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Chapter 1

Introduction

The Standard Model (SM) of particle physics is an outstanding result of theoretical and

experimental efforts of the past 60 years (if we date modern particle physics from 1947 when

the pion was discovered). It is a consistent theory that describes experimental phenomena

in the energy range of up to several hundred GeV. The Standard Model is a field-theoretic

description of strong and electroweak interactions at these energies. However, it is not a

closed theory. SM requires nineteen parameters as an input: three charged lepton masses,

six quark masses, three gauge coupling constants, three quark mixing angles, one complex

phase, mass of the Higgs boson, Higgs boson quartic coupling constant and the QCD vacuum

angle. Numerical values of these parameters are neither explained nor predicted by the

Standard Model. Their presence might be a result of more fundamental theory that reduces

to the SM at the low energies.

The Standard Model includes two different types of particles: matter constituents (quarks

and leptons) and force carriers (gauge bosons). Properties of these particles are listed in

Tables 1.1 and 1.2 [1]. I do not include the Higgs boson here since it is yet to be found. In

SM quarks and leptons are arranged in three generations (families). Particles from different

generations display similar properties. There is an obvious mass pattern, i.e. particles in

a higher generation are heavier than the ones belonging to a lower generation. As it was

mentioned before, such behavior can not be explained within the Standard Model paradigm.

In addition to the mass hierarchy, there are other conceptual problems that Standard
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Table 1.1: Standard Model constituents [1]

charged lepton up-type down-type
lepton neutrino quark quark

e νe u d
mass, GeV/c2 0.511× 10−3 < 2× 10−9 1.5− 3× 10−3 3.5− 6× 10−3

charge, e -1 0 2/3 -1/3

µ νµ c s
mass, GeV/c2 105.7× 10−3 < 2× 10−9 1.27 0.104

charge, e -1 0 2/3 -1/3

τ ντ t b
mass, GeV/c2 1.777 < 2× 10−9 171.2 4.20

charge, e -1 0 2/3 -1/3

Table 1.2: Gauge Bosons

γ W± Z0 g
force e/m weak weak strong

mass, GeV/c2 0 80.4 91.2 0
charge, e 0 ±1 0 0
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Model can not explain. Two of them are related to the topic of my research: gravity and

dark matter. SM successfully incorporates three fundamental interactions: electromagnetic,

weak and strong. It also predicts an experimentally confirmed unification of electromagnetic

and weak forces, so called electroweak interaction. As one can see, gravitational interaction

is not a part of the Standard Model.

Figure 1.1: Matter distribution in the universe [2]

Dark Matter (DM) and Dark Energy (DE) are other mysteries that can not be explained

by the Standard Model. It was concluded based on WMAP data, that DM and DE can

make up to 95% of observed universe [2] (Fig.1.1).

Clearly, the above-mentioned puzzles motivate search for the physics beyond the Standard

Model, or, as it is often called, the New Physics (NP). There are continuous experimental

efforts directed at the detection of New Physics: Large Hadron Collider (LHC) and ex-

periments hosted there (CMS, ATLAS, ALICE, LHCb etc [3] ), continuing studies at the

Tevatron (CDF and D0 experiments [4]), and a number of Dark Matter search experiments
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(CDMS [5], DAMA [6], Xenon100 [7] to name some of them ). Obviously, it is not an easy

task to detect NP signals, otherwise it would have been done already. The abovementioned

experiments provide us with large amount of experimental data and require theoretical ex-

planation and understanding of observed signals. It is not an easy task as well.

The “Light” NP particles can be directly detected as decay products, while the ”heavy”

ones provide an indirect input through loop diagrams (for example NP particles in the

loop diagrams will affect heavy meson mixing). The best ”places” to look for the New

Physics are processes which are either not well explained by the Standard Model (often it is

computationally challenging to make the SM prediction) or are hard to study experimentally

(missing energy decays, neutrino physics). In this sense decays of heavy mesons are the best

places to search for new physics. In the Standard Model they usually occur via loop diagrams

and are sensitive to the New Physics particles that can run in the loop. Also heavy mesons

decays allow one to scan the relatively large mass region of potential New Physics decay

products.

In this thesis we considered two of such processes. One mixing between Bs-Bs mesons

which occurs only at the loop level diagrams in the SM and thus is hard to compute to the

desired degree of accuracy. As it was mentioned before, this process is sensitive to heavy NP

particles. Another process considered here is a set of missing energy decays of heavy mesons.

It provides an opportunity to either detect light Dark Matter in such decays or to rule out

the possibility of light DM depending on the result of experimental studies. More detailed

introduction to these problems is provided at the beginning of appropriate chapters.
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Chapter 2

Theoretical aspects of the Standard

Model

2.1 Symmetry

The Standard Model is a gauge field theory based on the SU(3)C⊗SU(2)L⊗U(1)Y symmetry

groups. SU(3)C is a symmetry of strong interaction (QCD). It is unbroken, in other words it

is exact symmetry of the theory, and it is confined, i.e. it is present only at certain distances

between interacting particles. However, SU(2)L ⊗ U(1)Y is spontaneously broken down to

U(1)em under the Higgs mechanism [9].

Index L in the notation of SU(2) group stands for ”Left” since only left- handed fermions

play role in weak interaction. The fermion mass term ψ̄ψ mixes left- and right-handed fields:

ψ̄ψ = ψ̄RψL + ψ̄LψR (2.1)

while electromagnetic (vector) and weak (V-A) currents do not mix those components. Only

left-handed fields contribute to the electro-weak currents:

ψ̄γµψ = ψ̄Rγ
µψR + ψ̄Lγ

µψL;

ψ̄γµ(1− γ5)ψ = 2ψ̄γµPLψ = 2ψ̄γµP 2
Lψ = 2ψ̄PRγ

µPLψ = 2ψ̄Lγ
µψL
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U(1)Y is associated with hypercharge Y which can be related to the third component of

the weak isospin I3 and electric charge Q through Gell-Mann–Nishijima formula:

Q = T3 + Y/2 (2.2)

Such a theory combining SU(2)L⊗U(1)Y requires four gauge bosons: a triplet (W1,W2,W3)

and a singlet B. Triplet field is associated with SU(2) generators, while singlet is related to

U(1). Physical gauge bosons (Table.1.1 ) that are observed in an experiment are admixtures

of those fields. Charged bosons W± are linear combinations of W1,2, while photon and Z0

are a mixture of W3 and B. W± and Z0 bosons gain masses via spontaneous symmetry

breaking and Higgs mechanism, which will be discussed below.

2.2 Gauge bosons, leptons and their interactions

Let us introduce gauge fields and their strength tensors:

SU(2)L →W 1
µ ,W

2
µ ,W

3
µ ,

U(1)Y → Bµ,

W i
µν ≡ ∂µW

i
ν − ∂νW i

µ + gǫijkW j
µW

k
ν , (2.3)

Bµν ≡ ∂µBν − ∂νBµ,

Lgauge = −1

4
W i
µνW

i µν − 1

4
BµνB

µν .

Let us consider the leptonic part of the Standard Model lagrangian. Its kinetic part can be

written in the following way:

Llepton = R̄i6∂R + L̄i6∂L. (2.4)
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where R = lR is a right-handed singlet and L =
(
lL
νL

)
is a left-handed doublet. There are

no mass terms for fermions since it mixes left- and right-handed components, thus breaking

gauge invariance. It will be introduced via the Higgs mechanism later in the chapter. To

introduce the interaction between fermions and bosons, and to make the lagrangian in Eq.2.4

gauge-invariant we need to introduce covariant derivatives [10]:

L : ∂µ + i
g

2
τ iW i

µ + i
g′

2
Y Bµ

R : ∂µ + i
g′

2
Y Bµ

Linteractionlepton = L̄iγµ
(
i
g

2
τ iW i

µ + i
g′

2
Y Bµ

)
L (2.5)

+R̄iγµ
(
i
g′

2
Y Bµ

)
R.

Here g and g′ are coupling constants associated with groups SU(2)L and U(1)Y respectively;

YLl
= −1 and YRl

= −2.

Picking up the ”left” and the ”right” parts of Eq.(2.5) and writing it explicitly one can

obtain the following SM currents:

LLlepton = −gL̄γµ
(
τ 1

2
W 1
µ +

τ 2

2
W 2
µ

)
L− gL̄γµ τ

3

2
W 3
µL−

g′

2
Y L̄γµBµL (2.6)

≡ LL(±)
lepton + LL(0)

lepton where

LL(±)
lepton = −gL̄γµ

(
τ 1

2
W 1
µ +

τ 2

2
W 2
µ

)
L

LL(0)
lepton = −gL̄γµ τ

3

2
W 3
µL−

g′

2
Y L̄γµBµL (2.7)

LR(0)
lepton = −g

′

2
Y R̄γµBµR. (2.8)

Superscripts (±) and (0) denote charged and neutral current respectively. Let us consider
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these currents separately.

Using an explicit representation of the Pauli matrices, LL(±)
lepton can be written as follows:

LL(±)
lepton = −gL̄γµ




0 W 1 − iW 2

W 1 + iW 2 0


L (2.9)

It is convenient to redefine W 1,2 in such a way that new fields match the observed charged

fields W±:

W± =
1√
2

(
W 1 ∓ iW 2

)

LL(±)
lepton = − g

2
√

2

[
ν̄γµ(1− γ5)lW

+
µ + l̄γµ(1− γ5)νW

−
µ

]
(2.10)

The coupling constant g can be related to the strength of the effective four-fermion Fermi

interaction:

g

2
√

2
= GW =

(
GFM

2
W√

2

)1/2

(2.11)

Now let us consider the neutral part of the lepton lagrangian that mixes right- and

left-handed fields.

LL+R (0) = −gL̄γµ τ
3

2
W 3
µL−

g′

2
(L̄γµY L+ R̄γµY R)Bµ ≡

≡ −gJµ3W 3
µ −

g′

2
JµYBµ (2.12)

Currents Jµ3 ad JµY are defined as follows:

Jµ3 =
1

2
(ν̄Lγ

µνL − l̄LγµlL)

JµY = −(ν̄Lγ
µνL + l̄Lγ

µlL + 2l̄Rγ
µlR)
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It is clear that they obbey Gell-Mann–Nishijima relation:

Jem = J3 +
1

2
JY

One can rotate neutral fields W µ
3 and Bµ to the new fields Aµ and Zµ:




Aµ

Zµ


 =




cos θW sin θW

− sin θW cos θW







Bµ

W µ
3


 (2.13)

where θW is called the Weinberg weak mixing angle. There is the following relation between

SU(2)L and U(1)Y coupling constants:

sin θW =
g′√

g2 + g′2
, cos θW =

g√
g2 + g′2

Re-writing lagrangian in terms of the new fields one can immediately notice that there is

a well-defined relation between electric charge, coupling constants, and the Weinberg angle.

Another important result is presence of the weak interaction that does not change charge.

Strength of this interaction can be predicted by the Standard Model:

LL+R (0) = −g sin θW (l̄γµl)Aµ −
g

2 cos θW

∑

ψi=ν,l

(ψ̄iγ
µ(giV − giAγ5)ψi)Zµ

e = g sin θW = g′ cos θW

giV = T i3 − 2Qi sin
2 θW , giA = T i3 (2.14)

The result of Eq.(2.14) is extremely important since at the time it was obtained, there

was no experimental evidence for the weak neutral current.
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2.3 Higgs mechanism. Mass generation

If the Higgs boson didn’t exist,

we should have to invent

something very much like it

C. Quigg [8]

At this point theory contains four massless gauge fields – Aµ, Zµ, W
±
µ ; and two massless

fermions – l, ν. The next step in the theory building is to add scalar fields in order to break

symmetry and to generate weak bosons masses while keeping photon massless. In order to

give masses to the gauge bosons we need to apply the so-called Higgs mechanism. Formal

introduction to this mechanism is provided in the next several paragraphs. Obtained results

will be generalized for the Standard Model later in the text.

Goldstone’s theorem states that when an exact continuous global symmetry is sponta-

neously broken, the theory contains one massless scalar particle for each broken generator

of the original symmetry group. However there is no experimental evidence for existence of

such particles. In the mid-1960’s several authors independently pointed out the way to solve

this puzzle – the so called Higgs mechanism [11]. It also has a nice bonus - in the Higgs

mechanism the gauge bosons become massive. In order to see how this mechanism works let

us consider the charged self- interacting scalar field (Eq. (2.15)).

L = ∂µφ
∗∂µφ− V (φ, φ∗)

V (φ, φ∗) = µ2φ∗φ+ λ(φ∗φ)2 (2.15)

Note that lagrangian (Eq.(2.15)) is invariant under the global phase transformation φ →
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exp (−iθ)φ. When we re-write it in terms of two real scalar fields it becomes invariant under

SO(2) transformations:

φ =
φ1 + iφ2√

2

L =
1

2
(∂µφ1∂

µφ1 + ∂µφ2∂
µφ2)− V (φ1, φ2) (2.16)




φ1

φ2


 −→




cos θ sin θ

− sin θ cos θ







φ1

φ2




For µ2 > 0 the vacuum state is at φ1 = φ2 = 0 and for the small oscillations about the

minimum,

L =
∑

i=1,2

=
1

2
(∂µφi∂

µφi − µ2φ2
i ), (2.17)

which means that in this situation there are two scalar fields φ1,2 with mass m2 = µ2 > 0.

In the case when µ2 < 0 we get the continuum of the vacuum states (the ”mexican hat”

potential, Fig.2.1). In this situation minimum of potential is at:

〈|φ|2〉 =
〈φ1〉2 + 〈φ2〉2

2
= −µ

2

2λ
≡ v2

2
(2.18)

One can see from the Fig.2.1 that vacua are still invariant under SO(2) symmetry. However,

once we pick out the particular vacuum state, the symmetry is broken. This phenomenon

is called spontaneous symmetry breaking. For example, we can pick the following vacuum

configuration φ1 = v and φ2 = 0. The new fields can be redefined as perturbations around

the vacuum state:

φ′1 = φ1 − v and φ′2 = φ2 (2.19)
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Figure 2.1: The “mexican hat” potential incorporated in the theory of the spontaneous
symmetry breaking

in terms of new fields, lagrangian transforms to the following form:

L =
1

2
∂µφ

′
1∂

µφ′1 −
1

2
(−2µ2)φ′21 +

1

2
∂µφ

′
2∂

µφ′2 + ... (2.20)

where ellipsis denotes interaction terms which are irrelevant for the mass generation discus-

sion. Clearly, the new lagrangian describes interactions of two scalar fields, one of them is

massless and another one is massive.

In order to apply the Higgs mechanism and to generateW± and Z0 masses let us introduce

the scalar doublet and its lagrangian:

Φ ≡




φ+

φ0




L = DµΦ
†DµΦ− µ2Φ†Φ− λ(Φ†Φ)2 (2.21)

Dµ = ∂µ + ig
τ i

2
W i
µ + i

g′

2
Y Bµ
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We choose the vacuum expectation value of the Higgs boson in the following form:

〈Φ〉0 =




0

v/
√

2


 , where v =

√
−µ

2

λ
(2.22)

Such a choice of the vacuum expectation value breaks SU(2)L ⊗ U(1)Y symmetry down to

U(1)em giving mass to the W± and Z0 bosons and leaving photon massless. The Higgs

doublet can be parametrized in the following form:

Φ =
v +H√

2




0

1


 . (2.23)

After substitution of Eq.2.23 into Eq.2.21 and redefinition of gauge boson fields according

to Eq.2.10 one obtains the following result:

DµΦDµΦ→
1

2
∂µH∂

µH +
g2

4
(v +H)2

(
W+
µ W

−µ +
1

2 cos θW
2Z

µZµ

)
(2.24)

Comparing the latter term with the mass term for W± and Z0 bosons one can identify:

MW =
gv

2
(2.25)

MZ =
1

cos θW

gv

2
=

MW

cos θW

The approach can be generalized for the case of non-Abelian theory. Lepton and quark

masses are obtained from Yukawa interaction of leptons (quarks) with Higgs boson (see

Section 2.4). It is necessary to stress that the Higgs mechanism explains how particles

get masses in the SM framework, but it does not predict their numerical values. Thus
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particles masses need to be introduced as input parameters of the model as mentioned in the

Chapter.1. We will not go into more details about mass generation in the Standard Model

since it is not the main topic of dissertation. Interested reader can find plenty of information

on this matter in almost any particle physics textbook [12].

