Access Type

Open Access Dissertation

Date of Award

January 2014

Degree Type


Degree Name



Electrical and Computer Engineering

First Advisor

Caisheng Wang

Second Advisor

Feng Lin


Near 160 million customers in the U.S.A. are served via distribution networks (DNs). The increasing penetration level of renewable energy sources (RES) and plug-in electric vehicles (PEVs), the implementation of smart distribution technologies such as advanced metering/monitoring infrastructure, and the adoption of smart appliances, have changed distribution networks from passive to active. The next-generation of DNs should be efficient and optimized system-wide, highly reliable and robust, and capable of effectively managing highly-penetrated PEVs, RES and other controllable loads. To meet new challenges, the next-generation DNs need active distribution management (ADM).

In this thesis, we study the management of PEVs and RES in active DNs. First, we propose a novel discrete-event modeling method to model PEVs and other loads in distribution networks. In addition, a new optimization algorithm to integrate as many PEVs as possible in DNs without causing voltage issues, including the violation of voltage security ranges and voltage stability, is studied. To further explore the active management of PEVs in the DNs, we develop a universal demonstration platform, consisting of software packages and hardware remote terminal units. The demonstration platform is designed with the capabilities of measurement, monitoring, control, automation, and communications.

Furthermore, we have studied the reactive power management in microgrids, a special platform to integrate distributed generations and energy storage in DNs. To solve possible voltage security issues in a microgrid with high penetration of single-phase induction machines under the condition of fault-induced islanding, a voltage-sensitivity-based reactive power management algorithm is proposed.