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Evaluation of Alternative Implementation Methods of Failure Sampling Approach for 

Structural Reliability Analysis 

Kapil Patki1 and Christopher Eamon2 

 

Abstract 

 In this paper, several alternative approaches are used to implement the failure 

sampling method for structural reliability analysis and are evaluated for effectiveness.  

Although no theoretical limitation exists as to the types of problems that failure sampling can 

solve, the method is most competitive for problems that cannot be accurately solved with 

reliability index-based approaches and for which simulation is needed. These problems tend 

to have non-smooth limit state boundaries or are otherwise highly nonlinear.  Results from 

numerical integration and three extrapolation approaches using the generalized lambda 

distribution, Johnson's distribution, and generalized extreme value distribution are compared.  

A variety of benchmark limit state functions were considered for evaluation where the 

number of random variables, degree of non-linearity, and level of variance were varied. In 

addition, special limit state functions as well as two complex engineering problems requiring 

nonlinear finite element analysis for limit state function evaluation were considered.   

It was found that best results can be obtained when failure sampling is implemented with an 

extrapolation technique using Johnson's distribution, rather than with numerical integration or 

the generalized lambda distribution as originally proposed with the method.  
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Introduction 

 Reliability analysis of complex engineering problems, such as those requiring finite 

element analysis, often demand high computational costs. Both simulation-based methods, 

such as Monte Carlo Simulation (MCS) and its variants, as well as reliability index 

approaches such as the First Order Reliability Method (FORM), have been popular choices 

for structural reliability analysis. FORM and similar methods such as the Second Order 

Reliability Method (SORM) (Rackwitz and Fiessler 1978; Breitung 1984) rely on identifying 

the most probable point of failure (MPP) on the failure boundary.  Reliability index  𝛽 is 

commonly used in structural reliability analysis to quantify structural safety rather than 

failure probability directly. It is usually calculated as the distance between the MPP and the 

origin in standard normal space, where the MPP represents the location of the largest value of 

the joint probability density function that lies upon the failure boundary of the limit state 

function.  Although computationally efficient, these methods may provide poor solutions for 

problems nonlinear in standard normal space caused by the linearization of the limit state 

function at the MPP (Eamon et al. 2005; Melchers 1999; Chiralaksanakul and Mahadevan 

2005; Haldar and Mahadevan 2000). Moreover, search algorithms sometimes cannot identify 

the MPP for complex problems that may be highly non-linear, discontinuous, or that have 

multiple ‘local’ MPPs on the failure boundary (Eamon and Charumas 2011).  In such cases, if 

the MPP cannot be found, the reliability index-based methods will fail to provide any 

solution. 

 To reduce the cost of simulation methods but maintain reasonable accuracy, numerous 

variance reduction techniques were developed such as stratified sampling (Iman and Conover 

1982), importance sampling (Rubinstein 1981; Engelund and Rackwitz 1993) and adaptive 

importance sampling (Wu 1992; Karamchandani et al. 1989). However, stratified sampling 

techniques such as Latin Hypercube (Iman and Conover 1982) have not consistently shown 
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significant reductions in computational costs; and as importance sampling methods also rely 

on identifying the MPP, they may also fail to provide solutions, or provide poor solutions, for 

complex limit states. Various other simulation methods that do not rely upon the MPP have 

been proposed, such as subset simulation (Au and Beck 2001; Au et al. 2007) and directional 

simulation (Ditlevesen and Bjerager 1988), among many others.  Although directional 

simulation can perform extremely well in some cases, such as when the limit state boundary 

approaches a spherical shape, it is not particularly efficient when the boundary takes a planar 

form or small multiples thereof  (Engelund and Rackwitz 1993).  A significant body of 

research has been conducted on the development of subset simulation methods, and multiple 

competing versions exist.  An important consideration with this method, however, is proper 

selection of the importance sampling density, some choices of which can be associated with 

high variance in the solution (Au and Beck 2001; Au et al. 2007). 

  Alternatively, rather than refine the reliability method, a response surface technique 

can be used to represent a computationally expensive limit state function with a simpler, 

analytical surrogate function (Gomes and Awruch 2004; Cheng and Li 2009).  Once formed, 

the response surface can be used to provide very fast reliability solutions.  However, these 

techniques often require high computational effort to develop accurate responses for highly 

non-linear or discontinuous limit state functions, a cost which may outweigh the savings 

gained with their use (Eamon and Charumas 2011). 

 As an alternative solution for complex reliability problems, this paper examines the 

use of a modified conditional expectation approach proposed by Eamon and Charumas 

(2011), 'failure sampling.’ The method was reportedly used to accurately solve various 

complex limit states with reasonable computational effort.   The approach offers several 

useful features: (1) as there is no reliance on the MPP, complex problems for which the MPP 

cannot be accurately located,  and thus are unsolvable or poorly solved by methods such as 
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FORM, SORM and importance sampling, can be addressed; (2) for many complex, moderate 

reliability (i.e. reliability index from 3-5) problems that are poorly solved with many other 

methods, computational effort for failure sampling is relatively low; (3) efficiency does not 

vary significantly among different types of problems of the same reliability level; and (4) the 

method is mathematically simple and straightforward to implement.  

  It should be emphasized that, as a simulation-based method, although it can be 

theoretically applied to problems of any complexity or reliability level, failure sampling is 

most effective for problems that are complex and for which reliability index-based methods 

provide no or poor solutions, and for which other simulation methods require an unfeasibly 

large computational effort. For practical implementation, two observations can be noted.  

First, earlier work, as well as the results of this study, have found that no more than 1000 

simulations are usually sufficient to solve a wide range of complex problems with reliability 

indices from 3-5 and sometimes higher (Eamon and Charumas 2011).  Increasing the number 

of simulations will correspondingly increase the precision of the solution as well as the 

reliability level that can be addressed.  Second, for problems that can be solved accurately 

with non-simulation methods such as FORM (typically, problems that are simple; i.e. smooth 

limit state boundaries that are not highly nonlinear in standard normal space), failure 

sampling is usually not competitive, as reliability index-based approaches can typically 

accurately solve simple problems with many fewer calls to the limit state function than can a 

simulation approach.  Thus, for simpler problem types and for problems with low reliability, 

other methods are generally more efficient.   

  The failure sampling solution process can be implemented in various ways.  In 

previous work, the numerical integration and generalized lambda distribution fit methods 

were used, which are described in the next section.  In this study, several alternative methods 
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are considered, and results superior to those originally presented by Eamon and Charumas 

(2011) are identified.   