We would like to point out that Higgs boson is the missing piece of the Standard Model

and it is yet to be discovered. There are various extensions to the basic Higgs mechanism:

extended Higgs sector (for example [13] and [14]), composite Higgs boson [15, 16], etc. All of

them employ the same idea of symmetry breaking but have different particle content. Only

experimental confirmation can determine which theory is correct.

2.4 Quark mixing and the CKM matrix

The electroweak sector of the Standard Model is a SU(2)L ⊗ U(1)Y gauge theory. The

left-handed quarks are SU(2)L doublets, while the right-handed quarks are singlets. If

SU(2)L ⊗ U(1)Y was an exact symmetry of the theory, then quarks would be massless and

there would be no difference between mass and interaction eigenstates. As it was discussed

in the previous section, interaction between Higgs boson and quarks breaks symmetry and

generates quark masses. Let us consider in detail how it is realized and why it leads to quark

mixing.

Lquark−Higgs = −
3∑

i,j=1

UijR̄Ui
Φ̃†Lj +DijR̄Di

Φ†Lj + h.c (2.26)

Φ̃ = iσ2Φ
∗ =




φ0∗

−φ−


 . (2.27)
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Here Φ̃ is the conjugated Higgs doublet; Ui,j , RUi
and Di,j, RDi

are Yukawa matrices and

right-handed singlets for up- and down-type quarks respectively. From the vacuum expecta-

tion values of Higgs doublets Φ and Φ̃ we obtain the mass matrices for up- and down-type

quarks:

MU(D)
ij =

v√
2
U(D)ij (2.28)

These matrices are non-diagonal, thus the weak eigenstates q′ are a superposition of the mass

eigenstates q. Each of matrices U(D)ij can be diagonalized using unitary transformation.

However, they can not be diagonalized simultaneously.




u′

c′

t′



L,R

= F
(U)
L,R




u

c

t



L,R

,




d′

s′

b′



L,R

= F
(D)
L,R




d

s

b



L,R

F
(U)−1
R MUF

(U)
L =




mu 0 0

0 mc 0

0 0 mt




(2.29)

F
(D)−1
R MDF

(D)
L =




md 0 0

0 ms 0

0 0 mb




For the weak charged V-A current it results in the following:

( u′ c′ t′ )Lγµ




d′

s′

b′



L

= ( u c t )L(F
(U)†
L F

(D)
L )γµ




d

s

b



L

(2.30)
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with generation mixing between mass eigenstates encoded in the matrix V :

V ≡ F
(U)†
L F

(D)
L (2.31)

On the other hand, neutral current of quarks does not produce generation mixing:

( u′ c′ t′ )Lγµ




u′

c′

t′



L

= ( u c t )L(F
(U)†
L F

(U)
L )γµ




u

c

t



L

,

where F
(U)†
L F

(U)
L = 1 because of unitarity (2.32)

Thus there are no flavor changing neutral currents in the Standard Model at tree level.

However such currents can be realized in loop diagrams.

Vij is Cabibbo-Kobayashi-Maskawa (CKM) matrix [17]. In general the N generations

quark mixing matrix is described by (N − 1)2 parameters which include N(N − 1)/2 Euler-

type angles and (N − 1)(N − 2)/2 complex phases. The latter relationship is especially

interesting since it shows that in case of two quark generations the Cabibbo matrix is real,

while for three generations it contains irreducible complex phase. This phase is required to

provide description of CP violation within the Standard Model framework.

There are various parameterizations of the CKM matrix. One of them is the Wolfenstein

parametrization [18]. It is based on the expansion of each element as a power series of small
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Figure 2.2: Schematical representation of the meson–anti-meson mixing process

parameter λ = |Vus| = 0.22:

V =




1− λ2

2
λ Aλ3(ρ− iη)

−λ 1− λ2

2
Aλ2

Aλ3(1− ρ− iη) −Aλ2 1




+O(λ4) (2.33)

This parametrization is very convenient for phenomenological applications since it al-

lows estimation of the relative size of various effects almost immediately (for example CKM

favored versus CKM suppressed decay rates).

There is a fascinating phenomenological observation arising from quark mixing. It is

mixing of a meson and an anti-meson. Schematically this effect can be described in the

following way. Meson contains quark q1 and anti-quark q̄2. Due to quark mixing, it can

experience the following transitions: q1 → qi → q2 and q̄2 → q̄i → q̄1 thus resulting in

transition from meson to anti-meson (schematically this process is presented on Fig.2.2).

Since, as it was mentioned before, weak eigenstates do not coincide with mass eigenstates,

the meson detected in an experiment (mass eigenstate) will be a mixture of meson and anti-

meson interaction eigenstates. This was first observed in K0−K̄0 system [19], later in the Bd

[20] system and the most recent observations detected mixing in the D0 [21] and Bs [22, 23]

systems. These neutral mesons (K0, Bd, D
0 and BS) are the only hadrons that mix with

their own anti-particles.
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Meson-antimeson mixing serves as an indispensable way of placing constraints on various

models of New Physics (NP). This is usually ascribed to the fact that this process only

occurs at the one-loop level in the Standard Model (SM) of electroweak interactions. This

makes it sensitive to the effects of possible NP particles in the loops or even to new tree-level

interactions that can possibly contribute to the flavor-changing ∆Q = 2 interactions. Tech-

nical details of the meson-antimeson calculations are provided in Chapter 4. We considered

several examples of the New Physics signals in the Bs mixing and placed constraints on some

models of the physics beyond the Standard Model.

However, New Physics is not necessarily heavy (i.e. with mass of the NP particles at

the electroweak scale or above). One of the examples of the physical phenomena that is not

described within the Standard Model and still can be relatively light is Dark Matter (DM). In

the next chapter we provide an introduction to the Dark Matter subject and briefly discuss

several theoretical approaches to the problem of DM.
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Chapter 3

Different approaches to the problem

of Dark Matter

As briefly mentioned in the Chapter1, the Dark Matter (DM) and Dark Energy are not

described in the Standard Model. It means that, despite the huge success of the Standard

Model in description of elementary particle phenomenology, we still do not know what 95%

of the Universe is made off (see Fig.1.1 ). First experimental evidence for the dark matter

dates back to the 1937 [24] when Swiss astronomer Fritz Zwicky noticed discrepancy between

predicted and observed values of orbital velocities of galaxies in clusters. In order to solve

this puzzle he postulated the existence of the ”missing mass”. There were a lot of efforts

directed to understanding the nature of the Dark Matter and it’s properties.Many models

were proposed, however there is no confirmed experimental detection of DM at microscopic

(particle) level as opposed to the macroscopic (galactic) scale.

The most popular solutions of the Dark Matter puzzle can be classified in the following

way. On one hand, in order to explain the rotational curves of galaxies one can modify

gravity. Such an approach is called MOND – MOdified Newtonian Dynamics. On the other

hand, one can introduce various sources of the ”missing mass”, which would provide the

same results. The latter set of ideas can be separated into two additional subsets – baryonic

and non-baryonic DM. All of them are briefly discussed below.
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3.1 MOND

The MOdified Newtonian Dynamics is an extremely attractive way to explain the galac-

tic rotation curves. This approach is based on the assumption that Newtonian gravity fails

at certain scales. New particle species are not introduced in such theories. The MOND

paradigm was introduced by Milgrom [25]. Its basic idea is quite simple - for small accelera-

tions (ac ≈ 10−10ms−2), Newtonian dynamics is no longer applicable to describe the behavior

of a test mass, and should be modified.

a = µ(aN/ac)aN (3.1)

where aN is Newtonian acceleration due to gravity and µ is a smooth monotonic function

with the requirement µ(1) = 1 [26].

MOND approach works extremely well for the explanation of gravitational rotation curves

requiring in principle only one input parameter - ac. However, MOND fails to explain the

mass distribution in the Bullet Cluster Fig.3.1. Another problem associated with the MOND

approach is that it can not explain DAMA/LIBRA results for the annual modulation of the

DM flux[6]. Yet another drawback of the MOND approach is that it does not explain

PAMELA data [31]. It is necessary to mention that while these experimental results might

be due to the Dark Matter, it is not necessarily so. Thus Modified Newtonian Dynamics is

not completely disfavored by any current experiment searching for the Dark Matter.
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Figure 3.1: Pink represents matter detected by the X-ray telescope, while blue represents
the way matter should be distributed in order to explain light propagation from background
galaxies[27].

3.2 Baryonic Dark Matter

Baryonic Dark matter is a type of DM that is composed of baryons. In other words, baryonic

DM is composed of ordinary matter and can not be detected by its emitted radiations. The

main candidates for baryonic Dark Matter are non-luminous gas, and Massive Astrophysical

Compact Halo Objects (MACHO) (MACHOs include black holes, neutron stars and brown

dwarfs.). The total amount of baryonic DM can be inferred from the Big Bang nucleosyn-

thesis and cosmic microwave background measurements. Both of the approaches show that

amount of baryonic DM is much smaller than total amount of Dark Matter in the Universe

[28].
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3.3 Non-baryonic Dark Matter

Another way to treat the Dark Matter is to assume that there are some particles not described

by the Standard Model that account for the invisible mass in the Universe. The lack of

experimental information about coupling of the DM to the Standard Model particles forces

us to rely on various assumptions and expectations. Naturally, in such an approach there

are plenty of the Dark Matter candidates[29]. One of the ways too classify Dark Matter is

based on its temperature. This way, non-baryonic DM can be divided into three subsets -

hot, warm and cold Dark Matter.

3.3.1 Hot and Warm Dark Matter

Hot Dark Matter is a hypothetical model of the Dark Matter which consists of ultra-

relativistic particles. Neutrinos are the first hot DM candidate we can think of. They

almost do not interact with ordinary matter, are hard to detect and observe. All these

reasons make us think that ”missing mass” can be made up of neutrinos.

Sterile neutrinos can also serve as a warm Dark Matter particles, however this would

require non-thermal resonant DM production[30].

In this situation, the first guess is not right. Hot (and warm) DM can not explain

formation of individual galaxies after Big Bang. It can not explain small scale structure

in the Universe and would smear out the large scale structures. Also, neutrinos are not

abundant enough to reproduce the relic abundance observations. Nowadays, the hot Dark

Matter is considered only as a part of mixed Dark Matter theories.
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3.3.2 Cold Dark Matter

In contrast to hot Dark Matter, the concept of cold DM (CDM) can explain small scale

structures in the Universe. In the cold Dark Matter theory, structure grows hierarchically

(bottom-up) with small objects collapsing and merging into more massive ones. From cos-

mological point of view the CDM theory does not make prediction about properties of the

Dark Matter, other than stating that it should be cold. The cold Dark Matter candidates

are provided in theories beyond the Standard Model. Usually CDM candidates are divided

in two classes - axions and WIMPs (Weakly Interacting Massive Particles). WIMPs can be

further divided into supersymmetric DM and light (with mass of a few GeV) DM.

• WIMP

The observed relic abundance is ΩDMh
2 ≈ 10−1[2]. The relic abundance of the particle

is inversely proportional to the annihilation cross-section:

ΩX ∼
1

〈σv〉 ∼
m2
X

g4
x

(3.2)

Thus weakly interacting particles (gx ∼ 0.5) with mass at the weak scale (mX ∼

100GeV ) seem to be the perfect candidates for the Dark Matter (WIMP = Weakly

Interacting Massive Particle). This coincidence is called the ”WIMP miracle” and

brought a lot of attention to the models which provide WIMP candidates. More

supporting evidence for WIMP models is a positron excess in the PAMELA data[31]

- Fig.3.2. As one can see, an excess of positron flux is observed at the energy scale of

∼ 100GeV thus suggesting that something new might be at this scale or above it.

While arguments for WIMP as a Dark Matter candidate seem to be convincing, there

are several problems that should be addressed in this approach. Considering WIMP as
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Figure 3.2: Positron excess in the PAMELA data. Solid line - GALPROP simulation[32]
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Figure 3.3: Sommerfeld enhancement of annihilation rate

a DM candidate, one can estimate positron excess and it turns out to be a factor 100 to

1000 too small to explain the PAMELA data. In principle this problem can be solved

via introduction of various enhancement factors, so-called boost factors. While it is

unlikely to get such an enhancement from an astrophysical source, particle physics can

provide it. Annihilation cross-section can be enhanced via the so-called ”Sommerfeld

effect” [33]. It is a non relativistic quantum effect which arises due to the distortion of

the particle wave function by the potential at the low kinetic energy. In the quantum

field theory language it means multiple force carrier exchanges before annihilation

(Fig.3.3). Large enhancement factors require the Dark Matter to be strongly coupled

to the force carrier and/or mass of the force carrier to be small. Such a scenario

induces the dark matter self-interaction which is excluded for the light force carriers

by halo ellipticity [34]. Possible solutions to this problem include but are not limited

to the alternative DM production mechanisms, alternative cosmology at the freeze-out,

astrophysical boost in addition to the Sommerfeld enhancement [35].

Since there are no DM candidates in the Standard Model particle content, there should

be more general theory that will have some. One of the most popular extension of the

SM is the supersymmetry. Depending on the particular realization of the supersymmet-

ric scenario, different particles can serve as Dark Matter - neutralino, wino, sneutrino,

gravitino, axino.
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Existence of fermionic Dark Matter with mass less than few GeV is forbidden un-

der Lee-Weinber limit [36] since it would cause cosmological problems (for details see

Chapter 5). However, spin S = 0 particles with masses as low as few MeV are not

forbidden by this limit. Another motivation for light scalar DM is an experimental

observation of 511 keV gamma-rays emitted from the direction of the galactic center

by the INTEGRAL space telescope [37]. Such a spectrum can be explained by Dark

Matter annihilation into electron-positron pairs which later annihilate into photons.

• Axion

WIMP and supersymmetric DM candidates have received a lot of attention lately.

However, the axion also provides a well-motivated and promising candidate for cold

Dark Matter.[38]

Axions were first introduced in QCD to solve the strong-CP problem. The QCD

lagrangian may be written as

L′QCD = LQCD + θ
g2

32π2
GG̃ (3.3)

The first term in the Eq.3.3 is a part of the QCD lagrangian that allows us to make

successful phenomenological predictions. However, the second term violates the CP

symmetry. It is an experimental fact, that CP is not violated in strong interaction, or

if it is, the level of violation is tiny. From constraints of the neutron dipole moment

it was determined that θ ≤ 10−10. Axion arises in the Peccei-Quinn solution for

the strong CP problems [39]. The basic idea of this solutions is to introduce a U(1)

symmetry which is broken at a certain scale f . This way θ becomes dynamical field

(the Goldstone boson of this symmetry).
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The variety of astrophysical observations require the mass of axion to be ma ∼ 10−4eV .

Smaller mass would result in an unacceptably large cosmological abundance of axions.

Larger masses are ruled out by combination of astrophysical observations and labora-

tory experiments [40]. If the mass of axion falls into this range, then it provides the

relic density Ωa ∼ 1 and may therefore be the halo dark matter.

It is necessary to mention, that axions can be produced and detected in the accelerators.

The only way to detect axions is to use experiments that are specifically designed for

the axion dark matter detection.[41].

To summarize everything that was said about Dark Matter in this chapter we would like to

say that the only thing we know for sure about DM is the fact that it exists. Modified gravity

cannot explain all of the astrophysical puzzles, for example, the Bullet cluster mentioned

earlier. If we strongly believe in the MOND we still shall have to add invisible mass to

explain experimental observations. Thus Dark Matter exists! Everything else, including

different types of the Dark Matter, explanations of the various experimental data, is nothing

more but the reality of the search process. We are trying to guess what the Dark Matter

could be and then to determine whether initial assumption fits experimental observations.

Baryonic (luminous) matter makes up ∼ 5% of the mass of the Universe and the Standard

Model contains six quarks, three families of leptons, four gauge bosons. Dark Matter is

responsible for ∼ 25% of the mass. Attempt to explain it using single particle is just the

first step towards understanding of what the Dark Matter is made off. There are already

some results for Dark Matter models with extended particle content [42, 43, 44].

