the liquid is assumed to be negligible
for this simulation, and hence, the bubble size remains unchanged as it moves through the
liquid. With these equations and Newton’s third law of motion, the velocity of the bubble
is related to the net force it experiences, as in Equation (7), where vbub(0) represents the
initial velocity of the bubble and mbub represents its mass:

dvbub
dt

=
1

mbub
(Fb + Fd) ; vbub(0) = 0 m/s (7)

x(t + ∆t) = x(t) + vbub(t) · ∆t ; x(0) = 0 (8)

The position (x) of the bubble is acquired from the numerically integrated velocity, as
in Equation (8), where x(0) represents the initial position of the bubble, and ∆t represents
the integration step using the explicit Euler numerical integration method.

Remark 1. Cleary et al. [45] describe a number of phenomena involved in more visually accurately
modeling bubbles and frothing in graphics. These phenomena include modeling both the fluid and
bubbles as separate and unique particles, where the liquid particles carry a certain amount of gas
within them, and bubbles are generated whenever enough gas has been concentrated within the
liquid particle. The bubbles also interact with both each other and the walls to simulate collisions,
and cohesion is accounted for at the liquid surface. Fluid simulation to interact with the bubbles
may be carried out using, for example, smoothed particle hydrodynamics principles.

3.1.2. Animation of Bubble Position in Blender

Equations (7) and (8) are integrated with the parameters listed in Table 1. The radius of
the bubbles was chosen to be 2.5 mm. The time and corresponding position values from the
numerical integration were stored in two arrays (one for time and one for position). These
position and time arrays are imported into Blender in order to animate the motion of the



Processes 2024, 12, 279 10 of 33

bubble. Three bubbles at different initial positions are placed in a tank. The z coordinates
of the bubbles are updated with the integrated displacements, except that the position
changes are scaled by a factor of 0.005 to avoid having the bubbles leave the camera view
for visualization purposes. In order to animate the bubbles moving, each bubble’s location
is updated with keyframes, as described in Section 2.3.2. A keyframe is inserted at the
initial frame and at every second (i.e., every 24th frame) after until the end of the simulation
period. In order to test if the interpolation through intermediate frames is approximately
equal to the numerically integrated result, Blender’s Python interpreter is used to capture
the location of each bubble for all frames of the simulation. This location data is then
compared to the position of the bubbles as acquired from integrating Equations (7) and (8).
A selection of keyframes from the Blender environment’s 3D Viewport is shown in Figure 3.

Table 1. Parameters for bubble motion.

Parameter Value

Radius of bubble, rbub 2.5 × 10−3 m
Density of liquid, ρliq 1000 kg/m3

Viscosity of liquid, ηliq 10−3 Pa · s
Density of bubble, ρbub 1.22 kg/m3

Integration time step, ∆t 1/1440 s
Simulation time 120 s

Figure 3. Wireframe captures of the simulation for selected frames: (a) frame 0, (b) frame 1600,
and (c) frame 2859. The displacements are scaled by a factor of 0.005. The size of the bubbles are
exaggerated for visual identification. The starting positions for each bubble, from left to right, are
1.25885 m, 1.44076 m, 1.30192 m respectively.

3.1.3. Comparing Predictions with Between-Keyframe Interpolations

Because Blender interpolates between keyframes, and since the bubble is given a
different position in 3D space at two different keyframes, Blender determines a path
between those positions between the two keyframes. This path that it determines may not
be equivalent to the numerically integrated path previously described. Therefore, as part
of determining how relevant the Blender model is to modeling of the process physics, it is
valuable to compare the difference between the numerically integrated path and the path
extracted from the simulation including interpolation. To compare the values interpolated
by Blender between keyframes and the results of the integration carried out in Python,
the displacement of the bubbles in the frames between keyframes is required. This is carried
out in Blender by setting up a “for” loop that requests the average displacement (compared
to the bubble initial positions, and with the 0.005 scaling applied) from each of the frames
divided by the scaling factor of 0.005, and stores it in an array. In this way, the results of the
interpolation carried out by Blender between two keyframes can be acquired. These results
are stored in .mat files (e.g., with the scipy.io.savemat function) to be compared with the
results of the numerical integration. The error between the numerically integrated results
and the position of the bubbles acquired from Blender is shown in Figure 4.

The error towards the end of the simulation occurs because Blender assumes that
no further motion takes place after the final keyframe. In order to prevent the object
from abruptly stopping at the end of an animation, Blender interpolates the object prop-
erty, in this case, location, to a smooth stop. This results in the object property having
a time derivative that approaches 0 near the end of the simulation. This is observed in
Figure 5, where the bubble positions from integration and interpolation between the last



Processes 2024, 12, 279 11 of 33

two keyframes are plotted. The red line in the plot, which represents the interpolation
carried out by Blender, is observed to have a slope of zero towards the 120 s mark, while
the blue line, which represents the numerically integrated result, does not, in accordance
with the equations of motion. Despite these errors at the end of the simulation, it can be
seen that overall, the number of keyframes used in the simulation enabled the results with
interpolation from Blender to follow sufficiently well compared to the results from per-
forming the numerical integration. Because the error is greatest toward the beginning and
end of the simulation due to the manner in which Blender’s interpolation works, it may be
useful when performing a physics simulation in Blender to simulate the process in Blender
beyond the end time of the simulation to avoid the effect observed in Figures 4 and 5, in
which Blender assumes that the object stops moving at the end of the simulation time when
that is not implied by the numerical integration result. This also explains a similar error
being observed near the start of the simulation, where the objects begin moving from rest.
This allows for the results of the animation to replicate the physics more accurately and aids
in drawing useful conclusions about the process from the simulation.

Figure 4. Frame by frame error in bubble position.

Figure 5. Comparison of numerically integrated and interpolated result for the last second of simulation.

3.1.4. Developing Useful Visuals in Blender

The bubble simulation is considered to be a precursor toward more advanced image-
based control studies that could be undertaken, like a full simulation of a flotation process.
In this section, we provide several notes on aspects of how to move toward a visually-
realistic simulation of froth flotation.

A flotation process involves air introduced into a slurry, which is a mixture of water
and treated ore particles [46]. These ore particles are formed by grinding down larger



Processes 2024, 12, 279 12 of 33

metal ores and treating them with a hydrophobic reagent. The introduction of air agitates
the slurry, resulting in the formation of air bubbles. From there, the bubbles rise and
come into contact with the hydrophobic ore particles, where they become attached to the
bubble surface and rise. This results in the formation of a froth, which is then skimmed
off the surface of the slurry and treated to acquire the desired metal from the ore particle.
From treating ore particles to reduce their wettability to stabilizing the froth so that it
can be skimmed without losing the fine ore particles, every step of the froth flotation
process must be carried out carefully. The froth produced in froth flotation cells needs to be
chemically analyzed in order to determine which combination of reagent concentration,
particle size, and other factors, extract the most ore. However, image sensors can be
calibrated to determine these characteristics by correlating representative images against
the known results.

Thus, an important characteristic of the development of image-based controllers for
a process like froth flotation should be creating models with an appearance that is useful
for assessing the performance of an image-based controller through its resemblance to the
actual process. The development of a realistic-looking model in Blender requires decisions
on the modeling, texture/color, and lighting of a scene. Figure 6, for example, shows a
model of foam that might be compared against actual foam from a flotation process to
analyze whether it captures key visual characteristics (the set-up of the materials, which
controls the “look” of the froth, is shown in Figure 7). In addition, animation in Blender can
also be used to capture other physical features of a process, such as the tank shape and also
constant movement at a plant, such as an impeller rotating. The ability to modify material
properties and lighting in Blender demonstrates its ability to simulate the images captured
by a sensor, enabling useful information to be gathered before the control set up is installed
in the target process.

Figure 6. Rendered foam image from Blender.

Figure 7. Material property set up for Figure 6. This is derived from an online tutorial hosted on
YouTube [47].



Processes 2024, 12, 279 13 of 33

Remark 2. In general, Blender offers potential to analyze various aspects of image-based control.
For example, one might consider multivariate image analysis, wavelet texture analysis, and the gray-
level co-occurrence matrix as different image processing methods (or principal component analysis
(PCA)) and wish to compare them, specifically for froth flotation applications [40]. Multivariate
image analysis (MIA) is a methodology for analyzing multivariate images where the images are
analyzed in the form of matrices. MIA can be used to extract features related to the color information
in an image by first decomposing the image with the PCA technique, in order to acquire spectral
(color-based) features that can be correlated to characteristics of the froth. This is carried out
with multivariate image regression (MIR). However, textural features of froth images are better
analyzed with gray level co-occurrence matrix and wavelet texture analysis methods. A gray level
co-occurrence matrix (GLCM) is a matrix with a number of rows and a number of columns equal
to the number of gray levels in the image. The GLCM matrix is then used to extract textural
features from the image using statistical methods, such as the variance, correlation, and entropy. It
would be expected that Blender may be useful for analyzing not only camera and light positioning
but also for comparing different image analysis methods that could be considered. Furthermore,
more advanced simulations might be developed by attempting to better correlate images with the
physics of the situation. For example, Do [48] describes physics of turbulent flotation, and Cleary
et al. [45] describes a detailed graphics modeling strategy for bubbles in liquid. Through more
detailed modeling strategies in the future, it may be possible to utilize Blender more for analyzing
and modeling image-based control processes in greater detail. However, it should be noted that in
general, a traditional process model may not directly translate to an ability to model the process
in Blender.

3.2. Evaluating Identification Techniques for a Controlled System under Image-Based Control
in Blender

The prior section described the use of Blender in the modeling of a process that could
be placed under image-based control and some of the considerations for checking whether
the modeling efforts are sufficient to represent a system. In this section, we focus on a
process under image-based control in Blender and discuss how Blender helps to reveal
characteristics required by either the image processing algorithm or process design to
enable the image-based control to be effectively carried out. The process under stochastic
control in this section is a nanorod that was used in [39] as a precursor simulation toward
considering control of directed self-assembly (though [39] did not perform image-based
control manipulations with Blender). The control development in this section follows
that in [39], but we present the details of our exact implementation for completeness and
replicability of our work. After discussing the simulation setup, we describe the image-
based control framework and how it aids with understanding some of the potential pitfalls
of an image-based controller for the process, as well as ideas for overcoming them.

