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PREFACE 

In this dissertation, I present my work on local field enhancement on demand based on 

hybrid plasmonic-dielectric directional coupler. The first part of the dissertation 

provides a detailed background on basic systems. It discusses the structure, the 

dispersion equation and the existing modes in a dielectric medium, two-layer 

(conductor-dielectric) (CD) system, and three-layer (conductor-gap-dielectric) (CGD) 

system. In the second part of the dissertation, I presented the structure of the conductor-

gap-dielectric-substrate (CGDS) waveguide system. In this part, the design parameters, 

the dispersion equation and the guided modes in the CGDS system are studied. This part 

presents the phenomena of the local field enhancement on demand using the CGDS 

system; where a metal-tip is placed at the desirable location using AFM-style nano-

positioners. In the third part of the dissertation, I presented possible integrated systems 

utilizing the CGDS structure. In the final part of my dissertation, I have presented a 

comprehensive analysis and study of the dispersion equation in the CGDS 

system. 

Chapter 1 begins with an introduction of the electromagnetic description of guided 

modes in basic systems. It describes in details the basic structures: dielectric medium, 

CD system, CGD system. This section provides details about the derivation of the 

dispersion equation, and the modes analysis in each system.  

Chapter 2 introduces the CGDS system, the very subject of this dissertation. It 

provides details about electromagnetic waves description, dispersion relation and 

existing guided modes in the structure.  
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Chapter 3 describes the field exchange and performance analysis in the CGDS 

system. It introduces the concept of local field enhancement on demand in the hybrid 

plasmonic-dielectric (CGDS) system. Chapter 3 also provides details about the amount 

of losses existing in the system. The final part of chapter 2 concludes that the hybrid 

CGDS waveguide made provides strong local field enhancement along with relatively 

low losses due to the short plasmonic coupling length. This explains why the CGDS 

system is an interesting and promising in the field of Nanophotonics and Integrated 

Optics.  

Chapter 4 describes possible Optical Integrated systems utilizing the CGDS 

structure. An example of an overall system is an on-chip optical spectrometer that would 

ultimately measure absorption/emission spectra of individual quantum objects. The 

CGDS system also opens doors to other applications. For instance, biomedical 

applications using the visible spectral range and other applications in the invisible 

spectral range like a communication wavelength at 1550nm. 

Chapter 5 discusses all possible guided modes in the CGDS system. It explains 

why the CGDS is a comprehensive system. It also provides details about that electric 

and magnetic field profiles at any point on the dispersion curves. 

Chapter 6 is a conclusion that summarizes the concept of strong Local field 

enhancement on demand based on the vertical directional coupling between plasmonic 

mode and dielectric mode in the CGDS system. It describes the novelty and importance 

of the dispersion equation in the hybrid CGDS system. Dispersion equation has been 

derived analytically and solved numerically. It discusses some of the possible 
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applications requiring light-matter enhanced interactions in the visible range of 

wavelength spectrum.  

                                                                                          Sincerely 

          Kholod Adhem
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CHAPTER 1 INTRODUCTION TO ELECTROMAGNETIC 

DESCRIPTION OF GUIDED MODES 

The interaction between photons and atoms or molecules determine the 

performance of optical devices [1]. The delocalized nature of photons prevent a single 

photon-atom interaction and hence the efficiency of optical and optoelectronic devices 

have been limited [2]. Many technical solutions to enhance device performance have 

been proposed [3-7]. One key is to come up with a novel structure that exhibits a strong 

light-matter interaction. Controlling light-matter interaction on the nanoscale are 

achieved by many optical nanoantenna structures [8, 9]. For instance; nanoparticle 

optical antenna [10, 11], nanorod optical antenna [12] and nano-bowtie optical antenna 

[13]. Although these types of nanoantennas provide a solution to light-matter 

enhancement problem, the presence of the antenna metal arms affects the very nature of 

the nano-scale object itself.  

Some other approaches use ring resonators in which a metal cavity is placed close 

to the surface of the waveguide [14]. Photons carried by the waveguide is then get 

recycled in the ring cavity for a relatively long time (
4 810 10 ) round trips and 

meanwhile interact with quantum dots placed on the surface of the proposed cavity [15]. 

Although this approach is also solving the problem of light-matter enhancement 

interaction, it is more like a recycling process for the photons. The relatively long time 

the process takes prevents an instantaneous photon-matter interaction. Moreover, the 

dynamic interaction between photons and quantum dots is changing.  
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As of today, there is no technical solution for an instantaneous single photon-

matter interaction without affecting the nature or shape of atoms or molecules. In this 

dissertation work, a nano-focusing technique is presented. The concept of local field 

enhancement on demand allows strong instantaneous photon-matter interaction. The 

novelty of the structure is that the nano-scale metallic tip is approaching the top surface 

of a waveguide only when needed to create a high intensity on-demand electric field. 

This method thus does not affect the shape or nature of atoms placed on the surface of 

a waveguide. 

To study guided modes in optical waveguide structures, we first need to apply 

Maxwell’s equations [16] to the interface of two-layer (conductor-dielectric) system.  

B
E

t


  


,                                                        (1.1) 

e

D
H J

t


  


,                                                   (1.2) 

. eD   ,                                                           (1.3) 

   . 0B  ,                                                             (1.4) 

Where E and H are the electric and magnetic fields due to the external charge and 

current densities e and eJ  respectively. D is the electric flux density and B is the 

magnetic flux density. Using the equations above, one can find the electromagnetic 

wave propagating in a homogeneous, isotropic and non-magnetic medium. In the 

assumption of no external charge and current density, we find, 

2

0 2

D
E

t



  


                                               (1.5) 
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If we assume that the dielectric profile is invariant along the structure, then 

equation above can be written as: 

2
2

2 2
0

E
E

c t

 
  


,                                                       (1.6) 

Where c is the speed of light in vacuum. Assume time dependence for the electric field 

then we can write: 

( , ) ( ) i tE r t E r e  ,                                                  (1.7) 

where  is the angular frequency. Therefore, the wave equation can be written as: 

2 2 0oE k E                                                   (1.8) 

  The above equation is well known as Helmholtz equation, where ok  is the wave 

vector in free space. 

 Electromagnetic Waves in the Dielectric Medium 

Figure (1.1) depicts a dielectric medium with positive real dielectric permittivity 

.  Assume x is the wave propagation direction and no electric or magnetic field variation 

along the y-axis.  

 

Figure 1.1: Planar waveguide structure and x is the direction of the propagating wave. 
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Consider 0z   as the surface of the dielectric medium, the electromagnetic wave 

in the structure can be expressed as follows: 

.
( , , ) ( ) xik x

E x y z E z e ,                                               (1.9) 

where xk  is the x-component of the wave vector. By plugging equation (1.9) into 

Helmholtz equation (1.8), one can find: 

      
2

2 2

2
( ) 0o x

E
k k E

z



  


.                                             (1.10) 

Similarly, the equation for the magnetic field H can be obtained [17, 18]. For a 

TM mode, we only have three components for the electric and magnetic fields (

, ,y x zH E E ). As there is only one magnetic field component when considering TM 

mode, it is always easier to start with the magnetic field expression. The magnetic field 

equation can be written as: 

                                    

2

2 2

2
( ) 0

y

o x y

H
k k H

z



  


,                                         (1.11) 

and electric field components can be expressed as: 

   
0

1 y

x

H
E i

z 


 


                                                (1.12) 

0

x
z y

k
E H

 
                                                      (1.13) 

Similarly, for the TE mode we have only three components for the electric and 

magnetic fields ( , ,y x zE H H ). The equations for the electric and magnetic fields 

becomes: 
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2

2 2

2
( ) 0

y

o x y

E
k k E

z



  


                                   (1.14) 

0

1 y

x

E
H i

z





                                             (1.15) 

0

x
z y

k
H E


                                                   (1.16) 

 Dispersion Equation in the Dielectric Medium 

Dispersion equation is an important relation that contains a lot of information 

about the propagating wave [19]. It is defined as the relationship between the wave 

vector and the angular frequency. Its simplest form in free space is 

                                                             ok
c


 , (1.17)                                                                                                 

where c is the speed of light in free space. For a medium with permittivity d , the wave 

vector becomes o dk k  . Thus, the dispersion equation in a medium with permittivity 

d can be written as: 

dk
c


 ,                                                      (1.18) 

 Electromagnetic Waves in the Conductor-Dielectric System 

Figure (1.2) shows a two-layer system consists of the upper conductor layer (z > 

0) with a complex permittivity ( )c   and a dielectric lower layer (z < 0) with a real 

positive permittivity d . The existing mode at the interface is called the surface plasmon 

polariton (SPP). SPP mode is a TM-polarized mode in nature. To be specific, the 



6 

 

 

propagation direction is along the x-axis and the magnetic field is polarized in the y-

direction.  

 

Figure 1.2: Schematic diagram of the conductor-dielectric structure. 

