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CHAPTER 1 INTRODUCTION

1.1 Brief Background and Introduction

Pseudo-differential operators play important roles in harmonic analysis, several complex
variables, partial differential equations and other branches of modern mathematics. We s-
tudied some types of multilinear and multiparameter Pseudo-differential operators. They
include a class of trilinear Pseudo-differential operators, where the symbols are in the form
of products of Hormader symbols defined on lower dimensions, and we established the Holder
type LP estimates for such operators. Such operators derive from the trilinear Coifman-Meyer
type operators with flag singularities. And we also studied a class of bilinear bi-parameter
Pseudo-differential operators, where the symbols are taken from the general Hérmander class,
and we studied the restriction for the order of the symbols which could imply the Holder type
LP estimates. Such types of operators are motivated by the Calderén-Vaillancourt theorem
in single parameter setting.

Trudinger-Moser inequalities can be treated as the limiting case of the Sobolev em-
beddings. Sharp Trudinger-Moser inequalities on the first order Sobolev spaces and their
analogous Adams inequalities on high order Sobolev spaces play an important role in geo-
metric analysis, partial differential equations and other branches of modern mathematics.
Such geometric inequalities have been studied extensively by many authors in recent years
and there is a vast literature. There are two types of such optimal inequalities: critical and
subcritical sharp inequalities, both are with best constants. Critical sharp inequalities are
under the restriction of the full Sobolev norms for the functions under consideration, while

the subcritical inequalities are under the restriction of the partial Sobolev norms for the



functions under consideration. There are subtle differences between these two type of in-
equalities. Surprisingly, we proved that these critical and subcritical Trudinger-Moser and

Adams inequalities are actually equivalent.

1.2 Trilinear Pseudo-differential Operators with Flag Symbols
Definition 1.1. For n > 1 we denote by M(R™) the set of all bounded symbols m € L>*(R"),
smooth away from the origin and satisfying the classical Marcinkiewcz-Mikhlin-Hormander
condition

1

o*m(€)| < ——
10"m(&)| < G

for every ¢ € R"\{0} and sufficiently many multi-indices «.

Definition 1.2. We define the Fourier transform of a Schwartz function f € S(R") to be

[©)= | J@)e™de.

Definition 1.3. For m > 0, 0 < p,d < 1, we say that a smooth function o(x,§) on R" x R

belongs to the Hormander class SJ if
0300 (2,€)] < Cap(1+ )+l =0l7

for all multi-indices «, 8 and some positive constants C, 3 depending on «, 3.
Definition 1.4. The classical linear Pseudo-differential operators are defined to consist of

operators in the form

~

1)) = [ o8 Fle) e



initially defined for Schwartz class S(R"), where o(z,§) € S7s.
Definition 1.5. For d € N, m > 0, 0 < p,d < 1, we say that a smooth function o(z,&) on

R™ x R belongs to the multilinear Hormander class BSTs if
|3§5§0(x,§)| < Oy p(1 + |g])mtoled=rll

for all multi-indices «, 8 and some positive constants C,, 3 depending on «, 3.
Definition 1.6. The classical trilinear Pseudo-differential operators are initially defined for

Schwartz functions f, g, h € S(R") as

~

T.(f.9.0) = [ o6, FOGIC) - €4 dgand

R3n

for o(z,&,m) € BSRO, where x,&,n,( € R™.
We study the following type of trilinear Pseudo-differential operators with flag type sym-

bols. Let a(x,&,n),b(x,n,() € BSY, be symbols satisfying the conditions

1
(1 +1¢+ Inh)e+?
1
(L+ Inl + I¢])7+

0.0 Opalw, & )] <

1040, 00b(x,n, )] S
for every z,&,n,( € R and sufficiently many indices «, § and ~, define the operator

Tu(f,9,h)(w) := /R a(@, & mble,n, Q) f(€)gmh(Qerm = dedndc.

We established its Holder’s type LP estimate for such operators Ty,(f, g, h).



Theorem 1.7. The operator T,, defined as 18 bounded from LP* x LP2 x LP3 to L"
for 1 < p1,p2,ps < oo with 1/p1 + 1/ps + 1/ps = 1/r and 0 < r < oo, provided that
(p1,p2) # (00,00) and (pz, ps) # (00, 00).

The idea of the proof is to reduce the trilinear Pseudo-differential operator with the
symbol of flag type to a localized version and takes advantage of the flag paraproducts
from Muscalu’s work [72] on the L? estimates for the Fourier multipliers with symbols of flag
singularities.

The work of such types of operators are motivated by the following trilinear Coifman-
Meyer type operator with flag singularities studied by C. Muscalu 72|, where the multiplier

involved is a product of two symbols and has flag singularities.

