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An elliptical cover problem in drone delivery network design and its

solution algorithms

Yanchao Liu a,1,∗

aDepartment of Industrial and Systems Engineering,
Wayne State University, Detroit, MI, USA

Abstract

Given n demand points in a geographic area, the elliptical cover problem is to determine
the location of p depots (anywhere in the area) so as to minimize the maximum distance
of an economical delivery trip in which a delivery vehicle starts from the nearest depot to
a demand point, visits the demand point and then returns to the second nearest depot to
that demand point. We show that this problem is NP-hard, and adapted Cooper’s alternat-
ing locate-allocate heuristic to find locally optimal solutions for both the point-coverage and
area-coverage scenarios. Experiments show that most locally optimal solutions perform sim-
ilarly well, suggesting their sufficiency for practical use. The one-dimensional variant of the
problem, in which the service area is reduced to a line segment, permits recursive algorithms
that are more efficient than mathematical optimization approaches in practical cases. The
solution also provides the best-known lower bound for the original problem at a negligible
computational cost.

Keywords: Location, area coverage, ellipses, drone delivery, NP-hard problem

1. Introduction

1.1. Problem Statement
In this paper, we study the Euclidean p-Elliptical Cover problem, stated as follows. Given

n demand points with coordinates (ai, bi), i = 1, . . . , n on the plane, find p depot locations
Xj, j = 1, . . . , p, in order to

minimizeX1,...,Xp

{
max
1≤i≤n

{
min

1≤j<j′≤p
{Di(Xj) +Di(Xj′)}

}}
(1)

where Xj := (xj, yj) for j = 1, . . . , p is the location of depot j, and Di(Xj) := [(xj − ai)2 +
(yj − bi)2]1/2 is the Euclidean distance between demand point i and depot j. We will refer to
this problem simply as the Elliptical Cover problem in the sequel.

The problem can be formulated into a mixed integer nonlinear programming (MINLP)
model. Define the binary variable

zij =

{
1 if demand point i is assigned to depot j

0 otherwise

∗Corresponding author
1Mailing: 4815 4th Street Rm 2169, Detroit, MI 48201, USA. Email: yanchaoliu@wayne.edu

1



then problem (1) is equivalent to

minimize L (2)

s.t. L ≥
p∑
j=1

zij[(xj − ai)2 + (yj − bi)2]1/2 for i = 1, . . . , n (3)

p∑
j=1

zij = k for i = 1, . . . , n (4)

zij ∈ {0, 1} for i = 1, . . . n; j = 1, . . . , p (5)

xj, yj ∈ R for j = 1, . . . , p (6)

with parameter k = 2. The Euclidean p-center (EPC) problem [Megiddo and Supowit, 1984],
which attempts to find p depots to minimize the maximum distance from a demand point to
its respective nearest depot, has the same MINLP formulation with k = 1. The minimum
enclosing polyellipsoid (MEP) problem [Blanco and Puerto, 2021] can be viewed as a variant
of the above model with k = p and with additional constraints on foci locations. These and
other related problems and their solution ideas are reviewed in Section 1.3. It is worth noting
that in the former case (k = 1) the problem is NP-hard, while in the latter case (k = p) the
problem is convex and polynomially solvable. Therefore, there is not a general conclusion
about the problem’s complexity based on its mathematical formulation, and good algorithms
may have to exploit the geometric properties available under the particular problem setting.
In this paper, we focus on analyzing the Elliptical Cover case (k = 2), show that it is an
NP-hard problem, and propose algorithms for different variants of the problem.

1.2. Motivating Application

On-demand delivery of light goods by unmanned aerial vehicles (UAVs, or drones) has
emerged as a new mode of last-mile delivery, and has attracted great interest from both
industrial and academic communities. Several modes of drone delivery operations have been
explored, including drones launched from fixed and moving depots, and drone routes having
a single or multiple stops for pickup and delivery, see, e.g., Murray and Chu [2015]; Agatz
et al. [2018]; Liu [2019]; Poikonen and Campbell [2020]. Given the limited battery and
carrying capacities of multicopter drones, we believe that a feasible mode of operation can
be as simple as this: single delivery per trip, with the drone starting from a fixed depot,
visiting the customer location for dropoff, then returning to (the same or a different) depot.
Commercial operations of drone delivery services, including those piloted by Alphabet Wing
[Wing, 2021] and Zipline [Zipline, 2021], fall under the “depot-customer-depot” paradigm
with stationary depots. Even though Zipline currently adopts a hub-and-spoke network with
a single depot at the hub, optimally locating multiple depots will become relevant when its
service region expands beyond the round-trip flight range of the battery-powered drone in
its fleet.

The location of depots across the service area is an important network design decision
that will determine the initial infrastructure cost as well as the safety, efficiency and service
level in daily operations. Liu [2021, 2022] discussed the drone depot location problem from
the safety and emergency landing perspective, and employed the p-center design to cover
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Figure 1: A drone delivery service area having three depots and five customer locations. Customer e is
serviceable by 5 delivery routes while customer d is serviceable by only one route. In this paper, we require
all customers to be serviceable by at least 3 routes, i.e., covered by an ellipse.

the service area with depots such that the required flight distance in a worst-case emergency
landing is minimized. It is also important to examine the problem from the cost and operation
efficiency perspective.

In designing the system, the flight range requirement on drones is a primary factor to
consider. If depots and customer locations are too far apart, the drones must be equipped
with heavier battery packs to cover a longer range, which adds costs to the fleet equipment
and maintenance activities. Like the depot location decision, the choice of battery capacity
for the fleet is a system design question that should be determined early on, because modifying
the battery design may involve making changes to the airframe and electrical system on each
drone in the fleet, which can be very costly.

Here is how specifically the flight range of a drone, denoted by L, plays a role in the
depot location decision. A delivery trip (type 1) that starts and ends at the same depot must
have the demand point lie in a circular area of radius L/2 centered at the depot, while a
delivery trip (type 2) that starts and ends at different depots must have the demand point
lie in an elliptical area having the depots as foci and the major axis length of L. Clearly,
a customer that is serviceable by a type 2 trip is also serviceable by a type 1 trip, but not
vice versa. During service operations, a customer demand can be fulfilled only if the origin
depot has the ordered item in stock and has an available drone to fly the delivery trip.
Thus, everything else held equal, a customer location serviceable by a type 2 trip is twice
as likely to have her demand fulfilled compared to a customer serviceable by only a type 1
trip. Ensuring all customer locations to be serviceable by a type 2 trip is therefore a good
objective in the network design. It not only increases service coverage, but also enables a
higher operational efficiency. For instance, it leaves more flexibility in drone-order matching
in task assignments, and permits more choices for drone re-locationing after a delivery task, to
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respond more quickly to the next customer demand. The relationship between depot location
and service level and flexibility is illustrated in Figure 1. This particular consideration in
drone delivery network design motivates the Elliptical Cover problem studied in this paper.

1.3. Related Problems and Literature

Determining the location of service depots falls in the class of facility location prob-
lems [Aikens, 1985; Daskin, 1995; Revelle and Laporte, 1996; Klose and Drexl, 2005], and
more specifically the continuous location problems [Rosing, 1992; Brimberg and Salhi, 2005;
Berman et al., 2009; Blanco et al., 2014, 2016; Drezner and Brimberg, 2020]. Covering prob-
lems in facility location have been surveyed by Schilling et al. [1993] and Farahani et al.
[2012].