 

Summary of Failure Sampling 

The starting point for a conditional expectation solution is to construct a data sample 

of random variables (Xj) that only lies upon the failure boundary of a limit state function 

g(Xj).  This is achieved by simulating values of all random variables except one (Q) (call this 

remaining, realized set of random variables (xi)), then determining the value q that sets g = 0.  

As the resulting complete set of (xj) (containing (xi) and q) is biased due to the non-random 

values determined for Q, (xj) is not used to directly compute failure probability pf as with the 

traditional MCS process (as this would always result in pf = 1.0).  In the failure sampling  

process, values for Q are not of interest; Q is a single random variable with statistical 

properties that are expected to be fully defined.  Rather, assuming the problem has multiple 

random variables and is somewhat complex, a statistical description of the random function 

within g containing the variables other than Q,  R(Xi),  is of interest, which can be found by 

obtaining values for Q, as described using the process below.  The advantage of sampling 

R(Xi) only rather than sampling g directly with all RVs (Xj), such as in the traditional MCS 

process, is significant. In particular, only sampling R(Xi) allows the failure region of the 

problem to be more easily captured, as shown in Figure 1.   The complete approach is fully 

described elsewhere (Eamon and Charumas 2011), whereas a step-wise summary of the 

procedure is provided here.   

 

1. From an original limit state function g(Xj) with random variables (Xj), a control random 

variable Q is chosen. A new limit state function g* is then formed such that it has an 

equivalent failure boundary to that of g(Xj), but Q is separated from the remaining random 

variables.  That is, at failure, g(Xj) is expressed as: 
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                                        g* = R(Xi) - Q  = 0                                                       (1) 

Here, R(Xi) is the portion of the limit state function that is not a function of Q, and (Xi) is the 

set of all random variables (Xj) except Q.  There is no theoretical limitation to the selection of 

Q, although it is best that Q is selected such that it is statistically independent of the 

remaining random variables (Xi).  For example, consider a simple limit state function g = 

X1X2 - X3/X4.   Assume X3 is chosen as the control variable Q.   A new limit state boundary is 

then written as g* = 0 =  X1X2X4 - X3.  Here, X1X2X4 = R(Xi) and X3 = Q.   In a more realistic, 

complex case, g* can only be expressed implicitly, such as: g* = f(Xi, Q), where the 

evaluation of f(Xi, Q) requires a numerical method such as finite element analysis.   This 

implicit form causes no theoretical difficulty, as g* need not be explicitly expressed in terms 

of (Xi) and Q.  However, implicit forms of g* will require the use of a nonlinear solver to set 

g* = 0, as discussed in step 3 below.  

 

2. Random values for variables within R, (Xi) (i.e. all random variables except Q) are 

simulated.  In this paper, direct MCS is used for the simulation.  R(Xi) is then evaluated.  For 

the example above, MCS would be used to simulate values x1, x2, and x4 for random variables 

X1, X2, and X4, respectively.   

 

3. Based on the set of realized random variable values (xi) in step 2, the value of Q needed to 

satisfy Eq. 1, (q), is determined.  For simple problems that can be written explicitly as g* = 0 

= R(Xi) – Q, this is simply q = R(xi).   For implicit, nonlinear problems, such as g* = f(R(Xi), 

Q), to find a value q such that g* = f(R(xi), q) = 0, no closed-form solution exists, and some 

type of nonlinear solver must be used.  In general, q is incrementally increased (or decreased) 

until the limit state g* equals zero.  For this study, the bisection method is used with 1%-3% 
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tolerance to satisfy Eq. 1 for such problems, as discussed in more detail in example problem 

3, below.   

 

4. Steps 2-3 are repeated until a sufficient number of values for Q have been determined.  In 

this paper, 1000 simulations were used.    At this point, there is no need to evaluate the true 

response further. Notice that, since q = R(xi) per step 3, the values of q that were determined 

also equal values of R(xi) on the failure boundary.  That is, a data sample representing the 

random function R(Xi) with variables (Xi) (i.e. all but Q) has been established.   

 

5. The data sample for R(xj) is further manipulated in one of two ways.  In the first process, 

the numerical integration approach, a probability density function (PDF) estimate of the data 

is developed.  This PDF is then numerically integrated to form a cumulative distribution 

function (CDF).   As discussed in Eamon and Charumas (2011), rather than forming a CDF 

directly from the R(xi) data sample, developing a PDF first tends to reduce variance in the 

solution.  As recommended, when considering the integration approach, the PDF estimate 

was formed from 50 intervals, creating a 50-point CDF upon integration. The second method 

in which the R(xi) data can be manipulated is by replacing the data completely with an  

analytical curve.  If the curve is highly flexible and can fit the data well, this approach has the 

advantage of extending the tail of R(xi) beyond that which was originally generated. 

 

6. Failure probability is estimated.  Two general approaches exist, depending on the method 

used to manipulate the R(xi) data in step 5.  Notice that, with the statistical parameters of 

R(Xi) estimated, the limit state function is effectively reduced to a two random variable 

problem given by: g* = R – Q, where the potentially complex (and possibly implicit) R(Xi) is 

now represented explicitly as a single random variable R.   
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Considering the first method for solution, if the numerical integration approach 

discussed in step 5 was used to form a CDF of R(xi), the most straightforward way to 

compute  pf  is to simply numerically integrate the well-known expression: 

                                                          

In Eq. 2, FR(x) refers to the estimated CDF of R(xi), found per step 5, and fQ(x) is the PDF of 

Q.    

Alternatively, if the original R(xi) data are represented with an analytical distribution, 

pf  (or reliability index ) of g* = R – Q can be quickly calculated with one of many available 

simple reliability methods, such as MCS or FORM, as the original, potentially complex 

multi-variate function g is now represented analytically as an equivalent, simple and 

analytical two random variable problem with R and Q fully defined. With this approach, for 

this study, MCS was used to compute pf of g*, then results reported in terms of reliability 

index   with the transformation β= -Φ-1(pf), where Φ is the standard normal CDF.  Notice 

that  essentially represents the number of standard deviations from the mean of a standard 

normal random variable associated with the given failure probability.  Although 

transformation from pf to β is not necessary, reliability index is the standard metric of safety 

in structural reliability analysis rather than pf directly, which is often numerically 

cumbersome.  Note that typical notional reliability indices of components designed by 

prevailing structural engineering Load and Resistance Factor Design standards are generally 

between 2 and 4 (Rosowsky et al. 1994; Eamon and Nowak 2005; Szerszen and Nowak 

2003)). 

 

 Implementation Methods Considered 

 In this study, after forming the R(xi) data sample, several alterative analytical 

distributions were used to represent R(xi): the generalized lambda distribution (GLD), 
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Johnson’s distribution (JSD), and the generalized extreme value distribution (GEV).    

