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Abstract

Chitinase proteins have evolved and diversified almost in all organisms ranging from prokaryotes to eukaryotes. During
evolution, internal repeats may appear in amino acid sequences of proteins which alter the structural and functional
features. Here we deciphered the internal repeats from Chitinase and characterized the structural similarities between them.
Out of 24 diverse Chitinase sequences selected, six sequences (2CJL, 2DSK, 2XVP, 2Z37, 3EBV and 3HBE) did not contain any
internal repeats of amino acid sequences. Ten sequences contained repeats of length ,50, and the remaining 8 sequences
contained repeat length between 50 and 100 residues. Two Chitinase sequences, 1ITX and 3SIM, were found to be
structurally similar when analyzed using secondary structure of Chitinase from secondary and 3-Dimensional structure
database of Protein Data Bank. Internal repeats of 3N17 and 1O6I were also involved in the ligand-binding site of those
Chitinase proteins, respectively. Our analyses enhance our understanding towards the identification of structural
characteristics of internal repeats in Chitinase proteins.
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Introduction

Chitin is one of the most abundant biopolymer in nature and is

made up of an insoluble homopolymer of b-1,4 linked N-acetyl

glucosamine (GlcNAc) units [1]. Chitin serves a morphological

structural role in arthropods, including crustaceans and insects, as

well as mollusks, nematodes, and worms. It is also found in fungi,

making up from less than 1% to more than 40% of the cell wall,

depending on the species [2]. Chitinases are hydrolytic enzymes

that break down the glycosidic bonds in chitin. Chitinases are

occurring in organisms that need to either reshape their own chitin

or dissolve and digest the chitin of other invading fungi and

animals.

Chitin has not been found in mammals. Nevertheless, several

mammalian proteins with homology to fungal, bacterial, or plant

Chitinase have been identified [3]. All Chitinases have been

recognized to play important roles in self-defense against

pathogens [4]. Most recently, however, some Chitinases have

been found to appear in response to environmental stresses, such

as cold, drought, and high salt concentration [4]. Other Chitinases

are reported to participate in important physiological processes of

plants, such as embryogenesis and ethylene synthesis [4]. The

variable effectiveness of specific Chitinases against different

pathogens and the existence of microbial Chitinase inhibitors led

to the hypothesis that Chitinases may co-evolve with fungi in

response to variation in pathogen defenses against chitinolytic

activity [5].

The majority of protein sequences is aperiodic and usually has

globular 3D structures carrying a number of various functions.

The foremost efforts of researchers were devoted to these types of

proteins and as a result, significant progress has been made in the

development of bioinformatics tools for their analysis [6,7].

However, proteins also contain a large portion of periodic

sequences representing arrays of repeats that are directly adjacent

to each other [8].

Intragenic duplications of genetic material have important

biological roles because of their protein sequence and structural

consequences [9]. Bioinformatics tools are important for analysis

of protein repeats with emphasis on the sequences, 3D structures,

and sequence–structure relationship as well as highlighting

successful strategies for the prediction of the protein structure

[10]. These tandem repeats are considerably diverse, ranging from

the repetition of a single amino acid to domains of 100 or more

residues. They are ubiquitous in genomes and occur in at least

14% of all proteins [11]. Before analysis of repeats, it just needs to

score protein sequences in multiple sequence alignment. Common

methods (e.g. the dot matrix method) for detection of similarity

depend on pairwise alignment of sequences [12]. The abundance

of natural structured proteins with tandem repeats is inversely

correlated with the repeat perfection. The chance to find natural

structured proteins in Protein Data Bank (PDB) (http://www.rcsb.

org/pdb) increases with a decrease in the level of repeat perfection

[10].

When a certain threshold of the conserved residues in the repeat

is exceeded, the repetitive regions of proteins are predominantly
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disordered and the main reason of residue conservation in tandem

repeats may due to the change from a structural to an evolutionary

one [13]. Hence, internal repeats in Chitinase involved in

diversification of Chitinases with different structural and functional

properties and it may also play role in quick evolution of Chitinase

in all organisms. Repetitive sequences apparently formed after the

prokaryotic-eukaryotic divergence by a mechanism with weak

length-dependence such as recombination. Repetitive proteins

evolve quicker than non-repetitive proteins [11]. Protein repeats

have highlighted the multi-functionality of repeat types, their

structural differences, and their proliferations in different evolu-

tionary lineages. One likely reason for their evolutionary success is

that repeat-containing proteins are relatively ‘‘cheap’’ to evolve.