Directed self-assembly (DSA), the motivation behind simulating the optical control of
the nanorod, is a manufacturing technique that has been gaining research interest in recent
years. The technique has its roots in self-assembly, where instead of external control actions,
molecules are assembled by modifying them such that the desired configuration can be
acquired stably, or by similarly modifying a surface on which the self-assembly takes place,
commonly referred to as a substrate. This idea has been explored in the field of biology
specifically by using the DNA [49,50] and in the polymer sciences through experiments on
block copolymerization (BCP) [51,52]. The modification of a base substrate to direct multiple
species to bind and form a desired configuration is generally seen as the first attempt at
directing the self-assembly of particles, though this idea overlaps with those of regular self-
assembly. The improvement of BCP for directed self-assembly demonstrates the capability
of this method, by forming highly precise nanostructures on a pretreated substrate [53,54]
or using forces of the medium to achieve similar results [55]. External forces can also
be used in the absence of substrates, sometimes to improve existing self-assembly [56]
or to drive particles into positions to facilitate further interaction [57]. The ability to use
image-based control in self-assembly applications has been explored in the work of Tang



Processes 2024, 12, 279 14 of 33

et al. [58]. In this work, images are processed and used to form the feedback of a control
loop, where electric fields are used to manipulate the free energy landscape and ensure
the colloidal particles form the desired morphology. In that example, the arrangement of
the individual particles in the medium, the stability of their configuration, and speed of
assembly can be observed directly through imaging techniques. A virtual model of these
systems is what an IBC testbed would hope to emulate, simulating ideal conditions for
optimum self-assembly, as well as an image-based observation of the process.

Motivated by the potential utility of image-based control for self-assembly, as demon-
strated in this prior work, this section focuses on the self-assembly precursor simula-
tion from [39], as discussed above, of a nanorod undergoing Brownian motion in a two-
dimensional space. Stochastic control is used to carry out navigation of the rod to the center
of the control space. Image-based control is simulated in Blender with the virtual camera
that captures images of the rod, which are then used to determine the state of the rod and
carry out the optimal action. The optimal policy (consisting of on/off-type control actions)
is acquired by performing stochastic optimization, as detailed in Section 2.2.

3.2.1. Equations of Motion for a Self-Propelled Rod

Since the rod simulation is used in the PhD dissertation by Yang [39] as a precursor to
self-assembly studies, the rod’s motion in free space is modeled using 2D Brownian motion,
according to Equations (9) and (10):

r(t + ∆t) = r(t) + Dt
kT · F∆t + ∆rB

+ v cos(ϕ)∆t e1 + v sin(ϕ)∆t e2
ϕ(t + ∆t) = ϕ(t) + Dr

kT T · e3∆t + ∆ϕB

Dt =

(
Dxx Dxy
Dyx Dyy

) (9)

⟨∆rB⟩ = 0 ⟨∆rB, (∆rB)⊺⟩ = 2Dt∆t
⟨∆ϕB⟩ = 0 ⟨∆ϕB, ∆ϕB⟩ = 2Dr∆t

(10)

In these equations, ∆rB and ∆ϕB represent the changes to the 2-dimensional position
and the orientation of the rod (i.e., the angle between the line along the axis of the cylinder
and the positive x axis) under Brownian motion and are normally distributed random
variables. Dt (with components Dxx, Dxy, Dyx, and Dyy) and Dr represent translational
and rotational “diffusivities”, which characterize the random motion of the rod due to
particles of the medium. The velocity of the rod under the control action is represented by
v and is only non-zero when the control action is on. Since no force or torque fields act on
the rod (hence, we refer to it as “self-propelled”), the terms F and T are set to 0. Vectors
e1 and e2 represent unit vectors along each of the two dimensions, and e3 represents the
unit vector normal to the 2D plane. The temperature of the system is represented by T, and
k represents the Boltzmann constant. From the definition of the translational diffusivity
tensor Dt, the components of ∆rB are coupled. For a cylinder, Dt is parameterized with D∥
and D⊥ [59], diffusivities along and perpendicular to the cylinder axis, respectively. The
following equation (Equation (11)) simplifies the tensor to a single parameter by assuming
D∥ ≈ D⊥ as follows:

Dt = nn⊺D∥ + (I − nn⊺)D⊥

where n =

(
cos(ϕ)
sin(ϕ)

)
If D∥ ≈ D⊥
Dt = I · D⊥

=

(
D⊥ 0
0 D⊥

)
=⇒ Dxx = Dyy = D⊥ = D̄t

(11)

where I is the identity matrix.



Processes 2024, 12, 279 15 of 33

This decouples the movement in the orthogonal directions, as well as transition
probabilities for location and orientation. The equation of motion used for the simulation
then simplifies to Equation (12) as follows, where the velocity v is either zero or a constant,
depending on the choice of the control action, i.e., on or off:

x(t + ∆t) = x(t) + ∆xB + v cos ϕ∆t

y(t + ∆t) = y(t) + ∆yB + v sin ϕ∆t

ϕ(t + ∆t) = ϕ(t) + ∆ϕB

⟨∆xB⟩ = 0 ⟨∆xB, ∆xB⟩ = 2D̄t∆t

⟨∆yB⟩ = 0 ⟨∆yB, ∆yB⟩ = 2D̄t∆t

⟨∆ϕB⟩ = 0 ⟨∆ϕB, ∆ϕB⟩ = 2Dr∆t (12)

3.2.2. State Space and Transition Probabilities

The optimal policy generation method from Section 2.2, which we wish to employ to
control the rod, uses a discrete state-space. In general, the space in which a rod moves is a
continuous space; it is, therefore, necessary to determine how to translate the continuous
state space into a discrete state space for the purpose of control. To do this, we select
a portion of the free space in an area 101 µm × 101 µm around the target and set it as
the neighborhood around which the policy is generated. To create the discretized state
space, this space is first discretized into 1 µm × 1 µm zones, and the rod’s position can
take values at the center of each square. The orientation is discretized as sectors of π/4
radians each, centered on each of the cardinal and subcardinal directions, as in Figure 8.
The set of all possible discrete states can then be defined as a three-dimensional array,
where the first two indices represent the position of the nanorod in the space, and the
third index represents the orientation sector that it occupies. This set is defined in the
following equation (Equation (13)), where the intersection with Z+ indicates that x, y, and
ϕ are integers within the specified intervals:

S = {(x, y, ϕ) : x, y ∈ [0, 100] ∩Z+, ϕ ∈ [0, 7] ∩Z+} (13)

Figure 8. Discretization of orientation into 8 sectors. The numbers in each sector denote its index.
The dashed white lines indicate the central angles for each sector, the purple sectors are centered on
the cardinal directions, and the yellow ones are centered on the sub-cardinal directions.



Processes 2024, 12, 279 16 of 33

The dynamics of the rod as presented in Equation (12) are presented in discrete time
and are used to generate the transition probabilities associated with each state. The transi-
tion probabilities map the probability associated from one state to another for each action,
i.e., P : A × S × S 7→ (0, 1), and based on the discretization of the state space in Equation (13),
the total number of transition probabilities would be 2× (101× 101× 8)2. The normal distri-
butions of ∆xB and ∆yB imply that the probability of moving to a new position tends towards
zero outside of a small neighborhood around an initial position. Hence, a neighborhood of
a 19 µm × 19 µm grid around the initial position of the rod is set as the maximum possible
displacement in a single time step. The transition probabilities are then acquired through
Monté Carlo trials. Monté Carlo trials are particularly useful in extracting equivalent dis-
crete probabilities from continuous random variables. First, a large number of values for
the random variables (trials) are generated, according to their known distributions. Then,
the probability associated with each outcome is found by counting the number of times the
outcome is observed and dividing it by the total number of trials. Three sets of random
data are generated: the position ∆xB and ∆yB and the orientation ∆ϕB. Table 2 details the
parameters in Equation (12) used to generate the trials. The probability associated with how
far the nanorod travels after one time step is termed as positional probability. This is calculated
by first dividing the neighborhood of a 19 µm× 19 µm grid around the initial position of the
rod into 1 µm × 1 µm zones and determining which zone the nanorod ends up in for each
trial (based on the center of the zones). Dividing the number of times the nanorod ends up
in each zone by the total number of trials yields the positional probability. This positional
probability is then multiplied by the discrete probabilities associated with the orientation.
Similar to how the positional probability is acquired, orientation probabilities are acquired by
counting the number of times the nanorod ends up in each orientation sector, as described in
Figure 8, given an initial orientation sector. This operation is repeated for each control action,
where additional components of the velocity v cos ϕ∆t and v sin ϕ∆t are added to ∆xB and
∆yB, respectively, for the on control action, as described in Equation (12). Hence, the total
number of transition probabilities reduces to 2× 8× 8× 19× 19 for a given initial position,
where the first index represents the chosen control action, the second and third indicate the
initial and final orientation of the rod, and the fourth and fifth indicate the final position of
the nanorod relative to the center of the neighborhood. These transition probabilities are
stored in a matrix P. The transition probability associated with the rod, starting in orientation
sector 0, moving 8.5–9.5 µm towards the positive end of the x-axis, with a final orientation in
orientation sector 0, and moving under Brownian motion alone (i.e., when the chosen control
action is off), would be stored at P(0, 0, 0, 9, 18). Figure 9 displays the transition probabilities
for the rod with orientation sector 0, associated with final positions for both on and off control.
Each square represents the probability of the rod acquiring that position after ∆t time has
passed, given its initial position at the center of the heatmap. The colorbar represents the
values of the probability of the nanorod occupying a specific position once it starts at the
origin. Figure 10 displays how changing orientation affects the transition probability. Since
the change in orientation is also normally distributed around 0, the observed transition prob-
abilities when orientations change (compared to the initial orientation) is lower than those
where the orientation remains the same as the initial orientation.

