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Abstract. This paper concerns constrained dynamic optimization problems governed by delay control 

systems whose dynamic constraints are described by both delay-differential inclusions and linear algebraic 

equations. This is a new class of optimal control systems that, on one hand, may be treated as a specific type 

of variational problems for neutral functional-differential inclusions while, on the other hand, is related to a 

special class of differential-algebraic systems with a general delay-differential inclusion and a linear constraint 

link between "slow" and "fast" variables. We pursue a two-hold goal: to study variational stability for this 

class of control systems with respect to discrete approximations and to derive necessary optimality conditions 

for both delayed differential-algebraic systems under consideration and their finite-difference counterparts 

using modern tools of variational analysis and generalized differentiation. The authors are not familiar with 

any results in these directions for such systems even in the delay-free case. In the first part of the paper we 

establish the value convergence of discrete approximations as well as the strong convergence of optimal arcs 

in the classical Sobolev space W1'2 • Then using discrete approximations as a vehicle, we derive necessary 

optimality conditions for the initial continuous-time systems in both Euler-Lagrange and Hamiltonian forms 

via basic generalized differential constructions of variational analysis. 

Keywords. Optimal control, variational analysis, functional-differential inclusions of neutral type, 

differential and algebraic dynamic constrairits, discrete approximations, generalized differentiation, necessary 

optimality conditions. 

AMS subject classification. 49K24, 49K25, 49J53, 49M25, 90C31, 93C30. 

Running title: Optimal control of dynamic systems with differential and algebraic constraints 

1 Introduction 

This paper deals with a new class of dynamic optimization problems modeled as follows: 

minimize J[x,z] := <p(x(a),x(b))+ t f(x(t),x(t- D.),z(t),i(t),t)dt (1.1) 

1Research was partly supported by the National Science Foundation under grants DMS-0072179 and DMS-0304989. 
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subject to the constraints 

i(t) E F(x(t), x(t- b.), z(t), t) a.e. t E [a, b], 

z(t) = x(t) + Ax(t- b.), t E [a, b], 

x(t) = c(t), t E [a- b., a), 

(x(a),x(b)) E !1 C 1R2
n, 

(1.2) 

\1.3) 

(1.4) 

(1.5) 

where x : [a- b., b] -+ mn is continuous on [a- b., a) and [a, b] (with a possible jump at t =a), and 

where z(t) is absolutely continuous on [a, b]. We always assume that F: mn xJRn x mn x [a, b] =11Rn 

is a set-valued mapping of closed graph, that !1 is a closed set, that b. > 0 is a constant delay, and 

that A is a constant n x n matrix. Let us label this problem as ( P) and note that the methods 

used in this paper allow us to include the cases of multiple delays b-1 ~ b-2 ~ ... ~ b.m > 0 as 

well as variable delays b.(t) with iil.(t)l <a E (0, 1) a.e. t E (a, b], which are not consider here for 

simplicity. We do not also consider the limiting case of b. .j. 0 required additional assumptions. 

Observe that the variational problem (P) involves two kinds of state variables: "slow" x and 

"fast" z, which satisfy interrelated dynamic constraints given by the delay-differential inclusion 

(1.2) and the linear delay-algebraic equation (1.3). Furthermore, the integral functional in (1.1) 

depends on on both slow and fast variables as well as on the time-derivative of fast variables (slow 

variables may not differentiable in time). All these specific features are highly essential for the 

methods developed and the results obtained in this papers. 

On one hand, problem (P) containing both differential and algebraic constraints on slow and 

fast variables may be viewed as a special subclass of delayed differential-algebraic control systems 

providing, by definition, descriptions of control process via combinations of interconnected differen­

tial and algebraic dynamic relations. There are many applications of such dynamic models (called 

DAEs, i.e., differential-algebraic equations) especially in process systems engineering, robotics, 

mechanical systems with holonomic and nonholonomic constraints, etc.; see (1, 14, 15] and the 

references therein. Observe, however, that the dynamic relations (1.2) and (1.3) are generally dif­

ferent from those conventional in the control theory for DAEs. In particular, the only algebraic 

constraint (1.3) is linear, while it does not satisfy the index one assumption that is usually imposed 

in known results on necessary optimality conditions; see (2, 14] and their references. The most 

advanced results in this direction for index one DAEs are obtained in[14], where it was particularly 

discovered that optimal processes in such systems do not satisfy the (strong) Maximum Principle 

in the absence of a convexity hypothesis on the velocity sets. 

On the other hand, the problem ( P) under consideration is strongly related to functional-

differential control systems of the so-called neutral type, which contain time delays in velocity 

variables. Indeed, the dynamic constraints (1.2) and (1.3) can be unified as 

:t [x(t) + Ax(t- b.)] E F(x(t),x(t- b.),x(t) + Ax(t- b.), t) a.e., 

2 



that, provided the absolute continuity of x(t) (which is not the case under the assumptions made), 

may be written in the general form of neutral delay differential inclusions 

x(t) E G(x(t), x(t- b.), x(t- b.), t) a.e. (1.6) 

Similarly, the cost functional (1.1) transfers under this substitution into the form 

<p(x(a),x(b)) + l g(x(t),x(t- b.), x(t), x(t- b.), t) dt (1. 7) 

Thus we can treat problem (P) as a special case of Bolza-type variational problems for neutral 

delay-differential inclusions. However, in this way we loose the principal feature of the considered 

problem (P), which is crucial for the methods applied as well as for the results obtained below. 

This specific feature of problem (P) is as follows: both the dynamic constraint (1.6) and the cost 

functional (1. 7) depend in fact not on x(t) and x(t- b.) but on the derivative of the same linear 

combination x(t) + Ax(t- b.). That is why we treat this linear combination as a new state variable 

in (1.3) and consider problem (P) in the natural form (1.1)-(1.5), which emphasizes both delay­

differential and linear algebraic constraint on the system dynamics. In our opinion, the recognition 

of this special class of dynamic optimization problems is a significant contribution of this paper. 

Our approach is based on the method of discrete approximations, in the line developed in 

[8, 10, 11, 12] for nondelayed differential inclusions, delay-differential inclusions with A = 0, and 

for a special class of the neutral-type problems that corresponds to (P) with F independent of z 

and with f independent of (z, i). Some results for delayed differential-algebraic problems of type 

(P) were announced in [13] in the case when both F and f are independent of z, while f depends 

on the velocity i described by (1.2). 

The discrete approximation method is of undoubted interest from qualitative as well as nu­

merical viewpoints, and the present paper contains results in both of these directions. Our main 

emphasis, however, is the qualitative aspect, which allows us to derive necessary optimality con­

ditions for delayed differential-algebraic systems by passing to the limit from their discrete-time 

analogues. A crucial issue is to establish variational stability of discrete approximations that ensures 

an appropriate strong convergence of optimal solutions. 

Once such a stability is established, discrete-time control problems for delayed difference­

algebraic inclusions reduce to special finite-dimensional problems of nonsmooth programming with 

an increasing number of geometric constraints that may have empty interiors. To handle such prob­

lems, we use appropriate generalized differentiation tools of variational analysis introduced earlier 

by the first author. In this way we derive necessary optimality conditions for the discrete-time and 

then for continuous-time problems under consideration. 

The rest of the paper is organized as follows. In Section 2 we show that any admissible pair 

to the delayed differential-algebraic system (1.2) and (1.3) can be strongly approximated by the 

corresponding admissible pairs to its finite-difference counterparts. This result important for its 
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own sake plays a crucial role in the construction of well-posed discrete approximations to the original 

problem (P) and in the subsequent justification of the strong convergence of their optimal solutions 

to the given optimal solution for (P). 

Such a convergence analysis is conducted in Section 3 involving appropriate perturbations of the 

endpoint constraints (1.5) that is consistent with the step of discretization. The required strong 

convergence of optimal solutions is justified under an intrinsic property of the original problem (P) 

called relaxation stability. This property imposing the equality between the optimal values in (P) 

and its relaxation goes far beyond the convexity assumption on the velocity sets F(x, y, z, t). 