By this we mean that large and thermodynamically stable proteins

may be arisen by the simple expedient of intragenic duplications,

rather than the more complex processes of de novo a-helix and b-

sheet creation [14].

Materials and Methods

Selected sequences of Chitinase
Chitinase sequences were obtained from PDB [15]. ]. Among

147 Chitinase sequences of known structure retrieved from PDB,

34 sequences were selected based on 50% sequence identity, which

includes both eukaryotic and prokaryotic Chitinase sequences.

Among the obtained 34 sequences, ten did not have the Chitinase

domain and these were excluded from further analysis. The

remaining 24 Chitinases sequences were subsequently used to

analyze for detection of internal repeats and secondary structure

(Table 1).

Detection of internal repeats using RADAR
We used RADAR (Rapid Automatic Detection and Alignment

of Repeats) (http://www.ebi.ac.uk/Tools/pfa/radar/) to identify

internal repeats in protein sequences. Many large proteins evolved

from internal duplication and many internal sequence repeats

correspond to functional and structural units. RADAR uses an

automatic algorithm by segmenting query sequence into repeats

and identifies short composition biased as well as gapped

approximate repeats. Complex repeat architectures involve many

different types of repeats in query sequence [16]. The segmenta-

tion procedure has three steps: (i) repeat length is determined by

the spacing between suboptimal self-alignment traces; (ii) repeat

borders are optimized to yield a maximal integer number of

repeats, and (iii) distant repeats are validated by iterative profile

alignment.

Computing the % identity between the repeat
sequences detected by RADAR

As RADAR gives only a Z-score between the repeats, we

computed the % identity between each repeat pair or the tandem

repeats (more than a pair of repeats) in a protein using the Smith-

Waterman server available at the European Bioinformatics

Institute (http://www.ebi.ac.uk/Tools/psa/emboss_water/)

[17,18].

Table 1. List of amino acid sequences of Chitinase protein used in the present study.

PDB ID Species Division Length of protein (amino acids)

3FND Bacteroides thetaiotaomicron Bacteria 312

3IAN Lactococcus lactis Bacteria 321

3N17 Bacillus cereus Bacteria 333

3QOK Klebsiella pneumonia Bacteria 420

3ARX Vibrio harveyi Bacteria 584

2CJL Streptomyces coelicolor Bacteria 204

1WVV Streptomyces griseus Bacteria 265

1ITX Bacillus circulans Bacteria 419

1KFW Arthrobacter sp. Bacteria 435

1O6I Serratia marcescens Bacteria 499

3EBV Streptomyces coelicolor Bacteria 302

3OA5 Yersinia entomophaga Bacteria 543

3G6M Clonostachys rosea Fungi 406

2Y8V Aspergillus fumigatus Fungi 290

2XVP Aspergillus fumigatus Fungi 310

3HBE Picea abies Plant 204

3ALF Nicotiana tobaccum Plant 353

2Z37 Brassica juncea Plant 244

2DKV Oryza sativa L. japonica Plant 309

3CQL Carica papaya Plant 243

3SIM Crocus vernus Plant 275

2DSK Pyrococcus furiosus Archaea 311

3BXW Homo sapiens Animal 393

1WB0 Homo sapiens Animal 445

doi:10.1371/journal.pone.0091915.t001

Characterization of Chitinase Internal Repeats
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Evaluation 3-D structural similarity of the Chitinases
The structural relatedness of the proteins involves consideration

of average root-mean-square deviation (RMSD) of Ca atoms and

Z-score between structures. The structural similarity of the 24

Chitinase structures was carried using PDBeFOLD server [19].

The PDB structures were downloaded from RCSB website

(http://www.rcsb.org/pdb) and the PDB coordinates were

uploaded to the server for finding structural similarity. PDBeFold

structural similarity searches were conducted using WWW

interface at http://www.ebi.ac.uk/msd-srv/ssm/.