 The generalized lambda distribution is a four parameter distribution known for its 

high flexibility, and can represent many common distributions such as normal, lognormal, 

Weibull, etc. (Karian and Dudewicz 2011). The distribution is defined by four parameters: λ1, 

λ2, λ3, and λ4. Parameters λ1 and λ2 are location and scale parameters, respectively, while λ3 

and λ4 describe skewness and kurtosis.  The distribution can be defined as follows. Given the 

quantile function  𝑄(𝑢) = 𝜆1 +
𝑢𝜆3−(1−𝑢)𝜆4

𝜆2
   (the inverse of the CDF), at x = Q(u), where 

input parameter u refers to probability (i.e. from 0 to 1), the PDF of the generalized lambda 

distribution is given by: 

𝑓𝑅(𝑥) =
𝜆2

[𝜆3𝑢(𝜆3−1) + 𝜆4(1 − 𝑢)(𝜆4−1)]
                                                       (3) 

There are numerous methods to determine the parameters of the distribution (Karian and 

Dudewicz 2011; Ozaturk and Dale 1985; Asif and Helmut 2000).  For this study, the method 

of moments was used (Karian and Dudewicz 2011). This process makes use of expressions 

that relate parameters λ1 -λ4 to the first four sample moments.  However, these expressions are 

implicit, and due to the algebraic complexity of the relationships, direct solution of λ1 -λ4 is 

generally not possible, and numerical methods are commonly employed.  In a typical 

numerical process, values for  λ3 and λ4  are first found by  minimizing the difference between 

the generalized lambda distribution moments and the sample moments, while constraining 

results to a feasible solution space.  In this study, a sequential quadratic programing 

optimization technique is used to solve the minimization problem. Once λ3  and λ4 are 

determined, the relationships among λ1 -λ4 and the sample moments described above can be 

sufficiently simplified such that the remaining parameters λ1  and λ2  can be found 

algebraically (Karian and Dudewicz 2011). 
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In some cases, changing the method used to determine the generalized lambda 

distribution curve parameters may influence the resulting quality of fit.  In addition to the 

method of moments, other common methods of determining curve parameters for the 

generalized lambda distribution include the method of percentiles and the method of L-

moments.  Some have found that the method of percentiles gives superior results to the 

method of moments when sample moments are computed with higher levels of uncertainty; 

i.e. usually when considering small sample sets and large coefficients of variation (Karian 

and Dudewicz 2011).  However, the authors of this study found no significant advantage with 

the method of percentiles over the method of moments for fitting the generalized lambda 

distribution to the problems considered.  Although the method of L-moments has been shown 

to provide good results in some cases, it was generally found to produce inferior results for 

the generalized lambda distribution when compared to the method of percentiles (Karian and 

Dudewicz 2003), and was thus not considered further in this study. 

 Similar to the generalized lambda distribution, the Johnson system of distributions is 

defined by four parameters and has significant flexibility to cover a wide variety of shapes. 

The Johnson system is based on three possible transformations of a normal random variable 

in addition to the identity transformation. The ‘SB’ transformation represents a bounded 

distribution, the ‘SL’ transformation represents a semi-bounded distribution, and the ‘SU’ 

transformation represents an unbounded distribution in the Johnson system.  Transformation 

from a standard normal random variable Z to a Johnson random variable X for the SB, SL and 

SU transformations can be represented as follows: 

              𝑋 =  ξ +  𝜆𝑗 ∙ 𝛤−1 (
𝑍 − 𝛾  

𝛿
)                                                                                (4)                         

where Γ denotes the transformation function, γ and δ are the shape parameters, ξ is the 

location parameter, and λj is the scale parameter.  The resulting PDF is given by:  
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𝑓𝑅(𝑥) =
𝛿

𝜆𝑗√2𝜋
  𝑔′ (

𝑥 −  ξ 

𝜆𝑗
) 𝑒𝑥𝑝 [ −

1

2
(𝛾 + 𝛿 𝑔 (

𝑥 −  ξ  

𝜆𝑗
)  )

2

]                          (5) 

where  g(y) = ln(y), ln(y/(1-y)), and ln(y+(y2+1)1/2)  for the SL, SB, and SU transformations, 

respectively, and  Y= (X- 𝜉) /𝜆𝑗 .  The ‘SN’ transformation is the identity transformation and 

represents a normal distribution. Although various methods to determine the parameters of 

the Johnson distribution are available, the method of moments, method of percentiles, and 

method of quantile estimators are common. In this research, the method of percentile 

estimators was used (Karian and Dudewicz 2011; George 2007; Slifker and Shapiro 1980), as 

it was found that the method of moments produced less accurate estimations of the third and 

fourth moment parameters for the Johnson distribution, particularly when the sample size 

becomes small.  In the percentile method, specified percentiles of the standard normal 

distribution are matched with corresponding percentile estimates of the sample. More 

specifically, using the process described by Slifker and Shapiro (1980), the parameters of the 

distribution are determined by solving the transformation function Γ at four different 

percentiles, where the percentiles of the standard normal variate are taken between three 

intervals of equal length at points ±𝑧 and ± 3𝑧. Based on the calculated discriminant value 

between the percentiles, a best-fit Johnson family can be selected, and with explicit 

expressions available in the literature (Slifker and Shapiro 1980), the corresponding 

distribution parameters are readily determined.   

 The generalized extreme value distribution combines three simpler distributions into a 

single form, allowing a continuous range of possible shapes weighted among the component 

distributions. Similar to the extreme value distribution, the generalized type is often used to 

model the smallest or largest values in a large set of independent data. It is defined by a 

location parameter μ, a scale parameter σ, and a shape parameter k, where k takes on a value 

other than zero. The PDF of the distribution is described by: 
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𝑓𝑅(𝑥) =  
1

𝜎
exp (− (1 + 𝑘

(𝑥 − 𝜇)

𝜎
)

−1
𝑘

) ((1 + 𝑘
(𝑥 − 𝜇)

𝜎
)

−1−
1
𝑘

)                  (6) 

The parameters of the distribution were determined using similar techniques as those used for 

the Johnson distribution.  

 

Comparison Problems and Results 

 As noted in the introduction, the purpose of this study is to investigate the 

effectiveness of different methods of implementing failure sampling, and perhaps to lead to 

additional improvements in method accuracy and/or efficiency.  As such, it is desirable to 

investigate the performance of the implementation methods with a variety of different 

reliability problems. For such an evaluation to be feasible, the true solution of the problems 

must be readily verifiable.    Therefore, some of the problems investigated are benchmark 

reliability problems taken from the literature.  As established benchmark problems, these can 

be effectively solved with existing reliability approaches, and a failure sampling solution is 

not needed, nor does it represent the most efficient solution for some of these problems.  