Section 4 contains basic constructions and required material on generalized differentiation that 

are appropriate for performing a variational analysis of discrete-time and continuous-time optimal 

control problems in the subsequent sections. These constructions and calculus rules of generalized 

differentiation are used in Section 5 for deriving general necessary optimality conditions for non­

convex discrete-time inclusions arising in discrete approximations of the original control problem 

(P). The main necessary optimality conditions in the forms of Euler-Lagrange and Hamiltonian 

inclusions for (P) are derived in Section 6 via passing to the limit from discrete approximations. 

Our notation is basically standard; cf. [8] and [17]. Recall that, given a set-valued mapping (or 

multifunction) F: X=# Y between finite-dimensional spaces, the Painleve-Kuratowski upper/outer 

limit of F ( x) as x -+ x is defined by 

LimsupF(x) := {y E Yl3 xk-+ x, 3 Yk-+ y with Yk E F(xk) for all k E IN}, 
x-tX 

where IN stands for the collection of all natural numbers. 

2 Discrete approximations of differential-algebraic inclusions 

This section deals with discrete approximations of an arbitrary admissible pair to the delayed 

differential-algebraic system (1.2)-(1.4) without taking into account the endpoint constraints. We 

show that, under fairly general assumptions, any admissible pair to (1.2)-(1.4) can be strongly 

approximated in the sense indicated below by the corresponding admissible pairs to finite-difference 

inclusions obtained from (1.2)-(1.4) by the classical Euler scheme. This result is constructive 

providing efficient estimates of the approximation rate, and hence it is certainly of independent 

interest for numerical analysis of delayed differential-algebraic inclusions. 

Let (x, z) be an admissible pair to (1.2)-(1.4), i.e., x(·) is continuous on [a- A, a) and [a, b] 

(with a possible jump at t =a), ii(·) is absolutely continuous on [a,b], and relations (1.2)-(1.4) are 

satisfied. Note that the endpoint constraints (1.5) may not hold for (x, z); if they do hold, (x, z) is 

called feasible to ( P). The following standing assumptions are imposed throughout the paper: 

(Hl) There are two open sets U C JRn, V C JRn and two positive numbers f F, m F such that 

x(t) E U for all t E [a - A, b] and ii(t) E V for all t E [a, b], that the sets F(x, y, z, t) are 
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closed, and that one has 

F(x, y, z, t) C mplB for all (x, y, z, t) E U x U x V x [a, b], 

F(x1, Yl, z1, t) C F(x2, Y2, z2, t) + £p(lx1- x2l + IY1- Y2l + lz1- z2I)JB 

if (xl,Yl,zl), (x2,y2,z2) E U xU x V and t E [a,b], where lB stands for the closed unit ball 

in mn. 

(H2) F(x,y,z,t) is Hausdorff continuous for a.e. t E [a,b] uniformly in (x,y,z) E U xU x V. 

(H3) The function c(·) is continuous on [a- .6., a]. 

Following [3], we consider the so-called averaged modulus of continuity for the multifunction 

F(x, y, z, t) with (x, y, z) E U x U x V and t E [a, b] defined by 

r(F; h) := f.b O"(F; t, h) dt, 

where O'(F; t, h) :=sup { D(F; x, y, z, t, h) I (x, y, z) E U x U x V} with 

D(F;x,y,z,t,h) :=sup{haus(F(x,y,z,tl),F(x,y,z,t2)) I (tl,t2) E [t- ~,t+ ~] n[a,bJ}, 

and where haus(·, ·) stands for the Hausdorff distance between two compact sets. It is proved in 

[3] that if F(x,y,z,t) is Hausdorff continuous for a.e. t E [a,b] uniformly in (x,y,z) E U xU x V, 

then r(F; h) -+ 0 as h -+ 0. This fact is essentially used in what follows. 

Let us construct a sequence of discrete approximations of the given delayed differential-algebraic 

inclusion replacing the derivative in (1.2) by the classical Euler finite difference 

. ( ) z(t +h) - z(t) 
z t "" h . 

For any N E IN := {1, 2, ... } we consider the step of discretization hN := .6./N and define the 

discrete partition tj :=a+ jhN as j = -N,: ... ,k and tk+l := b, where k is a natural number 

determined from a+ khN :::; b <a+ (k + 1)hN. Then the corresponding delayed difference-algebraic 

inclusions associated with (1.2)-(1.4) are described by 

l
ZN(ty+~ E ZN(tj) + hNF(xN(tj), XN(tj .-_ .6.), ZN(tj), tj) 

ZN(t2 )- XN(t2 ) + AxN(t2 - .6.) for J - 0, ... , k + 1, 

XN(tj)=c(tj) for j=-N, ... ,-1. 

for j = o, ... ,k, 

(2.1) 

Given discrete functions XN(tj) and ZN(tj) satisfying (2.1), we consider the extension of XN(tj) to 

the continuous-time intervals [a- .6., b] such that XN(t) are defined piecewise-linearly on [a, b] and 
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piecewise-constantly, continuously from the right on [a-Ll., a). We also define piecewise-constant 

extension of discrete velocities on [a, b] by 

VN(t) ·.= ZN(tj+lh)N- ZN(tj)' [ ) t E tj,tj+l, j = 0, ... ,k. 

It is easy to see that 

ZN(t) = ZN(a) + lt VN(s) ds fortE [a, bj, 

where ZN(t) = XN(t) + AxN(t- Ll.). 

Let W1•2[a, b] be the classical Sobolev space with the norm 

( l b )1/2 
llx(·)llw'·' := max lx(t)l + l:i:(tWdt . 

tE[a,bl a 

The following theorem, which plays an essential role in the subsequent constructions and results of 

the paper being also important for its own sake, establishes the strong W 1•2-approximation of any 

admissible pair to the given delayed differential-algebraic inclusion by corresponding solutions to 

its discrete-time counterparts. 

Theorem 2.1 Let (x, z) be an admissible pair to (1.2)-(1.4) under hypotheses {H1)-{H3). Then 

there is a sequence (xN(tj),zN(tj)) of solutions to discrete inclusions (2.1) with xN(to) = x(a) for 

all N E IN such that their extensions x N(t), a-Ll. :::; t :::; b, converge uniformly to x( ·) on [a-Ll., b] 

while zN(t), a:::; t:::; b, ·converge to z(t) in the W 1•2-norm on [a, b] as N --too. 

Proof. Using the density of step-functions in L1[a, b], we first select a sequence { wN(·) }, N E IN, 

such that each WN(t) is constant on the interval [tj, tj+t) for j = 0, ... , k and that WN(·) converge 

to z(·) as N --too in the norm topology of L1[a, b]. It follows from (H1) that 

for all t E [a, b] and N E IN. In the estimates below we use the sequence 

~N := t lwN(t) - z(t) I dt --t 0 as N --t oo. 

Denote WN; := WN(tj) and define discrete pairs (uN(tj), SN(tj)) recurrently by 

!
UN(tj) := x(tj) for j = -N, ... , 0, 

BN(tj) := UN(tj) + AuN(tj -fl.) for j = 0, ... , k + 1, 

SN(tj+t) := SN(tj) + hNWN; for J = 0, ... , k. 
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Then the extended discrete functions satisfy 

UN(t) = x(tj) fortE [tj, tj+l), j = -N, ... , -1, 

BN(t) = UN(t) + AuN(t- ~) fortE [a, b], 

SN(t) = z(a) + t WN(s) ds fortE [a, b]. 

Next we want to prove that uN(t) converge uniformly to x(t) on [a,b]. Denote rN(t) := UN(t)­

x(t) and YN(t) := irN(t) + ArN(t- ~)1. For any t E [a,b] one has 

YN(t) = isN(t)- z(t)l $ t lwN(s)- i(s)i ds $ EN, (2.2) 

which implies the estimates 

lrN(t)l $ YN(t) + IAIIrN(t- ~)I $ YN(t) + IAIYN(t- ~) + IAI2 IrN(t- 2~)1 $ · · · 

$ YN(t) + IAIYN(t- ~) + ... + IAimYN(t- m~) + IAim+llrN(t- (m + 1)~)1. 