Visualization using RasMol
RasMol is a molecular graphics visualization tool which is used

for primary depiction and exploration of biological macromolec-

ular structures, such as those found in the PDB [20]. The

secondary structure region which is corresponding to internal

Table 2. List of internal repeats identified in different Chitinase sequences available in the Protein Data Bank with % identity
between the repeats and RMSD.

PDB ID Organism name # of repeats # of segments Repeat region % identity Length RMSD (Å)

3FND Bacteroides thetaiotaomicron 1 2 68–81/200–215 50.0 14 1.80

3G6M Clonostachys rosea 1 2 39–120/145–238 31.3 93 3.07

3IAN Lactococcus lactis 2 2 46–76/155–180 28.6 26 2.04

2 24–37/87–100 42.9 14 -

3N17 Bacillus cereus 2 2 133–192/233–291 32.7 55 1.24

2 119–129/204–214 54.5 11 0.70

10–83/86–125 33.3 -

10–83/293–357 30.0 2.6

3QOK Klebsiella pneumonia 1 4 10–83/358–395 27.8 74 -

86–125/293–357 50.0 -

86–125/358–395 35.0 -

293–357/358–395 22.5 2.81

166–222/234–263 42.9 -

3ALF Nicotiana tobaccum 1 3 166–222/274–331 31.7 57 1.95

234–263/274–331 40.0 2.4

2 291–338/384–437 30.4 47 3.16

3ARX Vibrio harveyi 2 70–115/465–532 25.0 -

3 70–115/536–574 27.1 46 -

465–532/536–574 24.2 1.55

3BXW Homo sapiens 1 2 62–136/209–280 38.5 67 3.26

2Y8V Aspergillus fumigatus 1 2 161–192/244–280 24.3 32 0.96

2DKV Oryza sativa L. japonica 2 2 31–54/140–163 45.5 23 -

2 121–133/224–238 46.2 13 1.59

1WVV Streptomyces griseus 1 2 4–73/189–255 19.0 66 -

1ITX Bacillus circulans 2 2 33–114/235–317 27.0 81 3.40

2 159–213/360–428 31.5 54 3.8

2 2 72–119/120–236 32.7 69 1.4

2 72–119/238–292 27.1 -

1KFW Arthrobacter sp. 120–236/238–292 20.7 3.8

3 3 340–349/436–443 62.5 9 -

359–386/388–412 43.5 23 -

1O6I Serratia marcescens 1 2 201–215/413–428 50.0 15 -

1WB0 Homo sapiens 2 2 98–113/185–195 43.8 11 0.58

2 247–270/352–374 33.3 23 2.76

3CQL Carica papaya 1 2 15–45/87–113 30.8 25 -

2 48–69/410–438 31.0 22 -

3OA5 Yersinia entomophaga 4 2 75–91/128–146 80.0 17 -

2 104–113/202–211 50.0 10 -

2 219–233/462–475 40.0 14 -

3SIM Crocus vernus 1 2 156–178/187–212 32.0 23 1.36

doi:10.1371/journal.pone.0091915.t002
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repeat sequences was used for structural analysis. The secondary

structure of the Chitinase was retrieved from PDB and then the

repeated region was detected as structure. The repeated region

was visualized in 3-D structure using RasMol software and the

repeated sequences were separated and visualized using RasMol.

PDB file of all Chitinase sequences downloaded from PDB were

edited and extracted the repeated amino acid sequence in separate

files for comparison in RasMol. PDB files can be downloaded for

visualization in RasMol.

Multiple sequence alignment and phylogenetic tree
Multiple sequence alignment was carried out using ClustalW

[21] and MUSCLE [22]. The phylogenetic tree was constructed

using Neighbor Joining method implemented in MEGA [23]. The

bootstrap analysis with 10,000 replicates was used to assess the

robustness of the branches.