The problem of covering demand points on a plane by ellipsis-like shapes has been inves-
tigated in recent literature. Canbolat and Massow [2009] studied the problem of selecting k
out of m axis-parallel ellipses of given sizes and costs and determining their center locations
to cover a subset of demand points on the plane in the most economical way. The authors
presented a MINLP formulation which was shown to be difficult to solve even for small in-
stances, and proposed an algorithm based on Simulated Annealing for practical solutions.
Andretta and Birgin [2013] investigated the same problem and proposed an enumeration
approach for obtaining its global solution. In this approach, each plausible ellipsis-demand
matching pattern was examined whereas the feasibility of the matching was checked by solv-
ing a convex nonlinear program. A tree-like data structure was employed to organize the
search and to skip unpromising candidates. However, when the ellipses were permitted to be
oriented freely (i.e., not fixed to axis-parallel orientation as studied in Canbolat and Massow
[2009]), the feasibility subproblem became nonconvex and thus more difficult to solve. On
the same problems, Tedeschi and Andretta [2021] further proved that the number of possible
locations of the m ellipses that may appear in the optimal solution to the problem with n
demand points is upper bounded by n2m and n3m, when the ellipses have fixed and flexible
orientations, respectively. The authors then developed enumeration algorithms with several
algorithmic improvements to find the optimal solutions faster than those in the prior work,
i.e., Andretta and Birgin [2013]. There are several notable differences between the problem
studied in the above-mentioned literature and the one presented in this paper. First, the
former problem seeks a maximal (profit) coverage solution while our problem seeks a full
coverage solution; second, the number and shapes (in terms of the semi-major and semi-
minor axis lengths) of the covering ellipses are given in the former problem, whereas in our
problem neither the number nor the shapes of the covering ellipses is known a priori as they
depend on the location of the foci points. As a result, the geometric analysis approach that
was useful for enumerating the possible solutions of the former problem (similar ideas were
also found in Church [1984], Drezner [1984] and Chazelle and Lee [1986]) is not applicable
(at least to the author’s knowledge) to the Elliptical Cover problem studied in this paper.

Blanco and Puerto [2021] investigated the problem of determining the location of p depots
to cover a finite set of demand points so that the largest weighted sum of the distances from
a demand point to all depots is minimized. The authors termed this problem Minimum
Radius Enclosing Polyellipsoid Problem with Given Foci (and short for MEP). Using the
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same notations in (1), the MEP problem can be mathematically stated as follows.

minimize
X

{
max
1≤i≤n

p∑
j=1

wjDi(X +X ′j)
}

(7)

where for each j ∈ {1, . . . , p}, X ′j is a given coordinate associated with depot j and wj ≥ 0
is a given weight associated with depot j, with

∑p
j=1wj = 12. Compared to the Elliptical

Cover problem of (1), the MEP problem does not involve the assignment of demand points
to nearest depots by the minimum distance principle (i.e., the innermost min operator in
(1) is forgone), and thus it can be formulated as a continuous optimization problem. The
authors proved that the problem is solvable in polynomial time and developed a solution
algorithm with time complexity O(nd+2), where d is the fixed data dimension (on a plane,
d = 2). The idea was to decompose the task of solving the original problem into solving
a polynomial number of smaller (convex optimization) problems. On large instances (i.e.,
potentially to arise in data mining contexts), the decomposition approach was demonstrated
to run faster than Gurobi solving a second order cone (SOC) formulation of the problem. A
similar decomposition approach also underlies our proposed method for solving the Elliptical
Cover problem, but the number of possible subproblem to solve is indefinite. In brief, we
will solve (7) using a local solver (i.e., CONOPT, since the problem is convex) in a locate-
allocate algorithm for obtaining local solutions to the Elliptical Cover problem. Note that
the decomposition approach proposed by Blanco and Puerto [2021] could potentially be used
for expediting the solution of (7) as a subproblem in our context. However, given that the
locate-allocate algorithm usually take a limited number of iterations to converge (see Figure
11), in this paper we adopt an off-the-shelf solver for simplicity.

Another related problem is the α-neighbor p-center problem on a Euclidean plane [Chen
and Chen, 2013], in which the goal is to cover the demand points with p circles such that
each demand point is covered by at least α circles and that the radius of the largest circle
is minimized. This problem permits a mathematical formulation similar to (2) to (6) -
specifically, rewrite constraint (3) as

L ≥ zij[(xj − ai)2 + (yj − bi)2]1/2, for i = 1, . . . , n; j = 1, . . . , p

and one can obtain the MINLP formulation for the k-neighbor p-center problem. For the
same set of demand points and a given p, the optimal objective value of the 2-neighbor p-
center problem is clearly a lower bound for the Elliptical Cover problem. However, there is
no known polynomial algorithm for globally solving the former problem. Khuller et al. [1997]
provided a polynomial time approximation algorithm for the problem defined on a graph and
achieved an approximation factor of 2 for α < 4, but an approximate solution can not serve
as a lower bound. The best known exact algorithm is proposed by Chen and Chen [2013].
The idea is solving a finite series of set covering problems via integer programming, similar to
those proposed by Minieka [1970] and Drezner [1984] for solving the EPC problem. Numeric
experiments performed by the authors showed that the optimal solution to the 2-neighbor

2The authors discussed the problem in a general d dimensional space catering to applications in data
science, where we set d = 2 in formulation (7) for the ease of comparison with (1) for planar applications.
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p-center problem often coincides with the optimal solution to the EPC problem with 2p
centers - by placing two centers at the same location to meet the 2-neighbor requirement.
This observation indicates that the solution to the 2-neighbor p-center problem is unlikely to
be a valuable starting point (that is worth the effort of obtaining it) for the locate-allocate
algorithm to be proposed in Section 3 for solving the p-Elliptical Cover problem.

Overall, to our knowledge, the Elliptical Cover problem has not been studied in the
facility location literature. Our contributions can be summarized to include: (1) a mixed
integer nonlinear formulation of the problem, (2) a proof that the problem is NP-hard, (3)
an adaptation of a well-known locate-allocate algorithm to locally solve the problem with
both discrete and continuous demand sets, (4) an examination of a one-dimensional variant
of the problem (the shortest covering interval (SCI) problem), an exact algorithm to solve
this problem, which then provides a lower bound for the Elliptical Cover problem, and (5)
computational results and relevant discussions.

The remainder of the paper is organized as follows. In Section 2, we prove that the
Elliptical Cover problem is NP-hard, and present the unique challenges it poses to analytical
approaches that have found success on similar problems, such as the Euclidean p-center
problem. In Section 3, we propose a locate-allocate algorithm, along with its convergence
proof, for finding locally optimal solutions. In Section 4, we formulate the one-dimensional
version of the Elliptical Cover problem whose solution will provide a valid lower bound to
the original problem. We furthermore show several useful insights into this problem, and
develop an exact and a heuristic algorithm, respectively, for solving it much faster than the
mathematical optimization approach. Section 5 extends the locate-allocate approach to cover
an area, instead of discrete points, with ellipses. All proposed algorithms are validated in
numeric experiments in Section 6, where we also present a comparison between the Elliptical
Cover and the EPC solutions in the drone delivery network design context. Finally, Section
7 concludes the paper with pointers for future research.

2. Complexity Analysis

Circle Covering : Given n unit circles in the plane and an integer p > 0, decide whether
there exist p points such that each circle contains at least one point (we say that a circle
contains a point if the point lies on, or in the interior of, the circle).

Megiddo and Supowit [1984] proved the NP-hardness of the Euclidean p-center problem
by first noting its equivalence to Circle Covering, then reducing 3-satisfiability [Garey and
Johnson, 1978] to Circle Covering, thereby proving that Circle Covering is NP-complete. To
prove the NP-hardness of (1) (and more generally, of problem (2) - (6)), we will reduce Circle
Covering to another decision problem, called Concentric k-Circle Covering, the optimization
problem counterpart to which is equivalent to (1) when k = 2.