Observe that c(·) is uniformly continuous on [a-~, a] due to assumption (H3). Picking an arbitrary 

sequence f3N .j. 0 as N--+ oo, we therefore have 

lc(t')- c(t")l $ f3N whenever t', t" E [tj, tj+J], j = -N, ... , -1. 

Choose an integer number m such that a-~$ b- (m + 1)~ <a. Then t- (m + 1)~ E [tj, tj+I) 

for some j E { -N, ... , -1}, which implies that 

irN(t- (m + 1)~)1 $ lc(tj)- c(t- (m + 1)~)1 $ f3N· 

Since m E IN does not depend on N, this gives 

for all t E [a, b] due to the construction of rN(·). Now consider a sequence { (N} defined by 

k 

(N := hN Ldist(wN;;F(uN(tj),uN(tj -~),sN(tj),tj)) 
j~o 

and show that (N .j. 0 as N -7 oo. By construction of (N and the averaged modulus of continuity 
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r(F; h) we get the following estimates: 

Further, assumption (H1) implies that for any t E [tj, tj+l) with j = 0, ... , k one has 

dist(wN;; F(uN(tj), UN(ij -ll.), SN(tj), t))- dist(WN;; F(uN(t), UN(t -ll.), SN(t), t)) 

:'0 dist(F(uN(tj), UN(ij -ll.), SN(tj), t), F(uN(t), UN(t- ll.), SN(t), t)) 

:'0 £p(luN(tj)- UN(t)l + luN(tj -ll,)- UN(t -ll.)l + isN(tj)- SN(t)l). 

Taking into account that 

jsN(tj)- SN(t)j = J t WN(s) dsJ :'0 (1 + mp)(tj+!- tj) = (1 + mp )hN :=aN .j. 0, 
J 

we arrive at 

luN(t)- UN(ij)l :'0 aN+ IAIIuN(t -ll.)- UN(tj -ll.)l 

:'0 aN(1 + IAI + ... + IAim) + IAim+lluN(t- (m + 1)ll.)- UN(tj- (m + 1)ll.)l 

:'0 aN(l + IAI + ... + IAim) + IAim+J,aN := bN .j. 0 as N -too 

and hence ensure that 

It follows from (H1), (2.2) and (2.3) that for any t E [tj, tj+l) and j = 0, ... , k one has 

dist(WN;; F(uN(t), UN(i -ll.), SN(t), t))- dist(wN(t); F(x(t),x(t -ll.),z(t), t)) 

:'0 dist(F(uN(t), UN(t -ll.), SN(t), t), F(x(t),x(t -ll.), z(t), t)) 

:'0 RF(IuN(t)- x(t)l + luN(t -ll.)- x(t -t.)l + lsN(t)- z(t)l) 

:'0 (2r!N + ~N )Rp. 
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Combining the above estimates and denoting JlN :=aN+ 2bN + 2[!N + ~N, we arrive at 

dist(WN;; F(uN(tj), UN(tj- f:.), SN(tj), t)) 

S £FJ1N + dist(wN;; F(x(t), x(t - t:.), z(t), t)) S RFJ1N + lwN; - i(t) I 
and finally conclude that 

(2.4) 

Note that the discrete functions (uN(tj), SN(tj)) may not be a admissible pair for (2.1) because 

the inclusions WN; E F(uN(tj), UN(tj- C:.), SN(tj), tj) may not be true for j = 0, ... , k. Let us 

construct the desired pair (xN(tj),zN(tj)) by the following proximal algorithm: 

XN(tj) = c(tj) for j = -N, ... , -1, XN(to) = x(a), 

ZN(tj+J) = ZN(tj) + hNVN; for j = 0, ... , k, 

zN(tJ) = xN(tJ) + AxN(tJ- t:.) for j = o, ... , k + 1, 

vN; EF(xN(tJ),xN(tJ-t:.),zN(tJ),tJ) for j=O, ... ,k, 

lvN;- wN;I = dist(wN;; F(xN(tJ), xN(tJ- t:.),zN(tJ), tJ)) for j = o, ... , k. 

(2.5) 

It follows from the construction (2.5) that (xN(tj), ZN(tj)) is a feasible pair to the discrete inclusion 

(2.1) for each N E JN. Note that 

Pi'N(t)- x(t)l = lxN(tJ)- x(t)l = lc(tJ)- c(t)l < f3N fortE [tJ, tJ+d, j = -N, ... , -1, 

which implies that the extensions of XN(·) converge to x(t) uniformly on [a-t:., a). Let us analyze 

the situation on [a, b]. 

First we claim that XN(tj) E U and ZN(tj) E V for j = 0, ... , k + 1. Arguing by induction, 

we obviously have XN(to) E U and ZN(to) E V. Assume that XN(tj) E U and ZN(tj) E U for all 

j = 1, ... ,m with some fixed mE {1, ... ,k}. Then 

lxN(tm+J)- uN(tm+J)I = IZN(tm+J)- AxN(tm+l- C:.)- BN(tm+J) + AuN(tm+l- C:.)l 

S IAIIxN(tm+l- t:.)- uN(tm+J- C:.)l + lzN(tm+J)- sN(tm+J)I 

S IAIIxN(tm+J- C:.)- uNUm+!- C:.)l + IAIIxN(tm- C:.)- uN(tm- C:.)l 

+ lxN(tm)- uN(tm)l + hNdist(wNm;F(xN(tm),xN(tm- t:.),zN(tm),tm)). 

Taking into account that 

lxN(tm)- uN(tm)l S IAIIxN(tm-N)- UN(tm-N)I + IAIIXN(tm-1-N)- uNUm-I-N )I 

+ lxN(tm-1) - UN(tm-dl + hNdist(wNm-l; F(xN(tm-1), XN(tm-1-N ), ZN(tm-1), tm-d), 
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that 

that 

dist(wNm-1; F(xN(tm-1), XN(tm-1-N ), ZN(tm-1), tm-1)) 

::; dist(wNm- 1 ; F( UN(tm-1), UN(tm-1-N ), BN(tm-1), tm-1)) 

+fF(IxN(tm-d- uN(tm-1)1 + lzN(tm-1)- BN(tm-1)1 

+lxN(tm-1-N)- UN(tm-1-N )I), 

m 

(2.6) 

lxN(tm+l)- UN(tm+l)l ::; M1hN L dist(wN;; F(uN(tj), UN(tj- ~),sN(tj), tj)) ::; M1'YN (2.8) 
j=O 

with some constant M 1 > 0. Now invoking (2.3) and increasing M 1 if necessary, we arrive at 

which implies that XN(tj) E U for j = 0, ... , k + 1. 

Observing further that 

JzN(tm+J)- BN(tm+J)J::; JzN(tm)- BN(tm)l + hNJVNm- WNml 

::; lzN(tm)- BN(tm)l + hNdist(wNm; F(xN(tm),xN(tm- ~), ZN(tm), tm)), 

we derive from (2.6) and (2. 7) the estimate 

m 

lzN(tm+l)- sN(tm+J)I::; M2hN Ldist(wN;;F(uN(tj),uN(tj -~),sN(tj),tj))::; MnN (2.9) 
j=O 

with some constant M2 > 0. Note that 

which ensures the inclusions ZN(tj) E V for j = 0, ... , k+ 1. It remains to prove that ZN(t) converge 

to z(t) in the W 1•2-norm on [a, b], which means that 

max lzN(t)- z(tJI + 1b i?N(t)- z(t)l 2 
dt _... 0 as N _... oo. 