Here, the structure is variant in the z-direction meaning that the magnetic field 

profile is changing along the z-axis. In this system, we only have one boundary at the 

interface between the conductor and the dielectric at 0z  . The wave vector k  consists 

of its Cartesian components as:  

2 2 2 2 2

x y z ok k k k k    ,                                                (1.19) 

where 
2

ok



  is the wave vector in free space. The magnetic field is not 

changing along the y-axis, we can set 0yk  . The z-component of the wave vector thus 

can be expressed as:  

2 2

z o xk k k   ,                                                       (1.20) 

where 
22 * 2 * 2

x o ok k n k   in which 
* and 

*n are the effective permittivity and 

effective modal index respectively. Therefore, zk can be rewritten as: 
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2*

z ok k n                                                          (1.21) 

For the upper conductor layer, ( 0z  ), the z-component of the wave vector 

becomes: 

22 *

z o ck k n n                                                         (1.22) 

Since *

cn n , the quantity under the square root is negative and the zk  returns an 

imaginary quantity. One can define r as the quantity related to the z-component of the 

wave vector as follows: 

2* 2

o cr k n n                                                         (1.23) 

Finally zk can be written as zk ir  . The normal component of the electric field 

profile in the conductor-dielectric system in also shown in figure (1.2). 

Similarly,
*

dn n , and from equation (1.21) we can define the quantity p as a 

quantity related to the z-component of the wave vector as follows: 

 
2* 2

o dp k n n                                                         (1.24) 

Since the magnetic field will be decaying into the conductor layer as well as into 

the dielectric layer, one can write the magnetic field equations as follows: 

.
( , ) . xik xrz

yH x z Ae e   for z > 0                                (1.25) 

.
( , ) . xik xpz

yH x z Be e    for z < 0                                (1.26) 

Similar equations can be obtained for the x-component of the electric field using

1 y

x

H
E

z




 as follows: 
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.
. xik xrz

c

r
Ae e




                  for z > 0                                    (1.27) 

   
.

. xik xpz

d

p
Be e




                  for z < 0                                     (1.28) 

 Dispersion Equation in the Conductor-Dielectric System 

Solving the equations in the previous section, one can obtain the dispersion 

equation in the two-layer (conductor-dielectric) system. Boundary conditions state that 

tangent components of electric and magnetic fields must be continuous at the interface. 

This means that tE  and tH  are continuous. Since  
1 2t tH H  at 0z   then, 

rz pzAe Be  ,                                                      (1.29) 

And 
1 2t tE E  at 0z   then, 

rz pz

c d

r p
Ae Be

 

  
 .                                              (1.30) 

 Divide equation (1.29) by equation (1.30) 

c d

r p

 
                                                            (1.31) 

We get,                  
2 2* *

c d

o c o dk n k n

 

 


 

                                             (1.32) 

Thus, the dispersion equation for the two-layer system can be written as [20, 21]: 

d c
x o

d c

k k
 

 



                                                    (1.33) 
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 Modes in the Conductor-Dielectric System 

The conductor-dielectric structure supports only plasmonic mode (so-called 

surface plasmon polariton). The plasmonic mode is a TM-polarized mode perpendicular 

to the interface between the conductor and the dielectric layers. The modal index of each 

layer is defined as the square root of the layer permittivity. The modal index is nd  and 

nc for the dielectric and the conductor layers respectively. The effective modal index of 

such a structure can be expressed as: 

cd
spp

cd

n
 

 





,                                               (1.34) 

Where d  and c  are the permittivities of the dielectric and conductor layers 

respectively. It is important to mention that the real part of the effective modal index of 

this structure (Re sppn ) is always greater than the dielectric modal index ( dn ). For 

instance, if λ=0.6328 m, the permittivity of gold at this particular wavelength is 

15.822 1.075c i    [22]. Assume an air dielectric medium with a modal index equals 

to 1.0dn  . The real part of the effective modal index (Re sppn ) using equation (1.34) is 

equal to 1.03301.  Thus, it is slightly larger than 1.0dn  . 

The propagation length is defined as the length the SPP travels before its intensity 

is attenuated to 1/e of its initial value. The propagation length for the dielectric-

conductor structure is given by [23]: 

4 Im( )
p

spp

L
n




 ,                                               (1.35) 
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Using the numerical values above, the SPP propagation length was found to be equal to 

21.4 m. The corresponding propagation loss of SPP is given by: 

4 Im( )
p

sppn



 ,                                               (1.36) 

Similarly, using the same numerical values used above, the propagation loss in the 

conductor-dielectric system is found to be equal to 0.0468 1/m.  

The field penetration depth in the dielectric layer is approximated as [23]: 

2 2

1
( )
2 Re( )spp d

L
d

n n







,                                     (1.37) 

Substituting the above numerical values, the field penetration depth in the 

dielectric layer is found to be equals to 0.388 m. Hence; the penetration depth is 

inversely proportional to the index of the dielectric layer 2(1 / )dn . Thus; for higher-

index materials, the penetration depth is very small. Therefore, the plasmon field will 

be tightly confined to the interface and this is a very desirable case. In a similar manner, 

the field penetration depth in the conductor layer is approximated as [24]: 

2 2

1
( )
2 Re( )spp c

L
c

n n







,                                     (1.38) 

Substituting the same above numerical values one can find the penetration depth 

in the conductor layer to be equal to 0.0244 m. It concludes that for the conductor 

layer, the confined mode is tighter and the field dies much quicker than in the dielectric 

layer. The bottom line is that SPP mode existing at the interface between a conductor 

and a dielectric layers will have high losses due to the imaginary part of the conductor 
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modal index ( cn ). SPP mode will also have strong field confinement when using high-

index materials. 

 Electromagnetic Waves in the Conductor-Gap-Dielectric system 

Figure (1.3) depicts a three-layer (conductor-gap-dielectric) system. The top layer 

is a conductor. The lower layer is a high index dielectric, and the sandwiched layer is a 

low index dielectric layer we call it the gap. Figure (1.3) also depicts the normal 

component of the electric field in the structure.  

Assume the wave propagates in the x-direction. The magnetic field is polarized in 

the y-direction. The structure is variant in the z-direction, meaning that the magnetic 

field profile is changing along the vertical z-axis. 

In this system, we have two boundaries. One between the conductor and the gap 

at gz t . The other boundary is located between the gap and the high-index dielectric 

layer at 0z  . 

 

Figure 1.3:  Schematic diagram of the conductor-gap-dielectric structure depicting the electric field norm. 
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Figure 1.4:  Schematic view of the conductor-gap-dielectric (CGD) system. (a) Slab conductor, (b) Sphere 

conductor, (c) Wedge conductor and (d) Cylindrical conductor. 

Figure (1.4) shows different schematic views for the three-layer system; where 

the conductor layer can be of different shapes: slab, sphere, and wedge or cylindrical. 

These arrangements can tightly confine and guide light in a nanoscale gap far beyond 

the diffraction limit of light.   

The magnetic field equation for the conductor-gap-dielectric system from top to 

bottom can be written as follows: 

( ) .
( , ) g x

r z t ik x

yH x z Ae e
 

                for z > tg                          (1.39) 

   
( ) .

( , ) [ ]g x
q z t ik xqz

yH x z Be Ce e
                  for 0<z < tg                     (1.40) 

.
( , ) xik xpz

yH x z De e                     for z < 0                            (1.41) 

Where r, q, and p are quantities related to the z-component of the wave vector, 

and are defined as follows: 

2* 2

o cr k n n  , 
2* 2

o gq k n n  , 
2* 2

o dp k n n                         (1.42) 

Similar equations can be obtained for the x-component of the electric field using   
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1 y

x

H
E

z




 as follows:                             

( )gr z t

c

r
Ae



 
             for z > tg                           (1.43) 

  
( )

[ ]gq z t qz

g

q
Be Ce



                       for 0<z < tg                     (1.44) 

pz

d

p
De


                    for z < 0                           (1.45) 

 Dispersion Equation in the Conductor-Gap-Dielectric System 

To obtain the dispersion relation for the three-layer system, match boundary 

conditions ( yH  is continuous, and derivative of yH  divided by   is continuous): 

              ( ) (0 )y g y gH z t H z t                                             (1.46) 

(0 ) ( 0)y g yH z t H z                                               (1.47) 

1 1
( ) (0 )

y y

g g

H H
z t z t

z z 

 
   

 
                                    (1.48) 

1 1
(0 ) ( 0)

y y

g

H H
z t z

z z 

 
   

 
                                     (1.49) 

Substituting equations (1.46) through (1.49) into equations (1.39) through (1.45), 

we get: 

gqt
A B Ce


                                                       (1.50) 

gqt
Be C D


                                                       (1.51) 

[ ]gqt

c g

r q
A B Ce

 


                                                 (1.52) 
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[ ]gqt

g d

q p
Be C D

 


                                                  (1.53) 

Solving the four equations (1.50) through (1.53), one can find out the dispersion 

equation for the CGD system as follows: 

( ).( ) ( )( ) 0gqt

g c g d g c g d

q r q p q r q p
e

       


                                (1.54) 

 Modes in the Conductor-Gap-Dielectric (CGD) System 

As mentioned earlier, CGD system structure is composed of a low-index dielectric 

gap with a permittivity g  and a thickness gt . On the top of the gap there is a semi-

infinite conductor layer with a complex permittivity ' "

c i     . Below the gap there 

is a semi-infinite high index dielectric layer with a permittivity of d  . The effective 

modal index becomes CGDn  [25] and it is now a function of the gap thickness. The CGDn

is related to SPPn  as follows: 

0gCGD t

cd
spp

cd

n n
 

 



 


                                     (1.55) 

The modal index CGDn  can be obtained by solving the dispersion equation of the 

CGD system found from the previous section. Obviously, we cannot provide an accurate 

and explicit expression for the effective modal index in the three-layer system because 

the effective modal index term is embedded into the dispersion equation. One can set a 

specific gap layer thickness gt  and use the ’root’ function fzero from Matlab to find the 

exact solutions of the dispersion equation (effective modal indices for the structure). 
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Changing the gap layer thickness will lead to a different solution each time. Therefore, 

one can sweep the gap thickness along a desired range and calculate the CGDn for the 

whole gap range. 