Currently there are several experiments dedicated to the detection of the Dark Matter

[5, 6, 7]. These experiments are based on the detection of recoil energy after collision of Dark

Matter particle with nuclei. There is a very low sensitivity to the light DM (mDM ∼ GeV ),
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since in such a situation the recoil energy will be small. In Chapter 5 I considered production

of the light Dark Matter in the missing energy decays of the heavy mesons. Such processes

would probe the Dark Matter with mass mDM ∼ GeV and would supplement results of

the direct detection experiments. Results of Chapter 5 rely on current experimental limits

for missing energy decays of Bs, Bd, D
0 mesons. Depending on further improvement of

experimental data, it will allow to either detect light DM in the above-mentioned decays or

to completely disfavor the Light Dark Matter paradigm.
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Chapter 4

Lifetime difference in Bs mixing

4.1 Introduction

As briefly mentioned in Chapters 1 and 2, mixing processes are sensitive to the New Physics

particles that can be contributing to the loop diagrams. Mixing allows us to indirectly

probe the heavy New Physics degrees of freedom using the low energy data from the meson-

antimeson mixing. Results of this chapter are based on work done in collaboration with

Alexey A. Petrov and Fabrizio Gabbiani [45].

We set up the relevant formalism and argue for the need to compute 1/m2
b corrections to

leading and next-to-leading effects in Sect. 4.2. In Sect. 4.3 we discuss the impact of 1/m2
b

corrections to the lifetime difference of Bs mesons and assess the convergence of the 1/mb

expansion. We also present the complete SM results for ∆Γs including 1/m2
b corrections.

We then discuss the possible effects from ∆B = 1 New Physics contributions in Sect. 4.4.

Finally, we present our conclusions on this subject in Sect. 4.5.

Flavor-changing interactions induce non-diagonal terms in the meson-antimeson mass

matrix that describes the dynamics of those states. Diagonalizing this matrix gives two mass

eigenstates that are superpositions of flavor eigenstates. In the Bs system mass eigenstates,
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denoted as “heavy” |BH〉 and “light” |BL〉,

|BH〉 = p|Bs〉+ q|Bs〉,

|BL〉 = p|Bs〉 − q|Bs〉, (4.1)

were predicted to have a rather significant mass and width differences,

∆MBs
= MH −ML, ∆ΓBs

= ΓL − ΓH , (4.2)

where MH,L and ΓH,L denote mass and width of mass eigenstates. Since in the Standard

Model the mass difference is dominated by the top quark contributions, it is computable

with great accuracy. Thus one might expect that possible NP contributions can be easily

isolated. Unfortunately, a recent observation of mass difference of mass eigenstates in Bs

mixing by CDF [22] and D0 [23],

∆MBs
= 17.77± 0.10± 0.07 ps−1 (CDF),

17 ps−1 < ∆MBs
< 21 ps−1 (D0), (4.3)

put the hopes of spectacular NP effects in Bs system rest. In fact, analyses of mixing in the

strange, charm and beauty quark systems all yielded positive signals, yet all of those signals

seem to be explained quite well by the SM interactions. Yet, some contribution from New

Physics particles is still possible, so even the energy scales above those directly accessible

at the Tevatron or LHC can be probed with Bs mixing, provided that QCD sum rule [46]

or lattice QCD [47, 48, 49, 50] calculations supply the relevant hadronic parameters with

sufficient accuracy.
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In addition to the mass difference ∆Ms, a number of experimental collaborations reported

the observation of a lifetime difference ∆Γs in the Bs system. Combining recent result from

D0 [51] with earlier measurements from CDF [52] and ALEPH [53], Particle Data Group

(PDG) quotes [1]

∆Γs = 0.16+0.10
−0.13 ps−1,

∆Γs
ΓBs

= 0.121+0.083
−0.090, (4.4)

while Heavy Flavor Averaging Group (HFAG) [54] gives

∆Γs = 0.071+0.053
−0.057 ps−1,

∆Γs
ΓBs

= 0.104+0.076
−0.084. (4.5)

Differently from the mass difference ∆Ms, the lifetime difference ∆Γs is definitely dominated

by the SM contributions, as it is generated by the on-shell intermediate states [55, 56, 57, 58].

While this might appear to make it less exciting for indirect searches for New Physics, besides

“merely” providing yet another test for heavy quark expansion, it is nonetheless a useful

quantity for a combined analysis of possible NP contributions to Bs
0 − Bs

0 mixing [59, 60,

61, 62].

It has been argued [61] that CP-violating NP contributions to ∆B = 2 amplitudes

can only reduce the experimentally observed lifetime difference compared to its SM value,

therefore it is important to have an accurate theoretical evaluation of ∆Γs in the SM. It is also

important to note that ∆B = 1 NP contributions can affect ∆Γs, but do not have to follow

the same pattern. Indeed, the level at which ∆B = 1 NP can affect ∆Γs depends both on the

particular extension of the SM, as well as on the projected accuracy of lattice calculations

of hadronic parameters which drives the uncertainties on the theoretical prediction of ∆Γs.

So it is advantageous to evaluate the effect of NP contributions on ∆Γs.
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4.2 Formalism

In the limit of exact CP conservation the mass eigenstates of the B0
s–B

0

s system are |BH/L〉 =

(|Bs〉±|Bs〉)/
√

2, with the convention CP |Bs〉 = −|Bs〉. The width difference between mass

eigenstates is then given by [55]

∆ΓBs
≡ ΓL − ΓH = −2 Γ12 = −2 Γ21, (4.6)

where Γij are the elements of the decay-width matrix, i, j = 1, 2 (|1〉 = |Bs〉, |2〉 = |Bs〉).

We use the optical theorem to relate the off-diagonal elements of the decay-width matrix

Γ entering the neutral B-meson oscillations to the imaginary part of the forward matrix

element of the transition operator T :

Γ21(Bs) =
1

2MBs

〈Bs|T |Bs〉, T = Im i

∫
d4xT {Heff(x)Heff(0)} . (4.7)

Here Heff is the low energy effective weak Hamiltonian mediating bottom-quark decays. The

component that is relevant for Γ21 reads explicitly

Heff =
GF√

2
V ∗cbVcs

(
6∑

r=1

CrQr + C8Q8

)
, (4.8)

defining the operators

Q1 = (b̄icj)V−A(c̄jsi)V−A, Q2 = (b̄ici)V−A(c̄jsj)V−A, (4.9)

Q3 = (b̄isi)V−A(q̄jqj)V−A, Q4 = (b̄isj)V−A(q̄jqi)V−A, (4.10)

Q5 = (b̄isi)V−A(q̄jqj)V+A, Q6 = (b̄isj)V−A(q̄jqi)V+A, (4.11)
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Q8 =
g

8π2
mb b̄iσ

µν(1− γ5)T
a
ijsj G

a
µν . (4.12)

Here i, j are color indices and a summation over q = u, d, s, c, b is implied. V ±A refers to

γµ(1± γ5) and S − P (which we need below) to (1− γ5). C1, . . . , C6 are the corresponding

Wilson coefficient functions at the renormalization scale µ, which are known at next-to-

leading order. We have also included the chromomagnetic operator Q8, contributing to T at

O(αs). Note that for a negative C8, as conventionally used in the literature, the Feynman

rule for the quark-gluon vertex is −igγµT a. A detailed review and explicit expressions may

be found in [63]. Cabibbo-suppressed channels have been neglected in Eq. (4.8).

In the heavy-quark limit, the energy release supplied by the b-quark is large, so the

correlator in Eq. (4.7) is dominated by short-distance physics [64]. An Operator Product

Expansion (OPE) can be constructed for Eq. (4.7), which results in its expansion as a series

of matrix elements of local operators of increasing dimension suppressed by powers of 1/mb:

Γ21(Bs) =
1

2MBs

∑

k

〈Bs|Tk|Bs〉 =
∑

k

Ck(µ)

mk
b

〈Bs|O∆B=2
k (µ)|Bs〉. (4.13)

In other words, the calculation of Γ21(Bs) is equivalent to computing the matching coefficients

of the effective ∆B = 2 Lagrangian with subsequent computation of its matrix elements.

Eventually the scale dependence of the Wilson coefficients in Eq. (4.13) is bound to match

the scale dependence of the computed matrix elements.

Expanding the operator product (4.7) for small x ∼ 1/mb, the transition operator T can

be written to leading order in the 1/mb expansion as [55, 56]

T = −G
2
Fm

2
b

12π
(V ∗cbVcs)

2 [F (z)Q(µ2) + FS(z)QS(µ2)] , (4.14)
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which results in [57]

Γ21(Bs) = − G2
Fm

2
b

12π(2MBs
)
(V ∗cbVcs)

2
√

1− 4z ×

×
{[

(1− z)
(
2C1C2 +NcC

2
2

)
+ (1− 4z)C2

1/2
]
〈Q〉+ (4.15)

+ (1 + 2z)
(
2C1C2 +NcC

2
2 − C2

1

)
〈QS〉

}
,

with z = m2
c/m

2
b and the basis of ∆B = 2 operators1

Q = (b̄isi)V−A(b̄jsj)V−A, QS = (b̄isi)S−P (b̄jsj)S−P . (4.16)

In writing Eq. (4.14) we have used the Fierz identities and the equations of motion to

eliminate the color re-arranged operators

Q̃ = (b̄isj)V−A(b̄jsi)V−A, Q̃S = (b̄isj)S−P (b̄jsi)S−P , (4.17)

always working to leading order in 1/mb. Note that 〈...〉 denote matrix elements of the

above operators taken between Bs and Bs states. The Wilson coefficients F and FS can be

extracted by computing the matrix elements between quark states of T in Eq. (4.7).

The coefficients in the transition operator (4.14) at next-to-leading order, still neglecting

the penguin sector, can be written as [56]:

F (z) = F11(z)C
2
2 (µ1) + F12(z)C1(µ1)C2(µ1) + F22(z)C

2
1 (µ1), (4.18)

Fij(z) = F
(0)
ij (z) +

αs(µ1)

4π
F

(1)
ij (z), (4.19)

1It was recently argued that better-converging results can be obtained in a modified basis [58].
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and similarly for FS(z). The leading order functions F
(0)
ij , F

(0)
S,ij read explicitly

F
(0)
11 (z) = 3

√
1− 4z (1− z), F

(0)
S,11(z) = 3

√
1− 4z (1 + 2z), (4.20)

F
(0)
12 (z) = 2

√
1− 4z (1− z), F

(0)
S,12(z) = 2

√
1− 4z (1 + 2z), (4.21)

F
(0)
22 (z) =

1

2
(1− 4z)3/2, F

(0)
S,22(z) = −

√
1− 4z (1 + 2z). (4.22)

The next-to-leading order (NLO) expressions F
(1)
ij , F

(1)
S,ij are given in Ref. [56].

The penguin correction to Eq. (4.14),

Tp = −G
2
Fm

2
b

12π
(V ∗cbVcs)

2 [P (z)Q+ PS(z)QS] , (4.23)

is also shown in Ref. [56].

4.3 Subleading 1/mn
b corrections

Here we present the higher order corrections to Γ21(Bs) in Eq. (4.15) in the heavy-quark

expansion, denoted below as δ1/m and δ1/m2 :

Γ21(Bs) = − G2
Fm

2
b

12π(2MBs
)
(V ∗cbVcs)

2 × (4.24)

×
{
[F (z) + P (z)] 〈Q〉+ [FS(z) + PS(z)] 〈QS〉+ δ1/m + δ1/m2

}
.
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Figure 4.1: Calculation of kinetic 1/mb and 1/m2
b corrections. The operators

of Eqs. (4.26) and (4.30) are obtained by expanding the diagrams in powers of
light quark momentum.

The matrix elements for Q and QS are known to be [55, 56, 57]

〈Q〉 ≡ 〈Bs|Q|Bs〉 = f 2
Bs
M2

Bs
2

(
1 +

1

Nc

)
B,

〈QS〉 ≡ 〈Bs|QS|Bs〉 = −f 2
Bs
M2

Bs

M2
Bs

(mb +ms)2

(
2− 1

Nc

)
BS, (4.25)

δ1/m = 〈Bs|T1/m|Bs〉, and δ1/m2 = 〈Bs|T1/m2 |Bs〉,

where MBs
and fBs

are the mass and decay constant of the Bs meson and Nc is the number

of colors. The parameters B and BS are defined such that B = BS = 1 corresponds to the

factorization (or ‘vacuum insertion’) approach, which can provide a first estimate.

4.3.1 1/mb corrections

The 1/mb corrections are computed, as in Ref. [55, 57, 64, 65], by expanding the forward

scattering amplitude of Eq. (4.7) in the light-quark momentum and matching the result onto

the operators containing derivative insertions (see Fig. 4.1). The δ1/m contributions can be
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written in the following form:

T1/m =
√

1− 4z

{
(1 + 2z)

[
C2

1 (R2 + 2R4)− 2 (2C1C2 +NcC
2
2 ) (R1 +R2)

]

− 12z2

1− 4z

[
(2C1C2 +NcC

2) (R2 + 2R3) + 2C2
1 R3

]}
, (4.26)

where the operators Ri are defined as

R1 =
ms

mb
b̄iγ

µ(1− γ5)si b̄jγµ(1 + γ5)sj ,

R2 =
1

m2
b

b̄i
←−
Dργ

µ(1− γ5)
−→
D ρsi b̄jγµ(1− γ5)sj ,

R3 =
1

m2
b

b̄i
←−
Dρ(1− γ5)

−→
Dρsi b̄j(1− γ5)sj , (4.27)

R4 =
1

mb
b̄i(1− γ5)i

−→
Dµsi b̄jγ

µ(1− γ5)sj .

Their matrix elements read [55, 57]:

〈Bs|R1|Bs〉 =

(
2 +

1

Nc

)
ms

mb

f 2
Bs
M2

Bs
Bs

1,

〈Bs|R2|Bs〉 =

(
−1 +

1

Nc

)
f 2
Bs
M2

Bs

(
M2

Bs

m2
b

− 1

)
Bs

2,

〈Bs|R3|Bs〉 =

(
1 +

1

2Nc

)
f 2
Bs
M2

Bs

(
M2

Bs

m2
b

− 1

)
Bs

3, (4.28)

〈Bs|R4|Bs〉 = −f 2
Bs
M2

Bs

(
M2

Bs

m2
b

− 1

)
Bs

4 .

Some of those parameters have been computed in lattice QCD [47, 48, 49, 50].2 In this paper

we use the results of Ref. [47].

The color-rearranged operators R̃i that follow from the expressions for Ri by interchang-

2For estimates of these matrix elements based on QCD sum rules, see Ref. [46].
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Figure 4.2: 1/m2
b-corrections from gluonic operators.

ing color indexes of bi and sj Dirac spinors have been eliminated using Fierz identities and

the equations of motion as in Eq. (4.16). Note that the above result contains full QCD

b-fields, thus there is no immediate power counting available for these operators. The power

counting becomes manifest at the level of the matrix elements.

4.3.2 1/m2
b corrections

It was shown in Refs. [55, 57] that 1/mb-corrections are quite large, so it is important to

assess the convergence of 1/mb-expansion in the calculation of the Bs lifetime difference. In

order to do so, we compute a set of δ1/m2

b
corrections to leading order. As expected, at this

order more operators will contribute. We will parametrize the 1/m2
b corrections similarly to

our parametrization of 1/mb effects above and use the factorization approximation to assess

their contributions to the Bs lifetime difference.

Two classes of corrections arise at this order. One class involves kinetic corrections which

can be computed in a way analogous to the previous case by expanding the forward scattering
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amplitudes in the powers of the light-quark momentum. A second class involves corrections

arising from the interaction with background gluon fields. The complete set of corrections

is the sum of those,

T1/m2 = T kin1/m2 + T G1/m2 . (4.29)

Let us consider each class of corrections in turn. The kinetic corrections can be written as

T kin1/m2 =
√

1− 4z
[ 24z2

(1− 4z)2
(3− 10z)

[
C2

1W3 + (2C1C2 +NcC
2
2 )(W3 +W2/2)

]

+
12z2

1− 4z

m2
s

m2
b

[
C2

1QS − (2C1C2 +NcC
2
2)(QS +Q/2)

]

+
24z2

1− 4z

[
2C2

1W4 − 2 (2C1C2 +NcC
2
2)(W1 +W2/2)

]

− (1− 2z)
m2
s

m2
b

(C2
1 + 2C1C2 +NcC

2
2)QR

]
. (4.30)

We again retain the dependence on quark masses in the above expression, including the

terms proportional to ms. The operators in Eq. (4.30) are defined as

QR = (b̄isi)S+P (b̄jsj)S+P ,

W1 =
ms

mb

b̄i
←−
Dα(1− γ5)

−→
Dαsi b̄j(1 + γ5)sj ,

W2 =
1

m4
b

b̄i
←−
Dα←−Dβγµ(1− γ5)

−→
Dα
−→
Dβsi b̄jγµ(1− γ5)sj ,

W3 =
1

m4
b

b̄i
←−
Dα←−Dβ(1− γ5)

−→
Dα
−→
Dβsi b̄j(1− γ5)sj ,

W4 =
1

m4
b

b̄i
←−
Dα(1− γ5)i

−→
Dµ
−→
Dαsi b̄jγ

µ(1− γ5)sj , (4.31)

where, as before, we have eliminated the color-rearranged operators W̃i in favor of the op-

erators Wi. The parametrization of the matrix elements of the above operators is given
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below,

〈Bs|QR|Bs〉 = −
(

2− 1

Nc

)
f 2
Bs
M2

Bs

M2
Bs

(mb +ms)2
α1 ,

〈Bs|W1|Bs〉 =
ms

mb

(
1 +

1

2Nc

)
f 2
Bs
M2

Bs

(
M2

Bs

m2
b

− 1

)
α2 ,

〈Bs|W2|Bs〉 =
1

2

(
−1 +

1

Nc

)
f 2
Bs
M2

Bs

(
M2

Bs

m2
b

− 1

)2

α3 ,

〈Bs|W3|Bs〉 =
1

2

(
1 +

1

2Nc

)
f 2
Bs
M2

Bs

(
M2

Bs

m2
b

− 1

)2

α4 ,

〈Bs|W4|Bs〉 = −1

2
f 2
Bs
M2

Bs

(
M2

Bs

m2
b

− 1

)2

α5 . (4.32)

Note that in factorization approximation all the bag parameters αi should be set to 1. In

addition to the set of kinetic corrections considered above, the effects of the interactions of

the intermediate quarks with background gluon fields should also be included at this order.