tE[a,b] a 
(2.10) 
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To furnish this, we use (2.8) and (2.9) to get the estimates 

k+1 k+1 j-1 
IJxN(tj) - uN(tj) I :'0 L M1 L hNdist(wNm; F(uN(tm), uN(tm- b.), sN(tm), tm)) 
j=O j::;:Q m;:;;Q 

k 

:'0 M1(b- a) Ldist(wN;;F(uN(tj),uN(tj- b.),sN(tj),tj)), 
j=O 

k+l k+l j-1 
L lzN(tj)- SN(tj)l :'0 LM2 L hNdist(wNm; F(uN(tm), UN(tm- b.), SN(tm), tm)) 
j=O j=O m=O 

k 

:'0 M2(b- a) L dist(wN;; F(uN(tj), uN(tj -b.), sN(tj), tj)), 
j=O 

which imply by (Hl) that 

[I~N(t)- WN(t)l dt = t [i+' I~N(t)- WN(t)l dt 
a j=O ti 

k 10+1 k 
= L . lvN; -wN;Idt = LhNdist(wN;;F(xN(tj),xN(ti -b.),zN(t1),tj)) 

j=O t, j=O 
k 

= L hNdist(wN;; F(uN(tj), UN(tj -b.), BN(tj), tj)) 
j=O 
k 

+ L hN[dist(wN;; F(xN(tj), xN(tj - b.),ZN(tj), tj)) - dist(wN;; F(uN(tj), uN(tj -b.), sN(tj), ti ))] 
j=O 

k 

:'0 L hNdist(wN;; F(uN(tj),uN(tj- b.), sN(tj), tj)) 
j=O 
k 

+ 2: £phN [lxN(t1)- uN(tj)l + lxN(t1 - b.)- uN(t1 - Ll)l + lzN(tj)- sN(tj)l] 
j=O 

k 

:o; 'YN + 2: £phN [lxN(t1)- uN(tj)l + IXN(t1 - b.)- uN(tj- Ll)l + lzN(t1)- sN(tj)l] 
j=O 

k 

:'0 'YN + 2(M1 + M2)(b- a)lp L hNdist(wN;; F(uN(t;), uN(t; -b.), BN(tj), tj)) 
j=O 

:'0 'YN + 2(M1 + M2)£p(b- a )"'N. 

The latter ensures the estimates 

t ~~N(t)- i(t)l dt :'0 t ~~N(t) -wN(t)l dt + t lwN(t)- i(t)l dt 

:'0 'YN(l + 2(M1 + M2)(b- a)ip) + ~N· 

Due to XN(t) E U and ZN(t) E V, we get from (Hl) by (1.2) and (2.5) that ~~N(t)l :'0 mp, 
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jz(t)j :S mF, and hence 

{ j:?N(t)- z(tll 2 
dt = [ i:?N(t)- z(tlii:2N(t) + z(tll dt 

:S 2mFh'N(1 + 2(MI + Mz)(b- a)£F) +EN]-!- 0 as N--+ oo. 

Observing finally that 

max jzN(t)- z(t)l 2 :S (b- a) lb i:2N(t)- z(t)l 2 
dt, 

tE[a,b] a 

we arrive at (2.10) and complete the proof of the theorem. 

3 Strong convergence of discrete approximations 

The goal of this section is to construct a sequence of well-posed discrete approximations of the 

dynamic optimization problem (P) such that optimal solutions to discrete approximation problems 

strongly converge, in the sense described below, to a given optimal solution to the original opti­

mization problem governed by delayed differential-algebraic inclusions. The following construction 

explicitly involves the optimal solution (x, z) to the problem (P) under consideration for which we 

aim to derive necessary optimality conditions in the subsequent sections. 

For any natural number N we consider the following discrete-time dynamic optimization prob­

lem (PN): 

(3.1) 

subject to the dynamic constraints governed by delayed difference-algebraic inclusions (2.1), the 

perturbed endpoint constraints 

(3.2) 

where 1JN := !xN(tk+I)- x(b)l with the approximation XN(t) of x(t) from Theorem 2.1, and the 

auxiliary constraints 

(3.3) 

with some E: > 0. The latter auxiliary constraints are needed to guarantee the existence of optimal 

solutions in (PN) and can be ignored in the derivation of necessary optimality conditions; see below. 
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In what follows we select E: > 0 in (3.3) such that x(t) + elB C U for all t E [a- D., b] and 

z(t) + elB C V for all t E [a, b]. Take sufficiently large N ensuring that r}N < E:. Note that problems 

(PN) have feasible solutions, since the pair (xN,ZN) from Theorem 2.1 satisfy all the constraints 

(2.1), (3.2), and (3.3). Therefore, by the classical Weierstrass theorem, each (PN) admits an optimal 

pair (xN,ZN) under the following assumption imposed in addition to (H1)-(H3): 

(H4) <pis continuous on Ux U, f(x, y, z, v, ·) is continuous for a.e. t E [a, b] uniformly in (x, y, z, v) E 

U x U x V x mplB, f(·, ·, ·, ·, t) is continuous on U x U x V x mplB uniformly in t E [a, b], 

and !1 is locally closed around (x(a), x(b)). 

We are going to justify the strong convergence of (xN, ZN) to (x, z) in the sense of Theorem 2.1. 

To proceed, we need to involve an important intrinsic property of the original problem (P) called 

relaxation stability. Let us consider, along with the original system (1.2), the convexified delayed 

differential-algebraic system 

{ z(t) E co F(x(t), x(t- D.), z(t), t) a.e. t E [a, bJ, 

z(t) = x(t) + Ax(t- D.), t E [a, b], 
(3.4) 

where "co" stands for the convex hull of a set. Further, given the integrand fin (1.1), we take its 

restriction 

fp(x,y,z,v,t) := f(x,y,z,v,t) +o(v;F(x,y,z,t)) 

to Fin (1.2), where o(·;F) stands for the indicator function of a set. Denote by fp(x,y,z,v,t) 

the convexification of fF in the v variable and define the relaxed generalized BoZza problem (R) for 

delayed differential-algebraic systems as follows: 

minimize J [x, z] := <p(x(a), x(b)) + t fp(x(t), x(t- D.), z(t), z(t), t) dt (3.5) 

over feasible pairs (x, z) with the same analytic properties as in (P) subject to the tail (1.4) and 

endpoint (1.5) constraints. Every feasible pair to (R) is called a relaxed pair to (P). 

One clearly has inf(R) :::; inf(P) for the optimal values of the cost functionals in the relaxed 

and original problems. We say that the original problem (P) is stable with respect to relaxation if 

inf(P) = inf(R). 

This property, which obviously holds under the convexity assumptions on the sets F(x, y, z, t) and 

the integrand fin v, goes far beyond the convexity. General sufficient conditions for the relaxation 

stability of (P) follow from [4]. We also refer the reader to [8, 10, 19, 20] for more detailed 

discussions on the validity of the relaxation stability property for various classes of differential and 

functional-differential control systems. 

Now we are ready to establish the following strong convergence theorem for optimal solutions 

to discrete approximations, which makes a bridge between optimal control problems governed by 

delayed differential-algebraic and difference-algebraic systems. 
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Theorem 3.1 Let (x, z) be an optimal pair to problem (P), which is assumed to be stable with 

respect to relaxation. Suppose also that hypotheses {H1}-(H4} hold. Then any sequence {(xN,zN)}, 

N E IN, of optimal pairs to (PN) extended to the continuous interval [a- fl., b] and [a, b] respectively, 

strongly converges to (x, z) as N -7 oo in the sense that XN converge to x uniformly on [a- fl., b] 

and ZN converge to z in the W 1•2-norm on [a, b]. 

Proof. We know from the above discussion that (PN) has· an optimal pair (xN,ZN) for all N 

sufficiently large; suppose that it happens for all N E IN without loss of generality. We consider 

the sequence (xN,ZN) from Theorem 2.1. Since each (XN,ZN) is feasible to (PN), one has 

For convenience we represent J N [x N, z N] as the sum of three terms: 

It follows from Theorem 2.1 and the assumption on <pin (H4) that 

h -7 cp(x(a), x(b)) as N -7 oo. 

Moreover, using the sign """" for expressions equivalent as N -7 oo and the notation 

~ (t) ·= ZN(tj+!)- ZN(tj) 
VN . hN ' t E [tJ,tJ+!), j = 0, ... ,k, 

we have the relations 

k 

h = hN I: f(xN(tj),xN(tJ- t>.), zN(tj), vN(tj), tJ) 
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h = ~ ~~!+' lvN(t) - z(t) 1
2 

dt = [ lvN(t) - z(t) 1
2 

dt 

= [ I?N(t) - z(tW dt---+ 0 as N---+ 00. 

