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Abstract. This paper concerns constrained dynamic optimization problems governed by delay control
systems whose dynamic constraints are described by both delay-differential inclusions and linear algebraic
equations. This is a new class of optimal control systems that, on one hand, may be treated as a specific type
of variational problems for neutral functional-differential inclusions while, on the other hand, is related to a
special class of diﬁerential-algebra.ic systems with a general delay-differential inclusion and a linear constraint
link between “slow” and “fast” variables. We pursue a two-hold goal: to study variational stability for this
class of control systems with respect to discrete approximations and to derive necessary optimality conditions
for both delayed differential-algebraic systems under consideration and their finite-difference counterparts
using modern tools of variational analysis and generalized differentiation. The authors are not familiar with
any results in these directions for such systems even in the delay-free case. In the first part of the paper we
establish the value convergence of discrete approximations as well as the strong convergence of optimal arcs
in the classical Sobolev space W12, Then using discrete approximations as a -vehicle, we derive necessary
optimality conditions for the initial continuous-time systems in both'Euler-La,grange and Hamiltonian forms
via basic generalized differential constructions of variational analysis.

Keywords. Optimal control, variational analysis, functional-differential inclusions of neutral type,
differential and algebraic dynamic constraints, discrete approximations, generalized differentiation, necessary
optimality conditions.
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Running title: Optimal control of dynamic systemé with differential and algebraic constraints

1 Introduction

This paper deals with a new class of dynamic optimization problems modeled as follows:

b
minimize J[z, z] = o(z(a), z{b)) + f.f(m(t),a:(t — A), z(t), 2(t), ) dt (1.1)

'Research was partly supported by the National Science Foundation under grants DMS-0072179 and DMS-0304989.



subject to the constraints

2(t) € F(z(t), z(t — A), 2(t),t) ae t € [a,b], {1.2)
z{t) = z{t) + Az(t — A), tE [a,b], {1.3)
z{t) =cft), t€la—A,a), (1.4)
(z(a),z(b)) € R C R™, (1.5)

where z : [a — A, b] = IR" is continuous on [¢ — A, ) and [a, b] (with a possible jump at ¢ = a), and
where z(t) is absolutely continuous on [a, b]. We always assume that F': R* x IR" x IR" x{a,b] = R"
is a set-valued mapping of closed graph, that 2 is a closed set, that A > 0 is a constant delay, and
that A is a constant » x n matrix. Let us label this problem as (P) and note that the methods
used in this paper allow us to include the cases of multiple delays A1 > Az > ... > A, > 0 as
well as variable delays A(t) with |A(¢)| < @ € (0,1) a.e. t € [a,b], which are not consider here for
simplicity. We do not also consider the limiting case of A | 0 required additional assumptions.

Observe that the variational problem (P) involves two kinds of state variables: “slow” z and
“fast” z, which satisfy interrelated dynamic constraints given by the delay-differential inclusion
(1.2) and the linear delay-algebraic eguation (1.3). Furthermore, the integral functional in (1.1)
depends on on both slow and fast variables as well as on the time-derivative of fast variables (slow
variables may not differentiable in time). All these specific features are highly essential for the
methods developed and the results obtained in this papers.

On one hand, problem (P) containing both differential and algebraic constraints on slow and
fast variables may be viewed as a special subclass of delayed differential-algebraic control systems
providing, by definition, descriptions of control process via combinations of interconnected differen-
tial and algebraic dynamic relations. There are many applications of such dynamic models (called
DAEs, i.e., differential-algebraic equations) especially in process systems engineering, robotics,
mechanical systems with holonomic and nonholonomic constraints, etc.; see {1, 14, 15] and the
references therein. Observe, however, that the dynamic relations (1.2) and (1.3) are generally dif-
ferent from those conventional in the control theory for DAEs. In particular, the only algebraic
constraint (1.3) is linear, while it does not satisfy the index one assumption that is usually imposed
in known results on necessary optimality conditions; see {2, 14] and their references. The most
advanced results in this direction for index one DAEs are obtained in[14], where it was particularly
discovered that optimal processes in such systems do nof satisfy the (strong) Maximum Principle

in the absence of a convexity hypothesis on the velocity sets.

On the other hand, the problem (P) under consideration is strongly related to functmnal-

differential control systems of the so—called neutral type, which contain time delays in velocity

variables. Indeed, the dynamic constraints {1.2) and (1.3) can be unified as

jt[ ()+Am(t—A)] € F(z(t),z(t — A),z(t) + Az(t — A),t) ae.,



that, provided the absolute continuity of Z(#) (which is not the case under the assumptions made),

may be written in the general form of neutral delay differential inclusions
z(t) € Glz(t), z(t — A),2(t — A),t) a.e. (1.6)

Similarly, the cost functional (1.1) transfers under this substitution into the form
b

plala),2(8) + [ g(alt) ot — ), a(0), 2(¢ — A),) (L)

a
Thus we can treat problem {P) as a special case of Bolza-type variational problems for neutral
delay-differential inclusions. However, in this way we loose the principal feature of the considered
problem (P), which is crucial for the methods applied ag well as for the results obtained below.
' This specific feature of problem (P) is as follows: both the dynamic constraint (1.6) and the cost
functional (1.7) depend in fact not on £(¢) and Z{t — A) but on the derivative of the same linear
combination z(t) + Az{t — A). That is why we treat this linear combination as a new state variable
in (1.3) and consider problem (P) in the natural form (1.1)-(1.5), which emphasizes both delay-
differentiol and linear algebraic constraint on the system dynamics. In our opinion, the recognition
of this special class of dynamic optimization problems is a significant contribution of this paper.

Our approach is based on the method of discrete approzimations, in the line developed in
[8, 10, 11, 12] for nondelayed differential inclusions, delay-differential inclusions with A = 0, and
for a special class of the neutral-type problems that corresponds to (P) with F' independent of z
and with f independent of (z,2). Some results for delayed differential-algebraic problems of type
(P) were announced in [13] in the case when both F and f are independent of z, while f depends
on the velocity z described by (1.2).

The discrete approximation method is of undoubted interest from qualitative as well as nu-
merical viewpoints, and the present paper contains results in both of these directions. Our main
emphasis, however, is the qualitative aspect, which allows us to derive necessary optimality con-
ditions for delayed differential-algebiaic systems by passing to the limit from their discrete-time
analogues. A crucial issue is to establish variational stability of discrete approximations that ensures
an appropriate strong convergence of optimal solutions.

Once such a stability is established, discrete-time control problems for delayed difference-
algebraic inclusions reduce to special finite-dimensional problems of nonsmooth programming with
an increasing number of geometric constraints that may have empty interiors. To handle such prob-
lems, we use apprOpria,te' generalized differentiation tools of variational analysis introduced earlier
by the first author. In this way we derive necessary optimality conditions for the discrete-time and
then for continuous-time problems under consideration.

The rest of the paper is organiz.ed as follows. In Section 2 we show that any admissible pair
to the delayed differential-algebraic system (1.2} and (1.3) can be strongly approzimated by the

corresponding admissible pairs to its finite-difference counterparts. This result important for its



own sake plays a crucial role in the construction of well-posed discrete approximations to the original
problem (P) and in the subsequent justification of the strong convergence of their optimal solutions
to the given optimal solution for (P).

Such a convergence analysis is conducted in Section 3 involving appropriate perturbations of the
endpoint constraints (1.5) that is consistent with the step of discretization. The required strong
convergence of optimal solutions is justified under an intrinsic property of the original problem (P)
called relazation stability. This property imposing the equality between the optimal values in (P)
and its relaxation goes far beyond the convexity assumption on the velocity sets F(z,y, 2,1).

Section 4 contains basic constructions and required material on generalized differentiation that
are appropriate for performing a variational analysis of discrete-time and continuous-time optimal
control problems in the subsequent sections. These constructions and calculus rules of generalized
differentiation are used in Section 5 for deriving general necessary optimality conditions for non-
convex discrete-time inclusions arising in discrete approximations of the original control problem
(P). The main necessary optimality conditions in the forms of Euler-Lagrange and Hamiltonian
inclusions for (P) are derived in Section 6 via passing to the limit from discrete approximations.