The contribution of those operators can be computed from the diagram of Fig. 4.2, resulting

in

T G1/m2 = − G2
F (V ∗cbVcs)

2

4π
√

1− 4z

{
C2

1 [(1− 4z)P1 − (1− 4z)P2 + 4zP3 − 4zP4]

+ 4 C1C2z [P5 + P6 − P7 − P8]
}
. (4.33)
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The local four-quark operators in the above formulas are shown in Eq. (4.34):

P1 = b̄iγ
µ(1− γ5)si b̄kγ

ν(1− γ5)t
a
klG̃

a
µνsl ,

P2 = b̄kγ
µ(1− γ5)t

a
klG̃

a
µνsl b̄iγ

ν(1− γ5)si ,

P3 =
1

m2
b

b̄i
←−
Dµ←−Dαγα(1− γ5)si b̄kγν(1− γ5)t

a
klG̃

a
µνsl ,

P4 =
1

m2
b

b̄k
←−
D ν←−Dαγµ(1− γ5)t

a
klG̃

a
µνsl b̄iγα(1− γ5)si ,

P5 =
1

m2
b

b̄k
←−
D ν←−Dαγµ(1− γ5)si t

a
klG̃

a
µν b̄iγα(1− γ5)sl ,

P6 =
1

m2
b

b̄i
←−
Dν←−Dαγµ(1− γ5)sk t

a
klG̃

a
µν b̄lγα(1− γ5)si ,

P7 =
1

m2
b

b̄k
←−
Dµ←−Dαγα(1− γ5)si t

a
klG̃

a
µν b̄iγν(1− γ5)sl ,

P8 =
1

m2
b

b̄i
←−
Dµ←−Dαγα(1− γ5)sk t

a
klG̃

a
µν b̄lγν(1− γ5)si. (4.34)

Analogously to the previous section, and following Ref. [65], we parametrize the matrix

elements in Eq. (4.34) as

〈Bs|Pi|Bs〉 =
1

4
f 2
Bs
M2

Bs

(
M2

Bs

m2
b

− 1

)2

βi. (4.35)

We set βi = 1 GeV 2 to obtain a numerical estimate of this effect. It is clear that no precise

prediction is possible with so many operators contributing to the lifetime difference. This,

of course, is expected, as the number of contributing operators always increases significantly

with each order in OPE. We can nonetheless evaluate the contribution of both 1/mb and

1/m2
b by randomly varying the parameters describing the matrix elements by ±30% around

their “factorized” values. This way we obtain the interval of predictions of ∆Γs and estimate

the uncertainty of our result.
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4.3.3 Discussion

Now we discuss the phenomenological implications of the results presented in the previous

sections. As usual in OPE-based calculations next-order corrections bring new unknown

coefficients. In our numerical results we assume the value of the b-quark pole mass to be

mb = 4.8± 0.2 GeV and fBs
= 230 ± 25 MeV. It might be advantageous to see what effects

higher-order 1/m2
b corrections have on the value of ∆Γs. In order to see that we fix all

perturbative parameters at the middle of their allowed ranges and show the dependence of

∆Γs on non-perturbative parameters defined in Eqs. (4.28), (4.32), and (4.35):

∆Γs =
[
0.0005B + 0.1732Bs + 0.0024B1 − 0.0237B2 − 0.0024B3 − 0.0436B4

+ 2× 10−5α1 + 4× 10−5α2 + 4× 10−5α3 + 0.0009α4 − 0.0007α5 (4.36)

+ 0.0002β1 − 0.0002β2 + 6× 10−5β3 − 6× 10−5β4 − 1× 10−5β5

− 1× 10−5β6 + 1× 10−5β7 + 1× 10−5β8

]
(ps−1).

As one can see, 1/m2
b corrections provide rather minor overall impact on the calculation of

∆Γs. In particular, contributions of gluonic operators are essentially negligible.

To obtain the complete Standard Model estimate of ∆Γs, we fix the perturbative scale

in our calculations to µ = mb and vary the values of parameters of the matrix elements.

Following the technique used in [65] we adopt the statistical approach for presenting our

results and generate 100000-point probability distributions of the lifetime, obtained by ran-

domly varying our parameters within a ±30% interval around their “factorization” values.

The decay constant fBs
and the b-quark pole mass mb are taken to vary within a 1σ interval

as indicated above. The results are presented in Fig. 4.3. This figure represents the main

result of this paper [66].
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Figure 4.3: Histogram of the distribution of ∆Γs val-
ues obtained by random variation of parameters of
Eqs. (4.24, 4.26, 4.30, 4.33) contributing to Bs-lifetime
difference ∆Γs following the prescription outline in the
text.
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There is no theoretically-consistent way to translate the histogram of Figure 4.3 into

numerical predictions for ∆Γs. As a useful estimate we give a numerical prediction by

estimating the width of the distribution Fig. 4.3 at the middle of its height and position of

the maximum of the curve as the most probable value. We caution that predictions obtained

this way should be treated with care, as it is not expected that the theoretical predictions

are distributed according to the Gaussian distribution. Nevertheless, following the procedure

described above one obtains

∆Γs = 0.072+0.034
−0.030 ps−1,

∆Γs
ΓBs

= 0.104± 0.049, (4.37)

where we added the experimental error from the determination of Γs and theoretical error

from our calculation of ∆Γs in quadrature.

4.4 New Physics contributions to lifetime difference

In the previous section we have shown that 1/m2
b -corrections to the lifetime difference of the

light and heavy eigenstates in the Bs system are quite small, which makes the prediction

of ∆Γs quite reliable 3. Additionally improving the accuracy of the lattice or QCD sum

rule determinations of non-perturbative “bag parameters” in Eq. (4.36) would make this

prediction even more solid.

In this respect, it might be interesting to consider the effects of New Physics on the

lifetime difference in Bs system. Why would it be worthwhile to perform this exercise,

especially since it is known that ∆Γs is dominated by the on-shell, real intermediate states?

Wouldn’t ∆B = 1 New Physics amplitudes that can potentially affect ∆Γs already show up

3As was argued in Ref. [58], perturbative scale dependence can be further reduced by switching to a
different basis of leading-order operators.
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in the experimental studies of exclusive Bs decays? This is indeed so. However, it might

be difficult to separate New Physics effects from the dominant (but somewhat uncertain)

Standard Model contributions, as theoretical control over soft QCD effects is harder to

achieve in the calculations of exclusive decays despite recent significant advances in this

area [67].

It was recently pointed out that NP contributions can dominate lifetime difference in

D0 − D0 system in the flavor SU(3) limit [68]. In that system this effect can be traced to

the fact that the SM contribution vanishes in that limit. While similar effect does not occur

in Bs mixing, good theoretical control over non-perturbative uncertainties in the calculation

of ∆Γs makes calculations of NP contributions worthwhile. In Bs-system one can show that

∆Ms = 2 |M12| ,

∆Γs =
4Re (M12Γ

∗
12)

∆Ms
. (4.38)

In the Standard Model the phase difference between the mixing amplitude and the dominant

decay amplitudes is arg (−V ∗cbVcs/V ∗tbVts), i.e. essentially zero. If NP contribution has a CP-

violating phase that exceeds that of the Standard Model, one can write, denoting 2ξ =

arg (M12Γ
∗
12),

∆Γs = 2 |Γ12| cos 2ξ. (4.39)

Since in the Standard Model Γ12 is dominated by the b → cc̄s transition, its phase is

negligible. Then, as was pointed out in [61, 62], CP-violating contributions to M12 must

reduce the lifetime difference in Bs-system,

∆Γs = ∆ΓSMs cos 2ξ, (4.40)
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where 2ξ is a CP-violating phase of M12, which is assumed to be dominated by some ∆B = 2

New Physics.

Contrary to CP-violating ∆B = 2 NP contributions to M12, any ∆B = 1 NP amplitudes

can interfere with the Standard Model ones both constructively and destructively, depending

on the model. Since no spectacular NP phases have been observed in Bs mixing, it appears

that M12 is dominated by the Standard Model CP-conserving contribution. In that case, the

phase arg (M12Γ
∗
12) = arg (Γ∗12) = 2ξ′ is dominated by the phase of New Physics contribution

to Γ∗12. In that case

∆Γs = ∆ΓSMs + ∆ΓNPs cos 2ξ′, (4.41)

where ∆ΓNPs is a contribution resulting form the interference of the SM and NP ∆B = 1

operators, which can either enhance or suppress ∆Γs compared to the Standard Model contri-

bution. We shall compute ∆ΓNPs by first employing the generic set of effective operators, and

then specifying to particular extensions of the SM. We shall concentrate on CP-conserving

contributions.

Using the completeness relation the NP contribution to the B0
s -B

0

s lifetime difference

becomes

∆Γs
ΓBs

∣∣∣∣
NP

=
1

MBs
ΓBs

〈Bs|Im T |Bs〉 , (4.42)

where T = i

∫
d4xT

(
H∆B=1
SM (x)H∆B=1

NP (0)
)

.

We represent the generic NP ∆B = 1 Hamiltonian H∆B=1
NP as

H∆B=1
NP =

∑

q,q′

Dqq′
[
C1(µ)Q1 + C2(µ)Q2

]
, (4.43)

Q1 = biΓ1q
′
i qjΓ2sj , Q2 = biΓ1q

′
j qjΓ2si ,
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where the spin matrices Γ1,2 can have an arbitrary Dirac structure, Dqq′ are some New

Physics-generated coefficient functions [68], and C1,2(µ) are Wilson coefficients evaluated at

the energy scale µ. This gives us the following contribution to the lifetime difference:

∆ΓNPs = −8GF

√
2

MBs

∑

qq′

Dqq′V
∗
qbVq′s (K1δijδkl +K2δkjδil)

5∑

m=1

Ij(x, x
′)〈Bs|Oijkl

m |Bs〉. (4.44)

Here i, j, k, l are the color indices, and {Kα} are combinations of Wilson coefficients with

the number of colors Nc = 3,

K1 =
(
C2C2Nc +

(
C2C1 + C2C1

))
, K2 = C1C1 (4.45)

/ The operators Oijkl
m are the following:

Oijkl
1 =

(
b̄iΓ

νγρΓ2sl
) (
b̄kΓ1γρΓνsj

)

Oijkl
2 =

(
b̄iΓ

ν 6 pΓ2sl
) (
b̄kΓ1 6 pΓνsj

)

Oijkl
3 =

(
b̄iΓ

νΓ2sl
) (
b̄kΓ1 6 pΓνsj

)
, (4.46)

Oijkl
4 =

(
b̄iΓ

ν 6 pΓ2sl
) (
b̄kΓ1Γνsj

)

Oijkl
5 =

(
b̄iΓ

νΓ2sl
) (
b̄kΓ1Γνsj

)
,

where 6 p is the b-quark momentum operator. Defining zq ≡ m2
q/m

2
b and zq′ ≡ m2

q′/m
2
b the
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coefficients Ij(zq, zq′) can be written as follows:

I1(zq, zq′) = −k
∗mb

48π

[
1− 2(zq + zq′) + (zq − zq′)2

]
,

I2(zq, zq′) = − k∗

24mbπ

[
1 + (zq + zq′)− 2(zq − zq′)2

]
,

I3(zq, zq′) =
k∗

8π

√
zq [1 + zq′ − zq] , (4.47)

I4(zq, zq′) = − k
∗

8π

√
zq′ [1− zq′ + zq] ,

I5(zq, zq′) =
k∗mb

4π

√
zqzq′ ,

where k∗ = (mb/2) [1− 2(zq + zq′) + (zq − zq′)2]
1/2

. This is the most general formula for

the New Physics contribution to the lifetime difference in Bs mesons. We now look into

two particular examples extensions of the Standard Model, multi-doublet Higgs models and

Left-Right Symmetric Models, that can contribute to ∆Γs.

4.4.1 Multi-Higgs model

One of possible realizations of New Physics is a multi-Higgs doublet model [69]. Many of SM

extensions, particularly the supersymmetric ones, require extended Higgs sector in order to

break additional symmetries of NP down to SU(2)L × U(1) of the Standard Model. These

constructions contain charged Higgs bosons as parts of the extended Higgs sector. These

models provide new flavor-changing interactions mediated by charged Higgs bosons, which

lead to rich low-energy phenomenology [70, 71]. In the low-energy limit, charged Higgs

exchange leads to the following four-fermion interaction [72],

H∆B=1
ChH = −

√
2GF

M2
H

biΓ1q
′
i qjΓ2sj , (4.48)
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where Γi, i = 1, 2, are

Γ1 = mbV
∗
cb cotβPL −mcV

∗
cb tan βPR,

Γ2 = msVcs cotβPR −mcVcs tan βPL, (4.49)

and PL,R = (1 ∓ γ2)/2. Inserting Eq.(4.48) into Eq. (4.44) leads to a contribution to the

lifetime difference (∆Γs/Γs)ChH from three operators with various coefficients,

∆Γs
ΓBs

∣∣∣∣
ChH

=
16G2

Fm
2
b

MBΓBs

(V ∗cbVcs)
2

M2
H

×

×
[
〈Q1〉

(
4K2

√
zsI1 cot2 β + 2(cot2 βm2

b

√
zsI2 −mb

√
zcI4)(K2 −K1)

)

+ 〈Q2〉
(
−2K1

√
zsI1 cot2 β + (cot2 βm2

b

√
zsI2 −mb

√
zcI4)(K2 −K1)

)

+ 〈Q3〉(K1 +K2)
(
zc tan2 βI5 −mb

√
zcI3

)]
. (4.50)

Coefficients Ii ≡ Ii(zc, zc), Ki are defined above, and 〈Qi〉 are

Q1 =
(
biLsiR

) (
bkRskL

)
, 〈Q1〉 = −1

4
f 2
BM

2
B

M2
B

(mb +ms)2

(
2 +

1

Nc

)

Q2 =
(
biRγ

νsiR
) (
bkLγνskL

)
, 〈Q2〉 = −1

2
f 2
BM

2
B

(
1 +

2

Nc

)
, (4.51)

Q3 =
(
biLγ

νsiL
) (
bkLγνskL

)
, 〈Q3〉 =

1

2
f 2
BM

2
B

(
1 +

1

Nc

)
.

For values of MH = 85GeV and cot β = 0.05 [1] we obtain (∆Γs/Γs)ChH ≈ 0.006. This is

about 6% of the Standard Model value, too small to constrain the model from this observable.

The dependence of (∆Γs/Γs)ChH on the mass of the Higgs boson is shown in Fig. 4.4.
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Figure 4.4: Dependence of yChH on the mass of the Higgs
boson. Solid line: tanβ = 20; dashed line: tan β = 10;
dotted line: tan β = 5; dash-dotted line: tanβ = 3.