Results and Discussion

Internal repeats analysis
Of 24 selected sequences of Chitinase from various organisms,

RADAR was performed to detect the internal repeats. Six out of

24 sequences (2CJL, 2DSK, 2XVP, 2Z37, 3EBV and 3HBE) do

not contain any internal repeats. The repeats in the remaining

sequences vary from 2 repeats per amino acid sequence of

Chitinase proteins. Some Chitinases with more than two repeats

were also observed. For example, 3IAN, 3N17, 3ARX, 2DKV,

1ITX, and 1WB0 contain two repeated regions; 3ARX and 3ALF

contain two tandem repeats and 3QOK contains four tandem

repeats. Length of amino acid residues of Chitinase proteins which

are identified in repeat region also varies. Ten sequences

contained repeats of length ,50, and the remaining 8 sequences

contained repeat length between 50 and 100 residues. Table 2

shows the % identity obtained between pairs of repeats or tandem

repeats in a given Chitinase. Analysis of the extent of sequence

identity between the internal repeats reveal that in general shorter

repeats have higher % identity while longer repeats have low %

identity. This reveals that the repeats have diverged considerably

after the duplication event.

Fold distribution of Chitinases
The Chitinases appear to be very diverse in terms of sequence

and yet adopt only a limited number of folds. Analysis of the folds

of the Chitinases using CATH database (http://www. cathdb.info)

reveals that they belong to two major folds, namely, i) Triosepho-

sphate isomerase (TIM) barrel fold and ii) Endochitinase fold.

TIM barrel is a conserved protein fold consisting of eight a-helices

and eight parallel b–strands that alternate along the peptide

backbone [24]. Among the 24 Chitinases considered, 18 of them

belong to the TIM barrel fold and 6 belong to the Endochitinase

fold.

Table 3. Inter – repeat % identity across different TIM fold Chitinase sequences.

PDB Code Internal repeat segments Description 3ARX 1ITX 1KFW

1 % of identity 23.4 25.4 29

3G6M 39–120 Aligned Sequence 139–248 17–127 2–122

2 % of identity 29.4 37.7 27.2

145–238 Aligned Sequence 269–368 142–245 137–259

1 % of identity 41.0 55.6

291–338 Aligned Sequence 149–186 175–201

2 % of identity 45.8 52.6

384–237 Aligned Sequence 240–263 262–280

3ARX 1 % of identity 30.0 37.5

70–115 Aligned Sequence 325–344 335–350

2 % of identity 33.3 30.2

465–532 Aligned Sequence 326–353 243–285

3 % of identity 43.2 27

536–574 Aligned Sequence 367–403 369–405

1 % of identity 30.6 31.8

33–114 Aligned Sequence 118–178 1–69

2 % of identity 34.4 36.4

1ITX 235–317 Aligned Sequence 326–386 235–317/216–284

1 % of identity 46.2 40.8

159–213 Aligned Sequence 159–213/250–300 159–213/123–193

2 % of identity 31.9 35.0

360–428 Aligned Sequence 474–545 360–428/341–399

1 % of identity 36.8 45.5

1KFW 72–119 Aligned Sequence 238–337 72–119/116–214

2 % of identity 33.3 40.0

238–292 Aligned Sequence 352–387 238–292/239–267

doi:10.1371/journal.pone.0091915.t003
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Inter-repeat % sequence identity among TIM barrel fold
sequences

As a number of TIM barrel fold Chitinases contain long repeats,

we assessed the % sequence identity across the various repeats in

this fold using the Emboss Waterman – Smith local alignment

algorithm. Quite interestingly, the Chitinases including 1ITX,

3ARX, and 1KFW all shared .40% sequence identity in the

repeat regions (Table 3). Analysis of the presence of DXDXE

functional motif in Chitinase sequences reveals that this motif was

conserved in all sequences of the TIM barrel fold. The rest of the

sequences which belong to the Endochitinase fold did not contain

the above motif. Interestingly, this motif was also present in the

RADAR detected internal repeat region of 1ITX, 3ARX, 3G6M

and 1KFW. The inter-sequence repeat analysis carried out

between the Chitinases containing internal repeats and those

without internal repeats showed scores less than 25% identity.