First, let us define the concept of the ring used in the subsequent problem description. We
say that k concentric circles form k ring areas (or rings) defined as follows: points enclosed
by the smallest circle (including points that lie on the circle) are said to be in the first ring,
points enclosed by the second smallest circle but outside the interior of the first ring are said
to be in the second ring, and so forth. If two (or more) circles have the same radius, an
arbitrary rank order is assigned to them so that points in the common interior are said to be
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Figure 2: Illustration of concentric rings. Left: two concentric circles of different diameters form two rings:
the first ring is the red circular area, and the second ring is the blue are. Right: two concentric circle of equal
diameter also form two rings, but only one ring (blue) includes the interior area, while the other ring (red)
is simply the boundary circle.

in the smallest rank-ordered ring and the points that lie on the circles are said to be in both
(all) rings. An illustration is given in Figure 2.

Concentric k-Ring Covering : Given n points on the plane, an integer k > 0 and an integer
p > 0, decide whether there exist p points, and n groups of circles arranged in such a way
that each group has k concentric circles centered at one of the n given points (no two groups
share the same center) and the sum of the radii of the k circles is no more than k, such that
each of the nk rings formed by the nk circles contains at least one of the p points.

Proposition 1. Concentric k-Ring Covering is NP-complete.

Proof. Given an instance, say n points {ci, . . . , cn}, and a proposed solution, say p points
{X1, . . . , Xp}, we can check whether the proposed solution constitutes a “yes” answer to the
instance as follows: calculate d(ci, Xj) for each i ∈ {1, . . . , n} and j ∈ {1, . . . , p}, then for
each i rank the distances {d(ci, X1), . . . , d(ci, Xp)} and calculate the sum of the smallest k
members in the set and denote the sum by di. The “yes” condition is satisfied if and only
if di ≤ k for all i ∈ {1, . . . , n}. The overall time complexity is bounded by O(n · p · log(k)).
Therefore, the problem is in NP .

We now reduce Circle Covering to Concentric k-Ring Covering. For each instance of
Circle Covering, say n unit circles {C1, . . . , Cn} centered at points {c1, . . . , cn} respectively,
we can construct an instance of the Concentric k-Ring Covering for a given k by using the
same given n points and the same p. Given a solution to the former instance we can construct
a solution to the latter instance. Specifically, if Ci contains a point X, we can choose the
radii of the k circles centered at ci to be d(ci, X), thus all k rings contain X and the sum
of the radii is no more than k (because d(ci, X) ≤ 1). On the other hand, a solution to the
Concentric k-Ring Covering instance also leads to a solution to the Circle Covering instance.
Specifically, the knowledge that each of the k rings centered at ci contains at least one of
the p points indicates that the smallest ring (i.e., the inner most circular area) centered at
ci contains one of the points. Also, the radius of the smallest ring cannot exceed 1 (the unit
length) since the sum of the k radii is no more than k. Therefore, the unit circle Ci must
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Figure 3: The Concentric 2-ring problem is equivalent to the decision problem of Elliptical Cover. If both
rings centered at c contain a point, X1 and X2, respectively, then c is covered by the ellipse with X1 and X2

as foci; and vice versa.

contain at least one of the p points. Since Circle Covering is known to be NP-complete and
the transformation is polynomial, the conclusion follows.

Concentric k-Ring Covering is a decision problem counterpart to the optimization problem
(2) to (6), in the same way as Circle Covering being a counterpart to EPC. The optimization
problem is at least as hard as the decision problem, hence is NP-hard. In this paper, we
focus on the problem with k = 2 for its real-world application. This problem permits a
geometric description: find p depots such that each demand point is covered by a number
of ellipses each having some pair of depots as foci and the major axis of the largest ellipse
used in the coverage is minimized. Therefore, it is termed as the Elliptical Cover problem.
Its equivalence to the Concentric 2-Ring Covering problem is illustrated in Figure 3.

Globally solving the optimization problem (2) to (6) is extremely difficult even for small
instances. When a global MINLP solver, such as BARON [Sahinidis, 1996], is used to solve
an instance, the lower bound starts at a useless level (i.e., 0) and improves extremely slowly.
Indeed, relaxing the integrality of the binary variables would not make the problem convex.
Though one could reformulate the problem (e.g., use the binary variable zijj′ to indicate if
demand i is assigned to the ellipse of foci j and j′) to avoid the bilinear terms zijDi(Xj),
the use of big M constants would substantially weaken the reformulation, and the presence
of the Euclidean distance calculation, e.g., in Di(Xj), would still call for the use of a global
MINLP solver rather than an MIP solver. Moreover, the isomorphism in the problem’s graph
structure creates excessive symmetry that is inexpressible in algebraic formulations. For
instance, for a problem with n = 5 and p = 3, the following three demand-depot assignments,
Assignment 1: zij = 1 for {i ∈ {1, 2}, j ∈ {1, 2}} or {i ∈ {3, 4, 5}, j ∈ {2, 3}}
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Assignment 2: zij = 1 for {i ∈ {1, 2}, j ∈ {1, 3}} or {i ∈ {3, 4, 5}, j ∈ {2, 3}}
Assignment 3: zij = 1 for {i ∈ {1, 2}, j ∈ {2, 3}} or {i ∈ {3, 4, 5}, j ∈ {1, 3}}
are equivalent for the geometric problem, but they are (unnecessarily) distinguished in the
algebraic formulation. Eliminating one would not automatically eliminate the other two in
the branch and bound framework, causing redundant computations.

The same issue would exist in the mathematical formulation of other geometric location
problems such as the EPC problem. Consequently, successful algorithms invariably exploited
some geometric and combinatorial insights into the problem structure, rather than relying on
mathematical optimization approaches. For instance, Drezner [1984] uncovered two geometric
properties of the EPC’s optimal solution which ultimately led to good algorithms. One is
the fact that the largest circle in the solution is defined by at most three demand points
hence there are O(n3) possible radii with one of them being the solution radius. The other
is that for a given radius there are only O(n2) possible locations where the p circles can
center at. Using these insights, the author developed an exact algorithm for the EPC by
solving a set-covering problem polynomial number of times. Vijay [1985] proposed another
exact algorithm for EPC based on similar principles and was able to generate the set-covering
subproblems more efficiently. Hwang et al. [1993] further improved the time bound for EPC
to O(nO(

√
p)), by inventing a new algorithm to solve the circle-covering subproblem (which is

at the bottleneck of the EPC algorithm, and is stated as “given a set of n demand points and
two parameters p and r, determine whether there exist p circles of radius r which can cover
all demand points”) in time O(nO(

√
p)). Callaghan et al. [2017] devised a series of means,

including exploiting early termination opportunities in subproblem solution and eliminating
unpromising candidate solutions on the fly, to speed up execution of the EPC algorithm
proposed in Drezner [1984].

3. A locate-allocate algorithm that converges

While the EPC is a special case (k = 1) of the problem (2) to (6), none of the geometric
insights that sped up the EPC solution is applicable to the general cases of 2 ≤ k < p.
The key reason is this: a given demand-depot allocation (i.e., fixing values for zij) would
decompose the EPC problem into p separate 1-center problems of the same nature, but
would not do the same decomposition to the general case (i.e., k > 1) - the location variables
for all the p points would still be coupled in a single nonlinear program (NLP). Fortunately,
this NLP is convex.

Lemma 2. With variables zij, i ∈ {1, . . . , n} and j ∈ {1, . . . , p}, fixed to any binary assign-
ment {0, 1}n×p, the problem (2) to (6) is reduced to a convex optimization problem.

Proof. Let J(i) := {j : zij = 1}, then the problem becomes

minimize
L,(xj ,yj), j=1,...,p

L (8)

s.t. L ≥
∑
j∈J(i)

[(xj − ai)2 + (yj − bi)2]1/2 for i = 1, . . . , n (9)

The right side of constraint (9) is a convex function of the variables (x, y) on R2p because
each summand (being an L2 norm) is convex, and the inequality (for each i) describes the
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Figure 4: Ten ways to form covering ellipses whose foci are chosen from a set of four depots.

epigraph of that convex function and hence forms a convex set on R2p+1. Minimizing a linear
function over the intersection of n convex sets is a convex optimization problem.