Our notation is basically standard; cf. [8] and [17]. Recall that, given a set-valued mapping {or
multifunction) F': X = Y between finite-dimensional spaces, the Painlevé-Kuratowski upper/outer
limit of F(z) as x — 7 is defined by

LimsupF(z) ;= {y € Y|z =+ %, Iyr >y with y; € F(zg) forall k€ IV},

T—T

where IV stands for the collection of all natural numbers.

2 Discrete approximations of differential-algebraic inclusions

This section deals with discrete approximations of an arbitrary admissible pair to the delayed
differential-algebraic system (1.2)-(1.4) without taking into account the endpoint constraints. We
show that, under fairly general assumptions, any admissible pair to {1.2)-(1.4) can be strongly
approzimaoted in the sense indicated below by the corresponding admissible pairs to finite-difference
inclusions obtained from (1.2)-(1.4) by the classical Euler scheme. This result is constructive
providing efficient estimates of the approzimation rate, and hence it is certainly of independent
interest for numerical analysis of delayed differential-algebraic inclusions.

Let (#,%) be an admissible pair to (1.2)-(1.4), i.e., Z(:) is continuous on [a — A,a) and [a, b]
(with a possible jump at t = a}, Z(-) is absolutely continuous on [a, b], and relations (1.2)-(1.4} are
satisfied. Note that the endpoint constraints (1.5) may not hold for (%, 7); if they do hold, (Z, ) is

called feasible to (P). The following standing assumptions are imposed throughout the paper:

(H1) There are two open sets U C RR", V C IR™ and two positive numbers £r, mp such that
z(t) € Ufor allt € {a — A,b] and 2(t) € V for all ¢t € [a,b], that the sets F(z,y,z,1) are
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closed, and that one has

F(:n;y,z,t) C mpB for all (z,y,2,t) € U xU xV x [a,b],
F(z1,y1,21,t) C F(zg,y2,22,t) + £p(|z1 — 22| +ly1 — 3| + |21 — 22|} B

if (z1,91,21), (22,Y2,22) €U x U x V and ¢ € [e,b], where IB stands for the closed unit ball
in IR™.

(H2) F(z,y,z,t) is Hausdorff continuous for a.e. £ € [a,b] uniformly in (z,y,2) €U x U x V.

(H3) The function ¢(-) is continuous on [a — A, al.

Following [3], we consider the so-called averaged modulus of continuity for the multifunction
Fx,y,2,t) with (z,y,2) € U XU x V and t € [a, b] defined by

b
T(F;h) :=f o(F;t, h)dt,
a
where o(F;t,h) = sup {§(F;,y, 2,1, h)| (z,y,2) €U x U x V} with

h h
HF;z,y,2,t,h) = sup {haus(F(:c,y,z, t1), F(z,y, 2, t2)) ‘ (t1,t2) € [t — E’t + -2—] nla, b]},

and where haus(-,-) stands for the Hausdorff distance between two compact sets. It is proved in
{3] that if F'(z,y, z,1t) is Hausdorff continuous for a.e. ¢ € [a,b] uniformly in (z,y,2) € U x U x V,
then 7(F;h) — 0 as b — 0. This fact is essentially used in what follows.

Let us construct a sequence of discrete approximations of the given delayed differential-algebraic

inclusion replacing the derivative in (1.2) by the classical Euler finite difference

st h)—2(t)

For any N € IN := {1,2,...} we consider the step of discretization hy 1= A/N and define the
discrete partition t; = a'+ jhy 88§ = —N,...,k and tx+1 = b, where k is a natural number
determined from a + khy < b < a+ (k+1)hy. Then the corresponding delayed difference-algebraic

inclusions associated with (1.2)—(1.4) are described by
N (ti+1) € 2v(ty) + Ay Flaw (i), 2n(t; — A) 2v(ighty) for j=0,....k,

an(ty) = iN(tj) + Azn(t; —A) for 7=0,...,k+1, (2.1)
a’!.‘N(tj) = C(tj) for j=-N,...,—-L

Given discrete functions zx(¢;) and zx(¢;) satisfying (2.1), we consider the extension of zy(t;) to

the continuous-time intervals [a — A, b] such that zx{t) are defined piecewise-linearly on [a,b] and



piecewise-constantly, continucusly from the right on [a — A, a). We also define piecewise-constant

extension of discrete velocities on [a, b] by

zn(tip1) — 2n(t;)
hn

UN(t) = , tE€ [tjatj-Fl)! i=0,...,k

It is easy to see that

t
zn(t) = zn{a) +/ vn(s)ds fort € {a,b)],

where zn(t) = an(t) + Azn(t — A).
Let W1?[a,b] be the classical Sobolev space with the norm

b
lz( w2 = t1é1[(al,])§] |z(t)| + (/a I-'i"(t)igdt) 1/2'

The following theorem, which plays an essential role in the subsequent constructions and results of
the paper being also important for its own sake, establishes the strong W'2-approzimation of any
admissible pair to the given delayed differential-algebraic inclusion by corresponding solutions to

its discrete-time counterparts.

Theorem 2.1 Let (£,%) be an admissible pair to (1.2)-(1.4) under hypotheses (H1)-(H3). Then
there is a sequence (Tn(t;),Zn(t;)) of solutions to discrete inclusions (2.1) with Tn(to) = Z(a) for
all N € IN such that their extensions Tn(t), a— A <t < b, converge uniformly to Z(-) on ja— A, b
while Zy(t), a €L < b, 'con'uerge to Z(t) in the W%-norm on [a,b] as N — .

Proof. Using the density of step-functions in L[a, §], we first select a sequence {wn(:)}, N € IV,
such that each wy(t) is constant on the interval [t;,¢;41) for j =0,...,% and that wy(-) converge
to Z(-) a3 N — oo in the norm topology of L'[a,b]. It follows from (H1) that

lwn (®)] < Jwn(t) — Z)| + |E(#)] < 1+mp
for all ¢ € [a,b] and N € IN. In the estimates below we use the sequence
b -
§N-:=f |w () -—Z(t)|dt =0 as N - o0.
a
Denote wy; := wn(t;) and define discrete pairs {un (t;), sn(t;)) recurrently by

uN(tj) = ﬂ_f(tj) for j=-N,...,0,
SN(tj) = uN(tj) +A’LLN(tj —A} forj=0,...,k+1,

SN(tj+1) = SN(fj) +thNj for j =0,...,k.



Then the extended discrete functions satisfy

un(t) = f,‘(tj) fort € [tj,fj+1), j=-=N,..., -1,
sy{t) = un(t) + Aun(t — A) fort € {a,b],

¢
sy (t) = E(a) + f wn(s)ds fort € {a,b].

Next we want to prove that uy{t) converge uniformly to Z(¢) on [a,b]. Denote ry(t) := un(t) —
Z(t) and yn(t) := |rn(t) + Ary{(t — A)|. For any t € [a, b} one has

t
yn(t) = |sw(t) — 2(t)] gf lwn () — 2(s)|ds < &n, (2.2)
a
which implies the estimates

Irn ()] < yw(®) + |Allrn(E = A)| < yn(t) + [Alyn (t — A) + [APlrv(E —28) < .
<yn(t)+ | Alyn(t = A) + ...+ [AMyn(t — mA) + |A™ ry(E - (m + 1)A)).

Observe that c(-) is uniformly continuous on [a— A, a] due to assumption (H3). Picking an arbitrary

sequence Oy | 0 as N — oo, we therefore have
le(t) — (")} < By whenever ¢, € stjmal, j=-N,...,—L

Choose an integer number m such that ¢ — A <b— (m+ 1)A < a. Then t — (m + 1)A € [t;,¢41)
for some j € {—N,..., -1}, which implies that

lrn(t — (m+ 1)A)| < le(ty) — et — (m+1)A)| < By
Since m € IN does not-depend on N, this gives
Irv (@) < Ex(L+ Al +...+|A™) + 14" By = oy 50 asN = (2.3)

for all ¢ € [a, ] due to the construction of rx(-). Now consider a sequence {{x} defined by

k
(v = k) distlwn;; Flun (), un(t; — A), sn(t), t5))
=0 '

and show that (n | 0 as N — co. By construction of {y and the averaged modulus of continuity



7(F; h) we get the following estimates:
k. ortin i
{n= Z/ dist(wy;; F(un (), un (t; — A), sn(t;), t5)) dt
i=0 "%
k ti1
= Z/ dist(wn;; F(un(t;), un(t — &), sn(t;), 1) di +
=071
E o ptia ‘
Z/ [dist(wn,; Fun (t;), un(t; — A), sn(t;), £5)) — distlwn;; Flun (t5), un(ty — A), sn(ts), 1)) di

k ti+1 k ti+1
<30 [ distlons Fluntt)uw(ty - Boxtes e+ 3 [ oFst ) a
=01 =0/t

k. s
< Z/ dist{wn;; F(un (t5), un(t; — &), sn(ts), 1)) dt + 7(F; hy).
=04

Further, assumption (H1) implies that for any £ € {t;,¢;41) with j =0,...,% one has

dist(wn,; Flun (t5), un (t; — A), s (t5), 1) — dist{way ;s Flun (), un (t — A),sn(t),1))
< dist(F(un (t;), un(t; — A), sn(ty), 1), Flun(t), un (t — A), sn (1), 1))
< Lp(lun(ts) —un ()] + lun(t; ~ A) —un(t — A)| + |sn () — sn(B)]).

