1-1-2018

Evaluating the Effectiveness of Biochar for Treating WSU Parking Lot Runoff

Alan-Christian Thomas
Wayne State University, fp5853@wayne.edu

Recommended Citation
https://digitalcommons.wayne.edu/roeu_2017-18/2

This Poster is brought to you for free and open access by the Research Opportunities for Engineering Undergraduates (ROEU) Program at DigitalCommons@WayneState. It has been accepted for inclusion in ROEU 2017-18 by an authorized administrator of DigitalCommons@WayneState.
Evaluating the Effectiveness of Biochar for Treating WSU Parking Lot Runoff

Thank you to Research Opportunities for Engineering Undergraduates (ROEU) Program for funding

OPPORTUNITY AND SIGNIFICANCE
Various pollutants including pesticides, herbicides, automotive fluids, and excess nutrients from fertilizers are found in high concentrations in urban runoff. There are many technologies that can be used to control and redirect the water flow such as retention basins, constructed wetlands, and rain gardens; however, these methods are specifically focused on controlling water and not necessarily the nutrients and contaminants in the water. There has recently been an increased interest in the potential for using additional materials (e.g., compost, charcoal) to enhance the pollution treatment ability by either adding them to the soil or by engineering prefilters to remove pollutants from urban runoff before the water enters the biosphere.

TECHNICAL OBJECTIVES
This project will investigate the capability of biochar, a relatively inexpensive form of charcoal, at removing pollutant concentrations from urban runoff. Various biochar materials will be tested with differing copper concentrations to understand which material is optimal.

RELATED WORK AND STATE OF PRACTICE
In 2017, Detroit Biodiversity Network installed a bioswale near the new Integrated Biosciences building on Wayne State’s campus. This project could integrate biochar as a material for urban bioswales.

TECHNICAL APPROACH, ACCOMPLISHMENTS, AND RESULTS
Copper is an urban pollutant that is commonly used as an analog for metal contamination in urban runoff. Several copper solutions were created by mixing copper salts with purified water. Solutions of varying concentrations (0, 0.1, 0.5, 1, 2, 4, 5ppm) were made. CuVer1 was mixed with the solutions which changed the solution to shades of purple depending on copper concentration.

The mixed solutions were run through two different spectrophotometers and a linear regression was conducted to establish calibration curves based on transmittance and absorbance.

Results from the coconut char showed the best copper removal with a copper concentration of 0 ppm and from the zeolite clay with around 10% copper remaining.

NEXT STEPS FOR DEVELOPMENT AND TESTING
For future research, the coconut char and zeolite clay could be tested to determine the capacity that can be adsorbed. Additionally, other urban pollutants such as oil or fertilizer will also be tested.