In fact, the problem (8) - (9) is a second order cone problem (SOCP), a type of con-
vex optimization problem solvable by interior-point methods in polynomial time, see, e.g.,
Nesterov and Nemirovskii [1994].

The original problem can be viewed as a combinatorial assignment problem, i.e., assigning
each demand point to two depots, in which the performance of a candidate assignment must
be assessed via solving a convex NLP. There are

(
p
k

)n
possible assignments, an exponential

function of inputs unless k = p. To see the complexity of enumerating all unique assignments,
let us make such an attempt on an instance with n = 10, p = 4 and k = 2; that is, to cover 10
demand points by a collection of ellipses whose foci are from a set of four depots. Each pair
of depots can serve as the foci for an ellipse, so we can think of the covering ellipses as edges
in a graph in which depots are unlabeled nodes. There are ten graphs with a non-empty edge
set on four unlabeled nodes, illustrated in Figure 4.

Assigning n demand points to a number, say h, of covering ellipses (i.e., edges in the
graph) is equivalent to partitioning n labeled objects into h nonempty unlabeled subsets,
and the number of ways to do so is the Stirling number of the second kind, denoted by
S(n, h) and calculated by

S(n, h) =
1

h!

h∑
i=0

(−1)i
(
h

i

)
(h− i)n

Among the ten possible arrangements of covering ellipse(s), one has h = 1, two h = 2, three
h = 3, two h = 4, one h = 5 and one h = 6, so the total number of unique demand-depot
assignments comes down to

S(10, 1) + 2 · S(10, 2) + 3 · S(10, 3) + 2 · S(10, 4) + S(10, 5) + S(10, 6) = 162575.

Even though this number is two orders of magnitude smaller than
(
4
2

)10
= 60466176, the size

of the search space modeled by the algebraic constraints (4) and (5), it is still impractical
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to evaluate such a large number of possibilities, whereas the evaluation of each possibility
would require solving a nonlinear, though convex, optimization problem.

We propose the following iterative locate-allocate algorithm for approximately solving the
Elliptical Cover problem. Let ε > 0 be a small number.
Locate-Allocate Algorithm:
Step 1: Initialize L∗ =∞ and randomly sample p depot locations on the plane, X1, . . . , Xp.
Step 2: For each demand point i, compute the distances Di(Xj), j = 1, . . . , p and let J(i) =
{ji, j′i} where ji = argmin{1,...,p}Di(Xj) and j′i = argmin{1,...,p}\{ji}Di(Xj).

Step 3: Solve the problem (8) - (9) using an NLP solver, to obtain the optimal value L̂ and

optimal solution X̂j, j = 1, . . . , p.

Step 4: If L̂−L∗ < −ε, stop and return {X̂1, . . . , X̂p} as solution; otherwise, update L∗ ← L̂,

{X1, . . . , Xp} ← {X̂1, . . . , X̂p}, go to Step 2.

Proposition 3. The locate-allocate algorithm will terminate in finite iterations.

Proof. There are only a finite number of assignments {J(1), . . . , J(n)}, and each assignment
gives a definite optimal value L due to convexity. Each iteration produces a new assignment
whose optimal value L is strictly smaller than that of the previous iteration. Since the
algorithm iterates over a finite set, some assignment value must eventually be revisited. The
revisit cycle length (i.e., number of iterations between the 1st and 2nd visit to the same
assignment value) must be 1 and the algorithm must terminate when the revisit happens,
because any other assignment visited between the 1st and 2nd visit would give an objective
value strictly greater and strictly smaller than the objective value of the revisited assignment,
hence a contradiction.

The idea of alternate location-allocation is not new. Cooper [1964] proposed an iterative
method employing this idea to solve the multisource Weber Problem [Wesolowsky, 1993;
Hansen et al., 1998; Brimberg et al., 2000; Raeisi Dehkordi, 2019], which concerns finding
the coordinates of p depots from a continuous feasible space to minimize the sum of weighted
distances from a finite set of destinations to their closest depot. The same idea underpinned
the Voronoi heuristic method proposed by Suzuki and Drezner [1996] to solve the p center
problem in an area, as well as the K-means clustering algorithm widely used in machine
learning.

Each run of the algorithm, starting from a random starting point (i.e., p depot locations),
will produce a “local optimum”, in the sense that unilaterally changing either the location
or the allocation would not lead to a better objective value. However, there are indefinitely
many (upper bounded by the number of unique assignments) local optima. The multistart
search strategy, which involves running the algorithm many times (optionally in parallel),
can be employed to generate a pool of local optima, the best of which is then used as the
final solution. The starting point strategy proposed in Drezner and Brimberg [2020] and the
transfer follow-up step proposed in Drezner et al. [2015] for expediting the locate-allocate
algorithm and improving the local solution for the planar p-median problem can potentially
be applied here, though we have not tested them in our implementation. Our computational
experience has shown that the number of unique local optima identified via multistart is
typically very limited even after a large number of runs. In other words, the chance that
a better solution turns up decays exponentially as more and more runs are executed. In
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practice, if no better solution turns up in the last, say, 20 runs, then the search can stop and
the best solution identified thus far is to be accepted.

4. The one-dimensional variant and its solution algorithms

There is no polynomial-time algorithm (unless P = NP) to compute and systematically
improve the lower bound, hence to establish global optimality. Computing the lower bound
involves solving a relaxed version of the problem, such as one that relaxes the integrality of
zij in the MINLP formulation. However, as discussed in Section 2, this kind of relaxation
is either still difficult to solve or too weak to be valuable. As mentioned in Section 1.3, the
2-neighbor p-center problem [Chen and Chen, 2013] can be viewed as a relaxation of the
Elliptical Cover problem, and hence its optimal objective value can serve as a lower bound.
However, solving that problem to global optimality is by itself an NP-hard task, which does
not simplify the task at hand.

We propose a dimension relaxation approach. The idea is based on this fact: if the
demand points on the plane are enclosed by a number of ellipses, then the projection of the
demand points onto any straight line on the plane must also be enclosed by the projection
(line segments) of those ellipses onto the same line. Furthermore, the length of the projected
line segment of an ellipse is smaller than or equal to the length of the major axis of the
ellipse, which is in turn smaller than or equal to the distance between the foci of the ellipse.
This means that for any given straight line, we can solve an alternative covering problem
on the line, the optimal value of which will serve as a lower bound of the original problem.
On top of this, some search procedure can be employed to find the straight line such that
the resulting lower bound is greatest. The idea is illustrated in Figure 5, and the alternative
covering problem, called Shortest Covering Interval (SCI) problem, is stated as follows.

Shortest Covering Interval (SCI) problem: given the location of n ≥ 1 demand points on
the real line and an integer p ≥ 2, determine the location of p depots on the line such that
the maximum sum of distances from a demand point to its two nearest depots is minimized.

Apart from providing lower bounds to the Elliptical Cover problem, the SCI problem has
its own applications. For instance, UAVs have been used to inspect power transmission lines
and railroads. Locating battery charging depots along such infrastructure lines to cover points
of interest along the lines can be formulated as a SCI problem. Therefore, it is important to
understand the properties of the SCI problem and develop effective algorithms for solving it.