Nevertheless, the solution of such problems can provide valuable information as to the 

effectiveness of the investigated implementation approaches for different problem types.  

However, as failure sampling was specifically intended for complex, more realistic 

engineering problems, two problems of this type were also considered, both of which involve 

nonlinear finite element analysis for the evaluation of the limit state function (problems 3 and 

4).  In order to identify potential differences in the implementation methods, a relatively 

small number of simulations (1000) was used to solve all problems, even those with a 

reliability index approaching 4 (pf approximately 1:30,000).  Although very reasonable 

solutions can be obtained with this small number of simulations for even higher reliability 



 13 

indices, if desired, additional accuracy and precision can be achieved by increasing the 

number of simulations. 

  

Problem Series 1: Flexible Limit State Function  

 This function is taken from Eamon et al. (2005) and is used to evaluate the effect of 

varying the number of random variables (RVs), distribution type, level of variance, problem 

linearity, and target reliability level. Specific parametric variations included: 2, 5, and 15 

RVs; coefficients of variation of 5% and 35%; normal, lognormal, and extreme type I 

distributions;  algebraic linearity, where linear, moderately nonlinear, and highly nonlinear 

limit states were considered; and target reliability index, where ‘low’ and ‘high’ values were 

considered, ranging from 0.3 - 5.0. Various combinations of these different parameters 

resulted in a total of 72 different limit state functions for consideration.  The general form of 

the limit state function is given as: 

𝑔 = 𝑘 ∑ 𝑑𝑖

𝑛

𝑖=1

−  𝑐 ∑
𝐿𝑗 

4 𝑤𝑗

𝐸𝑗𝐼𝑗

𝑘

𝑗=1

                                                                          (7) 

 

Parameters taken as RVs are given in Table 1, while values for the parameters are given in 

Table 2, and have been used either as the mean value if an RV, or a constant value if a non-

RV, depending on the case type. All cases were evaluated with failure sampling using  

numerical integration (abbreviated as “NI” in the figures and tables), and the generalized 

lambda, Johnson, and generalized extreme value distribution implementations. Results are 

measured in terms of accuracy and precision, where accuracy is the mean value of the ratio of 

computed reliability index to the exact value for the specific case under consideration. The 

exact value for low to moderate target reliability indices is determined from 1 x 106 MCS 

simulations, and for high target reliability index cases, the exact value is determined from 1 x 

109 MCS simulations. Precision is used to measure the degree of consistency of results, and is 
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determined by calculating the coefficient of variation (COV) of accuracy, based on five 

evaluations of each problem. Figures 2-7 show the effect of number of RVs, degree of non-

linearity, and RV distribution type on the different implementation methods. 

 Figures 2 and 3 concern the effect of linearity.  As shown, it was found that varying 

linearity had little effect on solution quality.  Considering differences among methods, by a 

slight margin, the generalized lambda distribution produced the best overall results for 

accuracy (Figure 2),  generating error within 1% for all cases (where throughout this study, % 

error is taken as the absolute value of:  (exact value – calculated) x 100 /exact value).  

However, the Johnson distribution produced nearly the same results with the exception of  

one case (nonlinear, low reliability), at 4% error.  Numerical integration and the generalized 

extreme value distribution provided less consistent accuracy from case to case, and the 

generalized extreme value distribution performed worse overall, with three cases from 5-8% 

error.  For precision (Figure 3), the Johnson distribution generated best results overall, with 

only 5-6% COV in the solution when using 1000 simulations.  The generalized lambda 

distribution was somewhat worse, with COV from 8-10%.  Similar to the results for 

accuracy, numerical integration and the generalized extreme value distribution were most 

variable from case to case for precision, with  the generalized extreme value distribution 

results again worse overall, with about 10-12% COV.   

 Generally, as shown in Figures 4 and 5, increasing the number of RVs also had no 

significant effect on solution outcome.  However, the 15 RV, high reliability case was 

generally least precise for all methods.  The generalized lambda and Johnson distributions 

produced nearly the same accuracy (Figure 4), with about 4% error or less for all cases.  One 

exception is the 15 RV high reliability case, for which the Johnson distribution generated 7% 

error.  Similar to previous results, numerical integration and the generalized extreme value 

distribution were found to have the most variation and highest error in results, where in two 
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cases (5 RV, low reliability for the generalized extreme value distribution and 15 RV, high 

reliability for numerical integration), error approached a very high 20%.   Regarding 

precision (Figure 5), the Johnson distribution was shown to produce best results overall, 

where COV ranged from 3-6% in all cases except one (15 RV, high reliability) and COV was 

approximately 10%.  However, all other methods produced higher solution variance with this 

case as well, with COV from about 12-14%.  The generalized lambda distribution performed 

worse overall for precision, ranging from about 12-15% COV.  As with previous results, 

significant variation was found among cases with both numerical integration and the 

generalized extreme value distribution, ranging from 2-14% COV depending on problem 

type.   

 As with previous results, altering RV distribution normality, as shown in Figures 6 

and 7, did not degrade the solution.  As shown in Figure 6, only minor variations in accuracy 

were found among different methods.  One exception is the normal, high reliability case, for 

which the Johnson distribution produced a relatively high error at about 9%. For precision 

(Figure 7), results were again similar for most methods, producing about 4-6% COV.  

Overall, the generalized lambda distribution appears best, with most cases at 4% COV.  

However, results from the Johnson distribution are more consistent among cases, though with 

a slightly higher typical COV at about 6%.  As with some previous results, most variation 

from case to case occurred with numerical integration and the generalized extreme value 

distribution. 

 In summary, the results show that most implementation methods produced reasonably 

accurate results for most cases, though precision suffered in some cases when limiting the 

sample to 1000 simulations.  In particular, the generalized extreme value distribution 

demonstrated relatively poor precision for nonlinear limit states and for high reliability cases, 

while the generalized lambda distribution implementation lacked precision in general relative 
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to the other approaches.  As expected, all methods were accompanied by a decrease in 

precision for high reliability cases with a high number of RVs.   Though a few exceptions 

exist, overall, the most accurate and consistent results were found with the Johnson 

distribution.   Surprisingly, the cases where the Johnson distribution yielded lowest accuracy 

were linear limit state functions. However, these cases were those with 15 RVs and high beta 

values.  It was also found that the precision of numerical integration, the generalized lambda 

distribution and the generalized extreme value distribution decreased most when the number 

of RVs increased.   Here, the generalized lambda and generalized extreme value distributions 

failed to provide a good fit for highly non-linear cases with 15 RVs.  For the generalized 

lambda distribution, this can be attributed to a poor representation of skewness and kurtosis 

of the distribution for the limited size of the R(xi) sample taken. The generalized extreme 

value distribution, however, poorly represented the tail region. 