 Conclusion 

The electromagnetic wave equations, the dispersion relation and the guided modes 

in the two-layer (conductor-dielectric) and three-layer (conductor-gap-dielectric) 

systems are presented in details to provide a basic background to introduce the structure 

of the four-layer (conductor-gap-dielectric-substrate) (CGDS) system, the very subject 

of this dissertation. Examples of some numerical calculations for the CD and CGD 

systems are provided to understand some about the theoretical analysis of these basic 

block systems. 



16 

 

 

CHAPTER 2 INTRODUCTION TO THE CONDUCTOR-GAP-

DIELECTRIC-SUBSTRATE SYSTEM 

Massive size mismatch between dimensions of integrated photonic components 

and integrated electronics has been one of the greatest challenges in integrated optics for 

years [26]. Plasmonics provides a solution to this problem. Plasmonic waveguides could 

be used to guide signals that propagate at optical frequencies. Unlike the dielectric 

waveguides, plasmonic waveguides can confine light far beyond the diffraction limit of 

light [27]. However, plasmonic waveguides suffer from high losses due to absorption in 

metal. In contrast, conventional dielectric waveguides, at least in principle, are low-loss 

waveguides. Modern technology requires a structure that offers both high confinement 

and low loss. Thus, the integration of plasmonic-dielectric waveguide directional 

couplers has been a subject of attention to many researchers [28, 29]. 

The concept of local field enhancement using conductor-gap-dielectric-substrate 

(CGDS) waveguide structure is proposed in this work. The mechanism of the CGDS 

works as follows: Light waves are guided by conventional nearly lossless dielectric 

waveguides and, upon demand, they are transformed into highly confined plasmonic 

modes with strong local field enhancement, and get transformed back into low-loss 

dielectric modes. The concept is illustrated by numerical simulations using a 

commercial finite-element package from COMSOL Multiphysics. 

2.1 Literature Review  

Signal routing between plasmonic modes and dielectric modes in plasmonic 

integrated circuits (PIC) has been reported in [30–34]. Currently, strongly confined 
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modes are achieved by many plasmonic waveguide structures such as the slot 

waveguide [35], the dielectric-loaded waveguide [36], the groove waveguide [37] and 

the hybrid waveguide [38]. Many technical solutions have been proposed to develop 

hybrid dielectric-plasmonic structures that would provide high confinement and 

moderate optical losses. As an example, a horizontal directional coupler between a 

plasmonic waveguide and a silicon dielectric waveguide has been reported in [39]. The 

study was to couple light from the dielectric mode of size 297 nm×340 nm to a 

plasmonic mode of a size 200 nm×40 nm. The propagation loss is found to be 0.052 

dB/μm and the associated propagation length is 83 μm at a communication wavelength 

of λ=1550 nm. Vertical directional coupling has also been reported, in which signal 

routing between metal-insulator-metal (MIM) plasmonic waveguide and silicon 

dielectric waveguide was analyzed [40]. It was found that the hybrid coupler was able 

to couple light from the silicon dielectric waveguide with a dimension of 220 nm×260 

nm to the upper arm MIM plasmonic waveguide with dimensions of 200 nm×150 nm. 

The propagation loss was found to be 0.36 dB/m and the corresponding propagation 

length was 12 μm at 1550 nm wavelength. Overall, these studies indicate that the 

tradeoff between the degree of confinement and optical losses can be shifted in one or 

the other direction depending on what is more important for a particular application. 

Some applications, for instance, require that optical signals propagate for relatively 

large distances, on the order of few millimeters on a chip, while critical optical 

interactions are only feasible when the mode size is squeezed far beyond the diffraction 

limit. An example is an on-chip optical spectrometer that would ultimately measure 
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absorption/emission spectra of individual quantum objects, such as large molecules or 

quantum dots. As of now, there is no technical solution for an optical waveguide that 

would meet such demanding requirements. We propose here a concept of local optical 

confinement on demand. In this concept, light mostly is guided by nearly lossless 

dielectric waveguides, but once needed, the optical power of dielectric waveguide is 

transferred, almost completely, to a highly confined plasmonic mode, and then back to 

the dielectric mode. The concept is illustrated by numerical simulations using a 

commercial finite-element package from COMSOL Multiphysics. 

The idea of the vertical directional coupler presented in this dissertation is 

inspired by the integrated optical polarizer device [41]. The functionality of the 

polarizer is to enable one polarization state (transverse magnetic (TM) or transverse 

electric (TE)) to propagate while the other polarization state is eliminated due to high 

propagation loss. Numerous types of waveguide polarizers have been realized over 

many years [42], including, for example, metal-clad waveguides [43]. We only deal with 

TM mode in our analysis throughout this work. In contrast to polarizers, the directional 

coupler used here is designed in such a way that losses are relatively low due to short 

interaction length. 

2.2 Electromagnetic Waves in the Conductor-Gap-Dielectric-

Substrate (CGDS) System 

Figure (2.1) shows a four-layer system. The structure consists of following layers: 

conductor (metal) cover at the top, followed by a low-index dielectric gap, high-index 

dielectric film, and a dielectric substrate. The thickness of the gap layer is gt , and 
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thickness of the dielectric film is dt . The permittivities of the conductor, gap, dielectric 

film and substrate are c , g , d , and s . Cover and substrate are semi-infinite layers. 

The structure is only variant in the z-direction. The layers can be for instance: silver 

(Ag), a gap filled with air, silica-titania (SiO2-TiO2) film, and fused quartz SiO2 

substrate. 

 

Figure 2.1: (a) Schematic view of the conductor-gap-dielectric-substrate (CGDS) structure. (b) Structure 

with magnetic field profile along different layers. 

The structure is a hybrid waveguide that can be thought of as a combination of 

two waveguides. The first waveguide is a plasmonic waveguide formed by a conductor 

and gap layers, while the second waveguide is a high index contrast dielectric 

waveguide formed by the film sandwiched between the gap and the substrate. For a 

small gap thickness, the coupling between these two waveguides is strong. The 

plasmonic mode considered in this system is a TM mode in nature. In a structure with 

flat interfaces made of isotropic materials, it can only couple to TM modes of the 

dielectric film. Theoretical analysis of hybrid plasmonic waveguides has been 

extensively studied in [44]. 
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Modes supported by the structure can be obtained by extending an earlier 

theoretical work on conductor-gap-dielectric waveguide [45, 46] by adding one more 

layer serving as a substrate for the film. The structure thus becomes conductor-gap-

dielectric-substrate system (CGDS). Assuming propagation in the x-direction, the 

expressions for the magnetic yH  field component in all layers from top to bottom can 

be written as follows: 

( ) .
( , ) g d x

r z t t ik x

yH x z Ae e
  

 ,              if z ≥ tg + td                  (2.1) 

( ) ( ) .
( , ) [ ]d d xq z t q z t ik x

yH x z Be Ce e
  

  ,     if td ≤ z ≤ tg + td          (2.2) 

.( ) ( )( , ) [ ] xik xpz pz

yH x z De Ee e  ,      if 0 ≤ z <td              (2.3) 

.
( , ) xik xsz

yH x z Fe e ,                if z < 0                   (2.4) 

In the above equations r, q, p and s are related to the z-components of the wave-

vector, and are given by: 

      
2*

o cr k n   ,   
2*

o gq k n   ,
2*

o dp k n   , 
2*

o ss k n   ,           (2.5) 

where 
*n  is the modal index, and 

2
ok




 is the wave-vector in free space. In a case of 

*

dn  , the p variable in equation (2.5) is pure imaginary quantity and equation (2.3) 

turns in a combination of sin and cos functions. Similar  equations  can  be  obtained  for  

the  x-component  of  the  electric  field  using 
( )1 H zy

E
x zz




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( )g dr z t t

c

r
Ae



  
                                                        (2.6) 

