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On-line Process Physics Tests via Lyapunov-based Economic Model

Predictive Control and Simulation-Based Testing of Image-Based

Process Control

Henrique Oyama1, Akkarakaran Francis Leonard1, Minhazur Rahman1, Govanni Gjonaj1, Michael Williamson1,

Helen Durand1

Abstract— Next-generation manufacturing involves increas-
ing use of automation and data to enhance process efficiency.
An important question for the chemical process industries, as
new process systems (e.g., intensified processes) and new data
modalities (e.g., images) are integrated with traditional plant
automation concepts, will be how to best evaluate alternative
strategies for data-driven modeling and synthesizing process
data. Two methods which could be used to aid in this are
those which aid in testing data-based techniques on-line, and
those which enable various data-based techniques to be assessed
in simulation. In this work, we discuss two techniques in this
domain which can be applied in the context of chemical process
control, along with their benefits and limitations. The first is a
method for testing data-driven modeling strategies on-line by
postulating the experimental conditions which could reveal if
a model is correct, and then attempting to collect data which
could help to reveal this. The second strategy is a framework
for testing image-based control algorithms via simulating both
the generation of the images as well as the impacts of control
on the resulting systems.

I. INTRODUCTION

Modern manufacturing relies on assured replicability, and
selecting data-driven models appropriately, as well as test-
ing control algorithms before deployment, is important for
efficient process operation. To use model identification tech-
niques, a suitable model structure that represents a dynamic
system must be selected, which may include physics-based
and/or empirical components [1], [2]. Experiment design
[3] has been investigated to either carry out parameter
estimation [4] or select model candidates [5]. The present
paper develops a control-assisted online technique for model
discrimination based on our previous work [6], which uti-
lizes an advanced control law known as Lyapunov-based
economic model predictive control (LEMPC) [7] to aid in
evaluating whether proposed models may describe process
physics. Additionally, as industrial control adapts to the
needs of modern manufacturing, the ability to move systems
traditionally tested online into virtual testing simulations
becomes increasingly important. This paper focuses on one
of those systems - image-based control (IBC). Although
image-based closed-loop systems have been used for real

1Henrique Oyama, Akkarakaran Francis Leonard, Minhazur Rah-
man, Govanni Gjonaj, Michael Williamson, and Helen Durand (he-
len.durand@wayne.edu) are with Department of Chemical Engineering and
Materials Science, Wayne State University, 5050 Anthony Wayne Drive,
Detroit, MI

systems involving camera sensors [8], [9], simulation-based
methods for evaluating image-based control designs require
attention for chemical processes. Moving towards simulating
IBC systems, 3D creation software such as Blender, which
has an embedded Python interpreter, may help with creating
animated simulations that allow evaluation of image-based
control integrated with processes for industrial applications.
In this work, we investigate a closed-loop simulation of an
IBC system developed in Blender to demonstrate benefits
and limitations of 3D creation platforms for studying image-
based control designs and their implications for a process.

II. PRELIMINARIES

A. Notation

R corresponds to the set of real numbers. The Euclidean
norm of a vector is indicated by | · | and the transpose
of a vector x is denoted by xT . A continuous function
α : [0, a) → [0,∞) is said to be of class K if it is strictly
increasing and α(0) = 0. Set subtraction is designated by
x ∈ A/B := {x ∈ Rn : x ∈ A, x /∈ B}. Finally, a
level set of a positive definite function V is denoted by
Ωρ := {x ∈ Rn : V (x) ≤ ρ}.

B. Class of Systems

The class of nonlinear systems considered is the following:

ẋ(t) = f(x(t), u(t), w(t)) (1)

where x ∈ X ⊂ Rn and u ∈ U ⊂ Rm are the state and
input vectors, respectively, in deviation variable form from
the steady-state (xs) and steady-state input of the system
(us); w ∈ W ⊂ Rz (W := {w ∈ Rz | |w| ≤ θ, θ >
0}) is the disturbance vector and f is locally Lipschitz on
X×U×W . We consider that the “nominal” system of Eq. 1
(w ≡ 0) satisfies f(0, 0, 0) = 0 and is stabilizable such that
there exists an asymptotically stabilizing feedback control
law h(x), a sufficiently smooth Lyapunov function V (x),
and class K functions αi(·), i = 1, 2, 3, 4, where:

α1(|x|) ≤ V (x) ≤ α2(|x|) (2a)

∂V (x)

∂x
f(x, h(x), 0) ≤ −α3(|x|) (2b)

∣

∣

∣

∣

∂V (x)

∂x

∣

∣

∣

∣

≤ α4(|x|) (2c)

h(x) ∈ U (2d)