Table 2. Probability Generation Parameters.

Parameter Value

Translational diffusivity, D̄t 0.5 µm2/s

Rotational diffusivity, Dr 0.548 rad2/s

Sample time, ∆t 1 s

Discretization length, ∆x = ∆y 1 µm

Velocity of rod under control, v 2.5 µm/s



Processes 2024, 12, 279 17 of 33

Figure 9. Positional probability distribution for the nanorod in sector 0 of orientation. The figure
on the left shows the probability distribution when the control action is off. In this case, the rod
starts at the center of the figure and has the highest probability to stay at the center, with lower
probabilities moving away from the center. The figure on the right shows the probability distribution
when the control action is on. In this case, the rod starts at the center of the figure and has the highest
probability to move slightly to the right of the center, with lower probabilities moving away from the
right-shifted region of highest probability.

Figure 10. Transition probability distributions for 3 adjacent orientations. The cylinders represent
the orientations of the nanorod, with the one on the left representing the initial orientation and the
three on the right representing three possible final orientations. The associated transition probability
heatmaps show that since the rod is most likely to keep its orientation, the heatmaps above and below
the center line show lower probabilities when compared to the center. The colorbar used to indicate
the relative magnitude of the transition probabilities shares the same scale and is identical to that in
Figure 9. P(x, y) indicates the probability of a certain (x, y) location in space given an initial state at
the center, and P(ϕj|ϕ0), where ϕj is either ϕ0 + 1, ϕ0, or ϕ0 − 1, indicates the probability of achieving
certain orientations given an initial orientation of ϕ0.

These reduced probability matrices (i.e., considering probabilities within only a frac-
tion of the total state space) are then translated to the corresponding window in order
to carry out the value iteration algorithm, as shown in Figure 11. With the state space
discretized and the transition probabilities calculated, the policy can now be generated in
accordance with Bellman’s optimality condition.



Processes 2024, 12, 279 18 of 33

Figure 11. Using reduced transition probabilities to calculate overall transition probabilities. The left
figure starts with defining where the neighborhood of possible positions is (indicated in purple),
centered on the initial position of the nanorod, depicted as a green cylinder. The middle figures
demonstrate how transition probabilities are used to determine possible states, where the red cylinder
shows a potential final state under the on control action, and the blue cylinder under the off control
action. Furthermore, the figure on the right shows how the reduced transition probabilities relate to
the transition probabilities of the entire state space.

3.2.3. Policy Generation

From Equation (2), the optimal value function is described as a weighted sum of
the value functions of possible future states and the cost function at the current state.
Generally speaking, the cost function is a representation of the cost to maintain a certain
state. However, since the final state (considered to be navigating the rod to the center of
the portion of free space being simulated) is known in this simulation, the cost function
is designed such that its value at the center of the free space is the minimum. From
Equation (3), the value of every state beyond the boundary of the 101 µm × 101 µm region
must be the sum of its cost as well as the value of neighboring states. From the discussion in
Section 3.2.2, the set of possible future states is restricted to a small neighborhood of states
surrounding the initial position. If a portion of the future states is outside the boundary of
the modeled space, and since states outside the boundary cannot be iterated, it is necessary
to have a placeholder value function instead, as shown in Figure 12.

Figure 12. Edge effects in 2D presentation. When determining the neighborhood of possible po-
sitions (purple) around the initial nanorod position, if the rod lies close enough to the boundary,
the neighborhood can include positions that lie outside the boundary (i.e., where the question marks
are located in the figure). The values Vpq, pq = 00, 01, 10, and 11 indicate the value function values at
different positions.



Processes 2024, 12, 279 19 of 33

Since the value function is a function of cost, and the optimization procedure involves
the minimization of cost, we can assume that states outside the boundary have higher value
function mappings than those within. For states with locations infinitely far away from
the target, the result of the value function should be maximum and approximately equal
to the value of the neighboring states. In order to meet this requirement, and following
the description of the state space from Equation (13), the cost function is described in
Equation (14):

C(s) =

{
0 If s ̸∈ Starget

−1 If s ∈ Starget
(14)

Starget = {(x, y, ϕ) : x, y = (50, 50), (x, y, ϕ) ∈ S} (15)

Starget is chosen such that the target area lies at the center of the modeled space. Since
the value function is recursively defined as linear combinations of the cost function, it is
bounded by the maximum of 0. This is selected as the placeholder value function result
outside the boundary of the simulation, as displayed in Figure 12. With this feature in place,
the Bellman update rule (Equation (3)) is carried out for every state. Figure 13 displays the
converged policy with γ = 0.8 (iterations stopped if the sum of the value function results
for every state between two consecutive iterations was below a threshold of 10−5).

Figure 13. Optimal control policy based on location and orientation with γ = 0.8. Blue regions are
regions where the control action is on; red regions are regions where the control action is off.

3.2.4. Blender Implementation of Rod Dynamics

Blender is an open-source computer graphics program with capabilities in modeling,
animation, and rendering, along with a Python programming interface, which facilitates
visualization of the control policy described in Section 2.2. The nanorod is modeled as
a cylinder (given initial values in Blender with scale = [0.02,0.02,0.10], rotation_euler =
[0, π

2 ,0], and location = [−0.5,0.5,0.01], and a seed for random number generation of 252),
and its motion is restricted to the x-y plane, as in Figure 14. As discussed in Section 3.2.1,
the control action moves the rod along its axis at a fixed velocity.

Because both the position and orientation of the rod are important for selecting the
control action to be applied in this study, a method for distinguishing the rod’s orientation
from the image must be obtained. A challenge in this direction is that the rod is a cylinder
and, thus, symmetric, unless distinguishing marks are placed on it. To enable the orientation
to be ascertained, the direction of the rod is determined by color coding the “front” end
of the rod white and the “back” end black. The body of the rod is colored blue, and a



Processes 2024, 12, 279 20 of 33

contrasting backplate is modeled as a red plane. These various modifications indicate
several learnings from the Blender simulation that would aid with designing an image-
based controller for an actual process. First, they elucidate that without the color coding,
it may be difficult to accurately determine the rod’s orientation without a more complex
image processing strategy (e.g., a type of edge detection). This helps to indicate some of
the options available to a process or control designer for attempting to set up such a system
successfully in a real plant before the time to build it. Furthermore, the need to ensure that
there is sufficient contrast between the background and the color of the rod (and its ends)
is also highlighted, again showcasing some of the features of the system design that are
important for achieving the desired control goals.

Figure 14. Models of rod and contrasting backplate in Blender.

As discussed in Section 3.2.1, Brownian motion is simulated as a random walk in
discrete time, and the motion is characterized in continuous time as the Weiner process [60].
The distance unit of the parameters used to describe the Brownian motion of the rod
and the control action is scaled up, such that 1 m in the Blender model corresponds to
50.5 µm. The simulation is run at 24 frames per simulation second, with the position and
orientation updated for each frame. The updates are carried out according to Equation (12),
with ∆t = 1/24 s of simulation time. With the rod dynamics now in place, Blender’s image
capture technology can now be explained.

3.2.5. Image Capture and State Measurement

Three-dimensional animation software suites generally employ a virtual camera to
render animations with desired position and lighting. In order to capture the state accurately,
the camera in Blender is positioned above the contrasting backplate with its line of sight
perpendicular to the plane. An area light source is set above the backplate to illuminate the
control area and the nanorod uniformly. Each end of the nanorod being colored differently
allows the detection of the position and orientation of the rod. In the generation of the optimal
policy, the rod is assumed to be a point object with respect to the discretization of the location.
The choice of black and white ends is due to the representation of color in the image capture.
Digital image capture uses the additive color primaries: red, green, and blue. White pixels
have the highest combination of these primaries, and black pixels have the lowest. In order to
minimize the possible effects due to lighting conditions, sums of the color channels around
points of interest are used to determine color. This is done by determining the sum of the
RGB channels for all pixels in a 3 × 3 window centered on the pixel being inspected, and
taking the sum of them to determine the color (i.e., the window with the smallest sum is
considered to identify the black end and that with the largest sum is considered to identify the
white end). This also informs our choices for the rod and contrasting backplates, to prevent
the body of the rod and the medium from being detected by the image capture algorithm.
The locations of the ends of the nanorod are used to determine the discretized location
by averaging the coordinates of each end to get an approximate location of the mid-point of



Processes 2024, 12, 279 21 of 33

the rod. Additionally, the tangent inverse of the negative of the slope of the line through each
end is used to determine the orientation. Since digital array indices are numbered from the top
left corner, i.e., the index (0, 0) is at the top left corner, and the row index corresponding to the
y coordinate increases in the downward direction, the tangent inverse of the negative slope
is used to obtain the orientation with respect to having the zero orientation at the standard
location of zero degrees in polar coordinates (i.e., on the right). Figure 15 details the operations
that take place at each image capture. In general, an image-based control testbed can help
with analyzing effects such as lighting effects in advance of attempting to implement and
design an area instrumented with image-based control.

Figure 15. State determination from image information. (b1, b2) signifies the array index of the black
end of the rod from the upper left, and (w1, w2) signifies the array index of the white end. The average
of these points is listed and the argument of the inverse tangent, used in the computations of the
orientation, is the slope between the points in the Cartesian coordinate system.