( ) ( )
[ ]g gq z t q z t

g

q
Be Ce



   
                                                (2.7) 

[ ]pz pz

d

p
De Ee



                                                         (2.8) 

sz

s

s
Fe


                                                                (2.9) 

 Dispersion Equation of the Conductor-Gap-Dielectric-Substrate 

(CGDS) System 

By applying appropriate boundary conditions (continuity of ( )yH z  and 

( )1 H zy
E

x zz




  across the interfaces at dz t  and g dz t t  ). The dispersion equation 

for the modes in the CGDS system is found as: 

tanh( )( 1 2) ( 1 2) 0gqt C C A A    ,                                    (2.10) 

where 

1 ( ).( )
c d d s

r p p s
A

   
                                                (2.11) 

2 ( ).( ).exp( 2 . )d

c d d s

r p p s
A p t

   
                                        (2.12) 

1 ( ).( )
g

g d c d s

prq p s
C

q



    
                                         (2.13) 

2 ( ).( ).exp( 2 . )
g

d

g d c d s

prq p s
C p t

q



    
                                 (2.14) 
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2.4 Mode analysis in the Conductor-Gap-Dielectric-Substrate 

(CGDS) System 

We numerically solve equation (2.10) with definitions in equations (2.5), (2.11) 

and (2.14) to find the exact solution for the modal indices 
*n  of the guided modes for 

various gap thicknesses at 632.8 nm wavelength. Various programming languages can 

be used for this purpose; we used the ’root’ function of Mathcad as our choice. We 

compare the values obtained from the analytical method as described above to those 

obtained by the finite-element code, Comsol Multiphysics.  

In Comsol, the following values are entered for the permittivities 

15.822 1.075c i    [22], 3.13d  , 2.1s   and 1.0g   for Ag, SiO2-TiO2, SiO2 

and air at 632.8  nm respectively. The structural parameters selected in the 

simulation: 500dw  nm, 500dt  nm, 760st  nm, 500cw  nm, 304ct  nm and 

17gt  nm. Perfect Electric Conductor boundary conditions (PEC) are applied to all 

boundaries, and an extremely fine free triangular meshing is applied to the whole 

structure. 

The effective indices predicted by the two methods matched well. Figure (2.2) 

provides the values of effective mode indices for the guided modes as a function of gap 

layer thickness gt . The solid lines are obtained by the analytical method [solving 

equation (2.10) using Mathcad], and the points indicate the results from Comsol 

Multiphysics. Although the agreement between the analytical method and Comsol 

Multiphysics is also good in the whole range of gap layer thickness, we only show the 

range from [1 nm-100 nm] from Comsol. 
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Figure 2.2: Modal indices of the two eigenmodes versus gap thickness, materials from top to bottom are 

Ag, air, SiO2-TiO2, and SiO2 at = 632.8 nm respectively. Film thickness= 500nm.  

The dispersion curves in figure (2.2) show the anti-crossing behavior typical for 

coupled modes. The plasmonic mode as such has a dispersion curve with a large 

negative slope. The anticrossing at gt =17 nm, where the difference between the indices 

takes on minimal value, indicates a strong interaction between the mode of the film and 

the plasmonic mode. The minimum modal index difference is depicted in figure (2.2) 

with red dots for each mode. Therefore, gt =17 nm is the gap size to be used in the rest 

of our analysis. 

The CGDS structure with film thickness dt = 500 nm supports two guided modes, 

the fundamental (m = 0), and the first order (m = 1) mode. At large values of gt  (greater 

than 1 m), the guided mode in the CGDS structure becomes the mode of the thin film 

waveguide with gap/substrate claddings. Thus, the modal indices for (m = 0), and (m = 

1) equal to 1.688 and 1.477 respectively satisfy the dispersion equation of the thin film 

waveguide. Using the same notations in equation (2.5), the dispersion equation for the 

TM mode in a thin film waveguide [47] can be rewritten as: 
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                                 1 1. tan ( ) tan ( ) 0,d d
d d

g d s d

q s
p t m

p p

 


 

                              (2.15) 

where 
2*

d o dp k n   is a pure real quantity, and can be written using notation in 

equation (2.5) as dp ip  . 

At small values of gt  (less than 1 nm), the guided mode in the CGDS structure 

becomes the plasmonic mode of the metal-cladding waveguide with conductor/substrate 

claddings. The modal index of the fundamental ( 0m  ) mode becomes the modal index 

of the surface plasmon polariton (SPP) mode at the conductor/dielectric interface and 

can be obtained using [48] 

* 1/2.
Re ( )c d

c d

n
 

 



,                                                 (2.16) 

Using 15.822 1.075c i     [22], and 3.13d  , the real part of the effective modal 

index for (m = 0) is found to be equal to 1.974.  

The first order ( 1m  ) mode is the mode of the dielectric film with 

conductor/substrate claddings. Its modal index equals to 1.642 satisfies the dispersion 

equation of the metal-cladding waveguide. Following the same notations in equation 

(2.5), the dispersion equation for the TM mode for the metal-cladding waveguide [47] 

can be rewritten as [49]: 

1 1. tan ( ) tan ( ) 0,d d
d d

c d s d

r s
p t m

p p

 


 

                                (2.17) 

Note that modal indices found from equations (2.15) and (2.17) match very well 

the limits at gt   and 0gt   found from solving equation (2.10). 
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The plasmonic mode is a combination of the ( 0m  ) and ( 1m  ) supermodes. 

The optimal gap size is calculated such that the minimal modal indices difference 

between 0m  and 1m   occurs. Assume the materials from top to bottom are Ag, air, 

SiO2-TiO2, and SiO2 at 632.8  nm respectively. Film thickness= 500nm. The 

propagation length of the plasmonic mode at the optimal gap size can be estimated 

according to [50]: 

* *

14 Im( )
2

o

o

L
n n








,                                                 (2.18) 

where *

on  and *

1n   the complex modal indices for ( 0m  ) and ( 1m  ) modes 

respectively. At gap thickness gt  equal to 17nm, *

on  is equal to 1.7338 0.0022i  and 

*

1n  equals to1.5843 0.0029i . These values are denoted as red dots in the dispersion 

relation graph in figure (2.2). The propagation length oL is found from equation (2.18) 

to be equal to 19.92 μm.  

Propagation of coupled guided modes is often considered in terms of supermodes 

which are eigenmodes of the entire multilayer structure. Coupling between the film 

mode and the plasmonic mode forms two types of supermodes which later will be 

referred to as TM-quasi-even and TM-quasi-odd modes. They propagate along the 

CGDS structure with different propagation constants. The interference between the 

supermodes results in the electromagnetic field confined mainly to the film or to the 

gap depending on the relative phase of the supermodes. At a distance equal to the 

coupling length Lc, almost all energy of the dielectric film is getting transferred to the 
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gap mode. The coupling length is a measure of the beating length of the two 

eigenmodes, and it can be related to propagation constants by [51]: 

,c

e o

L


 



                                                    (2.19) 

where e  and o  are the propagation constants for the TM-quasi-even and odd 

eigenmodes respectively. 

The propagation constant is related to the modal index as *

on k  . Hence at the 

optimal gap size 17nm, the cL  is equal to 2.1 μm. It concludes that the energy exchange 

between the two waveguides takes place every 2.1 μm, and that the one period is twice 

the coupling length and equals to 4.2 μm. 

2.5 Conclusion 

The electromagnetic wave equations, the dispersion relation, and the guided 

modes in the CGDS system are well presented. Examples of some numerical 

calculations in the structure are provided to add more details to the theoretical analysis 

of the guided modes. This analysis is necessary to introduce the concept of local field 

enhancement on demand using CGDS system in the next chapter.
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CHAPTER 3 CONDUCTOR-GAP-DIELECTRIC-SUBSTRATE 

(CGDS) SYSTEM SIMULATION AND RESULTS 

 Simulation of Modes in the CGDS System 

To be consistent with our numerical analysis of modes supported by the structure 

in figure (2.1), we will assume the conductor layer is of the same width as the width of 

the gap-dielectric-substrate layers. The permittivities used in simulations are 

15.822 1.075c i    [22], 3.13d  , 2.1s   and 1.0g   for Ag, SiO2-TiO2, SiO2 

and air at 632.8  nm respectively.  

 

Figure 3.1: Electric field component of (a) the TM-quasi-even and (c) the TM-quasi-odd modes supported 

by the hybrid coupler. (b) and (d) are corresponding electric field  at y=0.25 m in the y-z plane. 