4.4.2 Left-Right Symmetric Models

One of the puzzling features of the Standard Model is the left-handed structure of the elec-

troweak interactions. A possible extension of the SM, a Left-Right Symmetric Model (LRSM)

assumes the extended SU(2)L × SU(2)R symmetry of the theory, which restores parity at

high energies [73]. While in the simplest realizations of LRSM the right-handed symmetry is

broken at a very high scale, models can be consistently modified to yield WR-bosons whose

masses are not far above 1 TeV range [74]. In this case flavor-changing interaction from

WR-bosons can affect ∆Γs (for a similar effect in D-mixing, see [68]).

In principle, manifest left-right symmetry requires that couplings to left-handed particles

be the same as the ones to the right-handed particles, e.g. gL = gR. This also assumes that

the right-handed CKM matrix V
(R)
ik should be the same as the left-handed CKM matrix Vik.

In this case, kaon mixing constraints exclude MWR
< 1.6 TeV [75] (direct constraints are
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weaker by approximately a factor of two). However, V
(R)
ik could also be quite different from

the Vik, as long as it is still unitary. In this case of non-manifest left-right symmetry the

bounds on MWR
are significantly weaker, MWR

> 0.3 TeV from kaon mixing [76]. To assess

the contribution from WR to ∆Γs, we equate

Dqq′ = V
∗(R)
cb V (R)

cs

G
(R)
F√
2
, Γ1,2 = γµPR (4.52)

in Eq. (4.44) and evaluate the respective operators. Here G
(R)
F /
√

2 = g2
R/8M

(R)2
W , and we as-

sume gR = κgL. In the studies of non-manifest LRSM, we shall also assume κ = 1, 1.5, 2 [77].

At the end, LRSM gives the following contribution to the value of ∆Γs/ΓBs
:

∆Γs
ΓBs

∣∣∣∣
LR

= −V ∗cbVcsV
∗(R)
cb V (R)

cs

2κ2G2
Fm

2
bzc
√

1− 4zc
πMBΓBs

(
MW

M
(R)
W

)2

[C1〈Q2〉 − 2C2〈Q1〉] . (4.53)

The dependence of (∆Γs/ΓBs
)LR on the mass of the WR boson is given in Fig. 4.5. We see

that contrary to the D-meson case [68, 78], Bs-mixing could provide decent constraints on

the values of M
(R)
W . For instance, in a non-manifest LRSM (with relevant V

(R)
ij ≈ 1), κ = 1,

and M
(R)
W = 1 TeV , one obtains (∆Γs/ΓBs

)LR ≃ −0.04 This is a rather large contribution

to ∆Γs, more than a third of the absolute value of the Standard Model contribution and

of the opposite sign. The LRSM contributions for κ > 1 are even larger. As expected, in

the case of manifest LRSM (V
(R)
ij = Vij) the contribution from this model is less marked,

(∆Γs/ΓBs
)LR < 0.002 for M

(R)
W > 800 GeV.
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Figure 4.5: Contributions to ∆Γs/Γs in the Left-Right Symmetric Models.

4.5 Conclusions

We computed the subleading 1/m2
b corrections to the difference in the lifetimes of Bs meson

eigenstate. We showed that they can be parameterized by 13 nonperturbative parameters,

which we denote αi and βi. We adopted the statistical approach for presenting our results

and generate 100000-point probability distributions of the lifetime difference, obtained by

randomly varying our parameters within a ±30% interval around their “factorization” values,

except for the case when the parameters are known from lattice QCD. In this case they are

taken to vary within a 1σ interval as indicated above.

The results are presented in Fig. (4.3). While there is no theoretically-consistent way

to translate the histogram of Fig. 4.3 into numerical predictions for ∆Γs/Γs, we provide an

estimate by taking the width of the distribution Fig. 4.3 at the middle of its height as 1-σ
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variance and position of the maximum of the curve as the most probable value,

∆Γs = 0.072+0.034
−0.030 ps−1,

∆Γs
ΓBs

= 0.104± 0.049, (4.54)

The effects of 1/m2
b corrections to calculations of ∆Γs are shown to be small.

We also investigated ∆B = 1 New Physics contributions to the width difference in the Bs

system. We have shown that these contributions can both enhance or reduce the Standard

Model contribution. We considered the most general four-fermion effective Hamiltonian,

which can be generated by any reasonable extension of the Standard Model and derived its

contribution to ∆Γs. We then evaluated effects of charged Higgses and right-handed W’s on

the lifetime difference. While the contribution of charged Higgs was shown to be negligible

in ∆Γs, LRSM can be constrained with measurement of ∆Γs, provided lattice or QCD sum

rule community provide better estimates of non-perturbative parameters entering the SM

calculation of the width difference in Bs mesons.

Mixing in the heavy meson-antimeson systems is an extremely useful way to probe the

physics Beyond the Standard Model. However, it allows to probe only heavy New Physics

degrees of freedom. The light New Physics (for example certain models of the Dark Matter)

can be tested in the decays of the Standard Model particles. In the next chapter we consider

production of the light Dark Matter in the missing energy decays of the Bs, Bd and D0

mesons.
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Chapter 5

Dark Matter production in heavy

meson decays

5.1 Introduction

The presence of cold Dark Matter (DM) in our universe provides the most natural explanation

for several observational puzzles, from the original measurement of the rotational curves [24]

of galaxies to the observation of background objects in the Bullet Cluster [79] and spectrum

features of the cosmic microwave background (CMB) fluctuations. In the conventional pic-

ture, DM accounts for the majority of mass in our Universe. However, the nature of DM

is still very much a mystery, which could intimately connect astronomical observations with

predictions of various elementary particle theories. Many such theories, with the notable

exception of the Standard Model (SM), predict one or more stable, electrically-neutral par-

ticles in their spectrum [80]. These particles could form all or part of the non-baryonic Dark

Matter in the Universe.

Different models provide different assignments for DM particles’ spin and various windows

for their masses and couplings to luminous matter. In the most popular models DM is

a weakly interacting particle particle with mass set around the electroweak energy scale.

This follows from the experimental measurements of the relic abundance ΩDMh
2 ∼ 0.12 by
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WMAP collaboration [81]

ΩDMh
2 ∼ 〈σannvrel〉−1 ∝ M2

g4
∼ 0.12, (5.1)

where M and g are the mass and the interaction strength associated with DM annihilation

respectively. As one can see, a weakly-interacting massive particle (WIMP) with electroweak-

scale mass naturally gives the result of Eq. (5.1). This, coupled with an observation that very

light DM particles might overclose the Universe (known as the Lee-Weinberg limit [36]) ,

seems to exclude the possibility of the light-mass solution for DM, setting MDM > 2−6 GeV.

A detailed look at this argument reveals that those constraints could be easily avoided,

so even MeV-scale particles can be good DM candidates. For instance, DM could be non-

fermionic [82, 83], in which case the usual suppression of the DM annihilation cross-section

used in setting the Lee-Weinberg limit does not hold. In addition, low energy resonances

could enhance the cross-section without the need for a large coupling constant. Other solu-

tions, which also provide low-mass candidates for DM particles, are also possible [84, 85].

There are many experiments designed to search for both direct interactions of DM with

the detector and indirect evidence of DM annihilations in our galaxy or other galaxies by

looking for the products such as gamma-rays, positrons and antiprotons. Those can in

principle probe low-mass DM. However, direct searches, performed by experiments such as

DAMA and CDMS [6], rely on the measurement of the kinematic recoil of the nuclei in DM

interactions. For cold DM particles, such measurements lose sensitivity with the decreasing

mass of the WIMP as recoil energy becomes smaller [86]. Indirect experiments, such as

HESS [87], are specifically tuned to see large energy secondaries, only possible for weak-scale

WIMPs. The backgrounds for positron and antiproton searches by HEAT and PAMELA

experiments [31] could be prohibitively large at small energies.
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It is well-known that the existing e+e− flavor factories and future super-flavor factories

could provide the perfect opportunity to search for rare processes, especially the ones that

require high purity of the final states. In particular, probes of rare B-decays, such as B →

K(∗)νν, are only possible at those machines. These colliders, where Bq(D) and Bq(D) are

produced in charge and CP-correlated states, have an opportunity to tag the decaying heavy

meson “on the other side,” which provides the charge or CP-identification of the decaying

“signal” B or D meson. In fact, many CP-violating parameters have been measured at

B-factories using this method [88]. It is then possible to perform a similar tag on the

meson decaying to a pair of light DM particles or a pair of DM particles and a photon.

The latter process might become important for some DM models as it eliminates helicity

suppression of the final state1. Moreover, compared to B → K + 6E transitions, where 6E

is missing energy, a massless photon could provide better experimental opportunities for

tagging without reducing the probed parameter space of the DM masses. Finally, searches

for light DM in heavy meson decays could be more sensitive than direct detection and other

experiments, as DM couplings to heavy quarks could be enhanced, as for example happens

in Higgs portal models [89].

We compute branching ratios for the heavy meson states decaying into χsχs and χsχsγ.

Here χs is a DM particle of spin s, which appears as missing energy in a detector. The DM

anti-particle χs may or may not coincide with χs. We shall first consider model-independent

interactions of DM particles of spin-0, spin-1/2, and spin-1 with quarks. In each case we write

the most general effective Hamiltonian coupling DM particles to flavor-changing b→ q (where

q = s(d)) or c → u current and compute B(D) → χsχs(γ) decay rates. We then consider

popular models, already available in the literature, that can generate those processes.

1This is similar to the situation in leptonic decays of B-mesons, where the branching ratios B(B →
µνγ) ≈ B(B → µν) and B(B → eνγ)≫ B(B → eν).
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5.2 Formalism and the Standard Model background

The computation of decay rates for two-body processes Bq(D) → χsχs is a straightforward

task which only requires the knowledge of appropriate B → vacuum matrix elements. We

use conventional parameterization for those,

〈0| bγµq |Bq〉 = 0, 〈0| bq |Bq〉 = 0,

〈0| bγµγ5q |Bq〉 = ifBq
P µ, 〈0| bγ5q |Bq〉 = −i

fBq
M2

Bq

mb +mq

, (5.2)

where P µ is the 4-momentum of heavy meson Bq. Similar formulas can be obtained for D-

meson. In what follows we shall provide relevant derivations for Bq mesons only, but report

results for both Bq and D0-meson decays.

Before computing the relevant DM production rates, let us study the Standard Model

background for the decays with missing energy realized in transitions to νν states. The

Standard Model effective Hamiltonian for Bq(D)→ νν(γ) reads

Heff =
4GF√

2

α

2π sin2 θW

∑

l=e,µ,τ

∑

k

λkX
l(xk)

(
JµQq
) (
νlLγµν

l
L

)
, (5.3)

where JµQq = qLγ
µbL for beauty, and JµQq = uLγ

µcL for charm transitions, and we con-

sider Dirac neutrinos. The functions λkX
l(xk) are relevant combinations of the Cabbibo-

Kobayashi-Maskawa (CKM) factors and Inami-Lim functions. For b → q transitions these

functions are overwhelmingly dominated by the top-quark contribution,

∑

k

λkX
l(xk) = V ∗tqVtbX(xt), with X(xt) =

xt
8

[
xt + 2

xt − 1
+

3(xt − 2)

(xt − 1)2
ln xt

]
(5.4)

and xt = m2
t/M

2
W . Perturbative QCD corrections can be taken into account by the replace-
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ment [90]

X0(xt)→
[
X0(xt) +

αs
4π
X1(xt)

] [
1− αs

3π

(
π2 − 25

4

)]
, (5.5)

where X1(xt) can be found in Ref. [90]. Such a corrections change our estimate by at

most 10%, and therefore are neglected in our analysis. For c → u transitions we keep the

contributions from both internal b and s-quarks, so

∑

k

λkX
l(xk) = V ∗csVusX

l(xs) + V ∗cbVubX
l(xb), with X l(xq) = D(xq, yl)/2 (5.6)

where D(xq, yl) is the Inami-Lim function [91] for yl = m2
l /m

2
W ,

D(xq, yl) =
1

8

xqyl
xq − yl

(
yl − 4

yl − 1

)2

log yl

+
1

8

[
xq

yl − xq

(
xq − 4

xq − 1

)2

+ 1 +
3

(xq − 1)2

]
xq ln xq (5.7)

+
xq
4
− 3

8

(
1 + 3

1

yl − 1

)
xq

xq − 1

Given this, one can easily estimate branching ratios for Bq(D)→ νν decays. One can imme-

diately notice that the left-handed structure of the Hamiltonian should result in helicity sup-

pression of those transitions. Assuming for neutrino masses thatmν ∼
∑

imνi
< 0.62 eV [94],

where mνi
is the mass of one of the neutrinos, we obtain for the branching ratio

B(Bs → νν) =
G2
Fα

2f 2
BM

3
B

16π3 sin4 θWΓBs

|VtbV ∗ts|2X(xt)
2x2

ν ≃ 3.07× 10−24 (5.8)

where xν = mν/MBq
and ΓBs

= ΓBd
= 1/τB is the total width of the Bs meson. With

τB = 1.548 ps we obtain B(Bd → νν) = 1.24 × 10−25. A similar calculation yields

B(D0 → νν) = 1.1× 10−30. Clearly such tiny rates imply that decays of heavy mesons into
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neutrino-antineutrino final states in the Standard Model can be safely neglected as sources

of background in the searches for DM in Bq(D)-decays. This is one of the main differences

between this study and studies of DM production in B → K(∗) + 6E transitions [82].

Helicity suppression in the final state can be overcome by adding a third particle, such

as a photon, to the final state. The calculation of B(D) → ννγ has been done before [95],

so here we simply present an update. The branching ratio for B(D) → ννγ in principle

depends on several form-factors,

〈γ(k)|bγµq|Bq(k + q)〉 = e ǫµνρσǫ
∗νqρkσ

fBV (q2)

MBq

,

〈γ(k)|bγµγ5q|Bq(k + q)〉 = −ie
[
ǫ∗µ (kq)− (ǫ∗q) kµ

] fBA (q2)

MBq

(5.9)

〈γ(k)|bσµνq|Bq(k + q)〉 =
e

M2
Bq

ǫµνλσ
[
Gǫ∗λkσ +Hǫ∗λqσ +N(ǫ∗q)qλkσ

]
(5.10)

G = 4g1, N =
−4

q2
(f1 + g1),

H =
−4(qk)

q2
(f1 + g1) , f1(g1) =

f0(g0)(
1− q2/µ2

f(g)

)2 (5.11)

where f0, g0, µf , µg are known from QCD light-cone sum rules.

Matrix element 〈γ(k)|bσµνγ5q|Bq(k + q)〉 can be obtained using identity [93]:

σµν = − ı
2
ǫµναβσαβγ5

Similar formulas hold for D-decays. It is important to note that only one out of two form-
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factors is independent. Indeed, as it was shown in [100, 101],

fBV (Eγ) = fBA (Eγ) =
fBq

MBq

2Eγ

(
−QqRq +

Qb

mb

)
+O

(
Λ2
QCD

E2
γ

)
≡ fBq

MBq

2Eγ
FBq

, (5.12)

where R−1
q ∼ MBq

−mb, and FBq
= −QqRq + Qb

mb
∼ MBqQb−mb(Qb+Qq)

mb(MBq−mb)
. Qq = Qb = +1/3 are

the electrical charges of q and b-quarks. Similar form factor can be obtained for the D-meson

after a suitable redefinition of quark masses and charges. One-loop QCD corrections to the

Eq. (5.12) can also be computed [102].

The amplitude for Bq(D)→ ννγ transition could be written as

A(Bq → ννγ) =
2eCSM

1 (xt)

MBq

νLγ
µνL ×

[
ǫµνρσǫ

∗νqρkσfBV (q2) + i
[
ǫ∗µ (kq)− (ǫ∗q) kµ

]
fBA (q2)

]
, (5.13)

where CSM
1 (xt) = GFαVtbV

∗
tqX0(xt)/(2

√
2π sin2 θW ) and e is the electric charge. This results

in the photon energy spectrum and branching ratio integrated over all photon energies,

dΓ

dEγ
(Bq → νν̄γ) =

4f 2
Bq
G2
Fα

3

3MBq

∣∣VtbV ∗tqX0(xt)
∣∣2
(

FBq

4π2 sin2 θW

)2

× M2
Bq
Eγ(MBq

+ Eγ)

√
MBq

(1− 4x2)− 2Eγ

MBq
− 2Eγ

(5.14)

B(Bq → νν̄γ) =
2

ΓBq

f 2
Bq
G2
Fα

3M5
Bq

∣∣VtbV ∗tqX0(xt)
∣∣2
(

FBq

12π2 sin2 θW

)2

, (5.15)

where we set xν = 0. Numerically, B(Bs → νν̄γ) = Γ(Bs → νν̄γ)/ΓBs
= 3.68 × 10−8.