Taking into account that

t
}SN((‘,;,') - SN(t)t = ’/t. wy(s) ds‘ < (1 +mF)(tj+1 - j) =(1+mp)hy =an |0,

we arrive at

un () — un{f;) < an + 1Allun(t = A) —un(t; — A)
<an(l+ |4+ ...+ |A™) + A" un ( — (m + 1)A) —un(t; — (m+1)A)]
<apn(l+|Al+...+]A™) + |A™* By :=by L0 as N = 0

and hence ensure that
diSt(wNj ; F(UN (tj)i UN (tj —A)’ SN(tj)at)) _diSt(“-"Nj; F(“N (t)‘l uN(t'—A)s SN (t)a t)) < (a'N‘l‘sz)gF-
It follows from (H1}), (2.2) and (2.3) that for any ¢ € [t;,£;51) and j =0,...,k one has

dist{wn;; Flun(t), un(t — A), sn(t), 1)) — dist(wn (t); F(2(2), Z(t — A), Z(t), 1))
< dist(Flun(t), un(t — A),sn(t),8), F(2(E), 2(E — 8), 2(2), 1))

< Lp(lun(t) — 2()] + lun(t - Ay — 2(t — A)| + [sn(t) — 2(t}])

< (2on +EN)EF.



]

Combining the above estimates and denoting gy := ay + 2by + 2pn5 + €N, we arrive at

dist(wy,; Fun(t;), un(t; — A), sn{ts), 1))
< Lrpn + dist{wny; F(E(t), 2(t — A), 2(t), 1)) < €run + |wn, — 5(2)]

and finally conclude that

ko orta .
CN SZ_—:O/t; (|wNj—z(t)l"l-eFﬂN)df-?-T(F;hN) (24) 7

=év +Hepun(b—a)+7(F;hy) :=vnv L0 as N — oo.
Note that the discrete functions (un(t;), sn(t;)) may not be a admissible pair for (2.1) because
the inclusions wy, € F(un(t;),un(t; — A),sn(t;),t;) may not be true for j = 0,...,k Let us

construct the desired pair (Zy(t;),Zn(¢;)) by the following prozimal algorithm:

,

EN(tJ) = c(tj) for J = "'N7"' H _15 EN(tﬂ) = E(O‘L
EN(tj+1):'%‘QI\J'(t,,‘}')-|"h]\f"'-)l\f_-; for 7 =0,...,k,
{ EN(tj) = §N(tj) +A§N(tj —-4) for j=0,...,k+1, (2.5)

vn, € F(Zn(25), En(t; — A), En(ts),t;) for 5=0,....%,

luw; — wiy| = dist(wn; F(En (4), T (8 — &), Zn (), t5))  for j=0,...,k

“

It follows from the construction (2.5) that (Zn(%;), Zw (;)) is a feasible pair to the discrete inclusion
{(2.1) for each N € IN. Note that

[Zw(t) —2(t)| = [T (ty) — 2(t)| = lety) — c(t)] < By fort € [, 8541 § = =N, -1,

which implies that the extensions of Zn(-) converge to Z(¢) uniformly on [a — A,a}. Let us analyze
the situation on [a, b].

First we claim that Zy(t;) € U and Zy({;) € V for j = 0,...,k + 1. Arguing by induction,
we obviously have Zn(to) € U and Zn(tp) € V. Assume that Tn(t;) € U and Zy(t;) € U for all
j=1,...,m with some fixed m € {1,...,k}. Then

1Zn (Emt1)} — un (Emt1)] = (28 (bmt1) — AZn (tntr — A) = 88 (Emt1) + Aun(tnsr — A)]
< |AEN (tma1 — A) — uy(tmsr — A)| + [Ex (tmtr) = Sy {tme1 )]
< |AlBN (Emtt — A) = un(tmer — A)] + |AllEN (b — A) — un(tm — A)]

+ |Zn(tm) — un{tm)| + Andist(wy,,; F(EN(tm), Zn (m — A), 28 (Em)s tm ))-

Taking into account that

En (tm) — un(tm)] < [AlIEN (Em-n) — un (Em-n)| +AZN (En-1-n) — un(tm-1-n)]

+ |Zn(tm—1) — N (tm—1)| + Anvdist{wy,,_; F(EN{Em=1), TN (tmo1-N), 28 (tm—-1), tm-1)),



that

dist(wy,,_1; F(EN(Em-1), Zv Em-1-~), Zn (tm—1), tm—1))
< dist(wnp_1; F{un(tm—1), uN{tme1-8 ) SN (tm-1)1 tm—1))

: 2.6
+£F(I£N(tm—1) - ”N(tm—1)| + |§N(tm"1) - SN(tm—l)l : ( )
HEN(tm-1-n) — uN{tm—1-~)I),
that
Zv (tm) = sn(tm)] < |Bn(tm) —un{tm)] + |AlZN Em-n) — un (Em-~)], (2.7)

and that |Zn(t;) —un(t;)| = 0 for § <0, one has

ki3
|ZN (tm1) — un(tmt1)| S Mihn ZdiSt(wNj;F(uN(tj)auN(tj = A),sn(ts)it) < Miyw (2.8)
=

with some constant M; > 0. Now invoking (2.3) and increasing M if necessary, we arrive at

|Zn (tmt1) = Z(tme1)| < éx + Miyy =0 as N — oo,

which implies that Ty (t;) € U for j =0,...,k + 1.
Observing further that

~

ZN (tms1) — sN(tm+1)] < [Zv(tm) — sw{tm)| + An|vw, — wi,,]

< [Zv(tm) — sn (tm)| + hndist(wi,,; F(@N (Em), TN (tm — A), Z8 (tm), tm)),

we derive from (2.6) and (2.7} the estimate

Zv (tms1) — S8 (tma1)| < Mahn Y dist(wn; Fun (), un(t; — A),sn(t;), 1) < Mayw  (2.9)
3=0 -

with some constant My > 0. Note that

12w (tmt1) — Zn(Emt)| < |28 (Emt1) — svEmt1)| + [s8{Emsr) — 28 (Ema1)] < Moywy + €n,

which ensures the inclusions 2y (t;) € V for j = 0,...,k+1. It remains to prove that Zxy(t) converge

to £(¢) in the W?-norm on [a, b], which means that

b .
max |2y (£) — 2(t)| +[ |Zn(t) — Ht)Pdt =0 as N — oo (2.10)
t€fa,b] a

10



To furnish this, we use (2.8) and (2.9) to get the estimates

k+1 k+1 i-t
Z|C€N t5) —un{t;)| < DM > hydist(wn,,; Flun(tm), un (tm — A), s8(Em): tm )
7=0 m=0
k
<Mb—a Zdlst(u.w : (UN(t )s UN(fg A),sn(ts), 1)),
§=0
E+1 E+1 j-1 :
Z |Zw (t5) — swv(ti)] < ZM2 Z hadist(wn,,; Fun(tm), un(tm — A), sn(tm), tm))
=0 - i=0 m=0
k
< M2(b - a’) Z diSt(wNj;F(uN(tj): U'N(tj - A)a SN(tj)atj))a
§=0

which imply by (H1) that
f IZN —wy(t |dt Z/ |ZN t) —wplt |dt
._Zf o, = ww, | dt —-ZhNdlst wny F@EN (), Enlty - A), 3n(t), 1))
j=0

= ZhNdlst(wN, (un (), un(t; — A), sn(t5), t5))

?S“II

+3 h[dist(wn,; F(En (), Bn (8 — A), En(t), ) — dist(wp,; Flun (), un (t; — A), sn(t5),1))]
=
< ‘kg hdist(wn;; Flun (t), un(t; — A),sn(ty),t5))
=
+:0=3F‘hN [1Zn(t5) = un(ti)] + [En(t; — A) —un(t; — A)| + [Zn(E5) — sn(t5)] ]
<av+ szo Crhn [|Bn (t5) = un () + [En (8 — A) —un(t; — A)| + [Zw(t;) — sn(ts)] ]
<o+ 2(My + Mz)(é _ a)lp iﬁ ﬁN'dist(c;Nj; Fluw(t;), un(t; — A), sy (t;), &)
=

< yv +2(M1 + Ma)tr(b — a)yw.