To guarantee a good coupling between the two waveguides, the following 

structural parameters are selected in the simulation: 500dw  nm, 500dt  nm, 760st 

nm, 500cw  nm, 304ct  nm, and 17gt  nm. Figures (3.1a) and (3.1c) depict the 
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electric field component zE  of the two supermodes supported by the structure at 17gt 

nm. Red line in figures. (3.1a) and (3.1c) at 0.25y  m corresponds to the middle of 

the structure. Figures (3.1b) and (3.1d) provide the zE   profile at 0.25y  m for the 

TM-quasi-even and the TM-quasi-odd modes. It can be seen that for the TM-quasi-even 

mode, the electric field directions in the gap  and in the film are the same while they are 

opposite in the TM-quasi-odd mode, as shown by black arrows. 

3.2 Field Exchange in the CGDS System 

Figure (3.2a) provides the light intensity profile in the x z  plane for 0.25y 

μm as a function of the position x when the dielectric mode is excited first at 0x  . In 

the COMSOL model, this is achieved by a simple excitation of the two supermodes with 

appropriate relative phases. As x increases, the field transfers from the dielectric 

waveguide to the gap plasmonic waveguide gradually owing to the interference of the 

TM-quasi-even and TM-quasi-odd eigenmodes. 

At a distance x  equal to the coupling length cL , almost all the fields transfer to 

the gap mode, then the field transfers back to the film mode at 2 cx L . The coupling 

length 2.1 m found from equation (2.19) matches well the Comsol results as depicted 

in figure (2.2) from the previous chapter. Figure (3.2b) depicts periodic energy exchange 

along the propagation length x  (light intensity in the gap at the surface of the film). 

Graduate decrease of energy from one period to another is consistent with 19.92 μm 

propagation length calculated from equation (2.18). 
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Figure 3.2: (a) Light intensity profile along x−z plane corresponds to y = 0.25 m. (b) Periodic energy 

exchange along the propagation length x. 

The dotted line in figure (3.2b) shows exponential decay of intensity 

corresponding to the loss factor of 0.2 dB/m which can be evaluated from equation 

(2.18). The dashed line shows the level of light intensity at the surface of the dielectric 

film waveguide in absence of the metal tip. For local field enhancement concept, only 

one period is needed to illustrate the light intensity exchange from the dielectric film to 

the nano-gap and then back to the film. 

3.3 3-D Version of the CGDS System 

Figure (3.3) shows a plot for the 3-D version of the structure previously analyzed 

in chapter 2. In addition to the variables gt (gap size) and td (film thickness) introduced 

earlier, figure (3.3) shows other dimensions: st  (substrate thickness), dw  (width of the 

dielectric film and substrate), cw  (width of the conductor). The following structural 

parameters are selected in the simulation: 500dw  nm, 500dt  nm, 760st  nm, 

200cw  nm, 304ct  nm, and 17gt  nm. In Comsol, Perfect Electric Conductor 
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boundary conditions (PEC) are applied to all boundaries and an extremely fine free 

triangular meshing is applied to the whole structure. 

 

Figure 3.3: Schematic diagram of the hybrid directional coupler. The green region denotes SiO2, the red 

region denotes (SiO2-TiO2), and the gray region denotes Ag. x is the light propagation direction. 

The conductor (metal blade) is physically detached from the rest of the structure. 

It can be placed at the desirable location using AFM-style nano-positioners. The 

proposed system thus belongs to the category of tip-enhanced tools [52], which provides 

local, on demand, enhancement of the electromagnetic field at the location of this 

specially designed tip.   

Figures (3.4a) and (3.4b) depict the electric field component zE  of the silica-

titania dielectric mode at 0x   and the corresponding zE  profile at 0.25y  m. The 

simulation figures are obtained from the finite-element-method based commercial 

software Comsol Multiphysics. The obtained modal index 
*n  for the fundamental (

0m  ) silica-titania dielectric mode is 1.685 at 632.8 nm. This value is slightly less 

compared to the modal index evaluated theoretically from equation (2.10) at gt . 

The reason for this difference is the lateral confinement (finite size in the y-direction) 

in the Comsol model. 
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3.4 Comparison Between Before and After Adding Conductor Layer 

 

Figure 3.4: Electric field component zE  of (a) The silica-titania dielectric mode in the y−z plane. (b) The 

corresponding zE  profile at y = 0.25 m along x = 0. (c) Electric field component zE  of the coupled 

mode at gt  = 17 nm and (d) The corresponding electric field zE  profile at y = 0.25 m along x = 0. 

As soon as the silver blade is approaching the top of the structure to form what we 

call CGDS system, the film mode couples to the plasmonic mode supported by the 

bottom surface of the silver blade.  

Figures (3.4c) and (3.4d) depict the electric field component zE  of the coupled 

modes at 0x   along the y z  plane, and the corresponding zE  profile at 0.25y   

m respectively. It is apparent that as soon as the silver blade reached the film surface 

but separated from it by a gap thickness 17nm, the mode mostly confines tightly in the 

gap than in the film. This behavior explains the field enhancement in the nano-sale gap 

layer. 
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3.5 Local Field Enhancement in the CGDS Structure 

Although the concept of energy exchange is well illustrated by the interaction 

between the two guided modes in section (3.2), it does not account for scattering in the 

CGDS structure with finite dimensions of the conductor tip. Below we consider the thin 

film mode ( 0m  ) launched at 0x  , while the 4.2 m wide tip is centered at 17.1x   

m. This film mode has a modal index 
* 1.685n   as was mentioned earlier in the text. 

It propagates freely in the film and once it reaches the metal tip, it interacts with the 

CGDS structure. Not only it couples with the gap mode, but it also scatters in all possible 

directions owing to the sharp corners of the metal tip. 

Figure (3.5a) depicts the relative intensity of light in the x z  plane for 0.25y 

m as a function of the position x when the thin film mode ( 0m  ) is launched at 0x 

. Figure (3.5 b) depicts the local light intensity in the x z  plane at 1.5z   m. It is 

obvious that the intensity in the gap is more than one order of magnitude stronger than 

at the film surface. This is what we refer to as local field enhancement on demand in the 

CGDS structure. 

The interference of guided modes propagating in the waveguide forward and 

backward results in periodical variations in intensity with period equals to 
*/ 2 0.2n

μm. Periodicity of intensity pattern is visible in Figures (3.5a) and (3.5b). Figure (3.5b) 

shows a small depth of intensity modulation in the interference pattern which indicates 

weak reflection in the CGDS structure. 
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Figure 3.5: (a) Relative intensity of light along x − z plane corresponds to y = 0.25 m. (b) Light intensity 

in the gap along the propagation length x. (c) Power flux for the dielectric film mode at the input port (x 

= 0 m) and at the output port (x = 34.2 m). 

Figure (3.5a) shows a drop in the overall intensity level by approximately 1dB. 

This total attenuation is due to both, absorption in metal and scattering by the metal tip. 

Attenuation due to absorption in metal while guided mode propagates under 4.2 m 

wide tip is estimated to be 0.2 dB/m×4.2 m = 0.84 dB. This leaves about 0.16 dB for 

overall scattering. Interference with other scattered waves results in some distortion in 

the modal field also visible in figure (3.5b).  

Figure (3.5c) shows power flux for the dielectric film mode at the input port (x = 0 

m) and at the output port (x = 34.2 m). The units are arbitrary and the power flux for 

the input and output ports are normalized. The value of the power flux at the output port 

drops by 1dB is consistent with figure (3.5a). Port boundary conditions are used to 
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launch the mode into the structure. Perfect Electric Conductor boundary conditions 

(PEC) are applied to the top and bottom boundaries. 

3.6 Multi-Field Enhancement in the CGDS system 

Multiple field enhancement in the CGDS system can be achieved by placing 

multiple metal-tips close to the film surface but separated from the surface by a gap 

layer. Figure (3.6a) depicts the relative intensity of light in the x z  plane for 0.25y 

m as a function of the position x when the thin film mode ( 0m  ) is launched at 0x 

. Figure (3.6b) depicts the multiple local light intensity in the x z  plane at 1.5z   m. 

It is evident that the intensity in the first gap is more than one order of magnitude 

stronger than at the film surface. The intensity in the second and in the third gap 

decreases gradually owing to the ohmic losses and scattering due to the presence of 

metal tips. These enhancement under the metal tips are what we refer to as multiple 

local field enhancement on demand in the CGDS structure. 

Figure (3.6c) shows power flux for the dielectric film mode at x = 9.3 m, x = 

19.3 m and x = 29.3 m. The units are arbitrary, and the power flux for the different 

x-scales are normalized. The power flux for the dielectric film mode at x = 9.3 m is the 

same as the output power flux previously discussed in figure (3.5c). Thus, this power 

flux accounts for almost 80% of the power flux at the input port. Figure (3.6c) shows 

that at x = 29.3 m, the power flux is approximately 58% of the power flux at x = 9.3 

m. Therefore, the output power flux in the multiple field enhanced structure is 0.58

0.8=0.46. This attenuation is translated to 3.37 dB. 
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Figure 3.6: (a) Relative intensity of light along x − z plane corresponds to y = 0.25 m. (b) Light intensity 

in the multiple gaps along the propagation length x. (c) Power flux for the dielectric film mode at x=9.3 

m, x=19.3 m, and x=29 m. 