Similar results for Bd and D0 mesons are B(Bd → νν̄γ) = 1.96× 10−9 and B(D0 → νν̄γ) =

3.96× 10−14 respectively.

It is important to notice that the approach to rare radiative transitions described above
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works extremely well for SM neutrinos in the final state since Eγ ≫ ΛQCD over most of

the available phase space. It might not be the case for the DM production. In particular,

for mDM ≥ 2 GeV, the photon energy is quite small and corrections to Eq. (5.12) could

become significant. Therefore, our results obtained by using the formalism above should be

corrected, for instance, using heavy meson chiral techniques.

One can see that while the branching ratios for the decays into ννγ final states are orders

of magnitude larger than the corresponding decays into νν final states, they are still way

beyond experimental sensitivities of currently operating detectors. Thus, we conclude that

SM provides no irreducible background to studies of light DM in present experiments.

5.3 Scalar Dark Matter production

5.3.1 Generic effective Hamiltonian and B → χ0χ0(γ) decays

Let us consider the generic case of a complex neutral scalar field χ0 describing the DM and

limit our discussion to effective operators of dimension no more than six. In this case, a

generic effective Hamiltonian has a very simple form,

H(s)
eff = 2

∑

i

C
(s)
i

Λ2
Oi, (5.16)
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where Λ is the scale associated with the particle(s) mediating interactions between the SM

and DM fields, and C
(s)
i are the Wilson coefficients. The effective operators are

O1 = mb(bRqL)(χ∗0χ0),

O2 = mb(bLqR)(χ∗0χ0), (5.17)

O3 = (bLγ
µqL)(χ

∗
0

↔

∂µ χ0),

O4 = (bRγ
µqR)(χ∗0

↔

∂µ χ0),

where
↔

∂= (
→

∂ −
←

∂ )/2. For relevant D-meson decays one should substitute mb → mc and

b → q currents with c → u currents. Operators O3,4 disappear for DM in the form of real

scalar fields. We note that while the generic form of Eq. (5.17) implies that the mediator

of interaction between DM and the SM fields is assumed to be heavy, MΛ > mBq(D), it

is easy to account for the light mediator by substituting C
(s)
i /Λ2 → C̃

(s)
i /(M2

Bq(D) −M2
Λ).

Clearly, a resonant enhancement of the B(D)→ χ0χ0 rate is possible if for some reason the

mediator’s mass happens to be close to MBq(D). If observed, this enhancement would be seen

as anomalously large Wilson coefficients of the effective Hamiltonian of Eq. (5.17).

Let us first compute the B(D) → χ0χ0 transition rate. It follows from Eq. (5.17) that

the decay branching ratio is

B(Bq → χ0χ0) =

(
C

(s)
1 − C

(s)
2

)2

4πMBq
ΓBq

(
fBq

M2
Bq
mb

Λ2(mb +mq)

)2√
1− 4x2

χ (5.18)

where xχ = mχ/MBq
is a rescaled DM mass. Clearly, this rate is not helicity-suppressed, so

it could be quite a sensitive tool to determine DM properties at e+e− flavor factories. The

result for a corresponding D-decay can be obtained via trivial substitution of quark masses,
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widths and decay constants. Computing the decay rate for various values of Dark Matter

masses and comparing it with the experimental results for Bd missing energy decays [97],

B(Bd → 6E) < 2.2× 10−4

B(Bd → 6E + γ) < 4.7× 10−5, (5.19)

we get the following constraints on coupling constants:

(
C

(s)
1 − C

(s)
2

Λ2

)2

≤ 2.03× 10−16 GeV−4 for mχ = 0 (5.20)

(
C

(s)
1 − C

(s)
2

Λ2

)2

≤ 2.07× 10−16 GeV−4 for mχ = 0.1×MBd
(5.21)

(
C

(s)
1 − C

(s)
2

Λ2

)2

≤ 2.22× 10−16 GeV−4 for mχ = 0.2×MBd
(5.22)

(
C

(s)
1 − C

(s)
2

Λ2

)2

≤ 2.54× 10−16 GeV−4 for mχ = 0.3×MBd
(5.23)

(
C

(s)
1 − C

(s)
2

Λ2

)2

≤ 3.39× 10−16 GeV−4 for mχ = 0.4×MBd
(5.24)

These constraints are much stricter than those in [96].

Applying the formalism described above, distribution of the photon energy and decay
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width of radiative decay Bq(D)→ χ∗0χ0γ can be computed,

dΓ

dEγ
(Bq → χ∗0χ0γ) =

f 2
Bq
αC

(s)
3 C

(s)
4

3Λ4

(
FBq

4π

)2 2M2
Bq
Eγ(MBq

(1− 4x2
χ)− 2Eγ)3/2

√
MBq

− 2Eγ
(5.25)

B(Bq → χ∗0χ0γ) =
f 2
Bq
αC

(s)
3 C

(s)
4 M5

Bq

6Λ4ΓBq

(
FBq

4π

)2

(5.26)

×
(

1

6

√
1− 4x2

χ(1− 16x2
χ − 12x4

χ)− 12x4
χ log

2xχ

1 +
√

1− 4x2
χ

)
,

We observe that Eqs. (5.25) and (5.26) do not depend on C
(s)
1,2 . This can be most easily seen

from the fact that Bq(D) → γ form factors of scalar and pseudoscalar currents are zero,

as follows from Eq. (5.9). Computing decay rates for various values of Dark Matter mass

we are able to restrict DM properties based on experimental constraints on Bd decays with

missing energy given in Eq. (5.19):

C
(s)
3

Λ2

C
(s)
4

Λ2
≤ 1.55× 10−12 GeV −4 for m = 0

C
(s)
3

Λ2

C
(s)
4

Λ2
≤ 1.86× 10−12 GeV −4 for m = 0.1×MBd

C
(s)
3

Λ2

C
(s)
4

Λ2
≤ 3.20× 10−12 GeV −4 for m = 0.2×MBd

(5.27)

C
(s)
3

Λ2

C
(s)
4

Λ2
≤ 9.06× 10−12 GeV −4 for m = 0.3×MBd

C
(s)
3

Λ2

C
(s)
4

Λ2
≤ 7.44× 10−11 GeV −4 for m = 0.4×MBd

Note that Eqs. (5.25) and (5.26) depend on C3 and C4, while Eq. (5.18) depends only on C1

and C2. Since the models with self-conjugated DM scalar fields only contain operators O1

and O2, Bq(D) → χ0χ0(γ) transitions could be used to test the structure of the scalar DM

sector.
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5.3.2 Production rates in particular models with scalar DM

In this section we apply the techniques described above for the most general effective Hamil-

tonian for DM particles interacting with the SM fields to particular model implementations

of scalar DM, already available in the literature. The list of models considered below is by

no means exhaustive.

Minimal and next-to-minimal Scalar Dark Matter models

The simplest possible model for scalar DM involves a real scalar field χ0 ≡ S coupled to the

SM particles through the exchange of Higgs boson [82, 107]. This is also a very constrained

model, where the only two new parameters are the mass parameter m0 of the scalar DM

particle S and the Higgs-scalar coupling λ. Nevertheless, it is possible to have light DM in

this model even though it might require some degree of fine-tuning. The SM Lagrangian is

modified by

−LS =
λS
4
S4 +

m2
0

2
S2 + λS2H†H

=
λS
4
S4 +

1

2
(m2

0 + λv2
EW )S2 + λvEWS

2h+
λ

2
S2h2 (5.28)

where H is the Standard Model Higgs doublet, vEW = 246 GeV is the Higgs vacuum ex-

pectation value and h is the corresponding physical Higgs boson. We require S to satisfy

S → −S to make it a good Dark Matter candidate. The scalar DM particle can be made

light by requiring cancellations between the terms defining its mass, m2 = m2
0 + λv2

EW .

The transition B → SS occurs in the minimal model as a one-loop process, and since

mediating Higgs boson is much heavier than other particles involved in the process, it can
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be integrated out. The resulting effective Hamiltonian reads

H(s)
eff =

3λg2
wVtbV

∗
tqxtmb

64M2
Hπ

2
(bLqR)S2, (5.29)

which implies that C
(s)
1,3,4 = 0, C

(s)
2 = 3λg2

wVtbV
∗
tqxt/128π2, and Λ = MH . Thus, from

Eq. (5.18), the branching ratio for the B → SS decay in this model is

B(Bq → SS) =

[
3g2

wVtbV
∗
tqxtmb

128π2

]2 √
1− 4x2

S

16πMBΓBq

(
λ2

M4
H

)(
fBq

M2
Bq

mb +mq

)2

, (5.30)

where xS = mS/mBq
. Note that this rate depends not only on the mass of S but also on

the parameter κ = λ2/M4
H . This parameter also drives the calculation of the relic density of

S [107],

σannvrel =
8v2

EWλ
2

M2
H

× lim
mh∗→2mS

Γh∗X
m∗h

, (5.31)

where Γh∗X is the rate for the decay h∗ → X for a virtual Higgs with MH ∼ 2mS. We can,

therefore, fix κ from the relic density calculation. This gives for the branching ratios of Bq

and D-decays,

B(Bs → SS) ≈
(
4.5× 105 GeV4

)
× λ2

M4
H

√
1− 4x2

S (5.32)

B(Bd → SS) ≈
(
1.3× 104 GeV4

)
× λ2

M4
H

√
1− 4x2

S (5.33)

B(D0 → SS) ≈
(
2.9× 10−6 GeV4

)
× λ2

M4
H

√
1− 4x2

S (5.34)

We require the branching ratios to be smaller than the current experimental upper bound [97]

for the missing energy decay given in Eq. (5.19). With this we are able to put the following
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Figure 5.1: B(Bd → SS) as a function of x = mS/MBd
. Values of λ and Mh were fixed at 1

and 120 GeV respectively
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Figure 5.2: (a) allowed values of the DM-Higgs coupling λ as a function of x = mS/MBd

(below the curves) for the Higgs masses of 110 GeV (red), 120 GeV (green), and 150 GeV
(blue). (b) Allowed values of the Higgs mass in GeV (above the curves) for λ = 0.1 (red), 1
(green), and 5 (blue) as a function of x = mS/MBd

.

restriction onto the parameters of this model:

(
λ

M2
H

)2√
1− 4x2

S ≤ 1.68× 10−7. (5.35)

We present the resulting branching ratios as a function of mχ0
in Fig. 5.1. Comparing the

above branching ratio with the available experimental data we can put constraints on the

parameters of this model, which we present in Fig. 5.2. For the particular values of Dark
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Matter particles mass we get

∣∣∣∣
λ

M2
H

∣∣∣∣ ≤ 8.2× 10−4 GeV−2 for mS = 0

∣∣∣∣
λ

M2
H

∣∣∣∣ ≤ 8.3× 10−4 GeV−2 for mS = 0.1×MBq

∣∣∣∣
λ

M2
H

∣∣∣∣ ≤ 8.6× 10−4 GeV−2 for mS = 0.2×MBq
(5.36)

∣∣∣∣
λ

M2
H

∣∣∣∣ ≤ 9.2× 10−4 GeV−2 for mS = 0.3×MBq

∣∣∣∣
λ

M2
H

∣∣∣∣ ≤ 1.1× 10−3 GeV−2 for mS = 0.1×MBq

The minimal scalar model described above can be made less restricted if we introduce

another mediator for DM-SM interactions, which should somewhat alleviate the fine-tuning

present in the minimal model [107]. This can be done in a variety of ways. The simplest one

is to introduce another Higgs-like field U ,

−LS′ =
λS
4
S4 +

m2
0

2
S2 + (µ1U + µ2U

2)S2 + V (U) + η′U2H†H

=
m2
s

2
S2 +

m2
u

2
u2 + µuS2 + ηvEWuh+ . . . , (5.37)

where we only display mass and relevant interaction terms; ellipses stands for other terms

in the Lagrangian that are irrelevant for this discussion.

Here u denotes the excitation around vacuum expectation value of U , and µ and η are

parameters with values of the order of electroweak scale. As far as the studies of DM produc-

tion in heavy flavor decays are concerned, extended models of this class are equivalent to the

minimal model after suitable redefinition of parameters [107]. Performing such redefinitions,
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we obtain

B(Bs → SS) ≈
(
2.1× 10−4

)
× η2µ2

M4
U

√
1− 4x2

S,

B(Bd → SS) ≈
(
6.3× 10−6

)
× η2µ2

M4
U

√
1− 4x2

S, (5.38)

B(D0 → SS) ≈
(
1.38× 10−14

)
× η2µ2

M4
U

√
1− 4x2

S,

where MU is the mass of the Higgs-like field U of Eq. (5.37). In the results above, the mass

of the Higgs boson was fixed at Mh = 120 GeV. Since the S-field is a real scalar field in both

the minimal and the extended models, these models do not give rise to the radiative decay

Bq → SSγ.

Dark Matter with two Higgs doublets (2HDM)

In this subsection we consider a singlet scalar WIMP S that interacts with two Higgs dou-

blets, Hu and Hd:

−L =
m2

0

2
S2 + λ1S

2(|H0
d |2 + |H−d |2) + λ2S

2(|H0
u|2 + |H+

u |2) + λ3S
2(H−d H

+
u −H0

dH
0
u).(5.39)

We shall assume that λ1 ≫ λ2, as the opposite limit gives results that are not different from

the minimal scalar model considered above. The contribution of λ3 is suppressed because of

the cancellation of two diagrams, as explained in [82].

Calculating the effective Hamiltonian results in the following expressions for the Wilson

coefficients,

C
(s)
2 = C

(s)
1 =

λ1g
2
wVtbV

∗
tqxt(1− at + at log at)

128π2(1− at)2
and Λ = MH , (5.40)

where aq = (mq/MH)2. As in the previous subsection, no decay into dark matter plus photon
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is possible within the framework of this model. However, decay into a pair of dark matter

particles is possible

B(Bs → SS) ≈
(
0.73× 102 GeV4

)
× λ2

1

√
1− 4x2

S

(
at log at − at + 1

M2
H(1− at)2

)2

,

B(Bd → SS) ≈
(
2.1 GeV4

)
× λ2

1

√
1− 4x2

S

(
at log at − at + 1

M2
H(1− at)2

)2

, (5.41)

B(D0 → SS) ≈
(
5.0× 102 GeV4

)
× λ2

1

√
1− 4x2

S

(
∑

q=b,s,d

VuqV
∗
cq

aq log aq − aq + 1

M2
H(1− aq)2

)2

.

Eqs. (5.41) can be used for constraining parameters of this model in Bq → SS transitions.

5.4 Fermionic Dark Matter production

5.4.1 Generic effective Hamiltonian and Bd(s) → χ1/2χ1/2(γ) decays

Let us now consider a generic case of fermionic Dark Matter production. It is possible that

the DM particles have half-integral spin; so many New Physics models, including Minimal

Supersymmetric Standard Model (MSSM), have fermionic DM candidates. However, most

of those models naturally assign rather large masses to their DM candidates. Nevertheless,

either after some fine-tuning of the relevant parameters or after introducing a light DM-SM

mediator, relatively light DM particles are still possible. Let us consider their production in

the decays of heavy mesons. Once again, limiting ourselves to the operators of dimension of

no more than six, a relevant effective Hamiltonian reads

Hf)
eff =

4

Λ2

∑

i

C
(f)
i Qi, (5.42)
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where Ci’s are relevant Wilson coefficients and Λ represents the mass scale relevant for

DM-quark interactions (e.g. mediator mass). In general, there are twelve possible effective

operators,

Q1 = (bLγµsL)(χ1/2L
γµχ1/2L

), Q2 = (bLγµsL)χ1/2R
γµχ1/2R

),

Q3 = (bRγµsR)(χ1/2L
γµχ1/2L

), Q4 = (bRγµsR)(χ1/2R
γµχ1/2R

),

Q5 = (bLsR)(χ1/2L
χ1/2R

), Q6 = (bLsR)(χ1/2R
χ1/2L

), (5.43)

Q7 = (bRsL)(χ1/2L
χ1/2R

), Q8 = (bRsL)(χ1/2R
χ1/2L

),

Q9 = (bLσµνsR)(χ1/2L
σµνχ1/2R

), Q10 = (bLσµνsR)(χ1/2R
σµνχ1/2L

),

Q11 = (bRσµνsL)(χ1/2L
σµνχ1/2R

), Q12 = (bRσµνsL)(χ1/2R
σµνχ1/2L

),

where the Dark Matter fermion χ1/2 can be either of Dirac or Majorana type. The latter

choice leads to some simplification of the basis. All needed matrix elements have been given

in Eq. (5.2). Note that the matrix elements of the tensor operators vanish,

〈0|bσµνPL,Rq|Bq〉 = 0. (5.44)

For relevant D-meson decays one should substitute mb → mc and b→ q currents with c→ u

currents.
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Using the Hamiltonian of Eq. (5.43) we get for the branching ration of Bq → χ1/2χ1/2,

B(Bq → χ1/2χ1/2) =
f 2
Bq
M3

Bq

16πΓBq
Λ2

√
1− 4x2

χ ×
[
C57C68

4M2
Bq
x2
χ

(mb +mq)2
− (C2

57 + C2
68)
M2

Bq
(2x2

χ − 1)

(mb +mq)2
(5.45)

− 2C̃1−8

xχMBq

mb +mq
+ 2(C13 + C24)

2x2
χ

]
,

where we employed short-hand notations for the combinations of Wilson coefficients Cij =

C
(f)
i −C

(f)
j , and C̃1−8 = C13C57 +C24C57 +C13C68 +C24C68. Due to its larger mass chirality

suppression for the GeV-scale Dark Matter is not as severe as for neutrinos, even for purely

left-handed interactions. The result in Eq. 5.45 leads to model-independent constraints on

the Wilson coefficients of Eq. (5.42), which are based on experimental data for missing

energy decays of Bd meson (see, e.g. Eq. (5.19)). They are displayed in Table 5.1. The

upper limits can be used to constrain parameters of particular models of fermionic Dark

Matter considered below.