These images are generated with render functions that come built-in with the Blender
Python library. The policies generated as per Section 3.2.3 have a much lower discretization
than the resolution of the image returned in the image capture algorithm. The images are
of the size 1920 × 1920, while the location component of the state space, as described in
Equation (13), is of the size 101 × 101. These images are compressed in order to match
the scale of discretization of the policy. Specifically, the number of pixels that are used to
represent the image is changed because the image captured by Blender has a resolution
of 1920 × 1920, and in order to identify what the discretized location of the rod is, it is
necessary to make this size match that of the policy (i.e., 101 × 101). The state determination
and image compression are carried out using the resize function in Pillow. At every state
observation (which takes place at every sample time), an image is explicitly rendered from the
current frame and stored locally. This image is then imported into the running Python script
with Pillow, compressed, and processed for state determination. The position and orientation
of the rod updated with Brownian motion dynamics are compared with the values acquired
from state determination in Table 3. Specifically, the L1 norm of the error between the actual
position and the position obtained by the image processing algorithm is reported in Table 3
(and is calculated as the sum of the absolute values of the differences between the first position
index and the second position index between the actual values (“Position Blender” in the
table) and the values obtained from the image processing algorithm (“Position Image” in the
table)). As shown in the fourth column of Table 3, the maximum L1 norm error computed in
this way is 2, indicating that the position values for both position indices, as obtained from
the image processing method, were close to the correct values. In addition, the absolute error
between the sector identified for the orientation using the image processing (“Orientation
Image” in the table) and the actual sector (“Orientation Blender” in the table) is reported
in Table 3. In the full data set for the 1200 s simulation, there are cases where an error was
recorded in the sector determination from the images when the rod was actually in Sector 7
(since there are 8 sectors, this can also be considered to be the sector −1) but it was stated
by the image processing strategy to be in Sector 0. The absolute error (considered to be the
absolute value between the difference between the 0 and −1 sector values) in that case is 1,



Processes 2024, 12, 279 22 of 33

suggesting once again that the image processing algorithm performed well in many cases in
determining the orientation of the rod correctly. The results reflect that the image analysis
often produced correct orientations and that the position error was relatively low, suggesting
that this control policy may perform well but that there is also potential for improvement of,
for example, the position sensing if desired. State determination from the rendered image is
one of two core functions of the Python script. The other is rendering the animation, and it is
discussed in the following section.

Table 3. Deviation and error of state determination for selected frames of a 1200 s simulation.

Time Seconds Position
Blender Position Image L1 Norm Error

Orientation
Blender
(Sector)

Orientation
Image (Sector) Absolute Error

80 (28, 30) (29, 31) 2 0 0 0
160 (32, 32) (33, 33) 2 4 4 0
240 (32, 32) (32, 33) 1 0 0 0
320 (32, 34) (32, 34) 0 1 1 0
400 (37, 37) (38, 38) 2 3 3 0
480 (36, 36) (37, 37) 2 3 3 0
560 (36, 38) (36, 38) 0 7 7 0
640 (45, 44) (45, 44) 0 0 0 0
720 (48, 49) (49, 49) 1 5 5 0
800 (50, 48) (50, 47) 1 4 4 0

3.2.6. Animation and Control Execution

In Section 3.2.4, it is explained that the position and orientation are updated for every
frame of the animation. According to Section 2.3.2, since keyframes update object properties
in the simulation, they are used to update the position and orientation of the rod in the
animation. In this work, however, the keyframes help simulate the interplay between
the smaller timescales of the rod dynamics and the image-based control. Specifically,
the sampling time for the controller as listed in Table 2 is 1 s, which is also when each
keyframe is inserted. The Brownian motion deviation variables are updated every 1/24 s in
the Python programming interface, as detailed in Section 3.2.4. Since the deviation variables
∆rB and ∆ϕB are generated with different time scales than what is used to determine the
policy, the simulation demonstrates sample-and-hold control of a Brownian motion process.
A keyframe is inserted at every sampling time in this experiment, during which the image
is captured, the state is identified, and the control action is determined. The control is
actuated in a sample-and-hold fashion, keeping the velocity constant regardless of changes
in state until the next sampling time occurs. Figure 16 is a compilation of locally stored
images used for the state determination, which are also from keyframes.

Figure 16. Rendered keyframe images for state determination at different simulation times.



Processes 2024, 12, 279 23 of 33

The Blender script is run for 1200 s of total animation time; however, due to the
non-determinism of the system, the agent can enter the target space within any amount
of time that, on average, scales with the distance of the initial position to the target for a
given initial orientation. This series of frames indicates that though the rod starts off the
target and takes some time in moving toward it under its stochastic dynamics, it eventually
reaches the target, suggesting success of the image-based control strategy for this example.

3.2.7. Opportunities for Image-Based Control Testing in Blender Based on the
Stochastic Nanorod

The sections above demonstrate that Blender is successfully used to replicate Brownian
motion dynamics of the nanorod in 2-dimensional space, and the optimal stochastic policy
is implemented using a virtual image-based controller. By updating the position and
orientation of the rod every frame (∆t = 1/24 s) and picking an optimal action at every
sampling time (where keyframes are also inserted), the simulated process attempts to show
how the sample-and-hold control policy performs on a process that is updated on a smaller
timescale. One aspect of setting keyframes for the simulation of the rod, compared with
the bubble of Section 3.1, is that the bubble was taking a straight path at a constant velocity
such that, except near the beginning and end of the simulation where the starting and
stopping behavior of the bubble in Blender created a mismatch between the numerical
integration result and the Blender simulation result, no error was observed between the
interpolated position values (between keyframes) by Blender and the values obtained from
numerical integration. However, in this simulation involving the rod, due to the stochastic
behavior, we would not expect that the results with applying keyframes every frame versus
every several frames would cause the position and orientation of the rod in Blender to be
the same in both cases. This indicates that the frequency with which keyframes are set can
cause different accuracy for different dynamic systems.

The color information is summed within a 3 × 3 window to detect the rod and extract
information about its state features. Image capture by the software and additional image
processing with the Python Pillow library is demonstrated, and the errors between the
states of the system returned from the virtual environment and those extracted from the
image are compared.

Since Blender can render animations, it provides the ability to visually demonstrate
and inspect the execution of an image-based control algorithm. When attempting to
visualize the nanorod approaching its destination using a rendered video of the animation,
the target can be highlighted in the video. In such a case, a section of the contrasting
backplate around the target could be colored differently, for example, when a video of
the simulation is rendered to aid in showing that the rod approached its target with time.
However, care must be executed when attempting to improve visualization of aspects of
the simulation such as this to ensure that the visualization aids do not interfere with the
behavior of the image-based control algorithm. For example, attempts were made to aid
with visualizing the rod moving toward the target by making the target area visible (i.e.,
a different color than the rest of the backplate) during the execution of the image-based
control policy. However, this resulted in failure of the color detection strategy, in part due
to the summing of the color channel values in a small neighborhood around the nanorod,
which would include portions of the contrasting backplate as the rod moved close to the
target. In the simulations performed, a yellow colored target section registered as the white
end of the nanorod, since windows of color summing would place the sum total of the
color channels in the target section higher than the actual front end of the nanorod due
to the backplate being included in windows around the front. A darker color than the
backplate would result in similar misidentification of the black end of the nanorod. These
issues might be addressed with the use of image convolutions, such as edge detection,
in order to further improve state identification. Alternatively, Blender allows for the editing
of object properties after keyframes are inserted, which allows the target area to be colored
in after the simulation is run, in order to display it in rendered videos. While this allows for



Processes 2024, 12, 279 24 of 33

highlighting of the simulation features, it is not representative of the images used by the
virtual camera for state identification. These studies highlight that making the simulation
results more easily understood to a viewer by updating the simulation to include new
visualization aspects may affect how true the simulation results remain to what they would
be without the additional visualization tools.

Another consideration that could be tested in Blender is cybersecurity or privacy
strategies for image-based control systems. For example, one might wish to make the policy
between the states and the optimal control actions, as well as the images of the process,
unclear to an eavesdropper, even if the policy was to be stored on the Cloud and the images
needed to be transferred back and forth between the process and the Cloud for processing
for state determination and control action selection. One idea for attempting to obscure,
for example, the series of images in Figure 13 is to attempt to utilize a policy inspired by
homomorphic encryption being combined with control [61]. In particular, we consider the
case that we do not wish to send the actual image to the optimal control look-up strategy,
but we wish to process the image locally and then send the state to the Cloud to retrieve
the optimal control action from the policy stored there. Since the policy is determined
from each state (a 3-dimensional quantity) being mapped to an optimal action, one way of
attempting to make the state unclear to an eavesdropper on the Cloud would be to shuffle
the full look-up table according to a mapping from the discrete state space to a new value,
where that new value would be associated with some control action that could then be
returned from the Cloud. This prevents the need to send the actual value of the state to
the Cloud, and instead, only the mapped state value is sent. A similar shuffling/mapping
idea can also be applied to the optimal action, if it is desired to make the control action
returned obscure to an eavesdropper as well. With a strategy for generating the images of
the process using Blender, one could simulate this full technique or other cybersecurity and
privacy strategies.

The use of Blender opens the possibility of virtually testing various image processing
techniques in order to rapidly test novel image-based control algorithms. These various
insights regarding image-based control of this process are some of the benefits of utilizing
an image-based control testbed like Blender. Additional insights such as camera position,
suitable lighting, and minimum resolution for state detection can be simulated in Blender
in order to test configurations to test advantages.

3.3. Modeling Sunlight Effects on Outdoor Reactors in Blender

Weather can play a role in the effectiveness of chemical process control policies where
equipment is not housed in a controlled environment. The impact of weather on large
outdoor reactors can be measured through a variety of methods, but attempting to assess
weather changes could aid with reducing plant/model mismatch in model-based control
formulations and aid with potentially forming more physics-based models by avoiding
treating weather variations as a type of unknown process disturbance affecting a measured
state and causing it to deviate from standard operating conditions. In the work of Zavala
et al. [62], weather forecasting is used to determine economically optimal actions. With
the advent of solar technology, the determination of weather phenomena becomes more
relevant, allowing the prediction of energy availability and aiding in ensuring demands can
be met by combining a variety of power sources. Going a step further, in the work of Rowe
et al. [63], a hybrid solar–electric reactor is designed and then investigated for optimal
model predictive control design. The results determined a control setup that accounts for
varying sunlight in order to potentially minimize thermal fatigue of the reactor. The ability
to simulate the visual recognition of different weather conditions could prove advantageous
to determine control parameter adjustments online as weather changes, potentially before
its effects show up as measured deviations from normal operation.