∀ x ∈ D ⊂ Rn (D is an open neighborhood of the
origin). We define Ωρ ⊂ D to be the stability region of
the nominal closed-loop system under the controller h(x)
and require that x ∈ X , ∀x ∈ Ωρ. We consider that state
measurements are available continuously, but are only used
by a controller at discrete sampling times. Because f is a
locally Lipschitz function of its arguments, we can write the
following ∀x1, x2 ∈ Ωρ, u ∈ U , w ∈ W , and Lx, L′

x, Lw,
L′
w, and Mf as positive constants:

|f(x1, u, w)− f(x2, u, 0)| ≤ Lx|x1 − x2|+ Lw|w| (3a)
∣

∣

∣

∣

∂V (x1)

∂x
f(x1, u, w)−

∂V (x2)

∂x
f(x2, u, 0)

∣

∣

∣

∣

≤ L′
x|x1 − x2|+ L′

w|w| (3b)

|f(x, u, w)| ≤Mf (4)

We consider that an i-th empirical model is represented by
ẋi = fNL,i(xi(t), ui(t)) where Eqs. 2a-4 hold with respect
to the empirical model (i.e., replace αi, i = 1, . . . , 4 by
α̂i, replace Mf by Mf,i, replace V by V̂i, replace h by

hNL,i, replace Lx, Lw, L′
x and L′

w with L̂x,i, L̂w,i, L̂′
x,i

and L̂′
w,i, and replace ρ with ρi). ui represents the input

vector in deviation form from the steady-state input of the
i-th model. We assume that x = xs is a steady-state for both
f and fNL,i, with different steady-state inputs uis for the
empirical models compared to us for the actual system.

C. Lyapunov-Based Economic Model Predictive Control

LEMPC [7] computes control actions via:

min
u(t)∈S(∆)

∫ tk+N

tk

Le(x̃(τ), u(τ)) dτ (5a)

s.t. ˙̃x(t) = f(x̃(t), u(t), 0) (5b)

x̃(tk) = x(tk) (5c)

x̃(t) ∈ X, ∀ t ∈ [tk, tk+N ) (5d)

u(t) ∈ U, ∀ t ∈ [tk, tk+N ) (5e)

V (x̃(t)) ≤ ρe, ∀ t ∈ [tk, tk+N ),

if x(tk) ∈ Ωρe
(5f)

∂V (x̃(tk))

∂x
f(x̃(tk), u(tk), 0)

≤
∂V (x̃(tk))

∂x
f(x̃(tk), h(x(tk)), 0),

if x(tk) ∈ Ωρ/Ωρe
(5g)

where u(t) is a piecewise-constant input trajectory with N
pieces, where each piece is held constant for a sampling
period with time length ∆, and N is the prediction horizon.
The economics-based stage cost Le of Eq. 5a is evaluated
throughout the prediction horizon based on the future predic-
tions of the process state x̃ from the model of Eq. 5b started
from the state measurement at tk (Eq. 5c). The process
constraints of Eqs. 5d-5e are state and input constraints,
respectively. Ωρe

⊂ Ωρ is a subset of the stability region
that makes Ωρ forward invariant under the LEMPC of Eq. 5.

III. AUTOMATED ONLINE CONTROL-ASSISTED MODEL

STRUCTURE DISCRIMINATION USING LEMPC

Prior work [10] in our group has proposed control-assisted
designs using LEMPC to seek to collect desired data online
for selecting model structures while ensuring closed-loop
stability in a safe region of operation. However, [10] did
not provide a way to automatically choose what desired data
should be. Subsequently, in [6], we defined desired data as
the information that could discriminate between rival models
and sought to collect this data using the LEMPC objective
function (with an economics-based stage cost and/or a stage
cost rewarding differences between state predictions from
different models under the control actions). This strategy
ensures safety while gathering data for trying to discriminate
between model candidates, but is less targeted in the data
that it collects than might be desired from the perspective
of performing experimentation online to determine an ap-
propriate model for an unknown physical system. Scientific
experiments are often performed to either verify or refute
a hypothesis. This implies that another way for defining
desired data for discriminating between model candidates
could be data that is able to refute or satisfy a hypothesis.
The flexibility of LEMPC allows it to be designed to drive
the process state to a neighborhood of an operating point
when the plant/model mismatch is sufficiently small (i.e.,
|f(x, u, w)− fNL,i(x, u)| ≤Merr,i, where Merr,i indicates
the plant/model mismatch for all x ∈ Ωρ|Mc|,1

, u ∈ U ,
and w ∈W and would be bounded by a stability/feasibility
analysis of LEMPC if guarantees were to be made such as
the LEMPC driving the closed-loop state toward an operating
point). Then, if an LEMPC is used to attempt to drive the
closed-loop state toward a desired operating point but data
obtained indicates that the closed-loop state was not driven
near that point, this may indicate that the model used in
computing the control actions was not accurate enough to
probe state-space and could be discarded. This procedure
then serves as online experimentation for discriminating
between models and potentially better understanding the
process physics. An LEMPC operated in this fashion can
use a constraint of the form of Eq. 5g to attempt to force
the process state toward desired data and “check” different
model candidates. In the next section, we present this control-
assisted scheme.