The technique which we use for the computation of Γ(Bq(D)→ χ1/2χ1/2γ) is very similar

xχ C1/Λ
2 C2/Λ

2, C3/Λ
2, C4/Λ

2, C5/Λ
2, C6/Λ

2, C7/Λ
2, C8/Λ

2,
×108 ×108 ×108 ×108 ×108 ×108 ×108 ×108

GeV−2 GeV−2 GeV−2 GeV−2 GeV−2 GeV−2 GeV−2 GeV−2

0 – – – – 2.3 2.3 2.3 2.3
0.1 19 19 19 19 2.3 2.3 2.3 2.3
0.2 9.7 9.7 9.7 9.7 2.5 2.5 2.5 2.5
0.3 6.9 6.9 6.9 6.9 2.8 2.8 2.8 2.8
0.4 6.0 6.0 6.0 6.0 3.6 3.6 3.6 3.6

Table 5.1: Constraints (upper limits) on the Wilson coefficients of operators of Eq. (5.43)
from the Bq → χ1/2χ1/2 transition. Note that operators Q9 − Q12 give no contribution to
this decay.



73

to the one used for the radiative decay of heavy meson into scalar DM particles discussed

above. The hadronic part of the matrix element remains the same, we only modify the part

that describes Dark Matter. These lead to

dΓ

dEγ
=

dΓ1−8

dEγ
+
dΓ9−12

dEγ
, (5.46)

dΓ1−8

dEγ
=

f 2
Bq
F 2
Bq
αM2

Bq
Eγ

24π2Λ2

√
MBq

(1− 4x2
χ)− 2Eγ

√
MBq

− 2Eγ

×
[
(C2

1 + C2
2 + C2

3 + C2
4 )(MBq

− x2
χMBq

− Eγ)− (5.47)

− (3C1C2 + 3C3C4)x
2
χMBq

]
,

dΓ9−12

dEγ
=

64α

3M2
Bq
π2Λ2

(
E3
γ

MBq
− 2Eγ

) √MBq
(1− 4x2

χ)− 2Eγ
√
MBq

− 2Eγ

×
[
2
(
(C2

10 + 9C11C10 − 3C12C10 + C2
11 − 3C12C11 + 3C9(C10 + C11 + C12))f

2
1

−g1f1(C
2
10 + 3C10(C11 + C12) + C11(C11 + 3C12)− 3C9(C10 + C11 + C12))

+2g2
1(C

2
10 − 6C10C11 + C2

11)
)
x2
χM

2
Bq

+(f 2
1 − g1f1 + 2g2

1)(C
2
10 + C2

11)(M
2
Bq
− 2MBq

Eγ)
]
. (5.48)

While there are many models of light fermionic DM that employ operators Q1 – Q8, we are

not aware of the models with operators Q9 – Q12. Therefore, we chose not to provide a closed

analytic expression for B9−12(Bq → χ1/2χ1/2γ) here due to overall bulkiness of the resulting

expression. The numerical integration of Eq. (5.48) can be performed for a particular model,

if needed. Integrating Eq. (5.48) over the photon energy analytically we obtain

B1−8(Bq → χ1/2χ1/2γ) =
F 2
Bq
f 2
Bq
M2

Bq
α

144π2
√

1− 4x2
χΛ

2
×

[(
C2

1 + C2
2 + C2

3 + C2
4

)
Y (xχ) +

9

2
(C1C2 + C3C4)Z(xχ)

]
, (5.49)
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xχ C1/Λ
2, GeV−2 C2/Λ

2, GeV−2 C3/Λ
2, GeV−2 C4/Λ

2, GeV−2

0 6.3× 10−7 6.3× 10−7 6.3× 10−7 6.3× 10−7

0.1 7.0× 10−7 7.0× 10−7 7.0× 10−7 7.0× 10−7

0.2 9.2× 10−7 9.2× 10−7 9.2× 10−7 9.2× 10−7

0.3 1.5× 10−6 1.5× 10−6 1.5× 10−6 1.5× 10−6

0.4 3.4× 10−6 3.4× 10−6 3.4× 10−6 3.4× 10−6

Table 5.2: Constraints (upper limits) on the Wilson coefficients of operators of Eq. (5.43)
from the Bq → χ1/2χ1/2γ transition. Note that operators Q5 − Q8 give no contribution to
this decay.

where the factors Y (xχ) and Z(xχ) are defined as

Y (xχ) = 1− 2x2
χ + 3x2

χ(3− 6x2
χ + 4x4

χ)
√

1− 4x2
χ log

(
2xχ

1 +
√

1− 4x2
χ

)
−

− 11x4
χ + 12x6

χ,

Z(xχ) = x2
χ

(
1 + 2x2

χ + 8x2
χ(1− x2

χ)
√

1− 4x2
χ log

(
2xχ

1 +
√

1− 4x2
χ

)
+ 8x4

χ

)
.(5.50)

This equation can be used to place constraints on the individual Wilson coefficients of

Eq. (5.43). They are listed in Table 5.2. Both Eq. (5.45) and Eq. (5.49) can now be used to

constrain the parameters of the particular models of fermionic DM.

5.4.2 Production rates in particular models with fermionic DM

Models with hidden valleys

It was pointed out in [103] that there could be light particles called v-quarks interacting with

Standard Model sector via heavy mediator Z ′. In the simplest v-Model, a SU(nv) × U(1)

gauge group with couplings g′ and gv is added to the Standard Model2. The U(1) symmetry

2The g′ coupling constant introduced here is not to be confused with the SM hypercharge coupling
constant.
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is broken by vacuum expectation value of the scalar field 〈φ〉, giving Z ′ a mass of about

1 − 6 TeV. The Z ′ can mix with Standard Model Z via kinetic mixing kF µνF ′µν . In this

model the role of Dark Matter is played by the v-quarks (χ1/2 ≡ v).

The model corresponds to the following set of parameters for the decay of Bs meson (for

decays of Bd and D0 parameters will be similar):

C1 =
GFkg

′MZMZ′α

2gw
√

2 sin2 θW
VtbV

∗
tsX(x), and Λ = MZ′ (5.51)

where k is the kinetic mixing parameter, g′ is a gauge coupling of the Z ′ and v-quarks, and

MZ′ is the mass of the heavy mediator. The rest of the Wilson coefficients Ci are zero. Thus,

from Eq. (5.45),

B(Bs → vv) ≈ (1.76 GeV2)x2
v

√
1− 4x2

v

(
g′k

MZ′

)2

(5.52)

where xv = mv/MBq
. The corresponding results for Bd and D0 decays are

B(Bd → vv) ≈ (4.68× 10−2 GeV2)x2
v

√
1− 4x2

v

(
g′k

MZ′

)2

, (5.53)

and

B(D0 → vv) ≈ (2.68× 10−8 GeV2)x2
v

√
1− 4x2

v

(
g′k

MZ′

)2

, (5.54)

respectively. The corresponding expression for the decay into two v-quarks and photon can

be obtained by defining

C1 =
GFkg

′αMZMZ′

2g
√

2 sin2 θW
VtbV

∗
tqX(x)

e

3
, and Λ = MZ′. (5.55)

We present our results in Fig. 5.3(a) in order to extract the dependence on DM mass. The
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Figure 5.3: (a) B(Bd → vv) as a function of x = mv/MBd
evaluated at g′ = 1, k = 1 and

MZ′ = 1 TeV ; (b) Allowed values of the MZ′ mass in GeV (above the curves) for g1k = 1
(black), 0.1 (red), and 10 (green) as a function of x = mv/MBd

. Solid lines represent the
constraints from the 2-body decay, and the dashed ones – from the 3 body (radiative) decay.
The constraints on the mass of Z ′ are very loose.

analytic results for the branching ratios can be well approximated by the following formulas,

B(Bs → vvγ) ≈ (2.76× 10−4 GeV2)
g2
1k

2

M2
Z′

× Y (xv)√
1− 4x2

v

(5.56)

for the branching ratio of Bs radiative decay and

B(Bd → vvγ) ≈ (9.07× 10−6 GeV2)
g2
1k

2

M2
Z′

× Y (xv)√
1− 4x2

v

, (5.57)

B(D0 → vvγ) ≈ (3.68× 10−12 GeV2)
g2
1k

2

M2
Z′

× Y (xv)√
1− 4x2

v

, (5.58)

for Bd and D0 decays, respectively. The structure function Y (x) appearing in this equation

was defined in Eq. (5.50).

Right-handed massive neutrinos as a Fermionic Dark Matter

Massive right-handed neutrinos appear naturally in left-right symmetric models (see for

example [105]). The see-saw mechanism is used to get light left-handed neutrinos and massive
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right-handed ones. The coupling of the massive neutrino to the SM fields in this case

is mediated by a right-handed gauge boson with mass in the TeV range. In this section

χ1/2 ≡ νR.

Heff =
4G

(R)
F√
2

α

2π sin2 θW

∑

k

λkX(xk)
(
JµQq
)
(νRγµνR) , (5.59)

where JµQq = qRγ
µbR for beauty and JµQq = uRγ

µcR for charm transitions. The func-

tions λkX(xk) are the combinations of the Cabbibo-Kobayashi-Maskawa (CKM) factors and

Inami-Lim functions. G
(R)
F is defined in analogy to the usual Fermi constant,

G
(R)
F√
2

=
g2

8M2
WR

, (5.60)

which implies that

C4 =
g2

8

α

2π sin2 θW
. (5.61)

Following the procedure described above, we obtain the following results for decay branching

ratios,

B(Bs → νRν̄R) ≈ 3.6× 103 GeV4

M4
WR

x2
v

√
1− 4x2

v , (5.62)

B(Bs → νRν̄Rγ) ≈
0.57 GeV4

M4
WR

× Y (xν), (5.63)

B(Bd → νRν̄R) ≈ 102 GeV4

M4
WR

x2
v

√
1− 4x2

v, (5.64)

B(Bd → νRν̄Rγ) ≈
1.9× 10−2 GeV4

M4
WR

× Y (xν), (5.65)

B(D0 → νRν̄R) ≈ 5.6× 10−5 GeV4

M4
WR

x2
v

√
1− 4x2

v, (5.66)

B(D0 → νRν̄Rγ) ≈
7.6× 10−9 GeV4

M4
WR

× Y (xν), (5.67)
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Figure 5.4: (a) B(Bd → νRν̄R) as a function of x = mνR
/MBd

evaluated atMWR
= 1 TeV , (b)

Allowed values of the MWR
mass in GeV (above the curves) as a function of x = mνR

/MBd
.

Solid lines represent the constraints from the 2-body, and the dashed ones – from the 3 body
(radiative) decay. As one can see, the constraints on the mass of WR are very loose.

where Y (x) is defined in Eq. (5.50). These results are also presented in Fig. 5.4.

5.4.3 Majorana fermions

Majorana particles χ1/2 ≡ χ often appear in many models of physics beyond the Standard

Model. For generic studies of decays of heavy mesons to Majorana DM particles we can also

use Lagrangian of Eq. (5.43). The resulting formulas, however, will be simplified due to the

known properties of Majorana fermions [106],

χ̄γµχ = 0,

χ̄σµνχ = 0.

Taking into account the conditions of Eq. (5.68), we can obtain the branching ratio for

Bq → χχ decay,

B(Bq → χχ) =
f 2
Bq
M5

Bq

16πΓBq
(mb +mq)Λ2

√
1− 4x2

χ

[
C2

57 + C2
68 − 2x2(C57 − C68)

2
]
.(5.68)
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The photon energy distribution in Bq → χχγ decay reads

dΓ

dEγ
=

f 2
Bq
F 2
Bq
αM2

Bq
Eγ

48π2Λ2

√
MBq

(1− 4x2
χ)− 2Eγ

√
MBq

− 2Eγ
× (C2

12 + C2
34)(MBq

(1 + 2x2
χ) + Eγ),

(5.69)

which can be integrated over to obtain the branching fraction

B(Bq → χχγ) =
f 2
Bq
F 2
Bq
αM5

Bq

1152π2Λ2
(C2

12 + C2
34)× (5.70)

(
36x2

χ log
2xχ√

1− 4x2
χ + 1

+ (4 + 17x2
χ + 6x4

χ)
√

1− 4x2
χ

)
.

As an example, we consider a realization of the fermionic dark matter scenario proposed

in [82]. In this model the Majorana fermion coupled to a higgs-higgsino pair is considered.

It must be noted that by “higgsino” we mean a fermionic field with the same quantum

numbers as a Higgs field. We, however, do not place any supersymmetric requirements on

the coupling constants. With that,

−Lf =
M

2
ψ̄ψ + µ ¯̃HdH̃u + λdψ̄H̃dHd + λuψ̄H̃uHu, (5.71)

where M ≪ µ, λuvu. The Dark Matter candidate is the lightest mass eigenstate, which we

define as

χ = −ψ cos θ + H̃d sin θ, sin2 θ =
λ2
uv

2
u

λ2
uv

2
u + µ2

m1 = M

(
1− λ2

uv
2
u

λ2
uv

2
u + µ2

)
.
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We are thus led to the following effective Lagrangian,

Leff =
1

2

VtsV
∗
tb tan β

32π2v3
sm

(
λdλuvuµ

λ2
uv

2
u + µ2

)
mbat ln at
(1− at)

(b̄LsR)(χ̄χ), (5.72)

where at = m2
t/M

2
h and tan β = vu/vd. Matching this Lagrangian to Eqs. (5.42, 5.43), we

observe that C5 = C6, and the remaining coefficients Ci = 0. In addition,

C5 = C6 =
VtsV

∗
tb tan b

(16π)2v3
sm

(
λdλuvuµ

λ2
uv

2
u + µ2

)
mbm

2
t ln at

(1− at)
, and Λ = Mh. (5.73)

The effective lagrangian and corresponding Wilson coefficients for decays of Bd and D0

mesons can be obtained after suitable substitution of CKM matrix elements and quark

masses.

Taking into account Eq. (5.70) we conclude that no decay into χχγ is possible in this

particular model. However, a simpler decay into χχ is possible,

B(Bs → χχ) ≈ 1.47× 10−10
√

1− 4x2
χ

log2(at)

(1− at)2

(
tan(β)vuλdλuµ

(v2
uλ

2
u + µ2)

)2

, (5.74)

B(Bd → χχ) ≈ 4.16× 10−12
√

1− 4x2
χ

log2(at)

(1− at)2

(
tan(β)vuλdλuµ

(v2
uλ

2
u + µ2)

)2

, (5.75)

B(D0 → χχ) ≈ 1.81× 10−11
√

1− 4x2
χ

(
tan(β)vuλdλuµ

(v2
uλ

2
u + µ2)

∑

q=b, s, d

VcqV
∗
uq

aq log(aq)

(1− aq)

)2

,

(5.76)

where aq = (mq/MH)2 and xχ = mχ/MBq
. These results can be used to constrain the

parameters of this model.
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Figure 5.5: (a) B(Bd → χχ̄) as a function of x = mχ/MBd
. The following numerical values

were used: κ = (λdλuvuµ)/(λ2
uv

2
u + µ2) = 1, tanβ = 10, Mh = 102 GeV (b) Allowed values

of the κ (above the curves) for the values of of tanβ = 1 (red), 10 (green), 100 (blue),
and 1000 (purple) while mass of Higgs boson was fixed at Mh = 120 GeV as a function of
x = mχ/MBd

.