An important question in how to set up an advanced disturbance-handling framework,
however, that takes advantage of images for identifying different weather patterns and
then adjusting control laws as required, is that it is not clear how to adjust the controllers,



Processes 2024, 12, 279 25 of 33

or whether different visual scenarios might correspond to very different needs in terms of
how to update the controller parameters. An image-based control testbed in Blender could
help in moving toward addressing some of these questions. However, modeling of weather
in Blender can involve, for example, changing lighting model parameters. Lighting models
in Blender have non-physical parameters to typically aid in the artistry of lighting for
animation. For an engineering testbed application, ideas must be proposed regarding how
to make images that correspond to different weather conditions and then translate these
into data for a controller as precursors toward more advanced simulation concepts that
might be more rigorously compared with more traditional disturbance-handling methods
like offset-free model predictive control [64] or online triggering of data-driven model
updates [65].

To move toward addressing the potential of Blender for aiding in testing ideas for
image-based disturbance-handling methods for model-based control, in this section, a tank
reactor that is exposed to outdoor sunlight is simulated in Blender. Using the virtual camera
setup in Section 3.2.5, images are captured in order to determine the ambient heat effects on
the temperature of the reactor. A model of the tank reactor that takes into account ambient
heat due to sunlight is used to simulate the process. The controller uses detected sunlight
in order to predict states of the reactor, which are acquired by calibrating the images from
the virtual camera with lighting strength in the simulation.

3.3.1. Model Equations for Tank Reactor

The reactor considered in this section is a continuously stirred tank reactor, simulated
with a system of ordinary differential equations, which are integrated numerically using
the explicit Euler method. The reactor model is detailed in Equation (16), as follows:

dCA
dt = F

V (CA0 − CA)− k0Cn
A exp

(
− EA

RT

)
dT
dt = F

V (TA0 − TA)−
k0Cn

A(∆HR)
ρcp

exp
(
− EA

RT

)
+ Q

ρcpV

(16)

The reactant concentration CA and the temperature T are the state variables, while the
inlet concentration CA0 and the heat supply Q are the manipulated variables. The design,
reaction, and simulation parameters and their respective values are listed in Table 4.

Table 4. Reaction Parameters.

Parameters Value

Rate constant k0 8.46 × 106 (m3kmol−1)n−1h−1

Activation energy EA 5 × 104 kJ/kmol
Density of reaction medium ρ 103 kg/m3

Molar heat of reaction ∆HR −1.15 × 104 kJ/kmol
Specific heat capacity of reaction medium cp 0.231 kJ kg−1K−1

Order of reaction n 2
Flow rate F 5 m3/h
Reactor volume V 1 m3

Integration time step ∆t 1/24 s
Feed temperature TA0 300 K

The tank reactor is controlled using an optimization-based controller that ensures
that the reactant concentration and temperature reach pre-determined steady-state values,
CAS = 2 kmol/m3, TS = 400 K. Equation (16) is used to predict future states with the
explicit Euler method, and an optimization problem is set up to minimize the sum of the
squared errors for temperature and concentration with respect to the steady-state tempera-
ture and concentration of the reactor. The problem is solved using the SciPy [66] minimize
function with the L-BFGS-B method over a prediction horizon of 10 sampling times. Each
initial guess provided to the optimizer is CA0S = 4 kmol/m3, QS = 0 kJ/h, and the control



Processes 2024, 12, 279 26 of 33

actions are bounded, with 0.5 kmol/m3 ≤ CA0 ≤ 7.5 kmol/m3, and −10−5 kJ/h ≤ Q ≤
105 kJ/h.

3.3.2. CSTR Model with Sunlight Factor

In this final investigation of the potential uses of Blender as an image-based testbed for
process systems engineering applications, incident sunlight on a reactor that is not insulated
is assumed to affect the process primarily by adding heat to the system. It is assumed that
the model of the tank reactor is identified at a particular sunlight strength, and hence, when
the ambient sunlight is below or above this reference level, heat is removed or added to
the system, respectively. In this simulation, the detected sunlight is considered to have
an immediate impact on the rate of heat transferred to the system (i.e., potential time lags
associated with heat transfer through the material of the tank or mixing within the tank are
not modeled). Specifically, Equation (16) is modified by replacing the heat supply variable
Qc with Q̂c, the apparent heat supply, as in Equation (17):

Q̂c = Qc + ∆Sϵ (17)

The deviation from the reference sunlight strength is characterized by ∆S and is
scaled to the heat supply by a factor ϵ. For this experiment, the reference lighting strength
parameter in Blender is chosen to be 2, and the heating factor is set to 5 × 103 kJ/h.
While the process model includes the lighting strength directly, the controller utilizes the
detected images by correlating the RGB sums to the lighting strength, as detailed in the
following section.

3.3.3. Ambient Light Simulation and Detection

In this simulation, images of a reactor and its surroundings are captured using a
virtual camera. The intensity of the lighting in the simulation (i.e., the lighting strength) is
modified in order to consider changing amounts of sunlight during the day. The model
of the reactor is modified so that the heat extracted from the reactor is impacted by the
incident light. One of the questions for creating a simulation involving the environment
in Blender is how best to set up the lighting source. One method for setting up a lighting
source is to use a high dynamic range image (HDRI). An HDRI is used in this simulation to
attempt to generate images that resemble outdoor camera sensors. HDRIs are images used
for the backgrounds in 3D modeling that wrap around objects in order to provide lighting
and environment. The HDRI used in this work, city.exr, was obtained from Blender.

Another key aspect of the weather detection simulation is to conceptualize how to
detect the sunlight strength from images so that the controller can use the data to update its
model. In this example, we consider that the sum of the values of the red, green, and blue
channels (RGB sums) are related to the set strength of the lighting (the relationship used
in this simulation is calibrated using data from Blender). These RGB sums are calculated
by importing the images with Pillow [36] and extracting the color channel values. A set of
reference images between the minimum and maximum lighting strengths for the simulation
are selected, and then the relation between the natural logarithm of the lighting strength
and the RGB sums is plotted, as in Figure 17. RGB sums from the captured images are
then used to acquire the lighting strength by interpolating between the known points.
Equation (18) details the relationship obtained from the data, where r refers to the RGB
sum, S is the lighting strength, and subscripts 1 and 2 refer to the two nearest data points
used to interpolate the detected lighting strength:

S = S1 ·
(

S2

S1

) r−r1
r2−r1

(18)

This calibration curve is specific to the chosen background, the resolution of the camera
sensor, and the material of the object used to model the CSTR in Blender. Higher image
resolutions correlate to higher sums, and an average of the sums could be used to mitigate



Processes 2024, 12, 279 27 of 33

these effects, subject to the accuracy required. The material of the objects affect the RGB
sums by way of their reflectivity, with coarser and finer textures responding differently to
the incident light.

Figure 17. Lighting strength vs RGB sums plot. The yellow outline around the cube in the bottom left
reflects that the cube is selected in Blender.

Remark 3. The lighting strength parameter of HDRIs in Blender allows changes to the lighting
model but is more of an artistic rather than a physical parameter. Thus, selecting the lighting
strength for an actual application would likely require a comparison of images from an actual plant
compared to the virtual model to attempt to find lighting strength values in Blender that match
the observed plant behavior. However, even without a data-driven selection of lighting strength,
simulations of the type in this work can still be used to test overall controller modification concepts
in response to weather variations, knowing that they may need to be fine-tuned once actual process
data is available to aid with updating the model. In practice, the lighting strength is replaced by a
measurable quantity that is used to calibrate the image sensor. It may also be possible to determine
the reference exclusively in terms of images by comparing the sum of the RGB channels of a reference
image where the model behaves as designed and assigning a factor that scales the difference in RGB
sums between the reference and images captured online to the apparent heat supply Qc.

3.3.4. Animation and Control Execution

To investigate the impact of the use of the image-based weather change detection
algorithm on the effectiveness of the control policy, simulations were run for a total of
300 s, with each period of constant lighting strength lasting 75 s. In this simulation,
lighting strength changes are implemented as step changes to observe the robustness of
the controller when weather effects are accounted for. In practice, sunlight strength may
vary on a time scale much slower than the controller sampling period. The sunlight was
varied across three intensities, i.e., 0.5, 2.0, and 4.0, with time in this simulation, and the
specific sunlight variation used in the simulation is detailed in a graph in Figure 18, along
with example images captured by the virtual camera.

The differential equations in Equation (16) are used to simulate the state of the CSTR
using the explicit Euler method with an integration step size of 1/24 s. The model used
to update the reactor includes the lighting strength directly used in Blender. The factor of
1/24 is chosen because the animation runs at 24 frames per second, and the sampling and
control is applied every second. The model built into the control optimizer differs from
the one used to simulate the process by including the calibrator described in Section 3.3.4.



Processes 2024, 12, 279 28 of 33

The sums of the RGB channels of the image are measured by capturing an image from the
virtual camera in Blender and then loading it back into the script with the Python Pillow
library [36]. The sum calculated is then interpolated to acquire the lighting strength from
Equation (18) and then is used in the predictions of the optimizer to acquire an optimized
input for the prediction horizon.

Figure 18. Schedule of lighting strength during simulation, with example images.