3-D structural similarity between the Chitinases
The RMSD and Z-scores obtained for pair-wise structural

alignments obtained between the Chitinases belonging to the TIM

fold and Endochitinase fold are given in Table S1 and Table S2

respectively. In general all the structures retain similar three-

dimensional structures as revealed by the low RMSD values and

high Z-scores. Among the Chitinases belonging to the TIM fold,

the structures of 3G6M, 1O6I, 3ARX, 3OA5, 1ITX, 1KFW,

1WBO, 3QOK, and 3ALF shared an RMSD ,2.0 angstrom (Å).

Quite interestingly, proteins belonging to this set with 3G6M,

3ARX, 1ITX, and 1KFW share reasonable inter-repeat %

identity between them (Table 3). Other proteins belonging to

the TIM fold share RMSD .2.0 Å (Table S1).

Among the Chitinases belonging to the Endochitinase fold, most

of them share RMSD ,2.0 Å whereas the pairs 3HBE vs 2CJL,

3HBE vs 1WVV show low RMSD. It is interesting to point out

that among these three proteins, both 2CJL and 3HBE do not

have any repeats and 3-D structural similarity within repeats

(intra-repeat) in Chitinases (Table 2).

Surprisingly, in many cases the repeats are too divergent to be

identified as similar structure based on visual analysis. Structural

alignment of these repeats may uncover more similar members

and provide an objective way to identify truly dissimilar structural

repeats. Hence structural superposition of repeats of Chitinases

belonging to the TIM barrel fold was carried out. The results

reveal that the RMSD between superposed repeats ranges from

0.70 Å to 3.8 Å (Table 2). Ignoring repeats of short length, the

variation in RMSD with % sequence identity of intra-repeats in 8

Chitinases belonging to the TIM barrel fold is plotted in Figure 1.

The results demonstrate that repeats in 3ARX, 1ITX, 3BXW and

3G6M show larger deviation in structure as shown by RMSD

.2.5 Å. Repeats in 3N17, 3ALF, 1KFW and 3QOK show lower

structural divergence (RMSD,2.5 Å).

Structural visualization of internal repeats in Chitinase
The internal repeats identified using RADAR were used to

separate the secondary structure of those repeat regions from

whole secondary structure of that particular Chitinase protein

sequence. When comparing the identified internal repeat amino

Figure 1. Relationship between RMSD values and percentage identity of TIM fold intra-repeats.
doi:10.1371/journal.pone.0091915.g001

Characterization of Chitinase Internal Repeats
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acid sequence to corresponding secondary structure, the visual

secondary structures in repeated region of Chitinase sequences are

resolved. On the basis of structural similarity of secondary

structural elements in the repeat regions, similarity in the 3-D

structure was further analyzed. The structural arrangement in the

repeated region between two repeats is easy for structural

comparison. The 1ITX (2 b strands and 1 turn) and 3SIM (1

turn and 1 a helix) showed similar secondary and tertiary

Figure 3. Visualization of internal repeats in 3-D view using RasMol.
doi:10.1371/journal.pone.0091915.g003

Figure 2. Internal repeats with their corresponding secondary structure. The internal repeats identified using RADAR was used to compare
the internal repeats with its secondary structure using secondary structure database of PDB. The structure revealed the secondary structure as
follows: T: Turn, E: Beta strand, G: 3/10 helix, B: Beta bridge, S: Bend, H: Alpha-Helix. These five repeats showed similar secondary structures between
the internal repeats of corresponding Chitinase sequences. A: 1ITX (Bacillus circulans) shows the repeat regions 33-114, 235-317 and 159-213, 360 -
428 and their corresponding DSSP secondary structure assigned from PDB; B: 3SIM (Crocus vernus) shows internal repeat regions from 156-178 and
187-212 and its corresponding secondary structure assignments.
doi:10.1371/journal.pone.0091915.g002

Characterization of Chitinase Internal Repeats
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structural arrangements (Figures 2 and 3). In other cases, although

repeats could be identified based on sequence similarity, no

structural similarity could be observed.