This implies that JN[xN,ZN]---+ J[x,z] as N---+ oo, and therefore 

limsupJN[xN,ZN]::; J[x,z]. 
N-too 

It is easy to observe that the strong convergence claimed in the theorem follows from 

PN := lxN(a)- x(a)l
2 + [ lzN(t)- z(t)l

2
dt-+ 0 as N-+ oo. 

(3.6) 

On the contrary, suppose that the latter does not hold. Then there are a constant a > 0 and a 

subsequence {Nm} C IN for which PNm -+ a as m -+ oo. Employing the standard compactness 

arguments based on (2.1) and the boundedness assumption in (Hl), we find an absolutely continuous 

function z: [a,b]-+ mn and a function x: [a- A,b] continuous on [a- D., a) and [a,b] such that 

ZN(t) -+ ~(t) weakly in L2 [a, b], 

that xN(t) ---+ x(t) uniformly on [a - .6., b] as N ---+ oo (without Joss of generality), and that 

z(t) = x(t) + Ax(t- .6.) fortE [a, b]. By the classical Mazur theorem there is a sequence of convex 

combinations of ZN(t) that converges to ~(t) in the norm topology of L 2 [a, b] and hence pointwisely 

for a.e. t E [a, b] along some subsequence. Therefore 

{ 

~(t) E co F(x(t), x(t- A), z(t), t) a.e. 

z(t) = x(t) + Ax(t- .6.), t E [a, b]. 

t E [a,b], 

Since x(-) obviously satisfies the initial tail condition (1.4) and the endpoint constraints (1.5), it is 

a feasible solution to the relaxed problem (R). Note that 

~ _ _ _ ZN(tj+!)- ZN(tj) 
hN L.J(xN(tj),xN(tj- A),zN(tj), h ,tj) 

j=O N 

= ~ l;ti+, f(xN(tj),xN(tj- A), zN(tj), zN(t), tj) dt-+ [ f(x(t),x(t- A), z(t), ~(t), t) dt 

as N -+ oo due to the assumptions made. Observe also that the integral functional 

J[v] := [ lv(t)- z(t)l
2 
dt 

is lower semicontinuous in the weak topology of L 2[a, b] by the convexity of the integrand in v. 

Since one has 

k lt +1 - (t ) - (t ) 2 1b 2 L ' IZN j+! - ZN j - z(t)l dt = lzN(t)- z(t)l dt, 
j=D t1 hN a 
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the latter implies that 

Using the above relationships and passing to the limit in the expression (3.1) for JN[xN, ZN] as 

N -7 oo, we arrive at the inequality 

By ( 3. 6) one therefore has 

J[x, Z] :o; J[x, z] -a < J[x, z] if a> o. 

This clearly contradicts the optimality of pair (x, z) in the relaxed problem (R) due to the assump-

tion on relaxation stability. Thus a = 0, which completes the proof of the theorem. 

4 Tools of generalized differentiation 

The convergence results of the previous section allow us to make a bridge between the original 

infinite-dimensional optimization problem (P) for delayed differential-algebraic inclusions and the 

family of finite-dimensional dynamic optimization problems (PN) for delayed difference-algebraic 

inclusions. The further strategy is now clear: to obtain first necessary optimality conditions for the 

discrete approximation problems (PN) and then to derive necessary optimality conditions for the 

original problem (P) by passing to the limit from the ones for (PN) as N -7 oo. 

Observe that problems (PN) are essentially nonsmooth, even in the case of smooth functions 

cp and f in the cost functional and the absence of endpoint constraints. The main source of 

nonsmoothness comes from the (increasing number of) geometric constraints in (2.1), which reflect 

the discrete dynamics and may have empty interiors. To conduct a variational analysis of such 

problems, we use appropriate tools of generalized differentiation in finite dimensions introduced in 

[5] and then developed and applied in many publications; see, in particular, the books [6, 17, 19] 

for detailed treatments and further references. 

Recall the the basic (general,limiting) normal cone to the set !! C mn at the point x E !! is 

N(x; !!) :=Lim sup N(x; !!), 
x~X 

where x ~ x means that x -7 x with x E !!, and where 

I
. (x*, x- x) 
1msup I _

1 o _ X- X 
x-+x 
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is the cone of Frechet (regular, strict) normals to f! at x. For convex sets f! both cones N(x; !!) 

and N(x; !!) reduce to the normal cone of convex analysis. Note that the basic normal cone (4.1) 

is often non convex while satisfying a comprehensive calculus, which is to the case for ( 4.2). 

Given an extended-real-valued function <p: IRn -t 1R := [-oo, oo] finite at x, the basic (general, 

limiting) subdifferential of <p at x is defined geometrically 

o<p(x) := { x' E JRnl (x', -1) E N((x, <p(x)); epi <p)} (4.3) 

via basic normals to the epigraph epi <p : = { ( x, I') E JRn+ll I' ;::: <p( x )}; equivalent analytic represen­

tations of (4.3) can be found in the books [6, 17, 18, 19]. One of the most convenient representations 

of (4.3) is via the Painleve-Kuratowski upper limit (i.e., robust regularization) of Frechet subgra­

dients, which are the same as subgradients in the sense of viscosity solutions. 

Given a set-valued mapping F: IRn =!IRm with the graph 

gphF := {(x,y) E lRn X JRml y E F(x)}, 

the coderivative D' F(x, y): IRm =!IRn ofF at (x, y) E gph F is defined by 

D*F(x,i])(y') := {x' E IRnl (x',-y') E N((x,i]);gphF)}. (4.4) 

Note the useful relationships 

o<p(x) = D'E"'(x,<p(x))(1) and D'g(x)(y') = 8(y',g)(x), y' E JRm, 

between the subdifferential and coderivative introduced, where E'l'(x) :={I' E IRI I';::: <p(x)} is the 

epigraphical multifunctions associated with <p: IRn -t IR, and where (y',g)(x) := (y',g(x)) is the 

scalarized function associated with a locally Lipschitzian mapping g: IRn -t IRm. Observe that 

D'g(x)(y') = {'Vg(x)'y'} for all y' E JRm 

if g is strictly differentiable at x. This means that the coderivative ( 4.4) is a natural extension of 

the adjoint derivative operator to nonsmooth and set-valued mappings. 

The subdifferentialfcoderivative constructions (4.3) and (4.4) enjoy a variety of useful calculus 

rules that can be found in the books mentioned above and their references. Let us formulate two 

results crucial in the method of discrete approximations. The first one gives a complete coderiva­

tive characterization of the classical local Lipschitzian property of multifunctions imposed in our 

standing assumption (H1); cf. [7, Theorem 5.11] and [17, Theorem 9.40]. 

Theorem 4.1 Let F: IRn =!IRm be a closed-graph multifunction locally bounded around x. Then 

the following conditions are equivalent: 

(i) F is locally Lipschitzian around x. 
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(ii) There exist a neighborhood U of x and a number f > 0 such that 

sup{lx*lj x* E D*F(x,y)(y*)}:::; flv*l for all x E U, y E F(x), y* E JRm. 

The next result (see, e.g., [6, Corollary 7.5] and [18, Theorem 3.17]) provides necessary opti­

mality conditions for a general problem (M P) of nonsmooth mathematical programming with many 

geometric constraints: 

minimize ¢o(z) subject to 

rPj(z) :S 0, j = 1, ... ,r, 

gj(z) = 0, j = 0, ... , m, 

z E Aj, j = 0, ... , l, 

Theorem 4.2 Let z be an optimal solution to (MP). Assume that all¢; are Lipschitz continuous, 

that 9j are continuously differentiable, and that Aj are locally closed near z. Then there exist real 

numbers {l'jl j = 0, ... , r} as well as vectors {'1/!j E JRnl j = 0, ... , m} and {zj E JRdl j = 0, ... , 1}, 

not all zero, such that 

/lj ?. 0 for j = 0, ... , r, 

/ljrPj(z) = 0 for j = 1, ... ,r, 

zj EN(z;Aj) for j=O, ... ,l, 

l r m 

- Ez; E a(LilirPi) (z) + E Vg1(z)*..p1. 
j=O j=O j=O 

(4.5) 

(4.6) 

(4.7) 

(4.8) 

For applications in this paper in the case of nonautonomous continuous-time systems we need 

the following modifications of the basic constructions (4.1), (4.3), and (4.4) for sets, functions, and 

set-valued mappings depending on a parameter t from a topological space T (in our case T = [a, b]). 

