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Figure 43. Senescence-associated β-galactosidase staining of lentivirus-mediated non-

silencing and Rb member knockdown U2OS cells transfected with CREG1 and p16. 

Cells were stained for SA-β gal activity at day 5 after drug selection. The bar graphs 

show the average percent of stained cells counted from 5 different fields on cell culture 

plates from two independent experiments.  
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Figure 44. Western blot analysis of lentivirus-mediated Rb members knockdown U2OS 

cells transfected with CREG1 and p16, alone and in combination. Cells lysates were 

harvested at day 5 after selection. Cyclin A expression are less decreased in pRb-

knockdown cells when transfected with p16 and combination of CREG1 and p16. 
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Figure 45. Western blot analysis of lentivirus-mediated Rb members knockdown U2OS 

cells transfected with CREG1 and p16, alone and in combination. Cells lysates were 

harvested at day 10 after selection. Cyclin A and cyclin B expressions are less decreased 

in pRb-knockdown cells when transfected with p16 and combination of CREG1 and p16. 
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4.8 Discussion 

Abrogation of genes and pathways regulating cellular senescence can cause cells 

to become immortal leading to additional genetic and epigenetic changes to develop in 

cancers. Cellular senescence is one of the tumor suppressor mechanisms, besides 

apoptosis, which is responsible for preventing cells from uncontrolled propagations. The 

senescence can occur by telomere dependent (replicative senescence) and telomere-

independent (oncogene- or stress-induced senescence) mechanisms.  

Several studies were pursued to understand more knowledge of senescence 

mechanism in order to provide additional benefits for better management of human 

cancers. An attempt to identify new regulators of cellular senescence has been done in the 

Tainsky lab using spontaneously immortalized fibroblasts from Li-Fraumeni Syndrome 

patients as a study model. Taking advantage of these spontaneously immortal cell lines as 

opposed to other immortal cells induced by either viral oncoprotein such as SV40 large T 

antigen or chemicals may provide fewer side effects that may cause by those factors.  

In this thesis research, CREG1 was chosen as a candidate gene for investigation 

because its involvement in cellular senescence appeared to be due to its function in cell 

cycle regulation regulating E2F transcription activity (67) and its negative growth effect 

in cancer (69) and vascular (71) cells. The method that we used to examine the role of 

CREG1 in cellular senescence was stable expression of CREG1 in immortal LFS and 

cancer cell lines followed by investigating growth and lifespan. We found that 

overexpression of CREG1 alone in immortal LFS and cancer cell lines did not induce 

cellular senescence but was able to slow cell proliferation. Because the cells we used 

have lost the function of p16INK4a and because CREG1 was shown to interact with Rb 
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family pocket proteins thus inhibiting the transcription of E2F transcription factor, we 

then hypothesized that CREG1 might be involved in a p16INK4a-pRb-dependent 

senescence pathway. p16INK4a, a CDK inhibitor of pRb phosphorylation, is one of the 

tumor suppressor genes that is commonly disrupted in immortal cells and some cancer 

cells. p16INK4a expression is also upregulated in senescent fibroblasts (63, 91, 92). 

Several studies showed that ectopic expression of p16INK4a caused cell cycle arrest and 

senescence in immortal LFS (54) and human cancer cells including U2OS cell line (80, 

93-95) and these effects depended on the normal function of pRb.  

Interestingly, we discovered that coexpression of CREG1 and p16 in U2OS cells 

(pRb+/p16-/p53+) had a greater effect on cell growth inhibition, induction of cell cycle 

arrest, inhibition of colony formation, and the induction of senescence than expression of 

CREG1 or p16 alone. Consistent with its activity to induce cell cycle arrest, cells 

cotransfected with CREG1 and p16 showed a marked decrease of cyclin A and B 

expression. The decrease expression of cyclin A was regulated at the transcriptional level. 

We also found that expression of pRb and p107 decreased in p16 and CREG1+p16 

transfected cells, but p130 expression was unchanged. The changes of Rb pocket proteins 

in our study were consistent with those shown by Helmbold et al who showed that p130 

accumulates and is important to maintain senescence and that pRb and p107 decrease in 

DNA damage and p16-induced senescence (96, 97). The decreased expression of pRb 

and p107 in senescent cells that we observed upon overexpression of p16 and 

combination of CREG1 and p16 were similar to those from other studies (12, 96, 98). 

