Off-campus WSU users: To download campus access dissertations, please use the following link to log into our proxy server with your WSU access ID and password, then click the "Off-campus Download" button below.

Non-WSU users: Please talk to your librarian about requesting this dissertation through interlibrary loan.

Access Type

WSU Access

Date of Award

January 2017

Degree Type

Dissertation

Degree Name

Ph.D.

Department

Biomedical Engineering

First Advisor

John Cavanaugh

Abstract

Blast-induced traumatic brain injury (bTBI) is a signature wound of modern warfare. The current incomplete understanding of its injury mechanism impedes the development of strategies for effective protection of bTBI. Despite a considerable amount of experimental animal studies focused on the evaluation of brain neurotrauma caused by blast exposure, there is very limited knowledge on the biomechanical responses of the gyrenecephalic brain subjected to primary free-field blast waves imposed in vivo, and the correlation analysis between the biomechanical responses and its injury outcomes. Such information is crucial to the development of injury criteria of bTBI.

This study aims to evaluate the external and internal mechanical responses of the brain against different levels of blast loading with Yucatan swine in free field, and to conduct correlational studies with brain tissue damage. To better understand primary bTBI, we have implemented an open field experimental model to apply controlled shock waves on swine head. The applied pressure levels of shock waves were predicted by finite element modeling and verified with calibrated testing. Biomechanical responses of primary blasts such as intracranial pressure (ICP), head kinetics, strain rate of skull, were measured in vivo during the blasts. A positive correlation between incident overpressure (IOP) and its corresponding biomechanical responses of the brain was observed. A parallel group of non-instrumented animals were used to collect injury data 72 hours post experiment. Cellular responses governed by primary blasts, such as neuronal degeneration and apoptosis were studied via immunohistochemistry. Representative fluorescent-stained images were examined under microscope. A positive correlation was found between the amount of degenerative neurons and the blast level. Significant elevation of apoptosis was found in the high-level blast. Comparisons between brains with varies ICP readings demonstrate differences of the numbers of neuronal degeneration and apoptosis within the imaged volume. Additionally, comparisons between sections at different locations of the head did not show spatial changes for cellular responses. These metrics provide a pathway for direct connection between the cellular damage and the measured biomechanical responses of the brain within the same experimental model, and could be critical in understanding the mechanisms of bTBI. This experimental data can be used to validate computer models of bTBI.

Off-campus Download

Share

COinS