Given !1: T =t mn and x E !1([), we define the extended normal cone to !1([) at x by 

N(x; !1([)) := Limsup N(x; !1(t)). 
(t,x) g~n (t,x) 

(4.9) 

For <p: JRn x T-+ lR finite at (x, f) and for F: lRn x T =t lRm withy E F(x, t), the extended 

subdifferential of <p at (x, f) and the extended coderivative ofF at (x, y, f) with respect to x are 

given, respectively, by 

Bx<p(x,t) := {x* E IRnl (x*,-1) E N((x,<p(x,t));epi<p(t))} (4.10) 
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and, whenever y' E JRm, by 

i5;F(x, y, t) (y') := { x' E mn I (x'' -y') E N( (x, y); gph F(t))}. ( 4.11) 

Note that the sets (4.9)-(4.11) may be bigger in some situations than the corresponding sets 

N(x; D(t)), Ox<p(x, t), and D;F(x, y, t)(y'), where the latter two sets stand for the subdifferential 

(4.3) of <p(·, t) at x and the coderivative (4.4) ofF(·, t) at (x, y, t), respectively. Efficient conditions 

ensuring equalities for these sets are discussed in [8, 9, 11]. 

It is not difficult to check that the extended constructions (4.9)-(4.11) are robust with respect to 

their variables, which is important for performing limiting procedures in what follows. In particular, 

N(x; D(t)) = Limsup N(x; D(t)). 
(t,x) g~n (t,x) 

( 4.12) 

Note also that the constructions (4.9)-(4.11) enjoy a full generalized differential calculus similar to 

one for (4.1), (4.3), and (4.4). We do not need this calculus in the present paper, however. 

5 Necessary optimality conditions for difference-algebraic systems 

In this section we derive necessary optimality conditions for the discrete approximation problems 

(PN) by reducing them to those in Theorem 4.2 for nonsmooth mathematical programming prob­

lems with many geometric constraints. 

Given n E IN, consider problem (MP) with the decision vector 

·- ( N N N N N N N) JRn(3k+5) w .- xo , ... ,xk+l,zo , ... ,zk+l,vo ,vl , ... ,vk E 

and the following data: 

k 

<Po(w) := <p(xb',xf:'+l) + lxb'- x(aJIZ + hN "i:J(xf, xf-N,zf,vf, tJ) 
j=O 

j=1, ... ,k+1, 
:= { 

lz~k-l- z(tJ-k-dl- c:, j = k + 2, ... , 2k + 2, 

.- {(xb', ... ,vf:) lvf EF(xlj,xf_N,zf,tJ)}, j=O, ... ,k, 

.- {(xb', ... ,vf:) I (x{i,xf:'+l) El1N}, 

·- ZN ZN h VN .- j+l - j - N j , 

·- zN xN AxN .- j - j - j-N' 

j = 0, ... ,k, 

j = o, ... ,k+ 1, 
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where x.f := c(tj) for j < 0. Let wN := (x[;l, . .. , x{;'+l, z{!, ... , zf+l, v{!, . .. , vf) be a given optimal 

solution to (MP). Applying Theorem 4.2 with the equality constraints given by (gj,hj), we find 

real numbers 1-'.f for j = 0, ... , 2k + 2, vectors wj E JRn(3k+5) for j = 0, ... , k + 1, vectors 'l.f E IR.n 

for j = 0, ... , k, as well as vectors ..P.f E JRn for j = 0, ... , k + 1, not all zero, such that conditions 

(4.5)-(4.8) are satisfied. 

Taking wj := (xQ,j, ... ,xk+t,j,zQ,j, ... ,zk+t,j'vQ,j, ... ,vk,j) E N(wN;Aj) for j = 0, ... ,k, we 

observe that all but one components of wj are zero and the remaining one satisfies 

Similarly notice that the condition wk+! E N(zN; Ak+t) is equivalent to 

with all the other components of wi;+l equal to zero. Employing Theorem 3.1 on the convergence 

of discrete approximations, we have cPj ( wN) < 0 for j = 1, ... , 2k + 2 whenever N is sufficiently 

large. Thus 1-'.f = 0 for these indexes due to the complementary slackness conditions ( 4.6). Let 

)..N := ,_,[;1 ~ 0. Observe further that 

k 

2)V'gj(WN))*1).7 = (0, ... , 0, 1){!,1){! -1)[', 'lf:'-1 -1)f:',7Jf, -hN7Jf!, ... , -hN1){;'), 
j=O 

and that one has 

k+l 

L(V'hj(wN))*.,Pf = (- ..pf/ + A*'l/1%, -1/Jf' + A''l/1%+1, ... , 
j=O 

From the subdifferential sum rule for <Po in (5.1) we deduce that 

k 

8¢0 (wN) c acp(x[;l, x{;'+l) + 2(x[/- x(a)) + hN L, Bf(x.f, x.f-N, zf, v.f, tJ) 
j=O 

with 8 f standing here and in what follows for the basic subdifferential off with respect to the first 
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four variables. Thus the inclusion ( 4.8) in Theorem 4.2 is equivalent to the relationships 

, , , _ ,N N+ 'Nh .aN+ 'Nh N+ -x0,0 - x 0,N- xD,k+l - A u0 A N'"o A N'<o 

2>.N (x~- x(a))- 'lj;~- A*'lj;%, 

-xj,J- xJ,j+N = >.N hNiJf + >.NhN~<Ij- 'lj;f- A*'lj;j',_N, j = 1, ... , k- N + 1, 

-xj,j = >.NhNiJij -1/Jf, j = k- N + 2, ... ,k, (5.2) 

-x;;+l,k+l = >.Nuf:+l- 'lj;f:+l, 

-zj,j = )..N hNCJf + 'lj;f + 11f_l - 1/f' j = 0, ... ,k, 

j = o, ... ,k, 

with the notation 

( N N ) " ( N N ) (·'N N N N) "f(-N -N -N -N t ) u 0 ,uk+l E ur.p X0 ,Xk+l, -vj ,K,j-N,aj ,~j E u xi ,x1_N,zj ,vi, j, 

l
tj+l • 

ef := 2 (vf- z(t)) dt. 
t; 

Based on the above relationships, we arrive at the following necessary optimality conditions for 

discrete-time problems (PN ), where /j{-, ·, ·, ·) := f(·, ·, ·, ·, tj) and Fj(·, ·, ·) := F(-, ·, ·, tj ). 

Theorem 5.1 Let iiJN be an optimal solution to problem (PN)· Assume that the sets S1 and gphFj 

are closed and that the functions <p and /j are Lipschitz continuous around the points (x~, xf:+l) 

and (xlj,xf_N,zf,vf), respectively, for all j = O, ... ,k. Then there exist >.N 2: 0, pf (j = 
0, ... ,k+N + 1), qf (j = -N, ... ,k+ 1), andrf (j =O, ... ,k+ 1), not all zero, such that 

with the notation 

N-o Pj - , 

qf =0, 

j=k+2, ... ,k+N+1, 

j=k-N+1, ... ,k+1, 

P N ·- N A* N j .- Pj + PJ+N• 

(5.3) 

(5.4) 

Proof. Most of the proof has been actually done above, where we transformed the necessary opti­

mality conditions for (M P) into the ones for (PN) written in the form of nonsmooth mathematical 
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programming. What we need to do is to change the notation in the relationships of ( 5.2). Let us 

first denote 

N {,Pf for j = 1, ... , k + 1, 
sj == 

0 forj=k+2, ... ,k+N; 

T
N·- {)..Nr;,f +xj,j+N/hN forj=1, ... ,k-N+1, 

J .-
0 for j = k - N + 2, ... , k; 

rf := 77f_l for j = 1, ... , k + 1. 