The latter ensures the estimates

b
f|zN —z(t|dt</ |Zn(2) wN(t)|dt+f |ww (t) — 2(t)| dt

S an(1+2(M; + M) (b~ a)lp) +&n.

Due to Zn(t) € U and Zx(t) € V, we get from (H1) by (1.2) and (2.5) that |Zn(t)| < me,
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|§(t)| < mp, and hence

b : . . 2 b . . . .
f |Zn(t) —2(8)|" dt = /a |Zn(t) — 2(t)||Zn (8) + 2(8)| dt
< 2mplyn (1 + 2(M; + M2)(b—a)lp) +€n] L0 a8 N — oo.

Observing finally that

b .
txél[ﬁ]m(t) — 2B’ < (b - a) / |Zw(t) — 2(0)| dt,

we arrive at (2.10) and complete the proof of the theorem. A

3 Strong convergence of discrete approximations

The goal of this section is to construct a sequence of well-posed discrete approximations of the
dynamic optimization problem (P) such that optimal solutions to discrete approximation problems
strongly converge, in the sense described below, to a given optimal solution to the original opti-
mization problem governed by delayed differential-algebraic inclusions. The following construction
explicitly involves the optimal solution (Z, Z) to the problem (P) under consideration for which we
aim to derive necessary optimality conditions in the subsequent sections.

For any natural number N we consider the following discrefe-time dynamic optimization prob-
lem (Py):

minimize Jy[zn,2zn] = o(zn(t), zn(ter1)) + |2n (to) — Z(a)|?

+hNZf (anlty),onlty — A) awty), A =) o

hn (3.1)
+Zf

subject to the dynamic constraints governed by delayed difference-algebraic inclusions (2.1), the

ts+1

perturbed endpoint constraints
(zn(to)s zn(trt1)) € On =R + 9N B, (3.2)

where ny = |Zn (tg+1) — Z(b)| with the approximation Zx(t) of Z(¢) from Theorem 2.1, and the

auriliary constraints
lzN(tJ)_j(tJ)] <g, |zN(tJ)_2(tJ)| <eg j= Lak;ls T (33)

with some € > 0. The latter auxiliary constraints are needed to guarantee the ezxisience of optimal

solutions in (Py) and can be ignored in the derivation of necessary optimality conditions; see below.
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In what follows we select € > 0 in (3.3) such that Z(t)+eB c U forallt € [a— A,b] and
Z(t)+eB C V for allt € [a,b]. Take sufficiently large N ensuring that ny < €. Note that problems
(Pw) have feasible solutions, since the pair (Zy,Zy) from Theorem 2.1 satisfy all the constraints
(2.1), (3.2), and (3.3). Therefore, by the classical Weierstrass theorem, each (Py) admits an optimal

pair (T, Zy) under the following assumption imposed in addition to (H1)-(H3):

(H4) ¢ is continuous on U xU, f{x,y, #,v,-) is continuous for a.e. t € [a, b} uniformly in (z,y, 2,v) €
UxUxV xmplB, f(-,+,,- 1) is continuous on U x U x V x mpIB uniformly in t € [a, bj,
and Q is locally closed around (Z(a), Z(b)).

We are going to justify the strong convergence of (Zn, Zn) to (Z, Z) in the sense of Theorem 2.1,
To proceed, we need to involve an important intrinsic property of the original problem (P) called
relazation stability. Let us consider, along with the original system (1.2), the convezified delayed

differential-algebraic system
2(t) € co F(z(t), z(t — A), z(t),t) a.e.t € [a,b|,

. (3.4)
z(t) = z(t) + Az{t — A), t€]a,b],

where “co” stands for the convex hull of & set. Further, given the integrand f in (1.1), we take its
restriction

frlz,y,z,0,t) = flz,y,2,0,t) + 8(v; Fz,y, 2, 1))
to F in (1.2), where 4(-; '} stands for the indicator function of a set. Denote by fp(w,y,z,v,t)

the convezification of fr in the v variable and define the relozed generalized Bolza problem (R) for

delayed differential-algebraic systems as follows:

b )
minimize f[a:,z] = p(z(a), (b)) +/ fr(z(®), z(t — A), z(t), 2(t), 1) dt (3.5)

over feasible pairs (z,z) with the same analytic properties as in (P} subject to the tail (1.4) and
endpoint (1.5) constraints. Every feasible pair to (R) is called a relazed pair to (P).
Onme clearly has inf(R) < inf(P) for the optimal values of the cost functionals in the relaxed

and original problems. We say that the original problem (P) is stable with respect to relazation if
inf(P) = inf(R).

This property, which obviously holds under the convexity assumptions on the sets F(z,y, 2,1} and
the integrand f in v, goes far beyond the convexity. General sufficient conditions for the relaxation
stability of (P) follow from [4]. We also refer the reader to [8, 10, 19, 20] for more detailed
discussions on the va.iidity of the relaxation stability property for various classes of differential and
functional-differential control systems.

Now we are ready to establish the following strong convergence theorem for optimal solutions
to discrete approximations, which makes a bridge between optimal control problems governed by

delayed differential-algebraic and difference-algebraic systems.
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Theorem 3.1 Let (Z,Z) be an optimal pair to problem (P), which is assumed to be stable with
respect to relazation. Suppose also that hypotheses (H1)-(H4) hold. Then any sequence {(Zn,2Zn)},
N € IN, of optimal pairs to (Py) extended to the continuous interval [a— A, b] and {a, b] respectively,
strongly converges to (Z,Z) as N — co in the sense that Ty converge to T uniformly on [a ~ A,

and Zy converge to Z in the Wh2-norm on {a, b].

Proof. We know from the above discussion that (Py) has an optimal pair (Zy,zy) for all N
sufficiently large; suppose that it happens for all N € IV without loss of generality. We consider

the sequence (Zn,Zn} from Theorem 2.1. Since each (Zn,Zn) is feasible to (Px), one has
JIn[EN, EN] S JN[EN,EN] for all N € IV.

For convenience we represent Jy[Zn,Zn] as the sum of three terms:

k ’ -
In[Bn, 2] = 0@ (to), Bn (tes1)) + by > f (En(t (i) En(ty — A), 2w (t)),

=0
J+1
+ Z ft

1t follows from Theorem 2.1 and the assumption on ¢ in (H4) that

ZN t;.w+1) — Zn(ty)

. 2
‘(t)‘ dt = I + I+ I

I = p(Z(a), (b)) as N — ococ.