5.5 Vector Dark Matter production. Generic effective

Hamiltonian and Bq(D
0)→ χ1χ1 decays

Vector DM is a quite popular concept in non-supersymmetric solutions of the hierarchy

problem. In particular, it can be encountered in models with Universal Extra Dimensions

(UED), little Higgs models with T-parity, and some variations of Randall-Sundrum models.

All of the proposed models available in the literature involve weak-scale DM particles. This

however, does not preclude the existence of the low mass vector DM.

Let us consider a generic case of a vector field χµ1 describing Dark Matter. This DM

particle could be either a gauge boson, corresponding to some abelian or non-abelian gauge

symmetry broken at some higher scale, or some composite state. The only assumption that

we shall make is that χ1 is odd under some Z2-type discrete symmetry, χµ1 → −χµ1 . This

condition results in the pair-production of DM particles.

We shall limit our discussion to the effective operators of the dimension no more than

six. Since no gauge symmetry related to χµ1 is present at the scale mQ, the most general
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effective Hamiltonian is built out of the vector field χµ1 and its field strength tensor χµν1 . In

this case, an effective Hamiltonian has a very simple form,

H(v)
eff =

∑

i

C
(v)
i

Λ2
Oi, (5.77)

where Λ is the scale associated with the mass of the particle mediating interactions between

the SM and DM fields, and C
(V )
i are the Wilson coefficients. The effective operators are

O1 = mb(bLqR)χ1µχ
µ
1 , O4 = (bRγµqR)χµν1 χ1ν ,

O2 = mb(bRqL)χ1µχ
µ
1 , O5 = (bLγµqL)χ̃

µν
1 χ1ν , (5.78)

O3 = (bLγµqL)χ
µν
1 χ1ν , O6 = (bRγµqR)χ̃µν1 χ1ν ,

where χ̃µν1 = (1/2)ǫµναβχ1αβ and q = s, d. As before, the Hamiltonian relevant for charmed

meson decays can be obtained by the proper substitution of b → q current with c → u

current.

The Bq(D) → χ1χ1 transition rate can be computed using Eq. (5.78). Using the form-

factors defined in Eq. (5.2), we obtain

B(Bq → χ1χ1) =
f 2
BMm2

b

√
M4

(
1− 4x2

χ

)

256(mb +mq)2πx4
χΓBq

Λ4

[
C2

12

(
1− 4x2

χ + 12x4
χ

)

+ (mb +mq)
2
(
8C2

56

(
1− 4x2

χ

)
+ 3C2

34

)
x4
χ (5.79)

+ 2C12C34(mb +mq)
(
1 + 2x2

χ

)
x2
χ

]
,

where Cik = C
(v)
i − C

(v)
k and xDM = mχ/mBq

. It is necessary to point out that Eq. (5.79) is

divergent at mχ = 0, which is related to the fact that operators in Eq. (5.78) contributing

to the effective Lagrangian are not gauge invariant. Thus, for the case of massless DM the
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xχ C1/Λ
2, C2/Λ

2, C3/Λ
2, C4/Λ

2, C5/Λ
2, C6/Λ

2,
GeV−2 GeV−2 GeV−2 GeV−2 GeV−2 GeV−2

0 0 0 1.4× 10−8 1.4× 10−8 8.9× 10−9 8.9× 10−9

0.1 1.2× 10−9 1.2× 10−9 1.5× 10−8 1.5× 10−8 9.1× 10−9 9.1× 10−9

0.2 5.1× 10−9 5.1× 10−9 1.5× 10−8 1.5× 10−8 1.0× 10−8 1.0× 10−8

0.3 1.3× 10−8 1.3× 10−8 1.6× 10−8 1.6× 10−8 1.2× 10−8 1.2× 10−8

0.4 2.9× 10−8 2.9× 10−8 1.9× 10−8 1.9× 10−8 1.9× 10−8 1.9× 10−8

Table 5.3: Constraints (upper limits) on the Wilson coefficients of operators of Eq. (5.78)
from the Bq → χ1χ1 transition.

upper limit on the Wilson coefficients C
(v)
1 and C

(v)
2 is zero (see Table 5.3).

Using Eq. (5.79), we can place general constraints on the Wilson coefficients of the effec-

tive Hamiltonian describing interactions of vector DM with quarks (see Eq. (5.77)). They

are presented in Table 5.3.

We are not aware of particular models of light DM with spin-1 particles and masses

mχ < 3 GeV. Thus we are unable to test particular models of vector DM.

5.6 Conclusions

We have argued that missing energy decays of the heavy mesons - Bd, Bs and D0 - provide

an important way to probe different properties of Dark Matter. Consideration of different

decay modes - two body decays, radiative and light meson + DM decays - restricts different

regions of the Dark Matter parameter space. Combined constraints obtained from different

decay modes of various heavy mesons provide indispensable probe of physics beyond the

Standard Model in general and the nature of the Dark Matter in particular. For instance,

observation of Bq(D
0)→ γ 6E, but non-observation of Bq(D

0)→ 6E transitions directly point

to non-self-conjugated nature of scalar DM.

We reported general constraints on the Wilson coefficients of the effective operators de-
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scribing interactions of DM with quarks (see Tables I-III). Restrictions obtained in our paper

are much stricter than constraints from single decay modes. Our results combined with con-

straints from astrophysical observables (for example [96]), direct detection of Dark Matter

and invisible decays of heavy hadrons [98] could provide a full set of tools needed to test (or

rule out) the models of light Dark Matter [108].
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Chapter 6

Future developments

There is only one fact that we know for sure about Dark Matter - it exists. However, it

appears, that another semi-definite prediction can be made.

In theoretical studies the effective interaction of DM with Standard Model (SM) fields is

often described in the form of:

Lint =
C

Λn
(DM . . .DM)(SM . . . SM), (6.1)

where ellipses stands for possible combinations of gamma matrices and/or derivatives (de-

pending on type of interacting particles); C is a dimensionless coupling constant and Λ is

a scale of the mediator between DM and SM sector; power n is picked in such a way that

lagrangian would have the correct dimension. This interaction is represented in Fig. 6.1.

It is belived that for various types of SM particles such an interaction could be responsible for

some of the experimental results (for example Fig.6.1(a) can explain the excess of positron

flux in PAMELA data [31], while Fig.6.1(b) might be responsible for DAMA [6] observations

)

It is well-known from nuclear physics that such a point-like interactions correspond to

the δ-function interaction potential which in turn results in shallow bound state between

interacting particles [109]. Properties of resulting resonance state can be determined based

on experimental data for DM-SM annihilation and scattering . Schematically mechanism of
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(a) Dark Matter annihilation diagram (b) Dark Matter scattering diagram

Figure 6.1: Generic DM-SM interaction verteces

Figure 6.2: Dark Matter-SM resonance production

bound state creation is represented on Fig.6.2.

In what follows we consider the interaction of the Scalar DM with particles of spin

S = 0 and S = 1/2. Such a choice of particles interacting with DM is motivated by

following reasons. First of all, PAMELA data for positron excess might be explained by DM

annihilation, thus it is natural to study the possibility of bound state between Dark Matter

and electron (positron). Second of all, difference in results between DAMA and CDMS

experiments can be explained by the fact that germanium (spin S = 0 or S = 9/2 depending

on isotope) and iodine (S = 5/2) will interact with DM differently.

In what follows, we compute properties of bound state formed due to δ-function potential

in the most general case [110]. Using general result we consider the possibility of bound state

between DM and a scalar particle, and DM and a fermion.

As it was mentioned earlier in this chapter, the point-like interaction results in the δ-
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function interaction potential:

H = H0 + V = H0 + λδ(x). (6.2)

Later in this section we shall find the correspondence between potential strength λ and

parameters of Lagrangian describing DM-SM interaction.

Interaction between the Dark Matter and a scalar particle can be presented in the fol-

lowing way:

L = C(s)(φ∗φ)(Φ∗Φ), (6.3)

where φ stands for the scalar DM field. This is the most general lagrangian that can be

written at this order. Here and further in text Φ describes a SM particle (nucleus) with spin

S = 0.

Computing transition matrix elements for DM-nucleus scattering and comparing it with

Born approximation one can get the direct correspondence between strength of the δ-function

potential λ and parameters of the lagrangian (Eq.6.3):

〈f |ıT |i〉 = −ıV (q)(2π)δ(Ef −Ei)→ V (x,y) = λδ(x− y)

λ→ λ(s) =
C(s)

4

1

mM
(6.4)

here M and m stand for DM and scalar particle (nuclei) masses respectively.

In a similar way we consider the interaction of Dark Matter with a SM fermion field.

Lint =
C1

Λ2
m(φ∗φ)(ff) +

C2

Λ2
m(φ∗φ)(fγ5f). (6.5)

Here φ represents scalar Dark Matter field, f(f) is a Standard Model fermion particle (an-
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tiparticle), and m stands for the mass of the SM field. It leads to the following result:

〈f |ıT |i〉 = −ıV (q)(2π)δ(Ef −Ei)

V (x,y) =
2πC1

Λ2
δ(x− y) (6.6)

λ→ λ(f) =
2πC1

Λ2

As one can see, regardless of spin assignment, form of potential obtained here is very

similar. In the next chapter we shall consider creation of the bound state in the generic case

of δ-function potential and then match the general result with one obtained in Eq.6.4 and

Eq.6.6.

6.1 Delta-function potential

From a theoretical point of view, determination of the properties of the resonance means

finding a pole in Green function. The Green function associated with Hamiltonian H and

corresponding to the energy E is defined in the following way:

(E −H)G(E,x,y) = δ(x− y) (6.7)

lim
|x−y|→∞

G(E,x,y) = 0

Separating the Hamiltonian into two parts:

H = H0 + λδ(x)
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we can express Green function for system with interaction (G(x,y)) in terms of Green

function of free particles(G0(x,y)) :

G(x,y) = G0(x,y) + λ
G0(x, 0)G0(0,y)

1− λG0(x,y)
(6.8)

There are no poles in the free particles’ Green function, thus poles (if any) appear in the

second term on the right hand side of Eq.6.8. Therefore in order to find properties of bound

state we must solve the following equation:

1− λG0(x,y) = 0 (6.9)

Computing free Green function using Eq.6.7 we obtain the following equation:

1− λ
∫

d3k

(2π)3

1

E − k2/2µ
= 0, (6.10)

where µ = m1m2/(m1 +m2) is reduced mass of two-body system. Integral is divergent and

needs to be regularized and coupling constant λ needs to be renormalized.

It can be done in several ways. The naive cut-off regularization provides a result that

depends on the cut-off scale Λ(R) :

∫
d3k

(2π)3

1

E − k2/2µ
= Λ(R) −

√
−2µE tan−1 Λ(R)

√−2µE
(6.11)

The cut-off scale needs to be fixed based on experimental data, thus we cannot provide a

prediction for the value of the binding energy in this approach.
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Using the dimensional regularization scheme we obtain [111]:

∫
d3k

(2π)3

1

E − k2/2µ
= − µ

2π
K (6.12)

where K ≡
√
−2µE is the value of momentum corresponding to the binding energy E. As

one can see, this result is not scale dependent. However, one might notice that this result is

finite, while integral in the Eq.6.10 is divergent. Such a situation occurs because dimensional

regularization does not regularize power divergent integrals. This result immediately leads

to the following prediction for the binding energy of the resonant state:

E =
2π2

λ2µ3
(6.13)

One can estimate numerical value of the binding energy obtained in this approach using

constraints onto C1,2 from PAMELA positron flux data [31].

Instead of fitting experimental data using our lagrangian Eq.(6.5) we will use results

already available in the literature. It was reported in [112] that PAMELA positron excess can

be explained by DM annihilation into positrons, and numerical results for thermally averaged

cross-section 〈σv〉 and boost factors were provided. The value of the annihilation cross-

section directly depends on parameters of the lagrangian. Thus after direct computation of

thermally averaged cross-section we can conclude that values of C1,2 are restricted by the

following region:

m2

Λ4
(C2

1 + C2
2) ≈ 170 GeV −2 (6.14)

Since pseudoscalar coupling in lagrangian does not contribute to the creation of bound
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state, in further discussion we will assume that C2 = 0. Thus,

me

Λ2
C1 ≤ 13 GeV −1 (6.15)

Using results from Eqs. (6.14, 6.15, 6.13) one immediately can conclude that DM-electron

bound state should have the following binding energy:

B ≥ 1.1× 104 GeV×
(
me +M

M

)3

(6.16)

One can notice, that dimensionless factor
(
me+M
M

)3
is always greater or equal to 1. It means

that electron-DM bound state should have the binding energy of the order of TeV. Obviously

this result is non physical. Such an unphysical value for two-body system binding energy is

not a new result [109]. This problem can be solved by construction of an effective DM-SM

interaction theory and subsequent introduction of renormalization scheme to regularize the

integral in Eq. 6.10. Similar formalism was developed for the nucleon-nucleon interaction

[111] and in principle can be applied to the computation of the resonant state in our case.

The only definite prediction that can be made at this moment is that DM-SM bound

state should exist. It will explain the various experimental results in a way similar to the

resonant and inelastic Dark Matter models (see for example [43] and [44]) without expansion

of the Dark Matter particle content. Work on this project is in progress, and results are not

available at the moment.
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Chapter 7

Conclusions

Now is an extremely exciting period of time to work in particle physics. New data from LHC

is literally around the corner. Thus all questions about electroweak symmetry breaking and

mass generation can be answered in the nearest future. We are looking forward for the physics

above the TeV scale. What will be there? Supersymmetry? Strings? Extra dimensions?

Answer to this question depends on who you are asking. In fact, all of the mentioned

scenarios are plausible, but none of them is guaranteed.

In the Chapters 4 and 5 I argued that it is possible to indirectly probe the Physics

Beyond the Standard Model using currently available low-energy experimental data. The

most precise available today theoretical prediction for the lifetime difference of Bs−B̄s mesons

was obtained. The possibility of the New Physics contribution to the lifetime difference was

considered and shown that it can be dominating in certain NP scenarios. Three years after

this prediction was made, the D0 collaboration detected signs of the New Physics in the

mixing of B mesons [113] which resulted in the spark of interest to this phenomenon from

theorists [114].

Dark Matter phenomenology is a somewhat special case in the particle physics. In some

sense it is a tabula rasa. One can build as many models as wants that would describe available

experimental data to some extent. In this situation, model independent predictions are of

extreme importance. Results obtained in the Chapter 5 allow us to discriminate between

various DM models before making any additional analysis.
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I think present time can be compared to the beginning of the 20-th century. People

belived that quantum mechanics can explain everything and physics can explain everything.

It turned out that there were new questions that could not be answered in the framework of

quantum mechanics. That’s how development of the quantum field theory started. Some-

what similar situation is observed nowadays. Is it enough to simply extend the Standard

Model or maybe we need to reconsider the quantum field theory approach? I do not think

anyone has definite answer to these questions. I think the research I did during my graduate

studies helped us to approach the answer. I am definitely looking forward to continuing the

research in the particle physics and contributing to our understanding of the Universe.
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LOW ENERGY SEARCH FOR PHYSICS BEYOND THE

STANDARD MODEL

by
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Degree: Doctor of Philosophy

Various approaches to the detection of the physics Beyond the Standard Model were

considered. After discussion of the theoretical aspects of the Standard Model we point out

experimental observations that can not be answered within its framework. Methods for

the inderect detection of the heavy (electroweak scale and above) and light New Physics

particles are discussed. Study of the meson mixing in the Bs system is proposed as the way

to indirectly probe NP. We predict that New Physics contribution to the lifetime difference

of Bs-B̄s system can be dominant in certain scenarios. As an example of the way to detect

the light New Physics we considered the Dark Matter production in the heavy meson decays.

A comprehensive study of light Dark Matter production in heavy meson decays with missing

energy 6E in the final state, such as Bq(D
0) → 6E and Bq(D

0) → γ 6E was provided. It

was argued that such transitions can be studied at the current flavor factories (and future

super-flavor factories) by tagging the missing-energy decays with B(D0) decays “on the other

side.”
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