Abstract
The General Piecewise Growth Mixture Model (GPGMM), without losing generality to other fields of study, can answer six crucial research questions regarding children’s word recognition development. Using child word recognition data as an example, this study demonstrates the flexibility and versatility of the GPGMM in investigating growth trajectories that are potentially phasic and heterogeneous. The strengths and limitations of the GPGMM and lessons learned from this hands-on experience are discussed.
DOI
10.22237/jmasm/1304223600
Included in
Applied Statistics Commons, Social and Behavioral Sciences Commons, Statistical Theory Commons