A. Control-Assisted Online Model Structure Discrimination

using LEMPC: Formulation

To achieve the data-gathering goals described above and
attempt to discriminate between models, the set of |Mc|
model candidates must first be developed, where |Mc| repre-
sents the cardinality of a set of process models Mc. This
set will be assumed to contain a model where Merr,i is
sufficiently small in the sense that the closed-loop state under
the LEMPC to be developed could be driven toward a neigh-
borhood of a desired operating point when the i-th model is
used in a constraint with the form of Eq. 5g. We also assume
that the models in the set are ordered such that their stability
regions are nested. This is done to ensure that the closed-loop



state does not leave the stability region of the sufficiently
accurate model when the constraints with the forms of
Eqs. 5f-5g utilize a model that is not sufficiently accurate.
We will denote the stability region of the sufficiently accurate
model as Ωρa,1

, where a ∈ {1, . . . , |Mc|}, but this region
corresponding to the a-th model is not known until the data-
gathering process is concluded. Furthermore, the proposed
LEMPC will discriminate between models by seeking to
drive the closed-loop state toward different operating data
points. We assume that in the time of operation, p such
points are selected to be tracked, and we denote them by
xs,j , j = 2, . . . , p (xs,1 represents the operating steady-state
when no non-routine operating data is being gathered).

The operating strategy then consists of progressively at-
tempting to drive the closed-loop state toward each of the
xs,j , j = 2, . . . , p, by switching to an LEMPC with Eq. 5g
based on the model in Mc with the smallest stability region
(corresponding to i = 1) and with the models and all
constraints rewritten to consider the equilibrium to be at
a steady-state xs,j . When the closed-loop state does not
approach xs,j in the subsequent operating period, the model
in Mc with the smallest stability region can be discarded
from that set, so that now that which previously had the
second largest stability region becomes that with the smallest
stability region (a metric on the “approach” of the closed-
loop state to xs,j and a threshold εD on this metric that leads
to models being discarded can be a design decision). We
can therefore consider that when the LEMPC operates in a
data-gathering mode (i.e., seeking to track xs,j), it is probing
whether the model candidates in Mc are sufficiently accurate
according to the selected approach metric and threshold.
However, for the majority of the time of operation, the
closed-loop system is operated under a “baseline” 1-LEMPC
to only optimize economics around xs,1. The 1-LEMPC
formulation is as follows:

min
u1,1(·)∈S(∆)

∫ tk+N

tk

[

|Mc|
∑

i=1

Le(x̃i,1(τ), u1,1(τ))] dτ

s.t. ˙̃xi,1(t) = fNL,i,1(x̃i,1(t), ui,1(t)), i = 1, . . . , |Mc|
(6a)

x̃i,1(tk) = x(tk), i = 1, . . . , |Mc| (6b)

x̃1,1(t) ∈ X, ∀ t ∈ [tk, tk+N ) (6c)

u1,1(t) ∈ U1,1, ∀ t ∈ [tk, tk+N ) (6d)

V̂1,1(x̃1,1(t)) ≤ ρe,1,1, ∀ t ∈ [tk, tk+N )

if V̂1,1(x̃1,1(tk)) ≤ ρe,1,1 (6e)

∂V̂1,1(x̃1,1(tk))

∂x̃1,1
fNL,1,1(x̃1,1(tk), u1,1(tk)) ≤

∂V̂1,1(x̃1,1(tk))

∂x̃1,1
fNL,1,1(x̃1,1(tk), hNL,1,1(x̃1,1(tk)))

if V̂1,1(x̃1,1(tk)) > ρe,1,1 (6f)

where Le is the EMPC objective function, x̃i,1 is the state
prediction in deviation variable form from xs,1 based on the
i-th model candidate, and x(tk) is the state measurement at

tk (with slight abuse of notation, this is used in Eq. 6b to
represent the deviation form from the steady-state for the
i-th model). In Eq. 6, many terms have two subscripts; the
first refers to the process model under consideration, and
the second refers to the j-th steady-state, j = 1, . . . , p. The
controller of Eq. 6 is used if te,j−1 ≤ t < ts,j , j = 2, . . . , p,
where te,1 = 0; ts,j is defined as the switching time when
the LEMPC changes to drive the closed-loop state to the j-th
desired data point (j > 1), and te,j is the time at which the
control law switches back to the 1-LEMPC.