1.3 Bi-parameter and Bilinear Calderén-Vaillancourt Theorem

Then we introduce the bi-parameter Pseudo-differential operators with the symbols taken
from the Hormander class BSyy. In the single parameter case, the following operator has
been studied by Miyachi and Tomita in [70]

Definition 1.8. Let f,g € S(R") and for o(xz,&,n) € BSf}, define

o~

Tt = [ [ otegm - F©) G-y

where z,£,n € R™.
In bi-parameter setting, let m € R and 0 < p,0 < 1. We first define the bi-parameter
Hormander class as

Definition 1.9. For m > 0, 0 < p,6 < 1, the bi-parameter bilinear Hérmander symbols



BBS}'s consist of smooth functions on R** x R*" x R*" that satisfy

021052001 071 020520 (3,6, m)|

1 Zw2 T&1 UM T2 T2

< Caﬁ’y(l + |&] + |771|)%+5|a1\—p(\61\+m|) (14 & + |,72|)%M\az\—p(\ﬁzlﬂvzl) (1.1)

for all multi-indices o = (a1, 2), 8 = (81, 52), 7 = (71,72),-

We study the following type of bi-parameter bilinear Pseudo-differential operators defined
for f,g € S(R*") with o(z,&,n) € BBS).

~

vira) = [ [ ole&n 5@ o - agan

where z = (21,22),& = (£1,&),n = (m,1m2) € R" x R and we denote the class of such
operators by Op(BBS;).

It is clear that the estimates for the bi-parameter and bilinear symbols o (z, £, n) are weak-
er than the classical single parameter bilinear symbol. It is these estimates which make the
substantial difference between the bilinear Pseudo-differential operators and the bi-parameter
and bilinear Pseudo-differential operators. The result is the following:

Theorem 1.10. Let m € R, 1 < p,q,7 < oo, and 119 + % =1

(a) All the operators of class Op(BBSgy) are bounded in LP x LY — L" if

1
1— =
) Y Y T})

DN —
=
| =

m < m(p,q) = —2n (max{



(b) If the operators of class Op(BBSgy) are bounded in LP x L? — L", then we must have

1 1
7_71__})
q r

The index m(p, ¢) in the above theorem can be interpreted as being subcritical in the sense

?

DN | —
h=

m < m(p,q) = —2n (max{

that if m < m(p, q) then any operators with symbols in the class BBSf,, must be bounded
from LP(R*") x L¢(R?*") to L"(R?") for any p, q, r satisfying p,q,7 > 1 and % + % =1 while
if m > m(p, q) then there exist operators with symbols in BBSyY, such that they fail to be
bounded from LP(R?**) x LI(R?*") to L"(R*").

The proof of the theorem mainly consists of two parts: the boundedness of L x L>° — L*>
when m < —2n, and the boundedness of L? x L? — L! when m < —n, and then our theorem

follows from the duality interpolation argument.

1.4 Sharp Trudinger-Moser Inequalities
The Trudinger-Moser and Adams inequalities are the replacements for the Sobolev em-

beddings in the limiting case. When Q C R¥ is a bounded domain and kp < N, it is

well-known that W(f P(Q) C L1(Q) for all 1 < ¢ < NJX - However, by counterexamples,

Wf’% (Q) ¢ L (Q). In this situation, Trudinger [90] proved that Wy () C L, (Q) where

L, (£2) is the Orlicz space associated with the Young function pn(t) = exp (a |t|N/(N71)> -1
for some o > 0.

Theorem (Trudinger-1967). Let Q be a domain with finite measure in FEuclidean



N—space RN, N > 2. Then there exists a constant o > 0, such that

1 N
9l exp (a |u\N*1) dx < ¢
Q

for any u € Wy (Q) with [, |Vu|™ dv < 1.

We note when the volume of € is infinite, there are mainly two types of inequalities:
subcritical and critical inequalities.

Theorem (Adachi-Tanaka, 1999 [1]). For any a < au, there ezists a positive constant

Cn.a such that Yu € WHN (RY) | |[Vul|y < 1:

N
[ ow (alul¥) do < o Jull (12)
RN
where
N-2 .
t]

j—
The constant oy is sharp in the sense that the supremum is infinity when o > ay.

The above inequality fails at the critical case o = ayy. So it is natural to ask when the
above can be true when o = ayy. This is done in [81], [61]

Theorem (Ruf, 2005 [81]; Li-Ruf, 2008 [61]). For all 0 < o < a :

sup /]RN ON (a |ul%> dr < 00 (1.3)

flull<1

where

ot = ([ (9 ) )



Moreover, this constant ay is sharp in the sense that if o > ay, then the supremum is
infinity.