This concludes that figures (3.6a) and (3.6c) show a drop in the overall intensity 

level by approximately 3.37dB. This total attenuation is due to both, absorption in metal 

and scattering by the metal tip. Attenuation due to absorption in metal while guided 

mode propagates under 4.2 3=12.6m wide tips is estimated to be 0.2 dB/m 4.2 

m 3 = 2.52 dB. This leaves about 0.85 dB for overall scattering. Interference with 

other scattered waves results in some distortion in the modal field also visible in figure 

(3.6b).  
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3.7 Conclusion 

Local field enhancement on demand based on vertical directional coupling 

between film mode and gap plasmonic mode in the CGDS has been proposed and 

investigated using a finite element method simulations. The structure provides strong 

on-demand field enhancement at the surface of the dielectric film waveguide. Multiple 

field enhancement in the CGDS system is also presented. Such a hybrid structure can 

be potentially exploited for developing photonic-plasmonic hybrid functional 

components for signal routing, power splitting, etc. in PICs. This structure is well 

suitable for applications which require light-matter enhanced interactions. In particular, 

it is very useful for biomedical applications where the visible range of wavelength is 

used. 
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CHAPTER 4 APPLICATIONS OF THE CONDUCTOR-GAP-

DIELECTRIC-SUBSTRATE SYSTEM 

4.1 General Applications 

Optical devices using a visible spectral range of wavelength have interesting 

applications in the biomedical field. In this dissertation, we use HeNe laser with a 

wavelength of 632.8nm located in the red zone among the spectrum. Overall the 

applications, we consider those which require high light-matter interaction aiming to 

enhance the interaction between incident photons and nano-scale objects. The task is 

then to study and analyze the characteristics of these nanoparticles regarding of their 

absorption/emission characteristics. Such nano-scale dimension particles in the 

biomedical study can be for example but not limited to DNA, Chromosome, nano-scale 

tumor tissue or artificial nano-scale objects like Quantum dots. 

4.2 Possible System 

The system is an on-chip optical spectrometer that would ultimately measure 

absorption/emission spectra of individual quantum objects or similar objects, such as 

large molecules or quantum dots [53]. 

This dissertation aims to enhance the overall system efficiency and hence improve 

the light-matter interaction. The overall work is a theoretical study integrated with 

numerical simulations based on finite-element method from Comsol Multiphysics to 

simulate an on-demand plasmonic-dielectric hybrid coupler. The focused beam is 

incident on silica-titania (SiO2-TiO2) planar multi-mode waveguide. The waveguide is 

intentionally made of transparent material to fit biomedical optics applications. 
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Figure 4.1: Concept of an integrated optical device for the spectroscopy of a single molecule using local 

field enhancement based on hybrid plasmonic-dielectric waveguide directional coupler. 

Figure (4.1) shows the schematic diagram of a possible system. Light is first 

guided by a planar waveguide but when a tip-enhanced metal is aligned vertically on 

the top of the SiO2-TiO2 waveguide but separated from it by a gap of a nano-scale 

dimension, the energy transfers to the nano-gap. After traveling a distance of several 

micrometers, light energy is transferred back into dielectric mode. The coupling length 

should not exceed a fraction of the decoupled plasmonic propagation length to avoid 

high ohmic losses. The dielectric mode propagates to the end of the planar waveguide 

where a grating is placed to reflect the energy of light to be then captured by a sensor. 

A rich information about emission-absorption spectra of an individual quantum dot 

(QD) or a similar object can be obtained due to a highly enhanced field in the gap. For 

such a system to work appropriately; light intensity coupled back to the dielectric mode 

has to be over 50% of its original value. Different materials and structure arrangements 
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of the hybrid directional coupler could be realized for the use in different applications. 

For instance, conductor can have various shapes. Possible shapes of the conductor layer 

can be, for instance, a blade, a wedge, or a cone shape. The cone and wedge shapes can 

be chosen to provide a variable gap length for the plasmonic mode to enable the study 

of a periodic energy exchange in the hybrid coupler. Also, a conductor with a curved 

surface to provide a variable gap thickness can be used.  

The layers in the CGDS system can be made of different materials (different 

modal indices). Different materials will have a different impact on the CGDS system 

performance regarding mode confinement and coupling. However, our choice was to 

work with transparent materials like silica and silica-titania as they are used to fabricate 

the hybrid waveguides (microscope samples in the biomedical field applications). 

The CGDS system is also compatible to operate at other wavelength scales than 

the HeNe laser (632.8nm). In fact, the impact might be higher for technically more 

relevant wavelengths, like 1550 nm used in telecommunications or the commonly used 

Raman excitation wavelengths of 532 nm or 780 nm. For instance, it is more suitable to 

use the green laser (532nm) as the input power source when studying the 

absorption/emission spectra for artificial nano-scale objects like quantum dots. 

Quantum dots strongly absorb the green laser and emit the red light [54]. One need to 

pay attention that changing the operating wavelength or materials will require tuning to 

the physical parameters to optimize the structure so that it works efficiently. In this 

dissertation, our choice was to use a visible red light (632.8nm) as it is more suitable for 

the applications in the biomedical field.  
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4.3 Advantages of Field Enhancement Of the CGDS Plasmonic Mode 

Over Other Techniques 

Light-matter interaction in nanometer-scale size is a very interesting topic in the 

visible wavelength range [55]. Field enhancement due to optical resonators has been 

extensively studied. Among different proposal structures, the two-dimensional photonic 

crystal cavities are found to be the most desirable configuration as they are the best in 

terms of controlling optical properties. Quantum dots have shown an extreme brightness 

when they are resonant with photonic crystal cavity mode [55, 56]. However, these 

studies indicate that the spectroscopy can only be done at only an extremely narrow 

spectral window about the designed resonant wavelength. Because intensities of the 

nonresonant photons are significantly small, quantum dots spectra analysis is limited to 

the resonance of the cavity. The CGDS plasmonic-dielectric hybrid coupler breaks this 

limitation. The reason is that the field enhancement is not due to the cavity resonance 

rather it is due to CGDS plasmonic mode. Hence, a study of emission-absorption spectra 

of quantum dots can be displayed on a large scale of the wavelength. 

4.4 Conclusion 

CGDS system may be a basic block component to be integrated into various 

optical or optoelectronic devices. The system can operate in visible as well as in 

invisible range of the wavelength spectrum.  The different wavelength or different 

structure materials will highly affect the performance of the device. Therefore, to 

efficiently design the CGDS system, one need to sweep its physical parameters and 

wavelength to get to the optimal system performance. 
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CHAPTER 5 COMPREHENSIVE ANALYSIS OF THE 

DISPERSION EQUATION OF THE CGDS SYSTEM 

5.1  Guided Modes in CGDS with Film Thickness in a Micro-Meter  

Scale 

Figure (5.1) shows the CGDS system consisting of all basic structures. Guided 

modes in the two-layer (conductor-dielectric) and three-layer (conductor-gap-dielectric) 

systems exist in the four-layer (conductor-gap-dielectric-substrate) system. Thus; the 

CGDS system is considered a comprehensive system. The study of the CGDS dispersion 

relation reveals all the information about the guided modes in the two-layer and three-

layer systems. 

 

Figure 5.1: Structure of the CGDS system composed of all basic structures. 
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It should be mentioned that the thicker the dielectric film, the more guided modes 

carried by the system. In chapter 2, we found that the 500 nm dielectric film thickness 

can carry only two guided modes, the fundamental ( 0m  ) and the first order ( 1m  ) 

modes. In this chapter, we will consider a more general case, in which a thicker 

dielectric film is to be used in the dispersion relation analysis of the CGDS system. The 

aim of studying the dispersion relation for such a system is to have a better 

understanding of all possible guided modes in the structure. For instance, a 2μm film 

thickness will now allow six guided modes in the dielectric film. We can name them as 

follows: the fundamental ( 0m  ), the first order ( 1m  ), the second order ( 2m  ), the 

third order ( 3m  ), the fourth order ( 4m  ), and fifth order ( 5m  ) mode. The 

solution of the dispersion equation reveals all possible guided modes in the CGDS 

system. Guided modes in the CGDS system can be divided as follows: 

1. Surface Plasmon Polariton (SPP) guided mode:  this mode exists when the gap 

layer thickness is very small, less than 0.1 nm. In this case, the CGDS system 

converges to a three-layer (conductor-dielectric-substrate) system. SPP mode 

exists at the conductor-dielectric interface will have effective modal index larger 

than the modal index of the dielectric film, i.e  
*

SPP dn n . 

2. Gap guided modes: these guided modes exist when the gap layer is larger than 0.1 

nm. To be specific, when the gap size is between 10nm-100nm, the low-index gap 

layer can highly confine such modes. These modes originally exist in the three-

layer (conductor-gap-dielectric) system. However, in the CGDS system, the 

presence of the substrate layer allows the high-index dielectric film to confine and 
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guide its own mode simultaneously with the gap mode guided by the low-index 

gap layer.  