At ts,j , the LEMPC formulation is switched from the 1-
LEMPC to that associated with xs,j to drive the closed-loop
state to a neighborhood of xs,j . The j-th LEMPC, j > 1,
which is used for t ∈ [ts,j , te,j), is formulated as follows:

min
u1,j(·)∈S(∆)

∫ tk+N

tk

[

|Mc|
∑

i=1

Le(x̃i,j(τ), u1,j(τ))] dτ

s.t. ˙̃xi,j(t) = fNL,i,j(x̃i,j(t), ui,j(t)), i = 1, . . . , |Mc|
(7a)

x̃i,j(tk) = x(tk), i = 1, . . . , |Mc| (7b)

x̃1,j(t) ∈ X, ∀ t ∈ [tk, tk+N ) (7c)

u1,j(t) ∈ U1,j , ∀ t ∈ [tk, tk+N ) (7d)

∂V̂1,j(x̃1,j(tk))

∂x̃1,j
fNL,1,j(x̃1,j(tk), u1,j(tk)) ≤

∂V̂1,j(x̃1,j(tk))

∂x̃1,j
fNL,1,j(x̃1,j(tk), hNL,1,j(x̃1,j(tk)))

(7e)

where x̃i,j(tk) represents the state measurement for the i-th
model in deviation variable form from the j-th steady-state.

One of the benefits of this strategy is that it provides a
means for manufacturers to have a system attempt to discover
its own physics and to provide data over time which can
help to uncover aspects of the physics, as opposed to only
routine operating data. As concepts in learning from data
gain prominence, the potential for a process to gather non-
routine data in a manner that is expected to be revealing
has potential to be helpful in developing data-based models
on-line. However, if it is done while the process is on-line,
it is necessary to consider the impact of this on profits
and to attempt to reduce that impact. For example, one
could explore activating the j-th LEMPC when only a few
sampling periods would be required to drive the state to a
neighborhood of xs,j based on x(tk) (where the number of
sampling periods allowable will depend on the timescale
on which the process profit metric evolves). Because the
decision to switch to a j-th LEMPC may depend on the
location of the closed-loop state in state-space and how
moving toward desired data could impact profits, ts,j and
te,j would be expected to be determined online (further
detail on such an implementation strategy is presented in
the next section, where the impacts of selecting a certain
xs,j on the closed-loop stability/feasibility guarantees of the
j-th LEMPC also are taken into account in selecting ts,j
by choosing to switch to the j-th LEMPC only when the



closed-loop state is within a stability region containing the
new steady-state). Limitations of this LEMPC-based method
for gathering non-routine operating data for aiding in model
discrimination include that the set of Mc models must be
developed a priori and should include a sufficiently accurate
model in the set, and that requiring the nesting of stability
regions has a potential to be conservative.

B. Control-Assisted Online Model Structure Discrimination

using LEMPC: Implementation Strategy

Assuming that a reasonably accurate model is used by
the proposed LEMPC design, the implementation strategy
below includes a region Ωρe,1,j

, selected such that if the
actual state is in Ωρe,1,j

⊂ Ωρa,1
, under sufficient conditions,

then the closed-loop state is maintained in Ωρa,1
for t ≥ 0.

Information may be gathered automatically as follows:

1) At t0, set an index ζ = 0 and set te,j = 0. Go to
Step 2.

2) At the sampling time tk, if ζ = 1 and tk < te,j , go to
Step 6. If ζ = 1 and tk = te,j , set te,j = 0 and ζ = 0,
and go to Step 3. Otherwise, evaluate if process data
is desired to be collected. If so, set ζ = 1 and go to
Step 4. Otherwise, set ζ = 0 and go to Step 3.

3) The 1-LEMPC of Eq. 6 is activated and receives the
state measurement x(tk). Go to Step 5.

4) Evaluate if a j-th steady-state (j > 1) corresponding
to the desired information can be generated such that:
1) Ωρ1,j

⊂ Ωρi,j
, i = 2, . . . , |Mc|, around this steady-

state; 2) xs,j has a steady-state input within the input
bounds for all |Mc| models; 3) Ωρe,1,j

contains the
state measurement x(tk) and xs,j ; and 4) Ωρ|Mc|,j

⊂
Ωρe,1,1

. If this is possible, set tk = ts,j and select te,j
to be sufficiently long to drive the closed-loop state to
a neighborhood of the desired information, and go to
Step 6. If these conditions cannot be satisfied, go to
Step 3 and set ζ = 0.

