•  
  •  
 

Document Type

Article

Abstract

The hominoid mandibular symphysis has received a great deal of attention from anatomists, human biologists, and paleontologists. Much of this research has focused on functional interpretations of symphyseal shape variation. Here, we examine the two-dimensional cross-sectional shape of the adult mandibular symphysis for 45 humans, 42 chimpanzees, 37 gorillas, and 51 orangutans using eigenshape analysis, an outline-based morphometric approach. Our results demonstrate that a large proportion of the variation described by the first eigenshape correlates with proposed functional adaptations to counteract stresses at the mandibular midline during mastication. Subsequent eigenshapes describe subtle aspects of shape variation in the mandibular symphysis. The morphology associated with these eigenshapes does not conform with functional predictions, nor does it show a relationship with sexual dimorphism. However, eigenshapes provide for considerable taxonomic discrimination between the four taxa studied and may consequently prove useful in the analysis of fossil material. Comparison with elliptical Fourier analysis of the mandibular symphysis identifies eigenshape analysis as providing superior taxonomic discrimination. The results presented here demonstrate that the cross-sectional shape of the mandibular symphysis results from a complex interplay of functional and nonfunctional influences and for the first time identifies and quantifies the specific aspects of variation attributable to these factors.

Share

COinS