It follows from (5.2) that 

{5.7) 

for all j = 1, ... , k. Define the sequences iif, and iif by the recurrent formulae 

Jif:=pf+l-SJ'hN with iif=O for j=k+2, ... ,k+N+1, 

-N -N TNh 'th -N 0 £ . k N 1 k N 1 qj := qj+l - j N w1 qj = or J = - + , ... , + + . 

P t . N -N A*-N . (5 7) u tmg qj := qj + qj+N• we rewnte . as 

j = 1, ... ,k, {5.8) 

j = 1, ... ,k, 

'N()Njh + -N ,N N + vj,j . 1 k 
-A j N rj+l = " tj hN' J = '.'.' . 

Letting finally 

N. ,N N • N 
Po .= " uo + xo,k+l - qo , 

pf := iif- qf for j = 1, ... , k + N + 1, 

N-N-N£'1 k1 rj := rj - Pj or J = , ... , + , 

we arrive at all the relationships (5.3)-(5.6) and complete the proof of the theorem. 
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Corollary 5.2 in addition to the assumptions in Theorem 5.1, suppose that the mapping Fj is 

bounded and Lipschitz continuous around (xf,J/(_N,zf) for eachj = 0, ... ,k. Then the conditions 

;..N:?: 0 and (5.3)-(5.6) hold with (>.N,p{;'+1 ,rJ:+l) # 0, i.e., one can let 

Proof. If ;..N = 0, then (5.6) together with (5.3) and (5.4) imply that 

Assuming now that p{;'+ 1 = 0 and r{;'+l = 0, we get 

N N N 
(

-pk -qk-N -rk ) D*F (-N -N -N -N)(O) 
hN ' hN ' hN E k xk ,xk-N,zk ,vk ' 

which yields p{;' = 0, qf:_N = 0, and rf: = 0 by Theorem 4.1. Repeating the above procedure, we 

arrive at the contradiction with the nontriviality assertion in Theorem 5.1. /':,. 

6 Optimality conditions for differential-algebraic inclusions 

In the concluding section of the paper we obtain the main results of this study that provide nec­

essary optimality conditions for the original dynamic optimization problem (P) in both extended 

Euler-Lagrange and Hamiltonian forms involving generalized differential constructions of Section 4. 

Our major theorem establishes the following conditions of the Euler-Lagrange type derived by the 

limiting procedure from discrete approximations. 

Theorem 6.1 Let (x, z) be an optimal solution pair to problem (P) under hypotheses (H1)-(H4), 

where <p and f(·, ·, ·, ·, t) are assumed to be Lipschitz continuous instead of the plain continuity. 

Suppose also that ( P) is stable with respect to relaxation. Then there exist a number >. :?: 0, piecewise 

continuous functions p: [a, b + 6] -t IRn and q: [a- 6, b) --+ IRn (whose points of discontinuity are 

confined to multiples of the delay time 6), and an absolutely continuous function r: [a, b) --+ JRn 

such that p(t) + A*p(t + 6) and q(t- 6) + A*q(t) are absolutely continuous on [a, b) and that the 

following conditions hold: 

.A+ lp(b)l + lr(b)l = 1, (6.1) 

p(t) = 0 for t E (b, b + 6], q(t) = 0 for t E (b- 6, b), (6.2) 

(p(a) + q(a), -p(b)) E >.8<p(x(a),x(b)) + N((x(a),x(b)); 0), (6.3) 
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(:t [p(t) + A'p(t + ~)], ! [q(t- ~) + A'q(t)], i-(t)) 

E co{ (u, v, w) I (u, v,w,p(t) + q(t) + r(t)) E >}if(x(t),x(t- ~), z(t), i(t), t) (6.4) 

+N((x(t),x(t- ~), z(t), i(t)); gph F(t))} a. e. t E [a, b]. 

Proof. To prove this theorem by the method of discrete approximations, we first construct a se­

quence of discrete-time problems (PN) whose optimal solutions (x N, ZN) strongly approximate (x, z) 

in the sense of Theorem 2.1. By necessary optimality conditions for (xN, ZN) from Corollary 5.2 

we find ;..N 2: 0, pf, qf, and rf satisfying relationships (5.3)-(5.9) for all N E JN. 

Without loss of generality we suppose that ;..N -+ ).. as N-+ oo for some ).. 2: 0. Recall that the 

symbols xN (t), ;zN (t), pN (t), qN (t- ~), rN (t), pN (t), and QN (t- ~) stand for the piecewise linear 

extensions of the corresponding discrete functions from Theorem 5.1 with their piecewise constant 

derivatives on the continuous-time interval [a, b]. 
Considering Bj from Theorem 5.1, we define gN (t) := Bf /hN for t E [tj, tj+l) as j = 0, ... , k 

and conclude by Theorem 2.1 that 

rb k k lti+, 
}" IBN(t)ldt=:LI11fls2:L li(t)-vfldt 

a j==O J==O tj 

= 21b li(t)- iN(t)l dt := "N-+ 0 as N-+ oo. 

We may assume without loss of generality that 

vN (t) :=iN (t) -+ i(t) and eN (t) -+ 0 a.e. t E [a, b] as N-+ oo. 

Let us estimate (pN(t),qN(t- ~),rN(t)) for large N. Using (5.3) and (5.4), we derive from (5.6) 

the inclusions 
N N N N N N 

(
Pj+l- Pj _ )..N{)N qj-N+l- qj-N ;..N N rj+l- rJ _ ;..N N 

hN J ' hN - l<j-N' hN UJ ' 

;..NgN 
J + N + N ,N N) E N((-N -N -N -N) hF) ----,;:;;--- Pj+l rj+l-" Lj xj ,xj-N,zj ,vj ;gp j 

with some (iJf,~<f-N, uf, LfJ E 8/j(xf, xf-N,zf, vfl for all j = k- N +2, ... , k+ 1. This means, 

by definition of the coderivative ( 4.4), that 
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for j = k -N + 2, ... ,k+ 1. Since J(.?_f,K.f_N,a.f,t.f)J:::; e, due to the Lipschitz continuity off 

with modulus f 1, we derive from the above that 

J(p_f, qj':_N, r.f}J :0: fFJO.fJ + (fF + 1)hNf f + (fFhN + 1)J(p_f+l, qj':_N+l, r.f+l)J 

:0: fFJO.fJ + (fFhN + l)fFJ0f+1J + (fF + 1)hNfJ + (fFhN + 1)(fF + l)hNff · 

+ (fFhN + 1)
2
J(pf+2' qj':_N+2' rf+2ll :0: · · · 

:0: exp[£F(b-a)](1 +ft(fF +1)/fF +fFVN), j = k -N +2, ... ,k+ 1, 

which implies the uniform boundedness of { (p.f, qj':_N, r.f) J j = k - N + 2, ... , k + 1} and hence 

that of (pN(t),qN(t- Ll),rN(t)) on [b- Ll,b]. 

Next we consider j = k - 2N + 2, ... , k - N + 1 and derive from (5.6) that 

This implies due to Theorem 4.1 and the uniform boundedness of the above vectors p.f and q.f by 

for j = k - 2N + 2, ... , k - N + 1. Therefore 

J(p.f,q.f-N,r.f)J :0: fFJO.fJ + (fF + 1)hNfJ + (fFhN + 1)J(pf,_1,qj'::_N+l,rf,_1)j + (fFhN + l)a 

:0: fFJO.fJ + (fFhN + l)£FJ0f+1J + (fF + 1)hNff + (fFhN + 1)(£F + l)hNfJ 

+ (fFhN + l)(fF + 1)a + (fFhN + 1)2j(pf,_2, qj':_N+2' rf+2)j :0: · · · 

:::; exp[fF(b- a)](1 + (ft + a)(fF + 1)/fF + fFVN), j = k- 2N + 2, ... , k- N + 1. 