5) If x(tk) ∈ Ωρe,1,1
, go to Step 5a. Else, go to Step 5b.

a) Compute a control action for the subsequent
sampling period with Eq. 6e of the 1-LEMPC
activated. Go to Step 7.

b) Compute a control action for the subsequent
sampling period with Eq. 6f of the 1-LEMPC
activated. Go to Step 7.

6) The j-LEMPC of Eq. 7 is activated and receives
the state measurement x(tk). The controller computes
control actions to drive the closed-loop state to the
desired information xs,j until te,j . Go to Step 7.

7) If x̃i,j exits the stability region of the i-th model candi-
date at any t ∈ [tk, tk+1), or if |x̃i,j(tk+1)−x(tk+1)| ≥
εD, then the i-th model is discarded from the set
Mc and the set Mc is updated to have the models
renumbered such that i← i+1, i = 1, 2, . . . , |Mc|−1.
Go to Step 8.

8) Go to Step 2 (k ← k + 1).

1) Control-Assisted Online Model Discrimination using

LEMPC: Stability Analysis: In this section, we demonstrate

that the implementation strategy of Section III-B maintains
the closed-loop state within Ωρa,1

at all times.
Theorem 1: Consider the closed-loop system of Eq. 1

under the implementation strategy of Section III-B, where
hNL,i,j(·) used in the LEMPC’s of Eqs. 6-7 for any i-th
model in the set Mc and j = 1, . . . , p meets the inequalities
in Eqs. 2a-2d with respect to the i-th empirical model
candidate. Let εw,i,j > 0, ε′w,a,1 > 0, ε̄′w,a,j > 0, L̄′

x,j > 0,

L̄′
w,j > 0, ∆ > 0, and N ≥ 1. At every sampling time,

let Ωρ1,j
⊂ Ωρi,j

⊂ X and Ωρ|Mc|,j
⊂ Ωρe,1,1

, where
ρ1,j = min{ρi,j}, ρi,j > ρe,i,j > ρmin,i,j > ρs,i,j , for
i = 1, 2, . . . , |Mc| and j = 1, . . . , p, and ρe,i,j > ρi−1,j

for i = 2, . . . , |Mc|, satisfy:

− α̂3,i,j(α̂
−1
2,i,j(ρs,i,j)) + L̂′

x,i,jM̂f,i∆ ≤ −εw,i,j/∆,

i = 1, . . . , |Mc|
(8)

∣

∣

∣

∣

∂V̂a,j(x1)

∂x
fj(x1, u, w)−

∂V̂a,j(x2)

∂x
fj(x2, u, 0)

∣

∣

∣

∣

≤ L̄′
x,j |x1 − x2|+ L̄′

w,j |w|, ∀x ∈ Ωρ|Mc|,1

(9)

∣

∣

∣

∣

∣

∂V̂a,1(x(t))

∂x
−

∂V1(x(t))

∂x

∣

∣

∣

∣

∣

≤Mg,a,1,

Mg,a,1 > 0, ∀x ∈ Ωρ|Mc|,1

(10)

− α̂3,a,1(α̂
−1
2,a,1(ρe,a,1)) + α̂4,a,1(α̂

−1
1,a,1(ρa,1))Merr,a

+ L′
xMf∆+ L′

wθ + 2Mg,a,1Mf ≤ −ε′w,a,1/∆
(11)

− α̂3,a,j(α̂
−1
2,a,j(ρs,a,j)) + α̂4,a,j(α̂

−1
1,a,j(ρa,j))Merr,a

+ L̄′
x,jMf∆+ L̄′

w,jθ ≤ −ε̄′w,a,j/∆
(12)

ρe,a,1 + fV,a,1(fW,a,1(∆)) ≤ ρa,1 (13)

ρe,i,j ≥max{V̂i,j(x(t)) : x(tk) ∈ Ωρi−1,j
, w ∈W,

t ∈ [tk, tk+1), u1,j ∈ U}, i = 2, . . . , |Mc|
(14)

ρi,j ≥max{V̂i,j(x(t)) : x(tk) ∈ Ωρi−1,j
, w ∈W,

t ∈ [tk, tk+1), u1,j ∈ U}, i = 2, . . . , |Mc|
(15)