3. Thin film guided mode: As the gap size gets larger than 100nm, the low-index gap 

is no longer able to confine and guide modes. The dielectric film will be dominant 

in this case. Thin film guided modes will have effective modal indices larger than 

the modal index of the substrate layer but smaller than the modal index of the 

dielectric layer. i.e *

s dn n n  . 

4. The leaky modes: As the name indicates, these modes are no longer guided modes 

rather they are leaky. These modes will have effective modal indices smaller than 

the modal index of the substrate layer. i.e  *

sn n . 

5. Fabry-Perot modes: these modes will have effective modal indices smaller than 

the effective modal index of the two-layer (conductor-gap) system. For instance, 

using same materials in chapter 3, these modes will have effective modal indices 

less than 1.03. 

5.2 Comparison Between Dispersion Relation in the CGD and CGDS 

Systems 

At a very small gap thickness less than 1nm, a three-layer (conductor-dielectric-

substrate) system is so-called Metal-Cladding waveguide. Figure (5.2a) shows a surface 

plot for the dispersion relation in the Metal-Cladding waveguide.  Figure (5.2b) depicts 

all possible guided modes in the system. With a 2 μm film thickness, this system 

supports six modes as shown in figure (5.2b). At a very large gap thickness larger than 

1m, a three-layer (dielectric-gap-substrate) system is so-called Thin-Film waveguide 
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system. Figure (5.3a) shows a surface plot for the dispersion relation in the Thin-Film 

waveguide system. (5.3b)  depicts all possible guided modes in the system. With a 2m 

film thickness, this system supports seven modes as shown in figure (5.3b). Appendix 

A is provided at the end of this dissertation. It contains a Matlab script to plot the 

dispersion relation for the Metal-Cladding and for the Thin-Film waveguides. 

 

Figure 5.2: (a) Dispersion relation surface plot for the Metal-Cladding waveguide. (b) Modes in the Metal-

Cladding waveguide with dielectric layer thickness of 2m. 

 

Figure 5.3: (a) Dispersion relation surface plot for the Thin-Film waveguide. (b) Modes in the Thin-Film 

waveguide with dielectric layer thickness of 2m. 

Figure (5.4) shows some of the possible solutions (modes) of the dispersion 

equation in the CGDS system with film thickness of 2m. These modes are: Plasmonic 
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modes, Metal-Cladding waveguide modes, hybrid modes and Thin-Film waveguide 

modes. For instance, the mode 1.971 at 410gt
  μm is the plasmonic mode of the two-

layer (conductor-dielectric) system which can be calculated using: 

cd
spp

cd

n
 

 





                                                          (5.1) 

The mode 1.033 at 10gt   μm is the plasmonic mode of the two-layer (conductor-

gap) system which can be obtained using: 

g

g

c
spp

c

n
 

 





                                                          (5.2) 

As we are not showing all the solutions of the dispersion relation for the CGDS system, 

we only show the first plasmonic mode 1.971 at 410gt
  μm in figure (5.4). 

 

Figure. 5.4: Modal indices of guided modes versus gap thickness, materials from top to bottom are Ag, 

air, SiO2-TiO2, and SiO2 at = 632.8 nm respectively. Film thickness= 2m.  
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Comparing figures (5.2b) and (5.3b) with the figure (5.4), one can find that the 

modal indices of the CGDS system at 410gt
  are the modal indices for the Metal-

Cladding waveguide with a dielectric layer thickness of 2 μm. Also, the modal indices 

of the CGDS system at 10 μm are the modal indices for the Thin-Film waveguide with 

a dielectric layer thickness of 2 μm.  

5.3 Electromagnetic Field Analysis and Simulation in the CGDS 

System 

The aim of this section is to plot the electric and magnetic field profiles at any 

value of the effective modal index on the dispersion relation graph. The goal is to have 

a complete picture of how the field’s distributions for the guided modes look like in the 

CGDS system. To generate such plots, we can start with magnetic field yH  equations, 

solve for the constants then running a Matlab code to generate the field’s graphs. The 

magnetic field equations to be used here are taken from chapter 2: 

.
( , ) xik xsz

yH x z Fe e ,                    if z < 0.                        (5.3) 

.( ) ( )( , ) [ ] xik xpz pz

yH x z De Ee e  ,      if 0 ≤ z <td.                (5.4) 

( ) ( ) .
( , ) [ ]d d xq z t q z t ik x

yH x z Be Ce e
  

  ,        if td ≤ z ≤ tg + td.          (5.5) 

( ) .
( , ) g d x

r z t t ik x

yH x z Ae e
  

 ,          if z ≥ tg + td.             (5.6) 

Where A, B, C, D, E and F are constants. To find the constants we can assume, 

for instance, that F=1. To find the other constants, match the boundary conditions ( yH  

is continuous, and derivative of yH  divided by   is continuous): we have three 

boundaries here. The first boundary is between the substrate and the dielectric at 0z  . 
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              ( 0) (0 )y y dH z H z t                                                      (5.7) 

(0 ) ( )y d y d g dH z t H t z t t                                                 (5.8) 

 ( ) ( )y d g d y g dH t z t t H z t t                                                 (5.9) 

1 1
( 0) (0 )

y y

d

H H
z z t

z z 

 
   

 
                                          (5.10)                                          

1 1
(0 ) ( )

y y

d d g d

H H
z t t z t t

z z 

 
     

 
                                   (5.11)                                                                             

1 1
( ) ( )

y y

d g d g d

H H
t z t t z t t

z z 

 
     

 
.                                  (5.12) 

Substituting in equations (5.7) and (5.10), the first boundary is at 0z  : 

( ) ( )sz pz pzFe De Ee  ,                                                       (5.13) 

( ) ( )[ ]sz pz pz

s d

s p
Fe De Ee

 

  ,                                            (5.14) 

substitute F=1, and z=0 in equations (5.13) and (5.14), one can get: 

1 D E  ,                                                                 (5.15) 

d

s

s
D E

p




  ,                                                             (5.16) 

solving equations (5.15) with (5.16), one can find D and E as follows: 

1
[1 ]

2

d

s

s
E

p




  ,                                                           (5.17) 

1
1 [1 ]

2

d

s

s
D

p




   .                                                       (5.18) 
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Substituting in equations (5.8) and (5.11). The second boundary is between the 

dielectric and the gap layers at dz t .  

( ) ( )d dpt pt
De Ee B C


                                         (5.19) 

( ) ( )
[ ] [ ]d dpt pt

d g

p q
De Ee B C

 


                                  (5.20) 

Solving equations (5.19) with (5.20) with definitions of D and E from equations 

(5.17) and (5.18), one can find B and C as follows: 

( ) ( )1
[ (1 ) (1 )]

2
d dg gpt pt

d d

p p
B De Ee

q q

 

 


                                (5.21) 

( ) ( )1
[ (1 ) (1 )]

2
d dg gpt pt

d d

p p
C De Ee

q q

 

 


                                (5.22) 

Substituting in equations (5.9) and (5.12). The third boundary is between the gap 

and the conductor layers at d gz t t  .                             

g gqt qt
Be Ce A


                                                    (5.23) 

[ ]g gqt qt

g c

q r
Be Ce A

 

 
                                            (5.24) 

The constant A can be obtained from either equation (5.23) or (5.24). A Matlab 

code available in Appendix B is used to plot the field strengths for any effective modal 

index value in the CGDS system. 

Figure (5.5) depict the field strengths for the fundamental ( 0m  ) mode. Figures 

(5.5a) and (5.5b) shows field strengths at gap thickness 410gt
 μm and *

1 1.971n  . 

This mode is a surface plasmon polariton (SPP) mode. Figures (5.5c) and (5.5d) depict 
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the field strengths at 0.017gt   μm and *

1 1.764n  . This mode is called a Hybrid mode. 

Figures (5.5e) and (5.5f) depict the field strengths at 10gt  μm and *

1 1.764n  . This 

mode is called a Thin-Film waveguide mode. 

 

Figure 5.5: Field Strength, a.u. for the fundamental (m=0) mode. (a) and (b) :
410gt

 μm for 

*

1 1.971n  . (c) and (d) : 0.017gt  μm for  
*

1 1.764n  and (e) and (f) : 10gt  μm for 

*

1 1.764n  . 

Figure (5.6) depict the field strengths for the first order ( 1m  ) mode. Figures 

(5.6a) and (5.6b) are the field strengths at gap thickness 410gt
 μm and *

1 1.763n  . 

Figures (5.6c) and (5.6d) depict the field strengths at 0.017gt  μm and *

1 1.744n  and 
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figures (5.6e) and (5.6f) depict the field strengths at 10gt   μm and *

1 1.744n   

respectively. 