Analysis of amino acid residues of repeat segments
present in ligand binding site

We further analyzed the involvement of residues in the repeat

segments in the binding of ligands. Excluding the binding of very

small ligands such as sulphate, phosphate and glycerol, we

observed binding of N-acetyl-d-glucosamine (NAG) in 3N17 and

that of a cyclic dipeptide C14 in 1O6I. In 3N17 Chi A, apart from

residues Gln 109 and Ala 287, Gln 145 from repeat 1 and Asn 228

from repeat 2 are involved in binding of NAG. Like-wise, residues

Met 212 and Tyr 214 in 1O6I from repeat 1 are involved in the

binding of cyclic dipeptide C14. The other binding site residues

namely, Trp 97, Glu 144 and Trp 403 are not part of the repeated

segment (Figure 4).

Alignment scores
Alignment scores of all selected Chitinase sequences generated

for the multiple sequence alignment are shown in Table S3.

Among the 24 sequences, those from Bacteroides thetaiotaomicron

(3FND), Homo sapiens (3BXW), Aspergillus fumigates (2XVP), (2Y8V),

Crocus vernus (3SIM), showed alignment scores #20 (Table S3).

Multiple sequence alignment and phylogenetic analysis
of Chitinases

The multiple sequence alignment for 18 TIM barrel fold

Chitinases and 6 Endochitinase fold Chitinases considered in the

study are showed in Figure S1 and Figure S2, respectively.

Wherever present, the repeat segments are marked in the

sequences. As the Chitinases considered belong to a diverse set

of sequences, no uniformity in the location of repeats could be

observed. The phylogenetic tree revealed two major clusters with

100% bootstrap support, one having all Chitinases belonging to

the TIM barrel fold and another having the Endochitinase fold

(Figure 5). We also performed phylogenetic analysis for each fold

Figure 4. Ligand-protein interaction in 3N17 (NAG - Chi A) and 1O6I (Cyclic Dipeptide C14 - Chi B).
doi:10.1371/journal.pone.0091915.g004

Characterization of Chitinase Internal Repeats
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Chitinases. The phylogenetic relationships of Chinitases with

Endochitinase fold are similar to the combined phylogenetic

analysis (Figure S3), but relationships of Chinitases with TIM

barrel fold show some discrepancy to the combined analysis

(Figure S4), which suggested the sequence divergence is higher for

TIM barrel Chinitases.

Conclusions

The sequence comparison between different organism of both

eukaryotes and prokaryotes reveals occurrence of internal repeats

in Chitinase protein in most cases. The Chitinases considered here

adopt two major folds, namely, the TIM barrel fold and the

Endochitinase fold. There are huge differences in the number of

internal repeats and number of amino acid residues present in

each internal repeat. The present study reveals that in general

intra-protein repeats of length .50 show low % identity, reflecting

the considerable divergence that has taken place after the

duplication event. Repeats in some Chitinase belonging to the

TIM barrel fold also show considerable structural divergence as

revealed by higher RMSD values. Also the sequence location of

the repeats is not uniform. Quite interestingly, in spite of

divergence at the sequence level, almost of all the structures

considered in the present study retain similar three-dimensional

folding as revealed by the low RMSD values. Many large proteins

have evolved by internal duplication and many internal sequence

repeats correspond to functional and structural units [16]. The

present study suggests that the internal repeats present in

Chitinases do not disturb their stability or alter their structures

or function.

Supporting Information

Figure S1 Multiple sequence alignment of 18 TIM barrel fold

Chitinases with the repeats regions marked.

(PDF)

Figure S2 Multiple sequence alignment of 6 Endochitinase fold

Chitinases with the repeats regions marked.

(PDF)

Figure S3 Phylogenetic relationship of Endochitinase fold

Chitinases. Bootstrap support value (%) .50 is showed above

branch.

(TIF)

Figure S4 Phylogenetic relationship of TIM barrel fold Chit-

inases. Bootstrap support value (%) .50 is showed above branch.

(TIF)

Table S1 Alignment scores of different pairs of Chitinases.

(PDF)

Table S2 RMSD and Z-scores of structural superposition of

proteins belonging to the TIM fold.

(PDF)

Figure 5. Phylogenetic analysis of selected 24 Chitinases for fold analysis. Bootstrap support value (%) .50 is showed above
branch.
doi:10.1371/journal.pone.0091915.g005
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Table S3 RMSD and Z-scores of structural superposition of

proteins belonging to the Endochitinase fold.

(PDF)
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