ρmin,i,j =max{V̂i,j(x(t)) : x(tk) ∈ Ωρs,i,j
, w ∈W,

t ∈ [tk, tk+1), u1,j ∈ U}, i = 1, . . . , |Mc|
(16)

ρmin,i,j =max{V̂i,j(xi,j(t)) : xi,j(tk) ∈ Ωρs,i,j
, w ∈W,

t ∈ [tk, tk+1), u1,j ∈ U}, i = 1, . . . , |Mc|
(17)

where fW,i(τ) :=
(

Lwθ+Merr,i

Lx

)

e(Lxτ−1) and fV,i,1(s) :=

α̂4,i,1(α̂
−1
1,i,1(ρi,1))s + Mv,i,1s2, Mv,i,1 > 0. If x̃(t0) =

x(t0) ∈ Ωρe,1,1
, then the closed-loop state is maintained in

Ωρa,1
for t ≥ 0.

Proof: This proof consists of multiple parts. In the first,
recursive feasibility of the 1-LEMPC and the j-LEMPC is
demonstrated. In the second, third, and fourth, we build to
demonstrate that the closed-loop state is maintained in Ωρa,1

.
Part 1: Recursive feasibility of the 1-LEMPC and j-

LEMPC holds because hNL,1,j satisfies Eqs. 6e-6f and 7e
and maintains the state prediction in Ωρ1,j

if Eqs. 8 and 17
are satisfied [10]. Also since Ωρi,j

⊂ X, i = 1, 2, ..., |MC |,



j = 1, . . . , p, Eqs. 6c and 7c are met under hNL,1,j . Finally,
hNL,1,j satisfies Eqs. 6d and 7d by Eq. 2d applied for the
empirical model.

Part 2: Under the conditions in Theorem 1, [6] demon-
strates that when the 1-LEMPC is utilized and x(tk) ∈ Ωρ1,1

(as enforced by Step 7 of the implementation strategy), then
the closed-loop state remains in Ωρa,1

until tk+1.

Part 3: We now demonstrate that the j-LEMPC maintains
the closed-loop state in Ωρa,1

. By Steps 4 and 7 of the
implementation strategy, when tk ∈ [ts,j , te,j), x(tk) ∈
Ωρ1,j

. In this case, either Ωρa,j
= Ωρ1,j

or Ωρi,j
, i > 1, is

Ωρa,j
. The implementation strategy develops a new steady-

state xs,j such that the stability region Ωρ1,j
for the i = 1

empirical model around the new steady-state contains x(tk)
and xs,j . This stability region should also be developed
such that it meets the assumptions in Eqs. 2a-2d for the
i = 1 empirical model formulated with respect to xs,j . The
stability regions for the other models, j > 1 are required
to contain Ωρ1,j

and be fully contained in Ωρe,1
. In this

case, Eq. 7e is the constraint utilized. If ρa,j = ρ1,j , then if
x(tk) ∈ Ωρa,j

/Ωρs,a,j
, Eqs. 7e and 2b give:

∂V̂1,j(x(tk))

∂x
fNL,1,j(x(tk), u1,j(tk))

≤
∂V̂1,j(x(tk))

∂x
fNL,1,j(x(tk), hNL,1,j(x(tk)))

≤ −α̂3,a,j(|x(tk)|)

(18)

Defining
˙̂V1,j = ∂V̂1,j(xj(t))

∂x fj(xj(t), u1,j(tk), w(t)), adding

and subtracting both
∂V̂1,j(x(tk))

∂x fNL,1,j(x(tk), u1,j(tk)) and
∂V̂1,j(x(tk))

∂x fj(x(tk), u1,j(tk), 0) to
˙̂V1,j (with slight abuse

of the notation u1,j(tk) to stand for the same input in
appropriate deviation form for the model it is in), and using
Eq. 18, Eq. 3b applied to the model of Eq. 1 in deviation
form from xs,j , the definition of Merr,i, the bound on

w, Eq. 4, Eq. 9, and Eq. 2a and 2c, we obtain that
˙̂V1,j

is bounded by the left-hand side of Eq. 12. Therefore, if
Eq. 12 holds, V̂1,j decreases over a sampling period when
x(tk) ∈ Ωρa,j

/Ωρs,a,j
if ρa,j = ρ1,j . This ensures that

x(tk+1) ∈ Ωρ1,j
⊂ Ωρa,1

. If instead x(tk) ∈ Ωρs,a,j
and

ρa,j = ρ1,j , then Eq. 16 ensures that x(tk+1) ∈ Ωρmin,a,j
⊂

Ωρa,j
⊂ Ωρa,1

. If ρa,j ,= ρ1,j , Eq. 15 ensures that x(tk+1) ∈
Ωρa,j

⊂ Ωρa,1
. Thus, with this implementation strategy, the

closed-loop state is maintained in Ωρa,1
from tk to tk+1.