4.1. An MIP formulation for the SCI problem

As a one-dimensional special case of the Elliptical Cover problem, the SCI problem has
the same MINLP formulation of (2) to (6) with the terms (yj−bi)2 in constraint (3) removed.
Moreover, it also permits a linear mixed integer programming (MIP) formulation as follows.

minimize L

s.t. L ≥ |xj − ai|+ |xj′ − ai| − (1− zijj′)M, for 1 ≤ i ≤ n, 1 ≤ j < j′ ≤ p
p−1∑
j=1

p∑
j′=j+1

zijj′ = 1, for 1 ≤ i ≤ n

zijj′ ∈ {0, 1}, for 1 ≤ i ≤ n, 1 ≤ j < j′ ≤ p

12



Figure 5: Lower bounding the Elliptical Cover Problem by solving the SCI problem.

where M is a big positive number. Letting M = 2(an − a1) is valid and most reasonable.
The first constraint involving absolute functions can be expanded to four linear inequalities.
The MIP model is much more amenable than the MINLP formulation. In Section 6, we will
use this model to benchmark the more efficient solution method for SCI presented in the
following section.

4.2. Exact and heuristic algorithms for the SCI problem

The location of p depots that minimizes the objective value (i.e.., the maximum sum of
distances from a demand point to its two nearest depots) is called the optimal solution and
the objective value at the optimal solution is called the optimal value. Let A := {a1, . . . , an}
be a set of n real numbers (without loss of generality, assume that the numbers are arranged in
ascending order), then an instance of the problem can be denoted as SCI(A, p). Furthermore,
let us denote the optimal value of SCI(A, p) as ν(A, p).

We can think of the demands and depots as two sets of vertices of a graph, in which
an edge connecting a demand and a depot is present if the depot is either closest or second
closest to the demand point among all depots. In this way, any location of p depots for an
SCI(A, p) instance will correspond to a bipartite graph. Such a graph may consist of one or
multiple connected subgraphs. In this problem context, we call each connected subgraph a
cluster. The notion of cluster is illustrated in Figure 6.

Proposition 4. For a given set of real numbers A, ν(A, p) ≥ ν(A, p+ 1), for any p ≥ 2.

Proof. Given an instance SCI(A, p) and its optimal solution, we can place an extra depot at
the same location of any existing depot, to construct an instance of SCI(A, p+1) along with a
feasible solution having objective value ν(A, p). Since it is an arbitrary solution, the objective
value cannot exceed the optimal value, which is by definition equal to ν(A, p+ 1).
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Figure 6: Two instances, along with their optimal solutions, of the SCI problem with n = 8 and p = 5.
Demand points are solid dots and depots are vertical bars. The upper solution has two clusters and the lower
solution has one cluster.

Proposition 5. If we knew that the optimal solution to SCI(A, p) would have m ≥ 1 clusters
which would partition A into A1, . . . ,Am, then there must exist m integers, p1, . . . , pm, that
satisfy the following three conditions: (1) pj ≥ 2 for j = 1, . . . ,m; (2)

∑m
j=1 pj = p, and (3)

ν(A, p) = max
1≤j≤m

{ν(Aj, pj)}

Proof. When m = 1, then we must have p1 = p and the conclusion follows. Suppose m > 1.
Given that an optimal solution to SCI(A, p) consists of m clusters, by the definition of cluster,
the p depots in this optimal solution can be partitioned into m subsets, such that each subset
j, j = 1, . . . ,m, consists of p′j ≥ 2 depots serving the demand set Aj. Conditions (1) and (2)
are clearly satisfied. Moreover, this set of integers, i.e., {p′j}, j = 1, . . . ,m, must also satisfy
condition (3). If not, then either ν(A, p) < maxj{ν(Aj, p′j)} or ν(A, p) > maxj{ν(Aj, p′j)}.
The former case means that for some cluster, say j′, the best objective value of using pj′
depots to cover Aj′ is greater than the optimal value ν(A, p), which contradicts the fact
that (Aj′ , pj′) is a cluster in the optimal solution. The latter case is also impossible, because
it implies that an objective value smaller than ν(A, p) can be achieved given the cluster
assignment at the optimal solution.

We call an optimal solution to the SCI problem a regular solution if no demand point
has both of its nearest depots fall strictly on the same side of it along the line. At a regular
solution, each demand point is “covered” by the interval formed by its two nearest depots.
In terms of finding a regular solution, the SCI problem is equivalent to determining a set of
intervals formed by p cut points so as to minimize the length of the longest demand-covering
interval.

Proposition 6. Let A = {a1, . . . , an} be a set of real numbers arranged in ascending order,
i.e., ai < aj whenever i < j, and p ≥ 2 be a given integer. The following statements are true
for SCI(A, p).

1. There exists a regular solution.

2. At a regular solution, one depot must be located at a1 and another depot must be located
at an.
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Figure 7: Upper: The two nearest depots, X and Y , to the demand point A both fall on the right side of
A. This is not a regular solution, and can be changed to a regular solution (Lower) without affecting the
objective value.

3. Suppose we divide the interval [a1, an] into p − 1 equal-length sub-intervals, [a1, c1],
[c1, c2], . . . , [cp−3, cp−2], [cp−2, an], and say that a sub-interval is empty if it does not
contain any element of A in its interior (i.e., the open interval between the two end
points), either of these two cases will ensue:

(a) If none of the sub-intervals is empty, then the cut points a1, c1, . . . , cp−2, an con-
stitute a regular solution, and the optimal value is equal to the length of the sub-
interval, i.e., ν(A, p) = (an − a1)/(p− 1).

(b) If some sub-interval(s) is empty, then any optimal solution must consist of more
than one clusters, with optimal value smaller than (an − a1)/(p− 1).

Proof. Let us first define a concept: if the sum of distances from a demand point to its two
nearest depots is equal to the objective value, this demand point is called a binding point at
the solution.

For 1: We will show that if an optimal solution does not satisfy the regularity condition,
we can always find another optimal solution that does. Specifically, suppose that we are at
an optimal solution with optimal value v, and demand point A finds both its nearest and
second nearest depots, denoted by X and Y , respectively, on its right side, see Figure 7
(upper part) for illustration. If A is not a binding point, then moving depot X to A can
cause an increase in the objective value only if there is a demand point, say B, on the left of
Y whose second nearest depot is X, which will become binding as X moves leftward before
reaching A. (Note that if such a point B does not exist, then we can move X to A without
affecting the objective value and the proof is done.) Let us move X leftward until point
B becomes binding, that is BY + BX = v. Now let us move Y rightward until point A
becomes binding, that is AX + AY = v. At this point, Y must still be on the left of B
because X is on the right of A. In fact, the above two equations together with the equation
that AB = AX+XB = AY +Y B indicates that AX = BY . Now if we simultaneously move
X leftward to A and move Y rightward to B, we will still have AX +AY = BY +BX = v.
Any demand point that lies between X and Y will never become binding in the process. On
the other hand, if A is a binding point in the first place, we can simultaneously move X
leftward and move Y rightward by the same distance until X reaches A. For the same reason
above, such a move will not cause an increase in the objective value. The same process can
be applied to any other demand point having both of its nearest depots fall on the same side

15



of it. By the end, we will have created an optimal solution that satisfies the stated condition.
For 2: If the leftmost depot is located on the right side of a1, then a1 must have both

of its nearest depots fall on its right side, and the solution cannot be a regular solution, a
contradiction. Suppose the leftmost depot is located on the left side of a1, if a1 is a binding
point, then moving the leftmost depot rightward would reduce the objective value, leading to
a contradiction; if a1 is not a binding point, suppose aj is a binding point, then simultaneously
moving all depots on the left of aj rightward for the same (small) distance would reduce the
objective value, leading to a contradiction. So the left most depot must be located exactly
at a1. The same arguments apply to the case of an.