 

Figure 5.6: Field Strength, a.u. for the first order (m=1) mode. (a) and (b): 
410gt

  μm for 
*

1 1.763n    

.(c) and (d): 0.017gt   μm for  
*

1 1.744n  and (e) and (f): 10gt   μm for 
*

1 1.744n  . 

5.4 Conclusion 

CGDS system is a comprehensive system that can confine and guide all possible 

modes that already exist in lower order (CD and CGD) systems. Dispersion relation 
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provides the complete picture for all possible guided modes in the CGDS structure. The 

anti-crossing behavior of guided modes is used to determine the optimal gap layer 

thickness and hence to obtain the strongest coupling between any two supermodes. 

Electromagnetic field distributions for various types of guided modes are depicted. 

Although we have only shown the field strengths for the first two modes, one can use 

the Matlab code in Appendix B to plot the field strengths for higher order guided modes 

in the CGDS system. A Mathcad software (as of my choice) is used to plot the dispersion 

relation of the CGDS system depicted in figure (5.4).
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CHAPTER 6 CONCLUSION 

6.1  Conclusion 

Local field enhancement on demand based on the vertical directional coupling 

between film mode and gap plasmonic mode in conductor-gap-dielectric-substrate 

(CGDS) system has been proposed and investigated using an analytical model 

confirmed by finite element method simulations. The dispersion equation has been 

derived analytically and solved numerically. The structure provides strong on-demand 

field enhancement at the surface of the dielectric film waveguide. Such a hybrid 

structure can be potentially exploited for developing photonic-plasmonic hybrid 

functional components for signal routing, power splitting, etc. in PICs. This structure is 

well suitable for applications which require light-matter enhanced interactions. In 

particular, it is very useful for biomedical applications where the visible range of 

wavelength is used. 
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APPENDIX A MATLAB SCRIPT TO PLOT THE DISPERSION 

RELATION FOR THE METAL-CLADDING AND THIN-

FILM WAVEGUIDES 

% MATLAB code to plot the Dispersion relation for the Metal-Cladding 

waveguide and for the Thin-Film waveguide as a surface plot in 3-D. 

clc 

clear all 

close all  

neffr = [1.4:0.001:1.8];% range of effective modal index 

neffi = [-1e-4:1e-6:1e-4];% range of effective modal index 

eps_d = 1.77^2; %permittivity of dielectric layer (guiding layer) 

eps_s = 1.45^2; %permittivity of substrate layer (lower layer) 

eps_c = -15.822+1.075i; % %permittivity of conductor layer (upper 

layer) 

eps_g = 1; 

d = 2;       %dielectric layer thickness 

wl = 0.6328; %wavelength 

%parameters related to the z-component of the wave vector 

for M = 0:10 

    for m = 1:length(neffr) 

        for n = 1:length(neffi) 

             

            p = (2.*pi./wl).*sqrt( eps_d - (neffr(m) + neffi(n)).^2) ; 

            q1 = (2.*pi./wl).*sqrt((neffr(m) + neffi(n)).^2-eps_c); 

            qq = (2.*pi./wl).*sqrt((neffr(m) + neffi(n)).^2-eps_g); 

            q2 = (2.*pi./wl).*sqrt((neffr(m) + neffi(n)).^2-eps_s); 
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            z1(m,n) = p.*d-atan((eps_d.*q1)./(eps_c.*p))-

atan((eps_d.*q2)./(eps_s.*p))- M.*pi; 

            z2(m,n) = p.*d-atan((eps_d.*qq)./(eps_g.*p))-

atan((eps_d.*q2)./(eps_s.*p))-M.*pi; 

        end 

    end 

    subplot(1,2,1) 

    surf(neffi,neffr,abs(z1)) 

    ylabel('neff real ') 

    xlabel('neff imag') 

    zlabel('Dispersion relation') 

    title('Metal-Cladding waveguide') 

    grid on 

    hold on 

    subplot(1,2,2) 

    surf(neffi,neffr,abs(z2)) 

    ylabel('neff real ') 

    xlabel('neff imag') 

    zlabel('Dispersion relation') 

    title('Thin-Film waveguide') 

    grid on 

    hold off 

end 

hold off 
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APPENDIX B MATLAB SCRIPT TO CALCULATE AND PLOT 

THE ELECTRIC AND MAGNETIC FIELDS AT ANY VALUE OF 

MODAL INDICES ON THE DISPERSION RELATION CURVE 

%Matlab code generated to calculate and to plot the Electric and 

Magnetic fields for any effective modal index value on the dispersion 

relation curve 

 

clc 

clear all 

close all 

% CGDS parameters% 

neff=[1.4:0.001:1.8]; %range of effective modal index 

wl=0.6328; %wavelength of He-Ne Laser 

td=2; %thickness of dielectric layer 

nd=1.77; % modal index of dielectric layer 

ns=1.45; %modal index of substrate layer 

ng=1;    %modal index of gap layer 

nc=0.135+3.98i; %modal index of conductor (silver) layer 

epss=ns^2; %permittivity of substrate 

epsd=nd^2; %permittivity of dielectric 

epsg=ng^2; %permittivity of gap 

epsc=nc^2; %permittivity of conductor 

k0=2*pi/wl; %wave vector of light wave in free space 

% Enter effective modal index and gap layer thickness at which you wish 

to 

% plot the fields 

neff = input('Enter the neff value = '); 
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tg = input('Enter the gap thickness value in micrometers unit = '); 

%related to the z-components of the wavevector% 

s=k0*sqrt(neff^2-epss); 

p=k0*sqrt(neff^2-epsd); 

q=k0*sqrt(neff^2-epsg); 

r=k0*sqrt(neff^2-epsc); 

%The Amplitudes (constants) of the magnetic field equations  H_y(x,z)% 

F=1; 

E=0.5*(1-(s*epsd/(p*epss))); 

D=1-0.5*(1-(s*epsd/(p*epss))); 

B=0.5*((D*exp(p*td)*(1+(p*epsg/(q*epsd))))+(E*exp(-p*td)*(1-

(p*epsg/(q*epsd))))); 

C=0.5*((D*exp(p*td)*(1-(p*epsg/(q*epsd))))+(E*exp(-

p*td)*(1+(p*epsg/(q*epsd))))); 

A=B*exp(q*tg)+C*exp(-q*tg); 

%layers thicknesses from buttom to top; 

z=[-1:0.001:4] 

%Equations of H_y(x,z) and E_z(x,y) in the layers; 

Hy=zeros(size(z)) 

a=(z<=0) 

Hy(a)=F.*exp(s.*z(a)); 

Ez(a)=(1/epss)*(Hy(a)); 

a=(z>0 & z<=2) 

Hy(a)=D.*exp(p.*z(a))+E.*exp(-p.*z(a)); 

Ez(a)=(1/epsd)*(Hy(a)); 

a=(z>2 & z<=(2+tg)) 

%Hg=C.*exp(-q.*(zg-td)); % at very large tg 
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Hy(a)=B.*exp(q.*(z(a)-td))+C.*exp(-q.*(z(a)-td)); 

Ez(a)=(1/epsg)*(Hy(a)); 

a=(z>2+tg) 

Hy(a)=A.*exp(-r.*(z(a)-tg-td)); 

Ez(a)=(1/epsc)*(Hy(a)); 

%plotting field strength 

subplot(1,2,1) 

plot(z,Ez) 

hold on  

xlabel ('z, um'); 

ylabel ('Ez, a.u'); 

%title (' Field strength, a.u.'); 

grid on 

subplot(1,2,2) 

plot(z,Hy) 

xlabel ('z, um'); 

ylabel ('Hy, a.u'); 

grid on 
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ABSTRACT 

LOCAL FIELD ENHANCEMENT ON DEMAND BASED 

ON HYBRID PLASMONIC-DIELECTRIC 

DIRECTIONAL COUPLER 

by 

KHOLOD ADHEM 

December 2016 

Advisor: Dr. Ivan Avrutsky 

Major: Electrical Engineering  

Degree: Doctor of Philosophy 

The concept of local field enhancement using conductor-gap-dielectric-substrate 

(CGDS) waveguide structure is proposed. The dispersion equation is derived 

analytically and solved numerically. The solution of the dispersion equation reveals 

the anti-crossing behavior of coupled modes. The optimal gap layer thickness and 

the coupling length of the guided modes are obtained. The mechanism of the CGDS 

system works as follows: Light waves are guided by conventional low-loss dielectric 

waveguide and, upon demand, they are transformed into a highly confined plasmonic 

mode with a strong local field enhancement, and get transformed back into low-loss 

dielectric mode. As an example, in a representative CGDS structure, the optimal 

plasmonic gap size is 17 nm, the local light intensity is found to be more than one 

order of magnitude stronger than the intensity of the dielectric mode at the film surface. 

The coupling length is only 2.1 m at a wavelength of 632.8 nm. Such a local field 
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confinement on demand is expected to facilitate efficient light-matter interaction in 

integrated photonic devices while minimizing losses typical for plasmonic structures. 
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