Part 4. x(t0) ∈ Ωρe,1,1
by the statement of the theorem.

At t0, either the 1-LEMPC or the j-LEMPC is utilized. If
the 1-LEMPC is used, then from Part 2, x(t) ∈ Ωρa,1

, for
t ∈ [tk, tk+1). If the j-LEMPC is used, then from Part 3,
x(t) ∈ Ωρa,1

, for t ∈ [tk, tk+1). Applying Parts 2 and 3
recursively shows that the closed-loop state is maintained in
Ωρa,1

at all times.

IV. TEST FRAMEWORK FOR IMAGE-BASED CONTROL

USING BLENDER

The prior section discussed a method for on-line testing of
data-driven models. In this section, we develop a framework

for a priori testing of process control systems based on
images. As image data becomes more important in the
context of Industry 4.0, it is desirable to have a means for
testing how an automated system might interact with image-
based control. Rather than having an experimental system to
test such studies for chemical processes, we explore the use
of the 3D creation suite Blender [11] to better understand
what the potential benefits and limitations of the use of this
type of software might be for such a purpose.

A. Level Control Example: Image-based Level Control using

Classical Controller with a Fixed Camera Sensor

In this section, a level control example is used to explore
how the image-based control simulation described above
might work. The process is represented by Eq. 19:

dh

dt
= (u− c

√
h)/A (19)

where the state variable is the level in the tank h and the
input is the volumetric flow rate entering the system u. A =
0.23 m2 denotes the cross-sectional area of the tank and
c = 0.008333 m5/2/s is the outlet resistance coefficient. The
minimum tank height is 0 m and the maximum tank height
is 0.5184 m. No disturbances were considered.

The process was initialized at xinit = x(t0) = 0.1 m and
numerically integrated using the explicit Euler method with
an integration step of 10−3 s. The simulation was performed
over 7 s of operation in Blender 2.93 using its embedded
Python interpreter. A proportional-integral (PI) controller
was designed to drive the tank level to its set-point hsp over
7 s of operation. The PI controller for the tank level has the
following form:

dε

dt
= hsp − h̃, ε(0) = 0 (20)

u = us +Kc(hsp − h̃) +Kcε/τI (21)

where u is the controller output (0 ≤ u ≤ 0.6 m3/s), us =
0.0026 m3/s is the steady-state value of u that corresponds
to the initial level of the tank at t = 0. h̃ is the measured
level of the tank, ε is the dynamic state of the PI controller.
The PI tuning parameters were selected to be Kc = 0.6 and
τI = 43.2. The set-point was set to be hsp = 0.4 m.

For the image-based measurements, which are sent to
the controller every sampling period (∆ = 0.1 s), a fixed
camera was positioned facing one side of the tank. For
the image processing task, we utilized a Python Imaging
Library, Pillow [12], which includes features and supports for
loading, manipulating, and saving images. Fig. 1 shows the
render of the tank level at its final configuration. To measure
the level of the tank, the algorithm must translate the tank
image provided by the camera sensor into a measurable tank
level so that the controller can compute the control actions
accordingly. This can be achieved by taking the RGBA
values of the pixels at the bottom and top of the tank as
references for their pixel indexes to track the variations in the
tank image over time. Specifically, based on the pixel indexes
of the bottom and top of the tank image at t = 0, a linear



Fig. 1. Render of the level of the tank (converted from png to PDF to eps)
at t = 7 s with hsp = 0.4 m using Blender.

relation can be obtained to convert the pixel index counted
at the top of the tank image to the level of the tank. The
camera image of Fig. 1 has size of 1920×1080. Variations
in the pixel indexes must be counted only in the RGBA
values corresponding to the tank level. The pixel index at
the bottom of the tank is 1079 (which represents h = 0 m)
and, at t = 0, the pixel index at the top of the liquid is 1055
(which represents h = 0.1 m). A linear conversion between
the tank level and pixel index at the top of the tank image
(Ip) was then developed and is given by Eq. 22. Therefore, at
every sampling time tk, a new count is performed to obtain
the pixel index at the top of the tank image and its conversion
to the measured level of the tank is sent to the PI controller
as follows:

h̃ = −3.8462× 10−3 × Ip + 4.1577 (22)

The change in the RGB value from the color that represents
the tank level to the color outside the boundaries of the
tank level is detected in the presence of lighting by allowing
for several RGB values to represent the tank, and several
to represent the region beyond the tank. In Blender, to
update the tank level in the renders of the camera, the global
coordinates where the tank is located in Blender Edit Mode
must be tracked as well. In particular, the bottom edge of the
tank was positioned at (0,0,-1.57 m). The coordinates of the
tank level at h = 0.1 m are (0,0,-1.47 m), and thus variations
in the tank level can be adjusted in Blender by updating the
position of the top edge of the tank.