 

Problem Series 2: Special Limit State Functions 

 Engelund and Rackwitz (1993) presented a series of unique, often difficult to solve 

limit state functions.  The results of two of these functions found to be most challenging for 

the methods considered in this paper are presented below.   

 

Multiple Reliability Indices: 

 This hyperbolic limit state function has two reliability indices, and is given as:  

𝑔 =  𝑥1𝑥2 − 146.14                                                               (8) 

where x1 and x2 are normal RVs having mean values of 78064.4 and 0.0104, with 

corresponding standard deviations of 11709.7 and 0.00156, respectively. Results are 

presented in Table 3, where it can be observed that only numerical integration and the 

Johnson distribution could produce  results, whereas the generalized lambda and generalized 

extreme value distributions failed to fit the R(xi) sample. As shown, both accuracy and 
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precision for numerical integration and the Johnson distribution are similar, with numerical 

integration slightly superior (exact solution obtained from 1 x 109 MCS samples). For 

comparison, MCS and FORM solutions (limited to the same computational effort as the 

failure sampling approaches) are given as well; neither could produce a viable solution for 

this problem. 

 

Maximum Function: 

 This limit state function is expressed as the maximum of several sub-functions, and is 

given by the following expression: 

                                                       𝑔 = max(𝑔1, 𝑔2, 𝑔3,𝑔4)                         (9) 

where: 

𝑔1 =  2.677 −  𝑢1 − 𝑢2 

𝑔2 =  2.500 −  𝑢2 − 𝑢3 

𝑔3 =  2.323 −  𝑢3 − 𝑢4 

𝑔4 =  2.250 −  𝑢4 − 𝑢5 

All ui are standard normal random variables.  As with the previous example, as shown in 

Table 4, the generalized lambda and generalized extreme value distributions were unable to 

fit the data, whereas numerical integration and the Johnson distribution produced reasonable 

results.  In this case, the Johnson distribution produced the greatest accuracy and precision 

(exact solution obtained from 1 x 109 MCS samples). 

 

 

Problem 3: Non-Linear Truss 

 This problem is based on that described in Eamon and Charumas (2011), and is meant 

to represent complexity in the range of that for which the failure sampling approach is 

intended. As shown in Figure 8, a 10 member non-linear truss is subjected to a load P. 

Solution of the problem cannot be achieved with a closed-form analytical expression, and a 
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finite element code (ABAQUS) was used to evaluate the response. Two different limit states 

were considered for this problem: one in terms of displacement, and another in terms of 

stress. The material was taken as steel, with a bilinear stress-strain curve and an elastic 

modulus E of 200 GPa (29,000 ksi). For the displacement-based limit state problem, only 

three RVs were considered: yield stress (σy), post-yield modulus (E2), and load (P).  RVs σy 

and E2 are considered to be the same for all truss members, with means of 345 MPa (50 ksi) 

and 8.28 GPa (1200 ksi), and COVs of 0.10 and 0.25, respectively. To vary reliability index, 

two values of P were considered: 223 and 267 kN (50 and 60 kips), with COV of 0.10. A 

third variation of this problem was considered as well in which resistance RVs (σy, E2, P) 

were taken as partially correlated (ρ= 0.50), and COV of each increased to 0.35.  In all 

problems, failure is defined as the state where displacement at the point of load application 

exceeds 1.5 inches. Hence, the limit state function is given as: 

                            g = 1.5 - D(σy, E2, P)                                             (10) 

All RVs are taken as normally distributed, and P was considered to be the control variable.  

The bisection method was used to solve for the condition g* = 0 (Eq. 1), with an error 

tolerance of 1% in one case and 3% in a second case, for comparison. The method works by 

bracketing the solution, then refining the solution estimate with subsequent linear 

interpolations that narrow the bracket.  Note that although the limit state function was 

evaluated with a sample size of 1000 (the "nominal" number of calls given in the results 

tables), the actual number of function calls (the "actual" number of calls given in the tables) 

exceeded this value, due to the iterative process needed to find the root of g* = 0 .  More 

sophisticated root finding techniques are available that can decrease the actual number of 

calls further, improving solution efficiency. However, this is a topic beyond the scope of this 

paper.  For fair comparison, the actual number of calls is kept constant for all methods, such 

that total computational effort is the same. 
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 A more complex version of the problem was also considered, where the limit state 

function was reformulated in terms of stress. In this case, each member of the truss was 

associated with three independent RVs, resulting in a total of 31 RVs for the problem.  RVs 

are cross-sectional area A (mean = 1290 mm2 (2 in2), COV = 0.05), and the previous RVs of 

yield stress σy and post yield modulus E2, with the same statistical parameters used in the 

displacement problem.  The mean value of load P (the control variable) was taken as 223 kN 

(50 kips) in one version of the problem and 289 kN (65 kips) in another, to vary target 

reliability index, with COV of 0.1.  A third variation was also considered in which resistance 

RVs were taken as partially correlated (coefficient of correlation ρ= 0.30) for area RVs, yield 

stress RVs (ρ= 0.50), and for post-yield modulus RVs (ρ= 0.70), while the COV of the post-

yield modulus RVs was increased to 0.30.   The failure criterion was defined as the state 

where the stress in member 1 reaches its yield stress. The resulting limit state function is 

given as: 

g = σy1 - σ1(P, σyj, E2i, Ai) for i = 1 to 10, j = 2 to 10                   (11) 

The exact solution was obtained from 1 x 109 MCS samples, which required approximately 

400 CPU hours. Tables 5 and 6 show the results obtained for the displacement and stress 

limit state functions, respectively. For comparison, and to verify the suitability of problem 

complexity, a FORM solution was also attempted. This resulted in relatively high errors or 

solution failure for the displacement problems (Table 5) and failed to provide solutions for 

the stress problems (Table 6), as the MPP could not be located. Similarly, no solution could 

be obtained from MCS for the higher reliability cases when limiting the actual number of 

function calls to that used by the failure sampling implementation methods.   

 For the displacement limit case (Table 5), all failure sampling implementation 

methods produced reasonable results (1-5% error) for the low reliability level case (P = 267 

kN) except numerical integration, where error was approximately 9%.  For the higher 
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reliability case (P = 223 kN), only numerical integration and the Johnson distribution could 

solve the problem, with similar, relatively low error from 2-3% for the high  (3%) g* = 0 

tolerance, and about 0.5% error for the low g* = 0 (1%) tolerance alternative.  Of course, the 

higher accuracy associated with lower g* = 0 error tolerance is accompanied by higher 

simulation cost, which increased from 5000 to 8000 actual simulations, as shown.  For the 

correlated, high COV RV case, the performance of numerical integration markedly 

decreased, producing a large error of approximately 25%.  However, the Johnson distribution 

solution was not significantly affected, producing less than 3% error. 