For 3: Claim 1 and 2 imply that any regular solution takes the form of dividing the interval
[a1, an] into p− 1 sub-intervals (zero-length sub-interval is allowed), and the objective value
is equal to the length of the longest non-empty sub-interval. If we knew a priori that there is
a regular solution in which all the p− 1 sub-intervals are non-empty, then the best solution
having this property is the one that equally divides the interval [a1, an] into p− 1 segments
so the longest segment is minimized. This proves case (a). A better solution (i.e., one that
gives an objective value smaller than (an − a1)/(p − 1)) is possible only if at least one of
the p− 1 sub-intervals has an empty interior (i.e., no element of A takes the two end points
of this interval as its two nearest depots) and simultaneously has a length greater than
(an− a1)/(p− 1), making room for other intervals to become shorter than (an− a1)/(p− 1).
By definition of cluster and regularity, the two end points of such an interval must belong to
different clusters. This proves case (b).

The above properties of the SCI problem suggest a recursive approach for solving the
problem. Specifically, Proposition 6 Claim 3 says that either the equispaced depot location
is optimal or the input points are separated into at least two clusters. As a corollary of
Claim 3, if the input points are to be broken into two clusters, the break point can only
occur between successive input points that are more than (an − a1)/(p − 1) apart. There
are at most min{n− 1, p− 2} such break points. Given the cluster composition, Proposition
5 then promises the existence of a specific allocation of the p depots to clusters so that
when each cluster’s SCI problem is solved independently, the original problem is solved.
Finally, Proposition 4 together with the condition (3) in Proposition 5 suggests that a greedy
incremental allocation of depots to clusters will lead to the optimal allocation.

Algorithm 1 outlines a recursive function that returns the optimal value and optimal
solution to the SCI instance given by (A, p). In Line 2, the function Linspace returns p
equispaced numbers spanning the interval [a1, an] as a candidate solution. Line 3 checks the
condition in Proposition 6 Claim 3(a). If the condition is met, the solution is returned in Line
4; otherwise, Lines 6 - 7 identify all possible two-cluster break points and store them in B.
All two-cluster scenarios are evaluated and the best one will be picked and returned, whereas
each scenario is evaluated in a recursive fashion. Specifically, in a given scenario k, each
cluster j, j = 1, 2, is initialized with pj = 2 depots located at the minimum and maximum
elements of the cluster, respectively, and the cluster’s optimal value νj is calculated. Line 11
calculates the number of remaining depots to be allocated to clusters. Lines 12 - 15 allocate
the available depots, one at a time, to whichever cluster that sets the objective value ν∗ at
the time, in order to further reduce ν∗. The optimal value and optimal solution are updated
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Algorithm 1 Exact Algorithm for the Shortest Covering Interval Problem

Require: A := {a1, . . . , an}, sorted in ascending order, p ≥ 2
1: function SCI(A, p)
2: {c1, . . . , cp} ← Linspace(a1, an, p), ν ← (an − a1)/(p− 1)
3: if A ∩ [cj, cj+1] 6= ∅ for all j = 1, . . . , p− 1 then
4: return (ν, {c1, . . . , cp})
5: end if
6: Initialize B ← ∅, ν ′ ←∞, C ′ ← ∅
7: for i = 1, . . . , n− 1 do
8: if ai+1 − ai > ν then B ← B ∪ {i}
9: end if

10: end for
11: for k ∈ B do
12: C1 ← {a1, . . . , ak}, ν1 ← (ak − a1), C1 ← {a1, ak}, p1 ← 2
13: C2 ← {ak+1, . . . , an}, ν2 ← (an − ak+1), C2 ← {ak+1, an}, p2 ← 2
14: f ← (p− 4), ν∗ ← max{ν1, ν2}
15: while f > 0 do
16: j∗ ← argmax{ν1, ν2}, ν∗ ← max{ν1, ν2}
17: pj∗ ← pj∗ + 1, f ← f − 1
18: (νj∗ , Cj∗)← SCI(Cj∗ , pj∗)
19: end while
20: if ν∗ < ν ′ then
21: ν ′ ← ν∗, C ′ ← C1 ∪ C2

22: end if
23: end for
24: return (ν ′, C ′)
25: end function
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for the chosen cluster via a call to the SCI function. The ν∗ value upon exiting the while loop
is the best objective value achievable in the current two-cluster scenario. It is then compared
to ν ′, the best value found so far (over all scenarios evaluated), to update the incumbent
solution, in Lines 16 - 17. In essence, the algorithm performs an exhaustive search for the
optimal two-cluster scenario, whereas each cluster in each scenario is subject to the same
evaluation scheme via recursion. In this way, all credible clustering scenarios are evaluated.
Therefore, the algorithm is guaranteed to return the optimal solution.

Algorithm 1 can become quite intractable when the set B is big, usually caused by a
relatively large p compared to n. We propose a heuristic variant of the algorithm, Algorithm
2, which restricts the exploration of optimal clusters to those possibilities identified by the
initial equispaced cut points. Lines 3 - 8 generates these candidate clusters, and lines 10 -
17 finds the best depot allocation among these candidates in the same recursive fashion as
in Algorithm 1. Being a heuristic, Algorithm 2 is able to find the global solution in most
cases within a fraction of the time taken for Algorithm 1. Their performance comparison is
demonstrated in Section 6.

Algorithm 2 Heuristic Algorithm for the Shortest Covering Interval Problem

Require: A := {a1, . . . , an}, sorted in ascending order, p ≥ 2
1: function SCI(A, p)
2: Generate equispaced cut points {c1, . . . , cp} ← Linspace(a1, an, p)
3: Initialize cluster set C ← ∅ and head index h← 1
4: for i = 1, . . . , p− 1 do
5: if ci+1 < ah then Continue
6: end if
7: if A ∩ [ci, ci+1] = ∅ then
8: C ← C ∪ {{a ∈ A | ah ≤ a < ci}}, h← min{1 ≤ k ≤ n | ak > ci+1}
9: end if

10: end for
11: Add the last cluster C ← C ∪ {{ah, . . . , an}}
12: if |C| = 1 then return ((an − a1)/(p− 1), {c1, . . . , cn})
13: end if
14: for j = 1, . . . , |C| do
15: Cj ← j-th element of C
16: νj ← max(Cj)−min(Cj), Cj ← {min(Cj),max(Cj)}, pj ← 2
17: end for
18: f ← (p− 2|C|), ν∗ ← max{νj | j = 1, . . . , |C|}
19: while f > 0 do
20: j∗ ← argmax{νj | j = 1, . . . , |C|}, ν∗ ← max{νj | j = 1, . . . , |C|}
21: pj∗ ← pj∗ + 1, f ← f − 1
22: (νj∗ , Cj∗)← SCI(Cj∗ , pj∗)
23: end while
24: return (ν∗,∪|C|j=1Cj)
25: end function

18



5. Extension for Area Coverage

Area coverage is a useful extension of Euclidean p-center problems. Instead of covering a
finite set of demand points on the plane, the area coverage problem aims to cover all points
in a given area, see Suzuki and Drezner [1996], Wei et al. [2006] and Liu [2021] for algorithms
based on Voronoi diagrams. The Elliptical Cover problem for an area is stated as follows:
given an area R on the plane, find p depot locations Xj, j = 1, . . . , p, in order to

minimizeX1,...,Xp

{
max
r∈R

{
min

1≤j<j′≤p
{D(r,Xj) +D(r,Xj′)}

}}
where D(r,X) denotes the Euclidean distance between the two points r and X. In the drone
delivery application, a solution to this problem ensures that any possible demand point
located in an area can be served by a route that starts from a depot and ends at a different
depot, and that the battery capacity needed to support such a service mode is minimized.

We now propose a heuristic algorithm to find elliptical covers for a convex polygon. The
idea is to repeatedly solve the Elliptical Cover problem for a growing set of demand points
that approximate the polygonal area.
Area Coverage Algorithm:
Step 1: Take all corner points of the convex polygon and randomly sample a small number
of points within the polygon. These points will be used as the initial set of demand points,
denoted by C.
Step 2: Run the Locate-Allocate algorithm on C to obtain the optimal value L∗ and the
optimal solution X∗1 , . . . , X

∗
p .