For our work related to the equivalence of the above two types of inequalities, we begin
with an improved sharp subcritical Trudinger-Moser inequality:

1

N N-1

Theorem 1.11. Let N > 2, ay = N (%) " 1, 0<B< N and 0 < a < ay. Denote
2

1 15} N dx
AT = s i ¢N(a(1——) |u|N1)—.
Ivully<t [lully " Jrn N 2|

Then there ezist positive constants ¢ = ¢ (N, B) and C = C (N, ) such that when « is close

enough to ay :

Moreover, the constant ay is sharp in the sense that AT (ay, ) = oo.

Then we can provide another proof to the sharp critical Trudinger-Moser inequality using

Theorem [4.1] only.

Theorem 1.12. Let N > 2, 0< 3 < N, 0 < a, b. Denote

~ \ dx
MT,,(B)=  sup / ON (aN (1 - %) ,u‘N_l) L.
IVl <t /BN |

MT (B) =MTyn (B).

Then MT,, (B) < oo if and only if b < N. The constant a is sharp. Moreover, we have the



following identity:

Neig\ Y5
1 (ai
MTa,b (6) = S(}]lp ) N%b AT (aaﬁ)' (15)
ac anN o
(=)
In particular, MT () < oo and
N-1\ "W
1 (ai
MT (B) = Es(élp : < )NN—I AT (o, B)
ac(V,an e
anN

Now consider the sharp subcritical and critical Adams inequalities on W% (RN ) , N>
3. Our first result is the following sharp subcritical Adams inequality:

Theorem 1.13. Let N >3, 0< < N and 0 < a < 3(N,2). Denote

8 _N
I ona (o (1= ) lul*2)
ATA(OQB) = sup W/ 3 dl',
1Aull y <1 ul| 2V ¥ RN 2]
t
ovat) = Y, =
jeNy> N2

Then there ezist positive constants ¢ = ¢ (N, 3) and C = C (N, ) such that when « is close

enough to 5 (N,2) :

¢(N,B) < AT A (o, B) <

N291-F No21-F
o 2 o 2
[1 - (ﬁm)) } [1 - (_5<N,2>) }

Moreover, the constant 3 (N,2) is sharp in the sence that AT (ay, ) = o0.

(1.6)
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Theorem 1.14. Let N >3, 0< < N, 0 < a, b. We denote:

ova (B(N,2) (1 - %) Jul¥=
M@= s [ al |iﬁ De),

b
[Au|ly +llully <1
2 2

Then Aqp () < oo if and only if b < % The constant B (N,2) is sharp. Moreover, we have

the following identity:

N=2, NQEB
1‘( )
B(N.2
Aa,b (6) = sup N—2 ATA (CY, 5) : (17)

In particular, A(B) < oo and

N2,
1— ( o ) 7
B(N,2)
A(B)= sup =3 ATA (o, 5).
QE(O»B(N72)) 6] 2
(ﬁ(N:z))

Finally, we study the following improved sharp critical Adams inequality under the as-
sumption that a version of the sharp subcritical Adams inequality holds:
Theorem 1.15. Let 0 < v < N be an arbitrary real positive number, p = %, 0 <ac<

w320 (%

1
ﬁo(N7V>:w,{,V_1 [ F(N2"’)):| , 0<B <N, 0<a, b. We note

1 dnq (@ (1= ) lul
GATA (a,p) = sup 2 /RN ( ]x|5N ) dzx;

wew o @) (-a)Ful <t [lulf;
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O (Bo (N, ) (1= &) JulvT
GAuy (B) = sup /RN N”<0 o N >dx

ueW RN ):||(-2) Fu]+ulb <1
P

where

ova )= Y %

JEN:j>p—1

Assume that GAT A (a, B) < oo and there exists a constant C' (N,~, ) > 0 such that

C(N,v,p) (1.8)

1
(1 N (/30(?\777)) )

Then when b < p, we have GA,p (B) < oo. In particular GA,, () < oo.

GATA (o, B) <

Though we have to assume a sharp subcritical Adams inequality , the main idea of
Theorem is that since GAT A («, 8) is actually subcritical, i.e. « is strictly less than the
critical level By (IV, ), it is easier to study than GA,; (/). Hence, it suggests a new approach
in the study of GA, (B).

To achieve the best constant under the restriction of the semi-norm, we can also study
the following Trudinger-Moser inequality with exact growth.

