Document Type



Overweight and obese children demonstrate inferior motor performance for strength- and power-related activities requiring support or lifting of body weight. Our purpose here was to determine whether the inferior performance could be attributed to a lower strength to muscle area ratio in the obese. Eleven nonobese (16.6% fat) and 13 obese (35.5% fat) boys (9-13 years old) volunteered for the study. Peak torque was measured during voluntary isometric and isokinetic elbow flexion and knee extension at four joint angles and four velocities, respectively. The contractile properties, twitch torque, time to peak torque, and half-relaxation time were evoked for the elbow flexors by percutaneous stimulation. Elbow flexor and knee extensor cross-sectional areas (CSA) were determined by computed axial tomography taken at the mid-upper arm and mid-thigh, respectively. Isometric and isokinetic elbow flexion and knee extension strength normalized for body weight were significantly (p < 0.05) higher in the nonobese compared to the obese boys. There were no significant (p > 0.05) differences, however, between groups for elbow flexor and knee extensor CSA or for absolute and relative (normalized for muscle CSA or the product of muscle CSA and height, the latter accounting for differences in moment arm length) isometric, isokinetic, or evoked twitch torque for elbow flexion or knee extension. Likewise, there were no differences between groups for the timerelated contractile properties, time to peak torque, or half-relaxation time. These findings suggest that there is no difference in the intrinsic strength or contractile properties of the elbow flexor and knee extensor muscles between obese and nonobese pre-adolescent boys and that other factors, such as the handicapping effect of excess fat mass, probably account for the reduced motor performance of the obese child.