Step 3: Solve the following convex optimization problem on variables r ∈ R2 and d ∈ R,
which is to compute the maximum route distance to serve a demand in region R based on
the current depot locations.

maximizer,d d

s.t. d ≤ D(r,X∗j ) +D(r,X∗j′) for 1 ≤ j < j′ ≤ p

r ∈ R

Let r∗ be the optimal solution and d∗ be the optimal objective value of this problem.
Step 4: If d∗ −L∗ < ε, stop and return the solution {X∗1 , . . . , X∗p}. Otherwise, C ← C ∪ {r∗},
go to Step 2.

Note that in each iteration, the depot locations updated in the preceding iteration should
be used as the starting point for the Locate-Allocate algorithm. This ensures that the new
point r∗ is not covered by the incumbent solution, forcing the discovery of a new solution
that covers all points (including the new point) in C. Like the Voronoi heuristic for the
area-covering EPC problem [Suzuki and Drezner, 1996], the above algorithm is a heuristic
method for finding good feasible solutions for the area-covering elliptical cover problem. In
numerical experiments, the algorithm never failed to converge to a reasonable solution within
relatively few iterations.
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6. Numerical Experiments

In this section, we demonstrate the performance of the proposed algorithms using sim-
ulated data cases. For the SCI problem, we generate random instances of different sizes
to compare the MIP approach and the recursive algorithms in Algorithm 1 and 2. Specif-
ically, each value in the input vector {a1, . . . , an} is uniformly sampled from the interval
[0, 100]. For the Elliptical Cover problem, we focus on a fictitious scenario of locating
drone depots to serve geographically scattered customers in a city. We use the city of
Troy, Michigan, in the backdrop, which spans an approximately 10 km by 10 km square
area. All experiments were run on a Dell Precision Tower 8520 with an Intel(R) Core(TM)
i9-9900X CPU @ 3.50 GHz, 64 GB RAM on Windows 10 Enterprise Operating System.
The computer programs and data files used in the experiments are available at https:

//github.com/profyliu/elliptical_cover.

6.1. Solving the SCI problem

Table 1 lists the time taken (in seconds) for the MIP model (via CPLEX 12.10) and the
Algorithm 1, respectively, to solve random instances of size n and p. The column NC lists the
number of calls to the SCI function in Algorithm 1’s recursive process. Both methods return
the same optimal values for all cases, as expected. For the case of (n, p) = (100, 9), the MIP
was not solved within 1800 seconds. We can see that Algorithm 1 scales much better than
the MIP method. In particular, when p is relatively small compared to n, it is likely that
the equispaced cut points are indeed the optimal solution, hence, only one call to the SCI
function is required, regardless of how big n is. When p approaches n, however, the curse of
nested recursion starts to take effect, as exhibited in the cases with n = 10 and p = 8, 9 and
10. Indeed, the greater p is compared to n, the more cluster break points there will be, hence,
the larger the search space will become. In such cases, Algorithm 2 can be used to find a
near-optimal solution more quickly. The performances of the exact and heuristic algorithms
in cases with large p values are compared in Table 2. We can see that the number of function
calls in the exact algorithm increased exponentially as p increases. In contrast, the heuristic
algorithm invoked much fewer function calls, and was able to find the optimal solution for
nine out of the ten cases. The MIP method was unable to complete in 1800 seconds for all
cases with p ≥ 6, so its performance was not included in the table. These results suggest
that practical instances of the SCI problem, i.e., when n is reasonably larger than p, is easy
to solve. For artificial cases where p is larger than n, Algorithm 2 is faster, and can find the
optimal solution most of the time.

6.2. Solving the Elliptical Cover problem

We generated three scenarios by randomly scattering n = 20, 50 and 100 demand points
in the city’s perimeter. The latitude and longitude of each demand point were generated
independently using a uniform distribution in the applicable range, points that fell outside
the city’s perimeter were discarded. For each demand scenario, we solved the Elliptical Cover
problem for different p values ranging between 3 and 6. Table 3 lists the results. While solving
an instance, the locate-allocate algorithm was repeated 500 times, each time starting from
random depot locations generated via a uniform distribution, and the solution having the
minimum objective value was returned. In Table 3, the column When represents in which
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Table 1: Time comparison between MIP and the recursive methods for solving the SCI problem.

n p MIP Alg1 NC n p MIP Alg1 NC n p MIP Alg1 NC
10 3 0.2 0.0 1 20 3 0.2 0.0 1 50 3 0.5 0.0 1
10 4 0.2 0.0 1 20 4 0.2 0.0 1 50 5 2.5 0.0 1
10 5 0.5 0.0 1 20 5 0.8 0.0 1 50 7 37.8 0.0 1
10 6 0.9 0.0 1 20 6 4.7 0.0 1 50 9 205.5 0.0 1
10 7 2.2 0.0 1 20 7 6.4 0.0 1 100 3 0.3 0.0 1
10 8 2.6 0.0 19 20 8 10.8 0.0 1 100 5 15.6 0.0 1
10 9 6.6 0.0 32 20 9 28.4 0.0 1 100 7 461.2 0.0 1
10 10 22.5 0.0 50 20 10 129.8 0.0 1 100 9 - 0.0 1

Table 2: Efficiency comparison between the exact and heuristic algorithms for solving the SCI problem.

n p
Alg1 (Exact) Alg2 (Heuristic)

Objval Time NC Objval Time NC
10 2 91.030 0.0 1 91.030 0.0 1
10 4 30.343 0.0 1 30.343 0.0 1
10 6 18.206 0.0 1 18.206 0.0 1
10 8 12.003 0.0 19 12.003 0.0 3
10 10 8.893 0.0 50 9.003 0.0 5
10 12 5.230 0.0 519 5.230 0.0 5
10 14 3.570 0.1 2537 3.570 0.0 11
10 16 1.785 0.5 7978 1.785 0.0 9
10 18 0.650 1.2 20320 0.650 0.0 46
10 20 0.000 2.7 45310 0.000 0.0 32
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Figure 8: The number of local optima found increases slowly over repeated runs of the random-start locate-
allocate algorithm for a small p value, and increases more quickly for larger p values.

(out of the 500) iteration the best found solution first appeared and NUniq is the number of
unique local optima encountered in all 500 iteration. The overall small values (as compared
to 500) in these columns suggest that the chance of finding a better solution in the next
iteration rapidly decreases as more iterations are performed; thus, an economical search need
not consist of too many iterations. To demonstrate this point more clearly, Figure 8 plots
how the number of unique solutions found increases over the iterations, which, in addition,
reveals that the value of p plays a more important role than n in determining the intractability
of the problem - each increment in p would substantially enlarge the solution space, hence,
making it more difficult to obtain a good solution within limited number of iterations. This
observation agrees with those in the SCI experiments.

Despite the large number of local optima, the distribution of the local optima is extremely
skewed, with the majority concentrated in the lower (better) end. For instance, in the case
of (n, p) = (100, 6), 400 out of the 500 iterations (i.e., 80%) returned a local optima only 5%
worse than the best-found solution. The distribution of local optima in this case is plotted
in Figure 9. This trend enhances the evidence that the multistart locate-allocate algorithm
is quite effective at discovering satisfactory local solutions.

