Abstract
Efron’s (1979) Bootstrap has been shown to be an effective method for statistical estimation and testing. It provides better estimates than normal approximations for studentized means, least square estimates and many other statistics of interest. It can be used to select the active factors - factors that have an effect on the response - in experimental designs. This article shows that the bootstrap can be used to determine sample size or the number of runs required to achieve a certain confidence level in statistical experiments.
DOI
10.22237/jmasm/1367381280
Included in
Applied Statistics Commons, Social and Behavioral Sciences Commons, Statistical Theory Commons