Moreover, using the sign *~” for expressions equivalent as N — oo and the notation

~ Zn(tiv1) — Zn(t; )
UN(t) = N(J+1})LN N( J)1 tE[tj,tj.{.]_),j:O,...,k),

we have the relations

hNZf Enlt A), Zn (t5), Un (t5), £5)
=0
k " it
=3 [ fante)En - ), B (), w0, )
=071

k tig1
+ Z/ [f(EN(tj)aEN(tj - A):‘?N(tj)}aN(t)atj) - f(EN(tj):EN(tj - A)!EN(tj):ﬁN(t)at)] dt

k Li+1
=3 [ FEN (), Bty — A),3nlty), B (8), 8) dt + 7(f; h)

j=0"t
ko optin '
230 [ 1@t Bt - 8), B ), w0, )
q=0""
b
= | f(z(t),z(t — A), 2(t), 2(t), ) dt as N — oo,
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k ti41 b
I = dnt) — 30t = | o) — )| dt
=X [ =20 = [ v -0
b

= f |Zn(t) — 2(#)[>dt = 0 as N = oo.
a
'This implies that Jy[Zwn,Zy] = J[Z, 2] as N — oo, and therefore
limsup Jy[Zn, ZN] £ J(Z, z}. (3.6)
N—yo0
It is easy to observe that the strong convergence claimed in the theorem follows from
b .
pN = |ZEn(a) — :f(a)|2 +f |Zn(t) — é(t)|2dt —=0 as N = oo
2

On the contrary, suppose that the latter does not hold. Then there are a constant o > 0 and a
subsequence {N,,} C IN for which py,, & o as m — oo. Employing the standard compactness
arguments based on {2.1) and the boundedness assumption in (H1), we find an absolutely continuous

function 7: {a,b] & R" and a function Z: {a — A, b] continuous on [a — A, a) and [a, b] such that
in(t) = Z(t) weakly in L2 [d, b,

that Zy(t) — Z(¢) uniformly on [@ — A,b] as N — oo (without loss of generality), and that
Z(t) = Z(t) + AZ(t — A) for t € [a, b]. By the classical Mazur theorem there is a sequence of conver
combinations of Zy(t) that converges to Z(t) in the norm topology of L2[a, b] and hence pointwisely

- for a.e. t € [a,b] along some subsequence. Therefore
#t) € co F(F(t), 5(t — A), 3(t), 1) ae. t€ [a,b],
Z(t) =Z(t) + AZ(t ~ A), t€[a,b].

Since z(-) obviously satisfies the initial tail condition (1.4) and the endpoint constraints (1.5), it is

a feasible solution to the relaxed problem (R). Note that

. h if(j (t) T (t-—A) 3 (t) 2N(tj+1)—2N(tj) t)
NJO NA\tj ), TN Lf 1 2N\EG ) e v

b .
F@En (), Zn(t — D), 2n(t)), Zn (2), E5) dt — f FE), 2t — A),2(2), Z(t), t) dt

as N — oo due to the assumptions made. Observe also that the integral functional

Iv] = /ﬂb

is lower semicontinuous in the weak topology of L?[a,b] by the convezity of the integrand in v.

> [
§=0"t

' 2
o(t) — s(t)\ dt

Since one has

. ] 2
aw(t) - 5(2)| dt,

Zv(tis) —an(ty) . 2. [
-”“hN ] —z(t)’ dt = /

15



the latter implies that

r

Using the above relationships and passing to the limit in the expression (3.1) for Jni{Zy, Zn]| as

. . 2 k ti+1 5 , — Fnr(ts . 2
0] wz(t)‘ dtguminfzf’ Enltip) = 2nlts) _ gyl
T Neoo o t; hy

N - oo, we arrive at the inequality
z < i TN, ZN|.
J[E,zi+a< S Jn{EN, ZN]
By (3.6) one therefore has
Jz,2) < J[E, 2] —a < J[E,2] if a>0.

This clearly contradicts the optimality of pair (Z,z) in the relaxed problem {R) due to the assump-

tion on relaxation stability. Thus e = 0, which completes the proof of the theorem. A

4 Tools of generalized differentiation

The convergence results of the previous section allow us to make a bridge between the original
infinite-dimensional optimization problem (P) for delayed differential-algebraic inclusions and the
family of finite-dimensional dynamic optimization problems (Py) for delayed difference-algebraic
inclusions. The further strategy is now clear: to obtain first necessary optimality conditions for the
discrete approximation problems (Py) and then to derive necessary optimality conditions for the
original problem (P) by passing to the limit from the ones for (Py) as N — oc.

Observe that problems (Py) are essentially nonsmooth, even in the case of smooth functions
w and f in the cost functional and the absence of endpoint constraints. The main source of
nonsmoothness comes from the (increasing number of) geometric constraints in (2.1), which reflect
the discrete dynamics and may have empty interiors. To conduct a variational analysis of such
problems, we use appropriate tools of generalized differentiation in finite dimensions introduced in
[5] and then developed and applied in many publications; see, in particular, the books [6, 17, 19]
for detailed treatments and further references.

Recall the the basic (general limiting) normal cone to the set & C IR™ at the point Z € Q is

N(z;9) := Limsup N(z;Q), (4.1)
mgi
where z 3 7 meéns that £ — T with z € 2, and where

limsup Z2 2= 2) < 0} (4.2)

N(z; ) := {.7: eR e o~ 3]
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is the cone of Fréchet (regular, strict) normals to Q at Z. For convex sets © both cones N(Z; ()
and N (Z; Q) reduce to the normal cone of convex analysis. Note that the basic normal cone (4.1)
is often nonconvez while satisfying a comprehensive calculus, which is to the case for (4.2).

Given an extended-real-valued function ¢: IR® — IR := [—00, oc] finite at %, the basic (general,

limiting) subdifferential of ¢ at T is defined geometrically

8p(z) = {z" € B"| (2", ~1) € N((Z, 0(@))sepiv)} (43)

via basic normals to the epigraph epiy := {(z,4) € R""| u > p(z)}; equivalent analytic represen-
tations of (4.3) can be found in the books [6, 17, 18, 19]. One of the most convenient representations
of (4.3) is via the Painlevé-Kuratowski upper limit (i.e., robust regularization) of Fréchet subgra-
dients, which are the same as subgradients in the sense of viscosity solutions.

Given a set-valued mapping F: R™ = IR™ with the graph
gph F := {(z,y) € R" x R"| y € F(x)},
the coderivative D*F(Z,4): R™ =3 IR"™ of F at (Z,7) € gph F' is defined by
D'F(z,5)(y*) == {z* € R"| (z*,—y") € N((3,5);gph F)}. (4.4)
Note the useful relationships
9p(z) = D*Ey(Z,0(2))(1) and D*g(z)(y") =0(y",g)(Z), y* € R",

between the subdifferential and coderivative introduced, where E,(2) := {u € JR| u > ¢(x}} is the
epigraphical multifunctions associated with ¢: R™ — IR, and where (y*, g)(z) := {¢*, g(z)) is the
scalarized function associated with a locally Lipschitzian mapping g: IR" — IR™. Observe that

D*g(z)(y*) = {Vg(z)*y*} forall y* € R™

if ¢ is strictly differentiable at Z. This means that the coderivative (4.4} is a natural extension of
the adjoint derivative operator to nonsmooth and set-valued mappings.

The subdifferential/coderivative constructions (4.3) and (4.4) enjoy a variety of useful calculus
rules that can be found in the books mentioned above and their references. Let us formulate two
results crucial in the method of discrete approximations. The first one gives a complete coderiva-
tive characterization of the classical local Lipschitzian property of multifunctions imposed in our
standing assumption (H1); cf. [7, Theorem 5.11} and [17, Theorem 9.40].

Theorem 4.1 Let F': IR™ =3 IB™ be a closed-graph multifunction locally bounded around Z. Then

the following condilions are eguivalent:

(i) F is locally Lipschitzion around Z.
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(ii) There exist a neighborhood U of Z and a number £ > 0 such that

Sup{|.'1:*| Tt € D*F(w,y)(y*)} <Ly*| forall ze U, y€ F(z), y* € R™.

The next result (see, e.g., (6, Corollary 7.5] and [18, Theorem 3.17]) provides necessary opti-
mality conditions for a general problem (M P) of nonsmooth mathematical programming with many
geomelric constraints:

minimize ¢g(z) subject to

) ¢J(z)_<..05 j=1...,nm

gi{z) =0, j=0,...,m,

| ZEAJ', i=0,...,1,
where ¢;: RY » IR, g;: RY — IR™, and A; C R%.

Theorem 4.2 Let Z be an optimal solution to (MP). Assume that all ¢; are Lipschitz continuous,
that g; are continuously differentiable, and that A; are locally closed near Z. Then there exist real
numbers {u;] j = 0,...,r} as well as vectors {4; € R*| j =0,...,m} and {z] € R 5 =0,...,11,

not all zero, such that

p;i >0 for §=0,...,m 4.5

nu.i‘qu(z):l} fOT' j:]_,_._’rr, (46)

z; € N(Z;Aj) for j=0,..., (4.7)
1 T m

- gea(y uquj)(z) +3 " V(). (4.8)
=0 i=0 =0

For applications in this paper in the case of nonautonomous continuous-time systems we need
the following modifications of the basic constructions (4.1), (4.3}, and (4.4) for sets, functions, and
set-valued mappings depending on e parameter t from a topological space T" (in our case T = [q, b]).