3.3.5. Control Effectiveness with and without Weather Detection

In order to compare the effects of light detection on the overall controller performance,
the closed-loop responses of the system are compared for the cases where light is accounted
for and where it is not accounted for. This is carried out by using Equation (16) for both
cases. Figure 19 shows the differing control actions applied in each scenario. The major
difference between them is the tracking of reactor temperature. When light detection is
active, there is a small disturbance as the optimizer adjusts for a new lighting strength,
while when it is inactive, there is a small step change. This also corresponds to the lighting
strength in the schedule, with the reactor temperature dipping when the lighting strength
is low and rising when it is high. The concentration profiles are largely similar, with
differences being extremely small. For the case described, this Blender simulation would
demonstrate that an image sensor to detect disturbances in sunlight does not significantly
improve the performance of the outdoor reactor on the timescale simulated. This could be
useful in determining whether to add such a sensor or not before building one. However,
to more comprehensively make such a conclusion, the simulation should be run over a
longer time period. Furthermore, longer periods of different sunlight strengths could affect
the result.

Table 5 details the lighting strengths set in the simulation and the values detected from
the calibration curve using RGB sums of the captured images. Since images with constant
lighting strength are identical, errors are displayed for the three lighting strengths in the
schedule. This demonstrates that the calibration curve is highly accurate if enough data
points are provided. However, this is also subject to disturbances in real world scenarios,
where image artifacts and the presence of uncalibrated objects, e.g., operators working
in front of a camera sensor, can affect the calibration and interpolation in different ways.
However, if a possible disturbance can be modeled with an object in Blender, it can be
used to design a calibration curve that meets the requirement of the process. In order to
function as a test bed, the calibration of the image sensor requires a more rigorous approach
than that demonstrated in this example. Since Blender is built primarily for animation
purposes, the lighting strength is an arbitrary unit. Hence, in order to more closely mimic
the real world, experimental data that measures deviations from the heat supply and
images of the reactor captured by the sensor during that time may be acquired to develop a
calibration metric.



Processes 2024, 12, 279 29 of 33

Figure 19. Comparison of system response and optimal control actions when light detection is active
and inactive. All variables are plotted as deviations from steady-state values. Units: concentration
(C, CA0)—kmol/m3, temperature (T)—K, heat (Q)—kJ/h.

Table 5. Errors in detecting scheduled lighting strengths (see Remark 3 for a discussion of lighting
strength in Blender).

Simulation Lighting Strength Detected Lighting Strength

0.5 0.5001
2.0 2.0025
4.0 4.0000

Remark 4. The general concept of utilizing Blender to test different concepts for weather detection
for updating optimization-based control laws can be applied to other weather phenomena as well
(e.g., rain). Though this work has discussed a number of potential challenges and opportunities
with respect to using Blender for image-based control tests, many other considerations remain to be
investigated, including how to make more photo-realistic models to ensure that the types of tests
performed are representative of what might be seen in the field. In general, the concept that auxiliary
data that is not typically used in updating controller models might be able to aid in knowing when
to update them (i.e., revealing that a physics-based model is incomplete (e.g., it may not account for
the impacts of weather variations on the process dynamics) can also be potentially applied with other
data (e.g., there is potential that if anomalies are detected in the state data [67–69] that causes for
these might be embedded in data such as auxiliary process numerical/textual information [70–72]
(e.g., weather or maintenance logs) to seek to identify conditions that may have caused the modeling
discrepancies and then to develop methods for detecting when such conditions are about to occur
(e.g., utilizing pattern recognition [73,74] to note trends in the process data similar to those leading
up to the prior occurrence of the anomaly).

4. Conclusions

In this work, we demonstrate the potential of using Blender as a simulation test
bed for image-based control with a few example processes. First, physical phenomena
are replicated in Blender utilizing limited data and relying on the interpolation of object
properties as a substitute to numerical integration. The motion of a bubble moving through
a liquid is simulated with a select number of forces, and the position over time is acquired
and animated in Blender using keyframe information. The position values acquired from
Blender between keyframes where they are explicitly defined are compared with the results



Processes 2024, 12, 279 30 of 33

of numerical integration carried out at a finer timescale. Second, Blender is successfully
used to replicate Brownian motion dynamics of the nanorod in two-dimensional space,
and the optimal stochastic policy is implemented using a virtual image-based controller.
Keyframe features are leveraged to demonstrate the scaling of time between the simulation
and the control algorithm, where Brownian motion dynamics were updated frame by frame,
but keyframes were inserted and images were captured every second to enact control. A
virtual camera and light source are used to simulate the image-based control policy. The
color information is summed and is used to detect the rod and extract information about
its state features. Image capture by the software and additional image processing with the
Python Pillow library are demonstrated, and the error between the state of the system from
Blender and states detected in the image-based control algorithm is ascertained. Finally,
a simulation of sunlight as a disturbance in processes that can be affected by ambient
conditions is carried out in Blender. Utilizing the HDRI lighting settings, an outdoor
environment is simulated, and the strength of the lighting is varied to simulate changes in
daylight. These settings are then calibrated with the sum of the red, blue, and green channels
of the images captured by the virtual camera in Blender to approximate lighting strength
based on a given image. The process is then simulated with a controller that optimizes
for steady-state behavior while also accounting for varying sunlight. A comparison of
the responses to the process based on whether the controller accounts for the changes in
sunlight is illustrated. With the framework currently in place, it opens the possibility of
virtually testing these and other image processing techniques in order to rapidly test novel
image-based control algorithms in a variety of processes. Future studies could include
further investigations into the potential of Blender for use in developing image-based
control and safety systems.

Author Contributions: A.F.L.: conceptualization, methodology, software, validation G.G.: soft-
ware, methodology M.R.: conceptualization, methodology H.E.D.: supervision, funding acquisition,
validation. All authors have read and agreed to the published version of the manuscript.

Funding: Financial support from the Air Force Office of Scientific Research (award number FA9550-19-
1-0059), National Science Foundation CNS-1932026 and CBET-1839675, and Wayne State University
is gratefully acknowledged.

Data Availability Statement: The codes associated with this article will be posted at: https://durand.
eng.wayne.edu/PublicationResources/index.html accessed on 2 September 2023.

Acknowledgments: We would like to thank Michael Williamson, Keshav Kasturi Rangan, and Hen-
rique Oyama for the discussions, and Jacob Noll for finding reference [39]. Figures in this publication
have been created with Blender versions 3.6 and 4.0, MATLAB R2023a, GNU Image Manipulation
Program 2.10.36, and draw.io v22.1.8.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Prats-Montalbán, J.M.; de Juan, A.; Ferrer, A. Multivariate image analysis: A review with applications. Chemom. Intell. Lab. Syst.

2011, 107, 1–23. [CrossRef]
2. De, S.; Mohamed, S.; Bimpisidis, K.; Goswami, D.; Basten, T.; Corporaal, H. Approximation trade offs in an image-based control

system. In Proceedings of the 2020 Design, Automation & Test in Europe Conference & Exhibition (DATE), Grenoble, France,
9–13 March 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1680–1685.

3. Bengler, K.; Dietmayer, K.; Farber, B.; Maurer, M.; Stiller, C.; Winner, H. Three decades of driver assistance systems: Review and
future perspectives. IEEE Intell. Transp. Syst. Mag. 2014, 6, 6–22. [CrossRef]

4. Su, Y.; Zheng, C. A simple PID control for asymptotic visual regulation of robot manipulators. Int. J. Robust Nonlinear Control
2011, 21, 1525–1540. [CrossRef]

5. Bluma, A.; Höpfner, T.; Lindner, P.; Rehbock, C.; Beutel, S.; Riechers, D.; Hitzmann, B.; Scheper, T. In-situ imaging sensors for
bioprocess monitoring: State of the art. Anal. Bioanal. Chem. 2010, 398, 2429–2438. [CrossRef]

6. Höpfner, T.; Bluma, A.; Rudolph, G.; Lindner, P.; Scheper, T. A review of non-invasive optical-based image analysis systems for
continuous bioprocess monitoring. Bioprocess Biosyst. Eng. 2010, 33, 247–256. [CrossRef]

7. Chandrasekaran, S.N.; Ceulemans, H.; Boyd, J.D.; Carpenter, A.E. Image-based profiling for drug discovery: Due for a
machine-learning upgrade? Nat. Rev. Drug Discov. 2021, 20, 145–159. [CrossRef]

https://durand.eng.wayne.edu/PublicationResources/index.html
https://durand.eng.wayne.edu/PublicationResources/index.html
http://doi.org/10.1016/j.chemolab.2011.03.002
http://dx.doi.org/10.1109/MITS.2014.2336271
http://dx.doi.org/10.1002/rnc.1648
http://dx.doi.org/10.1007/s00216-010-4181-y
http://dx.doi.org/10.1007/s00449-009-0319-8
http://dx.doi.org/10.1038/s41573-020-00117-w


Processes 2024, 12, 279 31 of 33

8. Mebarki, R.; Lippiello, V. Image-based control for aerial manipulation. Asian J. Control 2014, 16, 646–656. [CrossRef]
9. Collewet, C.; Chaumette, F. A contour approach for image-based control on objects with complex shape. In Proceedings of the

2000 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2000) (Cat. No. 00CH37113), Takamatsu, Japan,
31 October–5 November 2000; IEEE: Piscataway, NJ, USA, 2000; Volume 1, pp. 751–756.

10. Zheng, D.; Wang, H.; Wang, J.; Chen, S.; Chen, W.; Liang, X. Image-based visual servoing of a quadrotor using virtual camera
approach. IEEE/ASME Trans. Mechatron. 2016, 22, 972–982. [CrossRef]

11. Becker, B.C.; MacLachlan, R.A.; Lobes, L.A.; Hager, G.D.; Riviere, C.N. Vision-based control of a handheld surgical micromanipu-
lator with virtual fixtures. IEEE Trans. Robot. 2013, 29, 674–683. [CrossRef] [PubMed]

12. Pazzi, R.W.N.; Boukerche, A.; Huang, T. Implementation, measurement, and analysis of an image-based virtual environment
streaming protocol for wireless mobile devices. IEEE Trans. Instrum. Meas. 2008, 57, 1894–1907. [CrossRef]

13. Lee, D.; Lim, H.; Kim, H.J. Obstacle avoidance using image-based visual servoing integrated with nonlinear model predictive
control. In Proceedings of the 2011 50th IEEE Conference on Decision and Control and European Control Conference, Orlando,
FL, USA, 12–15 December 2011; IEEE: Piscataway, NJ, USA, 2011; pp. 5689–5694.