 Considering the stress limit case (Table 6), as with the previous displacement limit 

problem, all methods generated reasonable solutions for the low reliability case except for 

numerical integration, where error exceeded 7% for the high g* = 0 error tolerance case.  

However, for the higher reliability case (P = 200 kN), only the Johnson distribution could 

produce a solution for both high and low g* = 0 error tolerance levels.  In both cases, error 

was relatively low, from about 1-3%.  Only the Johnson distribution and numerical 

integration could provide solutions for the correlated, high COV RV case.  Here, the Johnson 

distribution error was approximately 3%, while results for numerical integration significantly 

worsened to nearly 13% error. 

 In summary, only the implementation method using the Johnson distribution could 

provide consistent and reasonable solutions for each of the multiple versions of the problem 

that were considered. 

 

Problem 4: Steel Frame 

 This problem considers a small structure representing a bay of a larger building, with 

dimensions 7.3 m by 7.3 m (24 ft by 24 ft) in plan and 14.5 m (48 ft) high.  It is a four-story 

steel frame, with concrete floor slabs and four interior shear walls, as shown in Figure 9. Note 

that it is idealized for the purpose of numerical investigation and not meant to model an 
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actual structure.  Beams and columns of the structure are modeled with frame elements and 

assigned W14X22 wide flange steel beam section properties. The floor slabs and shear walls 

were modeled as shell elements, with slab thickness of 300 mm (12 in). A bilinear stress-

strain model for steel was used, with RVs taken as modulus of elasticity of steel, Es, with 

mean of 200 GPa (29000 ksi) and COV of 0.1, and post-yield modulus of elasticity of steel, 

Et, with mean of 8.3 GPa (1200 ksi) and COV of 0.1. Additional RVs are modulus of 

elasticity of concrete, Ec, with mean of 24 GPa (3500 ksi) and COV of 0.1, and a uniform 

pressure load P applied to the floor slabs, which was taken as the control variable, with mean 

of 3.35 or 4.31 kN/m2 (70 or 90 psf), depending on target reliability index considered, with 

COV of 0.1. The failure criterion is defined as the state where displacement at any point on 

the fourth floor slab exceeds 50 mm (2 in).  The limit state function is given as: 

                         g = 2 - D(Es,Et, Ec, P)                                            (12) 

All RVs were taken as normally distributed.  The limit state function was evaluated using a 

commercial finite element analysis code (ABAQUS).  Approximately 600 CPU hours were 

required for 1x109 MCS samples to evaluate the exact solution.   Two variants of this 

problem with higher complexity were also considered.  In the first variant, resistance RVs 

were taken as partially correlated (ρ= 0.65) and COV of all resistance RVs was increased to 

0.35.  For the second variant, the number of resistance RVs was significantly increased to 52.  

In this problem, each of  the 4 building floor slabs was divided into 4 sections as shown in 

Figure 9, and assigned a different modulus RV, as well as each of the 4 core shear walls for 

each floor, for 32 RVs Eci.  The COV for each of these RVs was taken as 0.30, with ρ=0.30.  

Additional RVs are 8 steel column elastic modulus RVs Esi and post-yield modulus RVs Eti 

(16 RVs total), where COV was taken as 0.3 and ρ=0.50, as well as a floor thickness RV ti for 

each floor (4 total), with COV of 0.1 and ρ=0.70. 



 22 

           Results for the more simple, 4 RV problems with uncorrelated RVs are shown in Table 

7.  As shown, it was found that all methods considered could provide reasonable solutions for 

the lower reliability case (P = 400 kN).  However, for the higher reliability case (P = 312 

kN), only the generalized lambda and Johnson distributions could provide solutions, with the 

Johnson distribution providing the lowest error at less than 4%.  Considering the more 

complex problems in Table 8, it can be seen that in both cases (4 and 53 RV versions), only 

the Johnson distribution could produce a solution.  Here, the more complex problems did not 

reduce the solution fidelity for the Johnson distribution, where error remains at 3-4%. 

 

Conclusion and Recommendations 

 By coupling simple tools such as MCS, conditional expectation, and numerical 

integration and/or tail extrapolation, it was found that a wide variety of complex reliability 

problems can be consistently and accurately solved with reasonable computational effort 

using the modified conditional expectation approach implemented as failure sampling.   

Although no theoretical limitation exists to the types of problems that failure sampling can 

solve, the method has shown to be most useful for complex, computationally demanding 

reliability problems for which traditional methods may provide unacceptably inaccurate or 

unfeasibly computationally costly solutions, such as problems which have non-smooth limit 

state boundaries or that are otherwise highly nonlinear.  In this study, an evaluation of 

alternative implementation methods was conducted.  In particular, different approaches for 

estimating the PDF of the data sample, and the effect on the efficiency and accuracy of the 

solution were studied.  In total, 85 limit state variations were investigated that covered a wide 

variety of problems, with parametric changes including the number of RVs, degree of non-

linearity, and level of variance.  In addition, several special limit state functions and two 

complex engineering problems requiring finite element analysis for limit state function 
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evaluation were considered.  From the investigation, it was found that increased accuracy can 

be obtained, for a wider variety of problems, with  the Johnson distribution implementation 

rather than the generalized extreme value distribution or from the direct numerical integration 

or  generalized lambda distribution approaches as originally suggested by Eamon and 

Charmus (2011). In particular, unlike the three other methods considered, the Johnson 

distribution provided highly-accurate to reasonably-accurate solutions for every one of the 

problems evaluated in this study, even when greatly restricting computational effort.   

