Document Type

Technical Report


In this paper we study multiobjective optimization problems with equilibrium constraints (MOECs) described by generalized equations in the form 0 is an element of the set G(x,y) + Q(x,y), where both mappings G and Q are set-valued. Such models particularly arise from certain optimization-related problems governed by variational inequalities and first-order optimality conditions in nondifferentiable programming. We establish verifiable necessary conditions for the general problems under consideration and for their important specifications using modern tools of variational analysis and generalized differentiation. The application of the obtained necessary optimality conditions is illustrated by a numerical example from bilevel programming with convex while nondifferentiable data.

Number in Series



Applied Mathematics | Mathematics


The main part of this research was conducted during of the visit of the second author at Wayne State University as BOYSCAST Fellow. This research was partially supported by the US National Science Foundation under grant DMS-0304989 and DMS-0603846 and by the Australian Research Council under grant DP-04511668.