The columns Min, Med and Max in Table 3 are the minimum, median and maximum
number of iterations taken for the location-allocation process to converge to a local optimum,
and the column Time is the average time (in seconds) taken for the process to converge.
The small numbers suggest that convergence of the location-allocation process has been
consistently fast. Note that ε = 50 m (less than 1% of the objective value) has been used for
the termination condition. The columns Objval and LB are the best objective value and the
lower bound value, in meters. The lower bounds are obtained via solving the SCI problem
using Algorithm 1, which are the best lower bounds achievable within 0.1 second. Finding
tight lower bounds is an NP-hard problem, though novel relaxation approaches that are
Pareto better than the SCI approach may be explored in future research.

Figure 10 visualizes the best-found solutions for n = 100 and p = 3 and 6. All demand
points are covered by some ellipse whose foci are a pair of depots in the solution. The number
of covering ellipses formed by the p depots is uncertain until a solution is presented, as this
number depends on the actual location of the depots. The lengths of the major axes of all
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Figure 9: The distribution of objective values found in the case n = 100, p = 6. The skewness suggests that
most local optima are near-optimal.

Table 3: Performance of the locate-allocate algorithm with multistart.

n p When NUniq Min Med Max Time Objval LB
20 3 13 24 2 3 5 0.70 7977.61 4610.22
20 4 4 55 2 4 9 1.37 6435.75 3073.48
20 5 39 90 2 4 10 1.50 5366.45 2305.11
20 6 13 125 2 5 12 2.81 4645.92 1844.09
50 3 4 29 2 3 7 0.96 8502.95 5467.31
50 4 16 55 2 4 11 1.23 6988.37 3644.87
50 5 12 120 2 5 11 1.52 5846.27 2733.65
50 6 31 185 2 6 12 1.92 5185.91 2186.92

100 3 5 31 2 4 8 1.19 9244.64 6263.97
100 4 30 48 2 5 11 1.41 7590.22 4175.98
100 5 29 115 2 6 17 1.84 6381.85 3131.99
100 6 9 232 2 6 15 1.80 5622.63 2505.59

ellipses involved in the solution are the same, which are equal to the objective value. This
property is intuitive, and is to be expected in all “single-cluster” solutions found by the
locate-allocate algorithm.

6.3. Area coverage using ellipses and comparison with the p-center solution

We applied the area coverage algorithm presented in Section 5 to the area of Troy, for
various p values, to demonstrate the algorithm’s effectiveness. The goal is to find ellipses
based on p foci to cover all points in the area. The initial small set of points consisted of the
corners of the region’s convex hull and 2p other points randomly sampled in the interior of
the region. Figure 11 plots the convergence paths for 20 runs for the case p = 6. The Gap
shown along the vertical axis is the value of d∗ − L∗ calculated in Step 4 of the algorithm.
The non-monotone reduction in the gap is expected, since L∗ is not intended to be the
global minimum in any iteration. Overall, the solution process terminated successfully in all
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n: 100  p: 3  dist: 92.6208  ellipses: 2 n: 100  p: 6  dist: 56.3324  ellipses: 8

Figure 10: Demonstration of using 3 and 6 depots to cover 100 demand points in the Troy area.

cases attempted, and for the 20 runs exhibited in the figure, they all terminated within 55
iterations, whereas the termination tolerance ε was set to 50 meters. The best solution found
in the 20 runs, along with the dummy demand points generated in the solution process, is
demonstrated on the left part of Figure 12.

To demonstrate the practical significance of the Elliptical Cover solution in drone delivery
network design, we also obtained the EPC solution (with p = 6) using the algorithm developed
in Liu [2021]. The goal of the EPC problem is to place the depots such that the distance
from any point in the area to its nearest depot is minimized. We ran the algorithm 20 times
and presented the best found solution on the right part of Figure 12. The dashed ellipses
are formed by taking the depots as foci and having major axis length equal to the (common)
diameter of the EPC covering circles. We can see that the required flight ranges (or battery
capacities) from the two solutions do not differ much, i.e., 5766 m by the Elliptical Cover
solution versus 5662 m by the EPC solution. However, the depot locations suggested by the
EPC solution are unable to provide full, type-2 trip coverage for the whole service area - an
appreciable portion of the demand area is only serviceable by a type 1 trip. For instance, if
the demanded item is out of stock in the southeast depot, then customer demands near the
southeast corner of Troy cannot be fulfilled if the system (including the depot location and
the fleet’s battery capacity) is configured according to the EPC solution. In comparison, if
the system is configured by the Elliptical Cover solution, the service will be robust against
this kind of stock-out situations. Furthermore, the Elliptical Cover solution always allows a
drone to relocate to a different depot (in preparation for the next delivery task starting from
that depot) after performing a delivery task but the EPC solution does not guarantee such
flexibility.

7. Conclusion

In this paper, we have studied a novel geometric facility location problem, namely, the
Euclidean p-Elliptical Cover problem, motivated by the network design of drone delivery sys-
tems. We have proven the NP-hardness of this problem and analyzed the unique challenges
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Figure 11: Convergence pattern of the area coverage algorithm applied to Troy with p = 6 depots.

n: 57  p: 6  dist: 67.5590  ellipses: 9

Figure 12: Comparison between the p-Elliptical Cover and Euclidean p-center solutions. Left: The best
Elliptical Cover solution found to cover the area of Troy with 6 depots, with objective value (required flight
range) 5776 m. Right: The best p-center solution to cover the area with 6 depots, with circle diameter
(required flight range) 5662 m. Note that the ellipses formed by the p-center solution cannot cover the whole
area, leaving an appreciable portion of the area serviceable by only a type 1 trip of a single depot.
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it poses to known algorithms for similar problems, due to its graph isomorphism and non-
decomposibility. We have proposed a locate-allocate algorithm that is able to converge to a
local optimum typically in a few iterations. Repeatedly running this fast algorithm from ran-
dom starting points has been the only viable approach for pumping up satisfactory solutions,
for both the point-coverage problem and the area-coverage problem. We have furthermore
investigated the one-dimensional variant of the problem, the Shortest Covering Interval prob-
lem, which not only provides a Pareto best (in terms of performance and computing time)
lower bound to the Elliptical Cover problem, but also finds its application when the service
area is reduced to a line segment, such as one along a power transmission line or a railway
line. We have developed an exact and a heuristic algorithm based on proven properties of
the solution. The proposed algorithms have been validated to be effective and efficient in
practical data cases.

Compared to covering the demand locations with circles, covering them with ellipses en-
ables higher levels of service availability, network connectivity and vehicle utilization. Future
research could develop methods to optimally cover a density map of the service area, i.e.,
requiring regions with higher demand rates to be covered by more service routes, or to cover
a service area having forbidden areas, such as lakes and no-fly zones. The depot network
topology and connectivity may impose explicit constraints in certain application scenarios.
For instance, in case of highly clustered demand distribution or of irregularly shaped demand
regions, the elliptical cover solution may contain “weak” coverage links, e.g., two demand
centers connected by a single pair of depots, which may cause air traffic congestion for drones
shuttling between the depots. Additional constraints would be needed to address such is-
sues. The elliptical cover idea could also be extended to the problem of locating and routing
“moving depots” intended to cover probabilisitic and time-varying demand point locations.
Finally, the mathematical formulation of the p-Elliptical Cover problem permits the use of
other distance metrics other than the Euclidean distance. An investigation into the solution
approaches as well as into data mining applications could be interesting future work.
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Drezner, Z., Brimberg, J., Mladenović, N., Salhi, S., 2015. New heuristic algorithms for
solving the planar p-median problem. Computers & Operations Research 62, 296–304.
doi:https://doi.org/10.1016/j.cor.2014.05.010.

Farahani, R.Z., Asgari, N., Heidari, N., Hosseininia, M., Goh, M., 2012. Covering problems
in facility location: A review. Computers & Industrial Engineering 62, 368–407.

Garey, M.R., Johnson, D.S., 1978. Computers and Intractability: A Guide to the Theory of
NP-Completeness. 1 ed., W. H. Freeman.
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