 In a small number of cases, other approaches provided superior results.  These were a 

nonlinear, low reliability case and a case with a high number of normal RVs with high 

reliability, for which the generalized lambda distribution preformed best, as shown in 

example problem 1.   In these cases, however, the advantage over the Johnson approach was 

relatively small.   Therefore, if the failure sampling approach is considered for reliability 

analysis, the Johnson distribution implementation is generally recommended for use.  If  a 

potentially more refined selection procedure is desired,  an appropriate goodness-of-fit test 

might be considered to estimate the expected effectiveness of a given approach for a 

particular problem.  An error metric such as that proposed by Eamon and Charumas (2011), 

which is based on differences between actual data and candidate curve CDF values, might 

serve this purpose, though its use requires additional effort.  Given the wide applicability of 

the Johnson implementation, however, and the few cases for which alternative approaches 

were found to have a slight advantage, use of such a refinement does not appear to be 

particularly beneficial. 
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Nomenclature 

 

fQ  PDF of Q 

FR  CDF of R(Xj) 

fR  PDF of R(Xj) 

g(Xj)  initial limit state function 

g*  failure sampling limit state function 

pf  failure probability 

Q  control random variable 

Q(u)  GLD quantile function 

R(Xi)  random function within g* excluding Q 

R  R(Xi) represented as a single equivalent RV 

u  GLD PDF input parameter (probability) 

β  reliability index 

λi  GLD parameter 

Ф  standard normal CDF 

Γ  transformation function for JSD 

γ, δ  shape parameter for JSD 

ξ  location parameter for JSD 

λj  scale parameter for JSD 

k  shape parameter for GEV 

μ  location parameter for GEV 

σ  scale parameter for GEV  

 

 

 

 

 

 



 25 

References 

 

 Asif L, and Helmut M. (2000). "Estimating The Parameters Of The Generalized Lambda 

 Distribution." ALGO Research Quarterly, Vol. 3, p. 47-58. 

 Au SK, and Beck JL. (2001). "Estimation Of Small Failure Probabilities In High Dimensions 

 By Subset Simulation." Probabilistic Engineering Mechanics, Vol. 16, p. 263-277. 

 Au SK, Ching J, and Beck JL. (2007). "Application Of Subset Simulation Methods To 

 Reliability Benchmark Problems."  Structural Safety, Vol. 29, p. 183-193. 

 Ayyub BM, and Chia CY. (1992). "Generalized Conditional Expectation For Structural 

 Reliability Assessment." Structural Safety, Vol. 11, p. 131-146. 

 Ayyub BM, and Haldar A. (1984). "Practical Structural Reliability Techniques." ASCE 

 Journal of Structural Engineering, Vol. 110, p. 1707-1724. 

Breitung K. (1984) "Asymptotic Approximations for Multinormal Integrals."  ASCE Journal 

 of Engineering Mechanics, Vol. 110, p. 357-366. 

 Cheng J, and Li QS. (2009). "Application Of Response Surface Methods To Solve Inverse 

 Reliability Problems With Implicit Response Functions."  Computational Mechanics, 

 Vol. 43. p. 451-459. 

Chiralaksanakul A, and Mahadevan S. (2005). "First Order Methods For Reliability Based 

 Optimization." Journal of Mechanical Design, Vol. 127, p. 851-857. 

 Ditlevesen PG, and Bjerager P. (1988). "Plastic Reliability Analysis By Directional 

 Simulation."  ASCE Journal of Engineering Mechanics, Vol. 115, p. 1347-62. 

Eamon C, and Charumas B. (2011). "Reliability Estimation Of Complex Numerical Problems 

 Using Modified Conditional Expectation Method."  Computers and Structures, Vol.  

 89, p. 181-188. 

Eamon C, and Nowak, AS., (2005). “Effect of Edge-Stiffening and Diaphragms on the  



 26 

Reliability of Bridge Girders,” Journal of Bridge Engineering, Vol. 10, No. 2, p. 206-

214. 

Eamon C, Thompson M, and Liu Z. (2005). "Evaluation Of Accuracy And Efficiency Of 

 Some Simulation And Sampling Methods In Structural Reliability Analysis." 

 Structural Safety,  Vol. 27, p. 356-392. 

 Engelund S, and Rackwitz R. (1993). "A Benchmark Study On Importance Sampling 

 Techniques In Structural Reliability." Structural Safety, Vol. 12. p. 255-276. 

 George F. (2007). "Johnsons System of Distribution and Microarray Data Analysis." PhD 

 Dissertation, Department of Mathematics, University of South Florida. 

 Gomes HM, and Awruch AM. (2004). "Comparison Of Response Surface And Neural  

 Network With Other Methods For Structural Reliability Analysis." Structural Safety, 

 Vol. 26, p. 49-67. 

Haldar A, and Mahadevan S. (2000). "Probability, Reliability And Statistical Methods In 

 Engineering Design."  1st ed. New York: John Wiley and Sons. 

 Iman RL, and Conover WJ. (1982). "A Distribution-Free Approach To Inducing Rank 

 Correlation Among Input Variables". Communications in Statistics, Vol. 11. p. 311-

 334. 

 Karamchandani A, Bjerager P, and Cornell AC. (1989). "Adaptive Importance Sampling."  

 Proceedings, International Conference on Structural Safety and Reliability 

 (ICOSSAR), San Francisco, CA., p. 855-862. 

 Karian ZA, and Dudewicz EJ. (2011). "Handbook Of Fitting Statistical Distributions With  

 R." CRC Press. 

 Karian ZA, and Dudewicz EJ. (2003). “Comparison of GLD fitting methods: Superiority of  

percentile fits to moments in L2 norm.” Journal of the Iranian Statistical Society, Vol. 

2, p. 171-187. 



 27 

Melchers RE. (1999) "Structural Reliability Analysis and Prediction." 2nd ed. New York: 

 John Wiley & Sons. 

 Ozaturk A, and Dale, RF. (1985). "Least Square Estimation Of The Parameters Of The 

 Generalized Lambda Distribution." Technometrics, Vol. 27, p. 81-84. 

Rackwitz R, and Fiessler B. (1978). "Structural Reliability Under Combined Random Load 

 Sequences." Computers and Structures, Vol. 9, p. 484-494. 

Rosowsky, D., Hassan, A., and Kumar, N. (1994). "Calibration of Current Factors in LRFD 

for Steel." Journal of Structural Engineering, Vol. 120, p. 2737-2746. 

Rubinstein RY. (1981). "Simulation And The Monte Carlo Method." 1st ed. New York: John 

 Wiley & Sons. 

 Slifker JF, and Shapiro SS. (1980). "The Johnson System: Selection And Parameter 

 Estimation." Technometrics, Vol. 22, p. 239-246. 

Szerszen, MM. and Nowak, AS. (2003). "Calibration of design code for buildings (ACI 318): 

 Part 2 - Reliability analysis and resistance factors."  ACI Structural Journal, Vo.-l.  

 100, No. 3, p. 383-391. 

 Wu YT. (1992). "An Adaptive Importance Sampling Method For Structural Systems 

 Analysis, Reliability Technology." ASME Winter Annual Meeting,  AD 28, p. 217-

 231. 