Given Q: T =¥ R" and 7 € Q(f), we define the extended normal cone to Q(f) at T by

N(z;Q() = Limsup N(z;Q(t)). (4.9)

(tz) 5% (£,2)

For ¢: R™ x T — IR finite at (Z,7) and for F: R™ x T =3 R™ with § € F(z,1), the extended
subdifferential of ¢ at (Z,f) and the extended coderivative of F' at (Z,7,f) with respect to x are

given, respectively, by

Brp(z,7) = {2" € B"| (z",-1) € N((z,(z,%)); epi0(f)) } (4.10)
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and, whenever y* € IR™, by
D}F(z,5,D(") = {z* € B"| (z",~y") € N((£,5);gph F(})) }. (4.11)

Note that the sets (4.9)—(4.11) may be bigger in some situations than the corresponding sets
N(z; Q(2)), Orp(Z,1), and DEF(Z,§,%)(y*), where the latter two sets stand for the subdifferential
(4.3) of ¢(-,f) at T and the coderivative (4.4) of F(-,) at (%, §,7), respectively. Efficient conditions
ensuring equalities for these sets are discussed in 8, 9, 11].

It is not difficult to check that the extended constructions (4.9)—(4.11) are robust with respect to

their variables, which is important for performing limiting procedures in what follows. In particular,

Nz QD)= Limsup N(z;Q(t)). (4.12)

(t,z) 87 (£.5)

Note also that the constructions (4.9)-(4.11) enjoy a full generalized differential calculus similar to
one for (4.1}, (4.3), and (4.4). We do not need this calculus in the present paper, however.
5 Necessary optimality conditions for difference-algebraic systems

In this section we derive necessary optimality conditions for the discrete approximation problems
(Py) by reducing them to those in Theorem 4.2 for nonsmooth mathematical programming prob-
lems with many geometric constraints.

Given n € IV, consider problem (M P} with the decision vector
N N N N N N N 3k+5
w = (z 10141980 10 B 10V H VL 5 U )€ RS

and the following data:

k
po(w) = o), el ) + |z} —2@)2 +hn > Fel, 2y, 2 ol 1)
=0
k ti41 ¥ . 2 (5'1)
+Zf ¥ — 3(t)|° dt,
j=0"%

[z -zt —e, F=1,...k+1,

¢j(w) = - '
|2 g1 — Z(tjek-1) —&, J=k+2,...,2k+2,
Aj = {(zf,..., o)) |vj-VEF(m§-\I,:Bf_N,zJI-V,tj)}, F=0,...,k,
Appr = {0l | &, 20 € Qn ),
gj(w) ==Zﬁ.1—Z§V—hNU§V, §=0,...,k,
hj(w) :=zf—wf—AmﬁN, j:D’,_,’k+1,
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where wjv = c(t;) for j < 0. Let ol = (if)v,...,i,‘:’+1,26\r,...,2,£|_1,1‘)(§v,...,'z‘)f) be a given optimal

solution to (M P). Applying Theorem 4.2 with the equality constraints given by (g, h;), we find
real numbers ,uj-v for j =0,...,2k+2, vectors w; € IR“(MT*M for 1 =0,...,k4+1, vectors njr_\r € R"

for 7 =0,...,k, as well as vectors w;-v € R* for § =0,...,k+1, not all zero, such that conditions
(4.5)—(4.8) are satisfied.
Taking w} = (55'3,3"---=$Z+1,j’35,js---=ZZ+1,ja“5,jv---7”;,j) € N(@";Aj) for j = 0,...,k, we

observe that all but one components of w} are zero and the remaining one satisfies
(@55, 2w 2,00 g) € N(EY, 2N 5, 2Y 57 );gph F (0,0 85)), §=0,... k.
Similarly notice that the condition w}_; € N(2; Agyq) ié equivalent to
(:vé‘.,kﬂ,w;‘;ﬂ,m) € N((ﬁé",ifﬂ);ﬂw)

with all the other components of w},, equal to zero. Employing Theorem 3.1 on the convergence
of discrete approximations, we have ¢; (@) < 0 for j = 1,...,2k + 2 whenever N is sufficiently
large. Thus u = 0 for these indexes due to the complementary slackness conditions {4.6). Let

AN = uf¥ > 0. Observe further that

k
> (Vg @)y = (0, 0,18 m = s — MR T —hNT 5 —hanE ),
=0
and that one has

k+1
S (hi@ ) Y = (- + AN, + AN,
4=0

N N N N N N
- 'lnbk—N—i-l + A*"sbk-l»ia “¢k-——N+2s LERR _¢k+11¢0 PRI :’¢k+1,0: e :O)

From the subdifferential sum rule for ¢y in (5.1) we deduce that
k
dpo(D™) C Bz, 2, 1) +2@Y — 2(a)) + hy D Of (&Y, Yy, 2,5 1))

F=0
k .
+Z/t”1 2(5;-" - :z"(t)) dt
j=0Y%

with 8f standing here and in what follows for the basic subdifferential of f with respect to the first
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four variables. Thus the inclusion (4.8) in Theorem 4.2 is equivalent to the relationships

f
* * N N N N
_.170‘0 - :EU,N CCO PER A 'U.[) A h-N'f? .)\ hNK:[} -+

2Nz - 3(a)) —wf — Ay,

~a} =y = AN + AWyl — gV — ANy, j=1,.. E-N+1,
¢~z =AAno) =), j=k-N4+2,...,k (5.2)

—Tlit ft1 = ’\Nufcvﬂ - ’»bijev+1:
—z}; = MWhyo) +o) +09ll -0, =0,k
J—)\NhNb +)\N9N hN??37 i=0,...,k,

\ J

with the notation

N N N = N N N N N = N gl
(UU !uk+l) € 690(550 :mkN+1)! (193 VRGN Oy 1 by ) € 3f(x_€vamjv N %5 Y 1t_;l):
tit1
N N =
tj
Based on the above relationships, we arrive at the following necessary optimality conditions for
discrete-time problems (Py), where f;(-,,+,-} == f(-,,,- 85} and Fi(,,-,-) := F(, -, 1, ;).

Theorem 5.1 Let @™ be an optimal solution to problem (Py). Assume that the sets  and gph F
are closed and that the functions ¢ and f; are Lipschitz continuous around the points (zl':gr ,::‘:;,?r 1)

and (:Ejy,ijy__N, FAN J o), respectively, for all § = 0,...,k. Then there exist AN > 0, p;y (j =

0,....,k+N+1), qj (=-N,...,k+1), a'.n,d'ruf;‘r (j=0,...,k+1), not all zero, such that
py =0, j=k+2,...,k+N+1, (5.3)
¥ =0, j=k-N+1,...,k+1, (5.4)
(p{%v_i_qéva_pifj-i—l) € AI\ra(la(ﬂ_:"ltg\n"f".;’cv+1)-}']\r((ﬁf)\ra":17’111;:\;1);QN)) (55)
(P3+1_PJN Qlwn =y T =Ty )‘N93N+p + g + T )
hN H hN H hN ? h'N j+1 J+1 j+1 (5.6)
E’\Nafj( N J,'U )+N((J! §—N j\r:])gphF) j=1,...,k’,

with the notation
PY =p) + Apin, QF =4 +Agn

Proof. Most of the proof has been actually done above, where we transformed the necessary opti-

mality conditions for (M P) into the ones for (Pn) written in the form of nonsmooth mathematical
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programming. What we need to do is to change the notation in the relationships of (5.2). Let us
first denote

Y forj=1,...,k+1,
0 forj=k+2,...,k+N;

N
SN =

)\Nnjy-%-:v;,j_i_N/hN forj=1,...,k— N +1,
0 forj=k-N+2,...,k

N
157 =

F_;N :=n;-v_1 forj=1,....,k+ 1

It follows from (5.2) that

N | g*roN N _ \NgN o .»