14. Hajiloo, A.; Keshmiri, M.; Xie, W.F.; Wang, T.T. Robust online model predictive control for a constrained image-based visual
servoing. IEEE Trans. Ind. Electron. 2015, 63, 2242–2250.

15. Lopez-Franco, C.; Gomez-Avila, J.; Alanis, A.Y.; Arana-Daniel, N.; Villaseñor, C. Visual servoing for an autonomous hexarotor
using a neural network based PID controller. Sensors 2017, 17, 1865. [CrossRef]

16. Yu, H.; MacGregor, J.F. Monitoring flames in an industrial boiler using multivariate image analysis. AIChE J. 2004, 50, 1474–1483.
[CrossRef]

17. Lin, B.; Recke, B.; Knudsen, J.K.; Jørgensen, S.B. Bubble size estimation for flotation processes. Miner. Eng. 2008, 21, 539–548.
[CrossRef]

18. Cao, Y.; Yu, H.; Abbott, N.L.; Zavala, V.M. Machine learning algorithms for liquid crystal-based sensors. ACS Sens. 2018,
3, 2237–2245. [CrossRef] [PubMed]

19. Pulsipher, J.L.; Coutinho, L.D.J.; Soderstrom, T.A.; Zavala, V.M. SAFE-OCC: A novelty detection framework for Convolutional
Neural Network sensors and its application in process control. J. Process Control 2022, 117, 78–97. [CrossRef]

20. Jiang, S.; Qin, S.; Pulsipher, J.L.; Zavala, V.M. Convolutional Neural Networks: Basic Concepts and Applications in Manufacturing.
arXiv 2022, arXiv:2210.07848.

21. Wang, X.Z.; Roberts, K.J.; Ma, C. Crystal growth measurement using 2D and 3D imaging and the perspectives for shape control.
Chem. Eng. Sci. 2008, 63, 1173–1184. [CrossRef]

22. Larsen, P.A.; Rawlings, J.B.; Ferrier, N.J. An algorithm for analyzing noisy, in situ images of high-aspect-ratio crystals to monitor
particle size distribution. Chem. Eng. Sci. 2006, 61, 5236–5248. [CrossRef]

23. Maaß, S.; Rojahn, J.; Hänsch, R.; Kraume, M. Automated drop detection using image analysis for online particle size monitoring
in multiphase systems. Comput. Chem. Eng. 2012, 45, 27–37. [CrossRef]

24. Chen, J.; Chang, Y.H.; Cheng, Y.C.; Hsu, C.K. Design of image-based control loops for industrial combustion processes. Appl.
Energy 2012, 94, 13–21. [CrossRef]

25. Lu, Q.; Zavala, V.M. Image-based model predictive control via dynamic mode decomposition. J. Process Control 2021, 104, 146–157.
[CrossRef]

26. Pearson, T.; Brabec, D.; Haley, S. Color image based sorter for separating red and white wheat. Sens. Instrum. Food Qual. Saf. 2008,
2, 280–288. [CrossRef]

27. Dere, S.; Sahasrabudhe, S.; Iyer, S. Creating open source repository of 3D models of laboratory equipments using Blender. In
Proceedings of the 2010 International Conference on Technology for Education, Mumbai, India, 1–3 July 2010; pp. 149–156.

28. Rajendiran, N.; Durrant, J.D. Pyrite: A Blender plugin for visualizing molecular dynamics simulations using industry-standard
rendering techniques. J. Comput. Chem. 2018, 39, 748–755. [CrossRef]

29. Gschwandtner, M.; Kwitt, R.; Uhl, A.; Pree, W. BlenSor: Blender sensor simulation toolbox. In Proceedings of the Advances in Visual
Computing: 7th International Symposium, ISVC 2011, Las Vegas, NV, USA, 26–28 September 2011; Proceedings, Part II 7; Springer:
Berlin/Heidelberg, Germany, 2011; pp. 199–208.

30. Flaischen, S.; Wehinger, G.D. Synthetic packed-bed generation for CFD simulations: Blender vs. STAR-CCM+. ChemEngineering
2019, 3, 52. [CrossRef]

31. Oyama, H.; Leonard, A.F.; Rahman, M.; Gjonaj, G.; Williamson, M.; Durand, H. On-line process physics tests via Lyapunov-based
economic model predictive control and simulation-based testing of image-based process control. In Proceedings of the 2022
American Control Conference (ACC), Atlanta, GA, USA, 8–10 June 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 2479–2484.

32. Parzen, E. Stochastic Processes; SIAM: Philadelphia, PA, USA, 1999.
33. Øksendal, B. Stochastic differential equations . In Stochastic Differential Equations; Springer: Berlin/Heidelberg, Germany, 2003;

pp. 65–84.
34. Wrobel, A. On Markovian decision models with a finite skeleton. Z. Für Oper. Res. 1984, 28, 17–27. [CrossRef]
35. Gangwani, T.; Li, D.; Ye, Z. Lecture 16: Value Iteration, Policy Iteration and Policy Gradient. Available online: https:

//yuanz.web.illinois.edu/teaching/IE498fa19/lec_16.pdf (accessed on 4 September 2023).
36. Clark, A. Pillow (PIL Fork) Documentation. ReadTheDocs. 2015. Available online: https://buildmedia.readthedocs.org/media/

pdf/pillow/latest/pillow.pdf (accessed on 4 September 2023).

http://dx.doi.org/10.1002/asjc.887
http://dx.doi.org/10.1109/TMECH.2016.2639531
http://dx.doi.org/10.1109/TRO.2013.2239552
http://www.ncbi.nlm.nih.gov/pubmed/24639624
http://dx.doi.org/10.1109/TIM.2008.919901
http://dx.doi.org/10.3390/s17081865
http://dx.doi.org/10.1002/aic.10164
http://dx.doi.org/10.1016/j.mineng.2007.11.004
http://dx.doi.org/10.1021/acssensors.8b00100
http://www.ncbi.nlm.nih.gov/pubmed/30289249
http://dx.doi.org/10.1016/j.jprocont.2022.07.006
http://dx.doi.org/10.1016/j.ces.2007.07.018
http://dx.doi.org/10.1016/j.ces.2006.03.035
http://dx.doi.org/10.1016/j.compchemeng.2012.05.014
http://dx.doi.org/10.1016/j.apenergy.2011.12.080
http://dx.doi.org/10.1016/j.jprocont.2021.06.009
http://dx.doi.org/10.1007/s11694-008-9062-0
http://dx.doi.org/10.1002/jcc.25155
http://dx.doi.org/10.3390/chemengineering3020052
http://dx.doi.org/10.1007/BF01919083
https://yuanz.web.illinois.edu/teaching/IE498fa19/lec_16.pdf
https://yuanz.web.illinois.edu/teaching/IE498fa19/lec_16.pdf
https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf
https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf


Processes 2024, 12, 279 32 of 33

37. Oyama, H.; Messina, D.; O’Neill, R.; Cherney, S.; Rahman, M.; Rangan, K.K.; Gjonaj, G.; Durand, H. Test Methods for Image-Based
Information in Next-Generation Manufacturing. IFAC-PapersOnLine 2022, 55, 73–78. [CrossRef]

38. Oyama, H.; Messina, D.; Rangan, K.K.; Leonard, A.F.; Nieman, K.; Durand, H.; Tyrrell, K.; Hinzman, K.; Williamson, M.
Development of directed randomization for discussing a minimal security architecture. Digit. Chem. Eng. 2023, 6, 100065.
[CrossRef]

39. Yang, Y. Stochastic Modeling and Optimal Control for Colloidal Organization, Navigation, and Machines. Ph.D. Thesis, The
Johns Hopkins University, Baltimore, MD, USA, 2017.

40. Bartolacci, G.; Pelletier, P.; Tessier, J.; Duchesne, C.; Bossé, P.A.; Fournier, J. Application of numerical image analysis to
process diagnosis and physical parameter measurement in mineral processes—Part I: Flotation control based on froth textural
characteristics. Miner. Eng. 2006, 19, 734–747. [CrossRef]

41. Kaartinen, J. ; Hätönen, J.; Hyötyniemi, H.; Miettunen, J. Machine-vision-based control of zinc flotation—A case study. Control
Eng. Pract. 2006, 14, 1455–1466. [CrossRef]

42. Liu, J.J.; MacGregor, J.F.; Duchesne, C.; Bartolacci, G. Flotation froth monitoring using multiresolutional multivariate image
analysis. Miner. Eng. 2005, 18, 65–76. [CrossRef]

43. Bharati, M.H.; MacGregor, J.F. Multivariate image analysis for real-time process monitoring and control. Ind. Eng. Chem. Res.
1998, 37, 4715–4724. [CrossRef]

44. Bird, R.B.; Stewart, W.E.; Lightfoot, E.N. Transport Phenomena; John Wiley & Sons: Hoboken, NJ, USA, 1961.
45. Cleary, P.W.; Pyo, S.H.; Prakash, M.; Koo, B.K. Bubbling and frothing liquids. In ACM SIGGRAPH 2007 Papers; ACM: New York,

NY, USA, 2007; p. 97-es.
46. Dewitt, C.C. Froth flotation concentration. Ind. Eng. Chem. 1940, 32, 652–658. [CrossRef]
47. Cartesian Caramel. How to Make Oil Spill Materials in Blender! Video, Uploaded to Youtube. 20 February 2022. Available online:

https://youtu.be/xcx_LfXuuX4 (accessed on 31 October 2023).
48. Do, H. Development of a Turbulent Flotation Model from First Principles. Ph.D. Thesis, Virginia Tech, Blacksburg, VA, USA, 2010.
49. Lin, C.; Liu, Y.; Rinker, S.; Yan, H. DNA tile based self-assembly: Building complex nanoarchitectures. ChemPhysChem 2006,