  



 28 

List of Tables 

Table 1.  Random Variables for General Limit State Function 

Table 2.  Parameter Values for General Limit State Function 

Table 3.  Multiple Reliability Indices 

Table 4.  Maximum Function 

Table 5. Displacement Limit State Function of Non-linear Static Truss  

Table 6.  Stress Limit State Function of Non-linear Static Truss 

Table 7.  Steel Frame Structure 

Table 8.  Complex Steel Frame Structure 

 

 

 

List of Figures 

Figure 1. Example PDFs of g and R(xi) 

Figure 2.  Effect of Linearity on Accuracy  

Figure 3. Effect of Linearity on Precision  

Figure 4. Effect of Number of RVs on Accuracy  

Figure 5. Effect of Number of RVs on Precision  

Figure 6. Effect of Normality on Accuracy  

Figure 7. Effect of Normality on Precision  

Figure 8.  Static Non-Linear Truss 

Figure 9.  Steel Frame Structure 

 

  



 29 

Table 1. Random Variables for General Limit State Function 

Case n K RVs 

2 RV linear 1 1 di, wj 

5 RV linear 2 3 di, wDL1, wLLm* 

15 RV linear 5 10 di, wDLm, wLLm* 

2 RV nonlinear 1 1 di, Lj 

5 RV nonlinear 1 1 di, wj, Lj, Ej, Ij 

15 RV nonlinear 3 3 di, wj, Lj, Ej, Ij 
Note: see eq. 7.  i=1 to n and j=1 to k and indicate number of terms (RVs). 

*m=1-2 for 5 RV linear case; m=1-5 for 15 RV nonlinear case. 
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Table 2.  Parameter Values for General Limit State Function 

Parameter* Value 

c 5/384 

Lj 6.1 (m) 

Ej 2 x 108 (kPa) 

Ij 6.452 x 10-4 (m4) 

wj 73600 (N/m) 

𝑤𝐷𝐿 19300 (N/m) 

𝑤𝐿𝐿 54300 (N/m) 
*within eq. 7, w may take the value of either wj, wDL, or wLL, as shown in Table 1.  
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Table 3.  Multiple Reliability Indices 

 method no. of calls β %err Precision 

Exact solution  4.11 -- -- 

FORM -- Fail -- -- 

MCS 1000 N.F.* -- -- 

NI 1000 4.26 3.59 0.085 

GLD 1000 Fail -- -- 

JSD 1000 3.93 4.33 0.101 

GEV 1000 Fail -- -- 

* N.F. indicates no failures 
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Table 4.  Maximum Function 

 method no. of calls β %err Precision 

Exact solution  3.53 -- -- 

FORM -- Fail -- -- 

MCS 1000 N.F.* -- -- 

NI 1000 3.66 3.66 0.035 

GLD 1000 Fail -- -- 

JSD 1000 3.46 1.95 0.013 

GEV 1000 Fail -- -- 

* N.F. indicates no failures 
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Table 5. Displacement Limit State Function of Non-linear Static Truss  

 nominal Actual % error mean P=267 mean P=223 Correlated 

method no. of calls no. of calls tolerance β %err β %err β %err 

Exact Solution  1×109  2.25 -- 3.59 -- 3.56 -- 

FORM 150 -- -- 1.96 12.9 3.12 13.1 Fail -- 

MCS 5000 5000 

3% 

2.54 11.4 N.F. -- N.F. -- 

NI 1000 5000 2.04 9.33 3.50 2.50 2.66 25.3 

GLD 1000 5000 2.34 3.85 Fail -- Fail  

JSD 1000 5000 2.33 3.43 3.49 2.78 3.66 2.83 

GEV 1000 5000 2.38 5.46 Fail -- Fail -- 

MCS 8000 8000 

1% 

2.32 3.02 N.F. --   

NI 1000 8000 2.18 3.11 3.57 0.56   

GLD 1000 8000 2.19 2.67 Fail --   

JSD 1000 8000 2.28 1.05 3.61 0.41   

GEV 1000 8000 2.34 3.85 Fail --   

* N.F. indicates no failures 
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Table 6.  Stress Limit State Function of Non-linear Static Truss  

 nominal Actual % error mean P=245 mean P=200 Correlated 

method no. of calls no. of calls tolerance β %err β %err β %err 

Exact Solution  1×109  1.78 -- 3.79 -- 3.63 -- 

FORM 250 -- -- Fail -- Fail -- Fail -- 

MCS 5000 5000 

3% 

1.87 4.81 N.F. -- N.F. -- 

NI 1000 5000 1.92 7.30 Fail -- 3.13 12.7 

GLD 1000 5000 1.89 5.82 Fail -- Fail  

JSD 1000 5000 1.85 3.78 3.91 3.07 3.51 3.31 

GEV 1000 5000 1.70 4.70 Fail -- Fail -- 

MCS 8000 8000 

1% 

1.77 0.56 N.F. --   

NI 1000 8000 1.86 4.30 3.17 16.3   

GLD 1000 8000 1.79 0.83 Fail --   

JSD 1000 8000 1.75 1.46 3.82 0.78   

GEV 1000 8000 1.73 2.76 Fail --   

* N.F. indicates no failures 
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Table 7.  Steel Frame Structure 

 nominal Actual mean P = 400 mean P = 312 

method no. of calls no. of calls β %err  β %err 

Exact Solution  1×109 1.803 -- 3.26 -- 

FORM 150 -- 1.86 3.27 Fail -- 

MCS 7000 7000 1.82 0.93 3.10 5.16 

NI 1000 7000 1.84 2.01 Fail -- 

GLD 1000 7000 1.89 4.85 3.52 7.38 

JSD 1000 7000 1.76 2.55 3.14 3.68 

GEV 1000 7000 1.82 0.44 Fail -- 
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Table 8. Complex Steel Frame Structure 

 nominal Actual 4 RVs 53 RVs 

method no. of calls no. of calls β %err  β %err 

Exact Solution  1×109 3.68 -- 3.70 -- 

FORM 250  -- Fail -- Fail -- 

MCS 7000 7000 N.F. -- N.F. -- 

NI 1000 7000 Fail -- Fail -- 

GLD 1000 7000 Fail -- Fail -- 

JSD 1000 7000 3.52 4.37 3.59 3.06 

GEV 1000 7000 Fail -- Fail -- 
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 (a) Calculating pf by sampling g directly results in a very small failure 

region. (b) Failure region by sampling R(Xi).   
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Figure 1. Example PDFs of g and R(xi). 
 

 

 

 

 

 

 

 

 

 
 

 

 

Figure 2.  Effect of Linearity on Accuracy 
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Figure 3. Effect of Linearity on Precision 
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Figure 4. Effect of Number of RVs on Accuracy 
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Figure 5. Effect of Number of RVs on Precision 
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Figure 6. Effect of Normality on Accuracy 
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Figure 7. Effect of Normality on Precision  
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Figure 8.  Static Non-Linear Truss 
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Figure 9.  Steel Frame Structure 
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