_ N
TN v = ANl gy + 23y /b,
=N =N *
| T __SN:ANUJ.V_{_@
ha J I 7 hy'
—ANON [hy + 7Ny = MY 403 /hy

\

for all = 1,..., k. Define the sequences @N , and &j-v by the recurrent formulae

pY =pi, —SNhy with pY =0 for j=k+2,... ,k+N+1,
g =gl —TVhy with g =0 for j=k-N+1,.. k+N+L

Putting qJ]-“r = c};N + A*'q?_"_ w» we rewrite (5.7) as

N N ~N N N N i N
[ (P — ) — 5 —@5) 4o (PYens1 = Guwes) — Bhow — gyn)
Ry hy
NoN |, Fii
=A '*9,] +H, J=1,...,k,
N * N N * N *
gy + A% ) — (@ y + A% Tj—Ngj
) ( i —N+1 qj+1) (qj N b ) _ ANﬁ;V_N_i_ J=N.g i=1,...,k, (5.8)
hn
AN _ N N =N
Tiv1 — 5 _pj-|-1 Py =AN0.N+Z;_’J J=1 k
hN hN 3 hN! [ ) ?

¥
—MVOY Jhy + T = AN+ hf—; j=1,...,k

\

Letting finally

po = Mug + 2500 - @'

Y =Y~V forj=1,.. . k+N+1,
rjv :=§"']N-ﬁ§-v forj=1,...,k+1,

we arrive at all the relationships (5.3)—{5.6) and complete the proof of the theorem. A
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Corollary 5.2 In addition to the assumptions in Theorem 5.1, suppose that the mapping F; s
bounded and Lipschitz continuous around (i‘}N , :T:frv_ N Ef ) for each § =0,...,k. Then the conditions
AV >0 and (5.3)-(5.6) hold with ()\N,pkNH,rﬁH) # 0, i.e., one can let

W2+ IR + [P =1 (5.9)

Proof. If AV = 0, then (5.6) together with (5.3) and (5.4) imply that

N N N N N
(Pk+1 “Pr —Ye-N Thy1 Tk

_N N N =N N N
) 3 ) € D' Fe(Zy Zr_n» 2 » O )(—Phsc1 — Thp1)-
hy hy hy

Assuming now that p,‘cv_l_l =0 and T,JCVH = 0, we get

N

(S2E, 24 2R ¢ byl ol 5100,
hy ' hy ' hy -

which yields p;iv =10, q;;‘i ~ =0, and r,’;" = 0 by Theorem 4.1. Repeating the above procedure, we

arrive at the contradiction with the nontriviality assertion in Theorem 5.1. A

6 Optimality conditions for differential-algebraic inclusions

In the concluding section of the paper we obtain the main results of this study that provide nec-
essary optimality conditions for the original dynamic optimization problem (P} in both extended
Euler-Lagrange and Hamiltonian forms involving generalized differential constructions of Section 4.
Our major theorem establishes the following conditions of the Euler-Lagrange type derived by the

limiting procedure from discrete approximations.

Theorem 6.1 Let (Z,Z) be an optimal solution pair to problem (P) under hypotheses (H1)-(H{),
where @ and f(-,-,-,-,t) are assumed to be Lipschitz continuous instead of the plain continuity.
Suppose also that (P) is stable with respect to relazation. Then there exist a number A > 0, piecewise
continuous functions p: [a,b+ A} — R™ and q: [a — A,b] = R™ (whose points of discontinuity are
confined to multiples of the deloy time A), and an absolutely continuous function r: [a,b] - R
such that p(t) + A*p(t + A} and g{t — A) + A*g(t) are absolutely continuous on [a, b} and that the

Jollowing conditions hold:

A+1p(®)| + Ir(B)] =1, (6.1)
p(ty=0 for te(bb+A], ¢t)=0 for t€(b—A,B], (6.2)
(p(a) + qla), —p(b)) € A0p(Z(a), 2(b)) + N((Z(a), 2(b)); 2), - (6.3)
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(S0 + apa+ 8)], Elalt— 2) + 4°(9)], 7(0)

€ co { (w,v,w) | (u,v w,p( )+ q(t) + ~()) € \BF(E(), 2(t — D), 2(8), (1), ) (6.4)
+N ((5(2),(t — ), 2(), 50); gpb F(1) | ae. t € [a,b].

Proof. To prove this theorem by the method of discrete approximations, we first construct a se-
quence of discrete-time problems (Py) whose optimal solutions (Zy, Zy ) strongly approximate (Z, Z)
in the sense of Theorem 2.1. By necessary optimality conditions for (Zy,zy) from Corollary 5.2
we find AY >0, pJ . qrJ , and rjv satisfying relationships (5.3)—(5.9) for all N € IV.

Without loss of generality we suppose that AY — X as N — oo for some A > 0. Recall that the
symbols 2V (2), 2V (1), pV (), g™ (t— A), VN (t), PN (t), and @V (t— A) stand for the piecewise linear
extensions of the corresponding discrete functions from Theorem 5.1 with their piecewise constant
derivatives on the continuous-time interval [a, b].

Considering §; from Theorem 5.1; we define " (¢) := Hfr/hN for t € [tj,tj+1) as 5 =0,...,k
and conclude by Theorem 2.1 that

b k k ti+1 .
o) dt=> |8Y] <2 E(t) — ol | dt
J J
@ j=0 j=0"1t

b
=2f
Q.

We may assume without loss of generality that

E(t)—é”(t)‘dt =vy =0 as N = o0,

oV (t) =2V (t) = 2(t) and OV (1) = 0 ae. t€[a,b] as N = oo.

Let us estimate (p™ (£), ¢ (t — A),r¥(2)) for large N. Using (5.3) and (5.4), we derive from (5.6)

the inclusions

N N N
(pj+1 -9 — AN¥, L 3Ny T 7T NN
" hy ha N hy 7

)\NGN
hN +pj+1+‘r_j‘+1 )\NL_;:'V) EN(( T .;vNa _}Na Yy ) gphF)

with some (ﬁ;v, ;VN, o5 14 Mye of3( ;"', ;;V w5 ,vj Nyforall j = k— N+2,...,k+1. This means,
by definition of the coderivative (4.4), that

N N N N
(pj+1 pJ — AN, e NN T T N N)
...Nj (2]
by hy hn
N N e ON N A N
€ D* F(EJ yLj—N1 Zj Y )(A Ay —Pj+1—f'j+1)

for such j. Thus it follows from Theorem 4.1 that

N N N
'(Pjﬂ—P] /\NﬂN G‘J N+1 QJ “N _ NN Tit1 — 7 —)\NO'N)‘
R h =0 T
NgN
I _plN . N
hN J+1 J+1

<ep| AVl +
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for j=k-N+2,...,k+1 Since](ﬂ

with modulus £;, we derive from the above that

e J O J 145 M) < £; due to the Lipschitz continuity of f -

(0, ¥ pyr ) < £RIOF| + (€ + Dhnks + @rhy + 1)|0N 1, ¢ i )]
< €F|9N| + (bphy + l)fF|9 +1| + ({r + 1)thf + (Ephy + 1)(fr + D)hyty -

+ (brphy + 1) |(pj+2’Q'j—N+21 )l <
< expllp(b—a)|(1+£;(fr + 1) /lr +Lpvn), F=k—-N+2,...,k+1,

which implies the uniform boundedness of {(pj ,qJ T N) |7 =k~N+2,...,k+1} and hence
that of (p" (8),¢" (t = A), 7N (2)) on [b— A, 3],

Next we consider j =k — 2N +2,...,k — N + 1 and derive from (5.6) that

N N
‘(pjnﬂrl -y — ANl gN1 = qNN Ny T 7T ANJN)’
hy hy =N TRy b
NN * N *, N * N * N
< Op| AN & i _.N _ N +(Apj+N+1_Apj+N Arqiy, — A'g; 0)
= tF 7 h’N pJ"H. qj+1 J+1 hN 1 hN 3 .