7, 1641–1647. [CrossRef]
50. Douglas, S.M.; Dietz, H.; Liedl, T.; Högberg, B.; Graf, F.; Shih, W.M. Self-assembly of DNA into nanoscale three-dimensional

shapes. Nature 2009, 459, 414–418. [CrossRef]
51. Wang, X.S.; Winnik, M.A.; Manners, I. Synthesis and aqueous self-assembly of a polyferrocenylsilane-block-poly (aminoalkyl

methacrylate) diblock copolymer. Macromol. Rapid Commun. 2002, 23, 210–213. [CrossRef]
52. Rider, D.A.; Manners, I. Synthesis, Self-Assembly, and Applications of Polyferrocenylsilane Block Copolymers. Polym. Rev. 2007,

47, 165–195. [CrossRef]
53. Liu, R.; Huang, H.; Sun, Z.; Alexander-Katz, A.; Ross, C.A. Metallic nanomeshes fabricated by multimechanism directed

self-assembly. ACS Nano 2021, 15, 16266–16276. [CrossRef]
54. Lane, A.P.; Yang, X.; Maher, M.J.; Blachut, G.; Asano, Y.; Someya, Y.; Mallavarapu, A.; Sirard, S.M.; Ellison, C.J.; Willson,

C.G. Directed self-assembly and pattern transfer of five nanometer block copolymer lamellae. ACS Nano 2017, 11, 7656–7665.
[CrossRef]

55. Duan, H.; Berggren, K.K. Directed self-assembly at the 10 nm scale by using capillary force-induced nanocohesion. Nano Lett.
2010, 10, 3710–3716. [CrossRef]

56. Yu, J.; Wang, Q.; Zhang, X. Effects of external force fields on peptide self-assembly and biomimetic silica synthesis. Appl. Surf. Sci.
2014, 311, 799–807. [CrossRef]

57. Motornov, M.; Malynych, S.Z.; Pippalla, D.S.; Zdyrko, B.; Royter, H.; Roiter, Y.; Kahabka, M.; Tokarev, A.; Tokarev, I.; Zhulina, E.;
et al. Field-directed self-assembly with locking nanoparticles. Nano Lett. 2012, 12, 3814–3820. [CrossRef] [PubMed]

58. Tang, X.; Rupp, B.; Yang, Y.; Edwards, T.D.; Grover, M.A.; Bevan, M.A. Optimal feedback controlled assembly of perfect crystals.
ACS Nano 2016, 10, 6791–6798. [CrossRef] [PubMed]

59. Issa, H.; Natale, G.; Ausias, G.; Férec, J. Modeling and numerical simulations of Brownian rodlike particles with anisotropic
translational diffusion. Phys. Rev. Fluids 2023, 8, 033302. [CrossRef]

60. Durrett, R. Probability: Theory and Examples; Cambridge Series in Statistical and Probabilistic Mathematics; Cambridge University
Press: Cambridge, UK, 2019.

61. Alexandru, A.B.; Morari, M.; Pappas, G.J. Cloud-based MPC with encrypted data. In Proceedings of the 2018 IEEE Conference
on Decision and Control (CDC), Miami, FL, USA, 17–19 December 2018; pp. 5014–5019.

62. Zavala, V.M.; Constantinescu, E.M.; Krause, T.; Anitescu, M. On-line economic optimization of energy systems using weather
forecast information. J. Process Control 2009, 19, 1725–1736. [CrossRef]

63. Rowe, S.C.; Hischier, I.; Palumbo, A.W.; Chubukov, B.A.; Wallace, M.A.; Viger, R.; Lewandowski, A.; Clough, D.E.; Weimer,
A.W. Nowcasting, predictive control, and feedback control for temperature regulation in a novel hybrid solar-electric reactor for
continuous solar-thermal chemical processing. Sol. Energy 2018, 174, 474–488. [CrossRef]

64. Das, B.; Mhaskar, P. Lyapunov-based offset-free model predictive control of nonlinear process systems. Can. J. Chem. Eng. 2015,
93, 471–478. [CrossRef]

65. Alanqar, A.; Durand, H.; Christofides, P.D. Fault-tolerant economic model predictive control using error-triggered online model
identification. Ind. Eng. Chem. Res. 2017, 56, 5652–5667. [CrossRef]

http://dx.doi.org/10.1016/j.ifacol.2022.07.424
http://dx.doi.org/10.1016/j.dche.2022.100065
http://dx.doi.org/10.1016/j.mineng.2005.09.041
http://dx.doi.org/10.1016/j.conengprac.2005.12.004
http://dx.doi.org/10.1016/j.mineng.2004.05.010
http://dx.doi.org/10.1021/ie980334l
http://dx.doi.org/10.1021/ie50365a014
https://youtu.be/xcx_LfXuuX4
http://dx.doi.org/10.1002/cphc.200600260
http://dx.doi.org/10.1038/nature08016
http://dx.doi.org/10.1002/1521-3927(20020201)23:3<210::AID-MARC210>3.0.CO;2-C
http://dx.doi.org/10.1080/15583720701271302
http://dx.doi.org/10.1021/acsnano.1c05315
http://dx.doi.org/10.1021/acsnano.7b02698
http://dx.doi.org/10.1021/nl102259s
http://dx.doi.org/10.1016/j.apsusc.2014.05.170
http://dx.doi.org/10.1021/nl301780x
http://www.ncbi.nlm.nih.gov/pubmed/22716475
http://dx.doi.org/10.1021/acsnano.6b02400
http://www.ncbi.nlm.nih.gov/pubmed/27387146
http://dx.doi.org/10.1103/PhysRevFluids.8.033302
http://dx.doi.org/10.1016/j.jprocont.2009.07.004
http://dx.doi.org/10.1016/j.solener.2018.09.005
http://dx.doi.org/10.1002/cjce.22134
http://dx.doi.org/10.1021/acs.iecr.7b00576


Processes 2024, 12, 279 33 of 33

66. Virtanen, P.; Gommers, R.; Oliphant, T.E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser,
W.; Bright, J.; et al. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nat. Methods 2020, 17, 261–272.
[CrossRef]

67. Lane, T.; Brodley, C.E. An application of machine learning to anomaly detection. In Proceedings of the 20th National Information
Systems Security Conference, Baltimore, MD, USA, 7–10 October 1997.

68. Shon, T.; Moon, J. A hybrid machine learning approach to network anomaly detection. Inf. Sci. 2007, 177, 3799–3821. [CrossRef]
69. Vernekar, S.; Nari, S.; Vijaysenan, D.; Ranjan, R. A novel approach for classification of normal/abnormal phonocardiogram

recordings using temporal signal analysis and machine learning. In Proceedings of the 2016 Computing in Cardiology Conference,
Vancouver, BC, Canada, 11–14 September 2016; Volume 63, pp. 1141–1144.

70. Turney, P.D.; Pantel, P. From frequency to meaning: Vector space models of semantics. J. Artif. Intell. Res. 2010, 37, 141–188.
[CrossRef]

71. Zhang, Y.; Jiang, R.; Petzold, L. Survival Topic Models for Predicting Outcomes for Trauma Patients. In Proceedings of the IEEE
33rd International Conference on Data Engineering, San Diego, CA, USA, 19–22 April 2017; pp. 1497–1504.

72. Nguyen, N.T.H.; Miwa, M.; Tsuruoka, Y.; Tojo, S. Identifying synonymy between relational phrases using word embeddings. J.
Biomed. Inform. 2015, 56, 94–102. [CrossRef] [PubMed]

73. Lopes, A.T.; de Aguiar, E.; De Souza, A.F.; Oliveira-Santos, T. Facial expression recognition with convolutional neural networks:
Coping with few data and the training sample order. Pattern Recognit. 2017, 61, 610–628. [CrossRef]

74. Uhlmann, E.; Pontes, R.P.; Laghmouchi, A.; Bergmann, A. Intelligent pattern recognition of a SLM machine process and sensor
data. Procedia CIRP 2017, 62, 464–469. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1038/s41592-019-0686-2
http://dx.doi.org/10.1016/j.ins.2007.03.025
http://dx.doi.org/10.1613/jair.2934
http://dx.doi.org/10.1016/j.jbi.2015.05.010
http://www.ncbi.nlm.nih.gov/pubmed/26004792
http://dx.doi.org/10.1016/j.patcog.2016.07.026
http://dx.doi.org/10.1016/j.procir.2016.06.060

	Virtual Test Beds for Image-Based Control Simulations using Blender
	Recommended Citation

	Introduction
	Preliminaries
	Notation
	Stochastic Processes and Their Control
	Modeling and Animation in Blender
	Object Creation and Sizing
	Object Property Animation Using Blender's Python Interpreter
	State Detection Using Images


	Use of Blender for Modeling and Image-Based Control Tests of Self-Assembly and Environment Recognition
	Animation of Bubble Motion in Blender
	Equations of Motion of a Bubble
	Animation of Bubble Position in Blender
	Comparing Predictions with Between-Keyframe Interpolations
	Developing Useful Visuals in Blender

	Evaluating Identification Techniques for a Controlled System under Image-Based Control in Blender
	Equations of Motion for a Self-Propelled Rod
	State Space and Transition Probabilities
	Policy Generation
	Blender Implementation of Rod Dynamics
	Image Capture and State Measurement
	Animation and Control Execution
	Opportunities for Image-Based Control Testing in Blender Based on the Stochastic Nanorod

	Modeling Sunlight Effects on Outdoor Reactors in Blender
	Model Equations for Tank Reactor
	CSTR Model with Sunlight Factor
	Ambient Light Simulation and Detection
	Animation and Control Execution
	Control Effectiveness with and without Weather Detection


	Conclusions
	References