However, the mechanism of pRb and p107 downregulation during senescence is poorly 

understood. It may be partly due to the unnecessary of pRb and p107 upon fully engaged 
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senescence. Moreover, cyclin A expression was shown to be downregulated in cellular 

senescence by p130 recruitment to the cyclin A promoter to repress transcription (96, 99, 

100). The enhancement of p16-induce senescence by CREG1, resulted in an increase of 

senescence-associated β-gal activity and other changes in cell cycle regulator proteins, 

was also observed in the HT1080 fibrosarcoma cell line, which is p53 deficient indicating 

that the additive effect of CREG1 in p16INK4a-induced senescence may be independent of 

p53. Because both p16-pRb and p53-p21 signaling pathways have been shown to play an 

important role in cellular senescence, this study demonstrated that cellular senescence can 

be engaged by p16 overexpression in p53-deficient cells indicating the independent role 

of these two pathways in senescence mechanism. Study by Vogt et al. also demonstrated 

that overexpression of p16 or p21 were sufficient to induce senescence-like phenotype in 

two of immortal LFS cell lines, MDAH041 and MDAH87 which harbor p53 mutation 

(54). The effect of p16- or p21-induced senescence was independent with each other, in 

other words, induction of senescence by p16 overexpression did not alter p21 expression 

and p21 induced senescence without the upregulation of p16 (54).  

Rb family pocket proteins, pRb, and its related protein p107 and p130, play an 

important role in suppressing cell growth by controlling cell cycle progression and 

chromatin condensation (101). p130 maintains cells in G0 and early G1 by binding and 

inactivating E2F4 and E2F4 which are repressor E2Fs. When cells progress through cell 

cycle, p130 is then replaced by p107 in mid to late G1 to bind to and inactivate E2F4 and 

E2F5. In late G1 and S phase, pRb is replaced to interact with and inhibit activator E2Fs, 

E2F1, E2F2, and E2F3 (reviewed in Macaluso M et al. (102)). Because different pocket 

proteins bind to and inhibit different isoforms of E2Fs thus modulate different phases in 
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cell cycle progression, we asked if the enhancement of p16-induced senescence by 

CREG1 involved particular Rb-family members. We used lentivirus-mediated gene 

knockdown to target each of Rb member in U2OS cells expressing all three pocket 

proteins. Cells stably infected with lentivirus-mediated knockdown were then transfected 

with CREG1 and p16, alone and in combination, to determine the effect of CREG1 and 

p16 coexpression in senescence induction. We found that expression of p16 and 

combination of CREG1 and p16 in p107- and p130-knockdown cells showed the 

senescence-like phenotype, as judged by cell morphology and senescence-associated β 

gal staining, similar to non-silencing and uninfected U2OS cells. However, the level of 

CREG1 and p16 combination or p16 alone-induced senescence in pRb knockdown cells 

was decreased. We observed more colonies of transfected cells formed after drug 

selection and fewer senescent cells in pRb knockdown cells with p16 and coexpression of 

CREG1 and p16. These results indicated that pRb but not p107 and p130 is required for 

the cellular senescence mechanism and that the enhancement of p16 induced senescence 

by CREG1 is dependent on the pRb signaling pathway. This observation is consistent 

with the study from Chicas et al. and Talluri et al. demonstrating that Rb has a unique 

role in cellular senescence that is nonredundant with other pocket proteins, p107 and 

p130, by repressing DNA replication as cells exit the cell cycle into senescence (103, 

104). That knockdown of p107 and p130 in cells used in our study (U2OS cells) resulted 

in induction of senescence-like phenotype by p16 and combination of CREG1 and p16 

expressions may indicate the redundant role of p107 and p130 because these two pocket 

proteins bind to and inhibit the same subset of repressor E2Fs. This finding is consistent 
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with study from Jacson et al. demonstrating the compensation of p107 with p130 loss 

upon DNA damaging agent-induced senescence (99).  

The senescent cells that were induced by the combination of CREG1 and p16 

overexpression were not insignificantly different compared with p16 expression alone in 

the experiments of lentivirus-mediated non-silencing and Rb member knockdown U2OS 

cells considering the senescence-associated β galactosidase staining,. This can be due to 

the complexity of lentivirus-mediated knockdown and cell culture stresses of using three-

drug selection. We also observed less transfection efficiency (more cell death after 

selection in all transfection conditions) in this experiment compared with the 

cotransfection of CREG1 and p16 in U2OS cells in early experiment.  

We demonstrated that coexpression of CREG1 and p16INK4a significantly 

inhibited cyclin A and B expression at the transcriptional level. We specifically 

investigated cyclin A2 (protein, mRNA, and promoter) and B1 (protein) because they are 

expressed in proliferating cells. Cyclin A and cyclin B are essential for S phase entry and 

G2 phase, respectively (105-107). Decreased expression of cyclin A and B in senescent 

cells was observed from other studies including senescence induced by DNA damaging 

agent and replicative senescence (96, 108), although it is not certain whether this 

downregulation is a cause or a consequence of growth arrest in cellular senescence. 