This implies due to Theorem 4.1 and the uniform boundedness of the above vectors pjv and q}v by

some constant « > 0, and so
N ' N N
Pin P n N QN GN  now T N_N
ST NN SN T RN NN IEL T 3N
hy hy hy
< NN 3
N N j N N N
SEF‘)‘ i vt XS R s 1 R

for j=k—2N+2,...,k— N + 1. Therefore

[E AR B IR €F|9N| + (Ur + L)hnts + (brhn +1) |@’ﬁ|-1,q;\:1v+1:""jh-r|-1 | + (brhn + 1)
< Lpl0)| + (brhy + 1)Ep|07 | + (€ + LRty + (Erhy + 1)(8r + 1)hnt;
+(€rhy + D(er + Da+ (brhn + 12| (R0, @) yaa i) < -

<expllp(b—a))(1+ {4y +a)lp+1)/lr+LrvN), j=k—-2N+2,...,k—N+1
This shows that pJ , qJ N and r}v are uniformly bounded for j = k—2N+2,...,k—N+1, and hence
the sequence {p" (2}, ¢™ (t—A), 7V (¢)} is uniformly bounded on [b—2A, 5— A]. Repeating the above
procedure, we conclude that both sequences {p™ (t), ¢" (t — A), 7V (8)} and {PV(1),QV (¢t — A)} are
uniformly bounded on the whole interval [a, b].

Next we estimate (PN (¢), QN (t— A),#¥(t)) on [a,b] using (5.6) and Theorem 4.1. This yields,
for t; <t < ¢j4; with j =0,...,k, that

. . PN . pN QN — QN ¥ ol
N Nyp N - 441 i j—N+1 J—-N Tj41 g |
(PN, QN (e = )+ (0)] = | (FH L, T )
ANGY | .
< {p )\NL;-V—F hNJ —pﬁ_l—qjj-\f,_1~rj+1’+£f

< Lp|0N] + Erlpfi | + Lelgfa] + rlrfisl + (6r + 1)E5.
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Thus the sequence {PM(t), QY (t — A), 7N (1)} is weakly compact in Ll[a,b]. Taking the whole
sequence of N € IV without loss of generality, we find three absoluiely continuous functions P{.),
Q(-— A), and r() on [a, b} such that

PN@) 5 P@r), QN(t—A)=Qt—24), V()= r¢¢) weakly in L'[a,b]

and PN(t) — P(t), QV(t — A) = Q(t — A), »¥(t) = r(t) uniformly on [a,b] a8 N — oo. Since
pY(t) and ¢V (¢t — A) are uniformly bounded on [a, b+ A], they surely converge to some functions
p(t) and gt — A) weakly in L![a, b+ A]. Taking into account the above convergence of PV (t) and
QN (t — A), we get that p(') and ¢{-) satisfy (6.2), that

P(t) =p(t) + A'p(t+ A), Q(t— A)=q(t— A)+ A%q(t), € [a,b],

and that p(¢) and ¢(t) are piecewise continuous on [a, b+ A] and [a;A, b}, respectively, with possible
discontinuity (from the right) at the points b — 1A at i = 0,1,.... Conditions (6.1) and (6.3) follow
by passing to the limit from (5.9) and (5.5), respectively, by taking into account the robustness of
the basic subdifferential (4.3) and the normal cone (4.1).
It remains to justify the Euler-Lagrange inclusion (6.4). To furnish this, we rewrite the discrete
Euler-Lagrange inclusion (5.6) in the form -
(PN(t)a QN(t - A)a 'f'N(t))
ANgN
J ) (6.5)

€ {(u,v,'tU)‘ (u,v,wapN(tjﬂ) + gV (ti1) + V(i) - Y.

€ ANaf(iN(tj)aEN(tj - A)azN(tj):ﬁ_;‘vatj) + N((EN(tj):jN(tj - A)aEN(tj)aﬁf);gph‘P})}

for ¢t € [t;,%;41] with j = 0,...,k. By the classical Mazur theorem there is a sequence of convex
combinations of the functions (PN (£), QY (t — A),#M(¢)) that converges to (P(t), Q(t — A)V, 7(t)) for
a.e. t € [a,b]. Passing the limit in (6.5) and taking into ac_cournt‘the pointwise convergence of 6% (t)
and 7V (¢) established above, as well as the constructions of the extended normal cone (4.9) and the
extended subdifferential (4.10) and their robustness property (4.12) with respect to all variables

and parameters, we arrive at (6.4) and complete the proof of the theorem. A

Observe that for the Mayer problem (Pps), which is (1.1)-(1.5) with f = 0, the generalized Euler-
Lagrange inclusion {6.4) is equivalently expressed in terms of the extended coderivative (4.11) with
respect to the first three variables of F' = F(z,y, z,t), .¢., in the form

(Sipt) + A"p(t + A, lalt = ) + Ag(e)}#(0))
dit dit
€ co Dt F(3(t),&(t — A),2(8), 2(t)) ( — p(t) — q(t) — r(t)) ae. t€[a,b).

m!y’z

(6.6)

It turns out that the extended Euler-Lagrange inclusion obtained above implies, under the

relazation stability of the original problems, two other principal optimality conditions expressed
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in terms of the Hamiltonian function built upon the mapping F' in (1.2). The first condition
called the extended Hamilionian inclusion is given below in terms of a partial converification of
the basic subdifferential (4.3) for the Hamiltonian function. The second one is an analogue of the
classical Weierstrass-Pontryagin mazimum condition for the differential-algebraic inclusions under
consideration. Recall that an analogue of the Maximum Principle (centered around the maximum
condition) does not generally hold for differential-algebraic systems, even in the case of optimal
control problems governéd by smooth functional-differential equations of neutral type that are a
special case of {P).

The following relationships between the extended Euler-Lagrange and Hamiltonian inclusions
are based on Rockafellar’s dualization theorem [16] (see also [19, Section 7.6] for another, more
simple proof) that concerns subgradients of abstract Lagrangian and Hamiltonian associated with
set-valued mappings regardless of the dynamics in (1.2). For simplicity we consider the case of
the Mayer problem (Pys) for autonomous differential-algebraic systems. Then the Hamiltonian
function for F in (1.2) is defined by

H(z,y,z,p) := sup {{p,v)| v € F(z,y,2)}. (6.7)

Corollary 6.2 Let (Z,Z) be an optimal solution pair to the Mayer problem (Pu)} for the au-
tonomoﬁs delayed differential-algebraic inclusion (1.2) under the assumptions of Theorem 6.1. Then
there exist a number A > 0, piecewise continuous functions p: [a,b+ A] — IR" and q: [a — A, b] —
IR™ (whose points of discontinuity are confined to multiples of the delay time A), and an absolutely
continuous function r: [a,b] — R™ such that p(t) + A*p(t+ A) and g(t — A} + A*q(t) are absolutely

continuous on [a,b] and, besides (6.1)-(6.4), one has the extended Hamiltonian inclusion

(Z1p) + 4"l + A)), S{gls — A) + A%a(1)] #)

(6.8)
€ co{(wv,w) | (= u,—v,—w,58)) € OH(2(t), 5(¢ — A), 2(8),p(t) + a(t) + (1)) }
and the mazimum condition
(p(#) + q(t) + r(t), 2(2)) = H(@(®),2(t — A), 2(t), p(t) + ¢(t) + (1)) (6.9)

Jor a.e. t € [a,b]. If moreover F is convez-volued around (Z(t),Z(t — A),Z(t)), then (6.8) is

equivalent to the Fuler-Lagrange inclusion

(Zipte) + Aple + A, Slatt— A) + A%q(1)), 7))

¢ co D*F(5(t), 5(t — A), 2(2), 36)) ( - p(t) — q(t) — () ace. t€ [a,b)],

which automatically implies the mazimum condition (6.9) in this case.
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Proof. Since (P} is stable with respect to relaxation, the pair (&, 2) is an optimal solution to the
relaxed problem (Rus) whose only difference from (Pys) is that the delayed differential-algebraic
inclusion (1.2) is replaced by its convexification (3.4). By Theorem 6.1 the optimal solution (Z, Z)
satisfies conditions (6.1)-(6.4) and the relaxed counterpart of (6.6), which is the same as (6.10)
in this case with F replaced by the convex hull co F. According to [16, Theorem 3.3] and {19,
Theorem 7.6.5] one has

o { (u,,)| (u,v,w,) € N((=.9,20);gph(co F) }

(6.11)
Cco {(u,v,w)l (—u,—v,—w,q) € GHR(m,y,z,p)},

where Hp stands for the Hamiltonian (6.7} of the relaxed system, i.e., with F replaced by co F. It
is easy to check that Hp = H. Thus the extended Euler-Lagrange inclusion for the relaxed system
implies the extended Hamiltonian inclusion (6.8), which surely yields the maximum condition {6.9).
When F is convez-valued, (6.8) and (6.10) are equivalent due to the equality in (6.11) proved in
[16]. This completes the proof of the corollary. : A
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