The closed-loop response of the tank level under this PI
controller of Eqs. 20-21 described above is shown in Fig. 2.
We can observe that both the actual closed-loop state and the
measured tank level reach the set-point of 0.4 m after 1.5 s
of operation under the PI controller.

Remark 1: The ability to capture small process changes
based on image-based measurements depends on the process
dynamics and the sampling period to collect the measure-
ments. The degree to which the camera is “zoomed-in” on the
process segment to be visually measured impacts the degree
to which small process variations in a sampling period can
be captured for measurement accuracy.

V. CONCLUSION

This work examines a control-assisted framework for
model discrimination using LEMPC and a framework for
testing image-based controllers using Blender. Theoretical
results for the former study indicate that closed-loop stability

0 1 2 3 4 5 6 7

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Fig. 2. Closed-loop response of the tank level problem under the image-
based PI controller.

can be maintained while the models are discriminated; a level
control problem was used in the second study.

ACKNOWLEDGMENT

Financial support from the National Science Foundation
CBET-1839675 and CNS-1932026, Air Force Office of
Scientific Research award number FA9550-19-1-0059, and
Wayne State University, is gratefully acknowledged. We
thank Jordan Toma for discussions.

REFERENCES

[1] M. Von Stosch, R. Oliveira, J. Peres, and S. F. de Azevedo, “Hy-
brid semi-parametric modeling in process systems engineering: Past,
present and future,” Computers & Chemical Engineering, vol. 60, pp.
86–101, 2014.

[2] O. Kahrs and W. Marquardt, “The validity domain of hybrid models
and its application in process optimization,” Chemical Engineering and
Processing: Process Intensification, vol. 46, pp. 1054–1066, 2007.

[3] S. Olofsson, E. S. Schultz, A. Mhamdi, A. Mitsos, M. P. Deisenroth,
and R. Misener, “Design of dynamic experiments for black-box model
discrimination,” arXiv preprint arXiv:2102.03782, 2021.

[4] P. Schrangl, P. Tkachenko, and L. Del Re, “Iterative model identifica-
tion of nonlinear systems of unknown structure: Systematic data-based
modeling utilizing design of experiments,” IEEE Control Systems
Magazine, vol. 40, pp. 26–48, 2020.

[5] C. Waldron, A. Pankajakshan, M. Quaglio, E. Cao, F. Galvanin, and
A. Gavriilidis, “Closed-loop model-based design of experiments for
kinetic model discrimination and parameter estimation: Benzoic acid
esterification on a heterogeneous catalyst,” Industrial & Engineering
Chemistry Research, vol. 58, no. 49, pp. 22 165–22 177, 2019.

[6] H. Oyama and H. Durand, “Lyapunov-based economic model predic-
tive control for online model discrimination,” Computers and Chemical
Engineering, in press.

[7] M. Heidarinejad, J. Liu, and P. D. Christofides, “Economic model
predictive control of nonlinear process systems using Lyapunov tech-
niques,” AIChE Journal, vol. 58, pp. 855–870, 2012.

[8] T. Pearson, D. Brabec, and S. Haley, “Color image based sorter for
separating red and white wheat,” Sensing and Instrumentation for Food
Quality and Safety, vol. 2, pp. 280–288, 2008.

[9] B. Lin, B. Recke, J. K. Knudsen, and S. B. Jørgensen, “Bubble size
estimation for flotation processes,” Minerals Engineering, vol. 21, pp.
539–548, 2008.

[10] L. Giuliani and H. Durand, “Data-based nonlinear model identifica-
tion in economic model predictive control,” Smart and Sustainable
Manufacturing Systems, vol. 2, pp. 61–109, 2018.

[11] Blender, Blender Foundation, Stichting Blender Foundation,
Amsterdam, 2021. [Online]. Available: http://www.blender.org

[12] A. Clark, “Pillow (PIL fork) doc-
umentation,” 2015. [Online]. Available:
https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf


	On-line Process Physics Tests via Lyapunov-based Economic Model Predictive Control and Simulation-Based Testing of Image-Based Process Control
	Recommended Citation
	Authors

	ACC1HDEdits11CorrectTypoPDFA.pdf