However, we did not observe downregulation of cyclin D in coexpression of CREG1 and 

p16INK4a-induced senescence. On the other hand, cyclin D1 was shown to be 

upregulated in senescent cells, and its expression has also been used as a marker of 

senescence (109-113) which was also observed in our study. An attempt to investigate the 

effect of CREG1 and p16 overexpression, alone and combination, on the transcriptional 
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activity of E2F using two reporter plasmids, E2F-TATA (four E2F binding sites driven 

by TATA promoter) and E2F1 promoter reporter, did not detect transcriptional repression 

by p16 or by coexpression of CREG1 and p16. This might be due to the complexity of 

the balanced amount of E2F transcription factor in the cell studies (U2OS cells). The 

activity of the E2F-TA reporter was undetectable without overexpression of E2F1 

transcription factor in the reporter assay. This overexpression of E2F1 may influence the 

transcriptional repression effects of CREG1 and p16 expression.  

Nevertheless, we cannot exclude the possibilities that the additive effect of 

CREG1 and p16 that was observed in this study may be due to the p16INK4a-pRb 

signaling pathway and that CREG1 is part of this mechanism, or that CREG1 functions 

through other pathway(s) such as its regulation of IGF-II signaling (74) which may 

promote the p16INK4a-pRb signaling-induced senescence. More studies are needed to 

further investigate whether involvement of CREG1 in p16INK4a-induced senescence is 

due to its transcriptional repressor activity. Chromatin immunoprecipitation method 

would be able to address that question. In addition, to further elucidate the role of 

CREG1 in cellular senescence involved in p16-pRb signaling pathway, depletion of 

CREG1 and p16 expression in normal diploid fibroblast or precrisis fibroblasts by 

lentivirus-mediategd gene knockdown following the analysis of lifespan can provide 

more evidences on the necessity of these two genes in cellular senescence.  

In summary, we demonstrated that CREG1 is regulated by epigenetic mechanisms 

and its downregulation may be one of the important steps in cellular immortalization. 

Ectopic expression of CREG1 in immortal and cancer cells lacking endogenous 

p16INK4a results in decreased cell proliferation but does not induce senescence. 
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Importantly, CREG1 enhances p16INK4a-induced senescence. Analysis of how CREG1 

and its enhancement of p16INK4a-induced senescence may provide better understanding 

of cellular immortalization, an early step in human tumorigenesis, and could improve 

treatment or prevention of cancer at early stage. 

  



113 
 

 

27.67 

APPENDIX 
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Appendix 1. Histograms of cell cycle analysis by flow cytometry of U2OS cells 

transfected with CREG1 and p16. Cells were analyzed at day 5 after drug selection. 

The numbers indicate the percent of cell population in G0-G1, S and G2-M phases. 
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Appendix 2. Histograms of cell cycle analysis by flow cytometry of U2OS cells 

transfected with CREG1 and p16. Cells were analyzed at day 5 after drug selection. 

The numbers indicate the percent of cell population in G0-G1, S and G2-M phases. 
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Bypassing cellular senescence, an irreversible growth arrest of cells that is 

activated in normal cells to become immortal is one of the prerequisites for cancer 

development. Cellular senescence can be triggered by shortening of telomeres and certain 

cellular stresses. Using spontaneously immortalized Li-Fraumeni Syndrome (LFS) 

fibroblasts, we found that CREG1 (Cellular Repressor of E1A-stimulated Genes1) is one 

of genes whose expression fit the criteria of senescence-associated genes, decreased 

expression during immortalization and increased in senescence. Moreover, we found that 

epigenetic mechanisms regulate CREG1 expression in LFS fibroblasts. CREG1 is a 

secreted glycoprotein that was shown to bind Rb-family pocket proteins and inhibit E2F 

transactivation activity. Therefore, we hypothesize that CREG1 plays a role in cellular 

senescence involving the p16INK4a-Rb pathway. Ectopic expression of CREG1 in the 

immortal LFS cell lines decreases cell proliferation but does not directly induce 

senescence. We confirmed this in osteosarcoma and fibrosarcoma cancer cell lines, 
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similar to those seen in patients with Li-Fraumeni Syndrome. Because CREG1 was 

shown to interact with Rb pocket proteins in vitro, we tested whether growth suppression 

by CREG1 may depend on the phosphorylation status of Rb. We found that p16INK4a, an 

inhibitor of CDK and Rb phosphorylation, is also downregulated in immortal cells and 

that coexpression of CREG1 and p16INK4a, has a greater effect than CREG1 or p16INK4a 

alone to reduce cell growth, to induce cell cycle arrest and cellular senescence in 

immortal LFS, osteosarcoma and fibrosarcoma cell lines. Moreover, cooperation of 

CREG1 and p16INK4a inhibits the expression of cyclin A and cyclin B by inhibiting 

promoter activity thereby decreasing mRNA and protein levels; these proteins are 

required for S-phase entry and G2/M transition. In conclusion, we are the first to find that 

CREG1 enhances p16INK4a–induced senescence by transcriptional repression of cell cycle 

mediated genes. 
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