This shows that p.f, qj':_N, and r.f are uniformly bounded for j = k-2N+2, ... , k-N +1, and hence 

the sequence {pN (t), qN (t-Ll), rN (t)} is uniformly bounded on [b-2L1, b- Ll]. Repeating the above 

procedure, we conclude that both sequences {pN (t), qN (t- Ll), rN (t)} and {PN (t), QN (t- Ll)} are 

uniformly bounded on the whole interval [a, b]. 

Next we estimate (PN(t),QN(t-Ll),TN(t)) on [a,b] using (5.6) and Theorem 4.1. This yields, 

for tj :::; t < tj+l with j = 0, ... , k, that 

l(
p!V _pJV QNN 1-QNN rNl_rf:l)l 

J(FN (t), QN (t- Ll),TN (t))J = J+~N J ' J- \N J- ' J+ hN J 

I 

N N ;..Ne.f N N N 1 

:0: fF ).. 'J + h;;-- Pj+l- qj+l- rj+l + £1 

S fFJONJ + £FIP.ft_JI + fFJqf,_Ji + fFJrf,_Ji + (fF + 1)£/. 
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Thus the sequence {PN (t), cjN (t- tl.),rN (t)} is weakly compact in L1[a, b]. Taking the whole 

sequence of N E IN without loss of generality, we find three absolutely continuous functions P(·), 

Q(·- .6.), and r(·) on [a, b] such that 

PN (t) --+ F(t), cjN (t- .6.)--+ Q(t- .6.), rN (t)--+ r(t) weakly in L1[a, b] 

and pN(t)--+ P(t), QN(t- .6.)--+ Q(t- .6.), rN(t)--+ r(t) uniformly on [a,b] as N--+ oo. Since 

pN (t) and qN (t- .6.) are uniformly bounded on [a, b + .6.], they surely converge to some functions 

p(t) and q(t- .6.) weakly in £ 1[a, b + .6.]. Taking into account the above convergence of pN (t) and 

QN(t- .6.), we get that p(·) and q(·) satisfy (6.2), that 

P(t) = p(t) + A*p(t + .6.), Q(t- .6.) = q(t- .6.) + A*q(t), t E [a, b], 

and that p(t) and q(t) are piecewise continuous on [a, b+il.] and [a-.6., b], respectively, with possible 

discontinuity (from the right) at the points b-ill. at i = 0, 1, .... Conditions (6.1) and (6.3) follow 

by passing to the limit from (5.9) and (5.5), respectively, by taking into account the robustness of 

the basic subdifferential (4.3) and the normal cone (4.1). 

It remains to justify the Euler-Lagrange inclusion (6.4). To furnish this, we rewrite the discrete 

Euler-Lagrange inclusion (5.6) in the form 

for t E [tj, tj+l] with j = 0, ... , k. By the classical Mazur theorem there is a sequence of convex 

combinations of the functions (PN (t), cjN (t- .6.), rN (t)) that converges to (F(t), Q(t- .6.), r(t)) for 

a. e. t E [a, b]. Passing the limit in (6.5) and taking into account the pointwise convergence of eN (t) 
and vN ( t) established above, as well as the constructions of the extended normal cone ( 4. 9) and the 

extended subdifferential (4.10) and their robustness property (4.12) with respect to all variables 

and parameters, we arrive at (6.4) and complete the proof of the theorem. 6 

Observe that for the Mayer problem (PM), which is (1.1)-(1.5) with f = 0, the generalized Euler­

Lagrange inclusion (6.4) is equivalently expressed in terms of the extended coderivative (4.11) with 

respect to the first three variables ofF= F(x, y, z, t), i.e., in the form 

(!fp(t) + A*p(t + .6.)], :t[q(t- .6.) + A*q(t)],r(t)) 
(6.6) 

E co B;,y,zF(x(t), x(t- .6.), z(t), i(t)) (- p(t) - q(t) - r(t)) a. e. t E [a, b]. 

It turns out that the extended Euler-Lagrange inclusion obtained above implies, under the 

relaxation stability of the original problems, two other principal optimality conditions expressed 

26 



in terms of the Hamiltonian function built upon the mapping F in (1.2). The first condition 

called the extended Hamiltonian inclusion is given below in terms of a partial convexification of 

the basic subdifferential ( 4.3) for the Hamiltonian function. The second one is an analogue of the 

classical Weierstrass-Pontryagin maximum condition for the differential-algebraic inclusions under 

consideration. Recall that an analogue of the Maximum Principle (centered around the maximum 

condition) does not generally hold for differential-algebraic systems, even in the case of optimal 

control problems governed by smooth functional-differential equations of neutral type that are a 

special case of ( P). 

The following relationships between the extended Euler-Lagrange and Hamiltonian inclusions 

are based on Rockafellar's dualization theorem [16] (see also [19, Section 7.6] for another, more 

simple proof) that concerns subgradients of abstract Lagrangian and Hamiltonian associated with 

set-valued mappings regardless of the dynamics in (1.2). For simplicity we consider the case of 

the Mayer problem (PM) for autonomous differential-algebraic systems. Then the Hamiltonian 

function for F in (1.2) is defined by 

H(x,y,z,p) :=sup{(p,v)l v E F(x,y,z)}. (6.7) 

Corollary 6.2 Let (x, z) be an optimal solution pair to the Mayer problem (PM) for the au­

tonomous delayed differential-algebraic inclusion (1.2) under the assumptions of Theorem 6.1. Then 

there exist a number .X :2:: 0, piecewise continuous functions p: [a, b + !:>.]--+ IRn and q: [a- 1:>., b]--+ 

IRn {whose points of discontinuity are confined to multiples of the delay time !:>.}, and an absolutely 

continuous function r: [a,b]--+ IRn such thatp(t)+A'p(t+i:>.) and q(t-i:>.)+A'q(t) are absolutely 

continuous on [a, b] and, besides (6.1) -(6.4), one has the extended Hamiltonian inclusion 

( ~ [p( t) +A 'p( t + !:>.)], ~ [q(t - 1:>.) +A' q(t)], r(t)) 

Eco{(u,v,w) I ( -u,-v,-w,z(t)) E8H(x(t),x(t-L:>.),z(t),p(t)+q(t)+r(t))} 

(6.8) 

and the maximum condition 

(p( t) + q(t) + r(t), z(t)) = H (x(t), x(t - !:>.), z(t) ,p(t) + q(t) + r(t)) (6.9) 

for a.e. t E [a,b]. If moreover F is convex-valued around (x(t),x(t- L:>.),z(t)), then (6.8) is 

equivalent to the Euler-Lagrange inclusion 

(! [p(t) + A'p(t + !:>.)], :t[q(t- 1:>.) + A'q(t)], r(t)) 
(6.10) 

E coD' F(x(t),x(t- !:>.), z(t), z(t)) (- p(t)- q(t)- r(t)) a. e. t E [a, b], 

which automatically implies the maximum condition (6.9) in this case. 
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Proof. Since (PM) is stable with respect to relaxation, the pair ( x, E) is an optimal solution to the 

relaxed problem (RM) whose only difference from (PM) is that the delayed differential-algebraic 

inclusion (1.2) is replaced by its convexification (3.4). By Theorem 6.1 the optimal solution (x, z) 

satisfies conditions (6.1)-(6.4) and the relaxed counterpart of (6.6), which is the same as (6.10) 

in this case with F replaced by the convex hull co F. According to [16, Theorem 3.3] and [19, 

Theorem 7.6.5] one has 

co { (u,v,w)l (u,v,w,p) E N((x,y,z,q);gph(coF)} 

C co { (u, v, w)l ( -u, -v, -w, q) E 8HR(x,y, z,p) }, 
(6.11) 

where HR stands for the Hamiltonian (6.7) of the relaxed system, i.e., with F replaced by co F. It 

is easy to check that HR =H. Thus the extended Euler-Lagrange inclusion for the relaxed system 

implies the extended Hamiltonian inclusion (6.8), which surely yields the maximum condition (6.9). 

When F is convex-valued, (6.8) and (6.10) are equivalent due to the equality in (6.11) proved in 

[16]. This completes the proof of the corollary. 

Acknowledgments. The authors are grateful to two anonymous referees for valuable sugges­

tions and remarks that helped us to improve the original presentation. 
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