Theorem 1.16. Let A >0, 0< B < N,q>1, 0<a<ay andp > q. Denote

I /qmq,ﬂ (c0-5)u)

u
TME, , x5 = sup
P DL RN )ALI(RNY: HVUHNSIHUHZO_%)RN (1 + |u|ﬁ(1—%)) |z

Then TME, 4 n.ap can be attained in any of the following cases
(a) >0 and all 0 < o < ay,

(b)ﬁzO,%¢NandallO<a§aN,



12
(C)ﬁZO,q(N—N_l)GN,p>NandallO<04§aN,

(d)520;‘1(NT_1)€N,p§N,p<%qanda:aN.
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CHAPTER 2 [? ESTIMATE FOR A TRILINEAR
PSEUDO-DIFFERENTIAL OPERATOR

2.1 Introduction
For n > 1 we denote by M(RR") the set of all bounded symbols m € L*(R"), smooth

away from the origin and satisfying the classical Marcinkiewcz-Mikhlin-Hormander condition

1
o*m(€)| < ——
10“m(§)] < e

for every £ € R"\{0} and sufficiently many multi-indices «. Denote by T,, by the n-linear

operator

To(fr- o fo)(T) = /n m(€) fL(€1) - f(&n)eXmiErtHen = e

where & = (&1,...,&,) € R" and fi,..., f, are Schwartz functions on R, denoted by S(R).
From the classical Coifman-Meyer theorem we know 7, extends to a bounded n-linear op-
erator from LP*(R) x -+ x LP*(R) to L"(R) for 1 < py,...,p, <ocand 1/p; +---+1/p, =
1/r > 0. In fact this property holds for the high dimensions when f; € LPi(R%), i = 1,...,n
and m € M(R™), see [25,34,143]. The case p > 1 was proved by Coifman and Meyer [25]
and was extended to p < 1 by Grafakos and Torres [34] and Kenig and Stein [43]. Moreover,
in the multiparameter setting, the same boundedness property is true, see [73-75], and also
see [16] for a weaker restriction for the multiplier.

For the corresponding pseudo-differential variant of the classical Coifman-Meyer theorem,

let the symbol o(z, £) belong to the bilinear Hormander symbol class B Sﬁo, that is, o satisfies



14

the condition

1

|8ia,?0(137 OIS W

(2.1)

forany x € R, £ = (&,...,&,) € R" and sufficiently many indices [, & . We have the following

Theorem 2.1. The operator

T @) = [ 0@ OR€) - fulg)e?m @ o 2:2)

is bounded from LP*(R)x---x LP*(R) to L"(R) for1 < py,...,pp <00 and 1/pi+---+1/p, =
1/r >0, where fi,..., fo € S(R) and o satisfies ([2.1)).

For the proof of the above theorem, see [6] for bilinear, high dimensional case and |73] for
one dimensional, n-linear case. Also, this boundedness property holds in the multi-parameter
setting, see [26,73].

For the trilinear Coifman-Meyer type theorem, Muscalu [72] proved the following theorem
where the multiplier involved is a product of two symbols and has flag singularities, that

is, for my, my € M(R?) satisfying

-
(1€l + [nl)o+?

1
08 ma(n, ()| < ————
0002 OV S Ty

|gam(&,m)] <

for every &, 7, ( € R and sufficiently many indices «, § and =, we define

Tonsoms (f1, for f3) (@ / ma(€,mma(n, O) (6 foln) ()™ €= dedndc,  (2.4)
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where fi, fo, f3 € S(R). Then we have
Theorem 2.2. ( [72]) The operator defined in maps LP* x [P x LP* — L' for 1 <
P1,P2,p3 < 00 with 1/py +1/pa+1/ps =1/r and 0 < r < oo. In addition, Ty, m, also maps
L®x LPx LT — L*, LP x L™ x L9 — L%, L>® x L' x L™ — L for every 1 < p,q,t < oo and
1/p+1/q=1/s.

Moreover, for the above theorem, the estimates like L> x L™ x L' — L' or L™ x L> x
L — L are false, and these can be checked if we set f; to be identically 1.

Our main purpose is to consider a pseudo-differential operator corresponding to the above

theorem, that is, let a(z,&,n),b(z,n, () € BSgD be symbols satisfying the conditions

1

(1 +[€] + [n[)o+?
1

(14 [nl + )7

0,005 a(z, & )] S

1040, 00b(z,n, ) S
for every x,&,7m, ¢ € R and sufficiently many indices «, 3 and -y, define the operator

Tu(f,9,0)() = /R @, &m0, Q) F(E)g(mh(Q)e* T dgdndC.

It’s easy to see that the symbol a(x,&,n) - b(z,n, ) satisfies a less restrictive condition
than the condition for the symbol ¢ in Theorem . Our main result on this is the
following
Theorem 2.3. The operator T,, defined as 1s bounded from LP* x LP* x LP3 to L" for
1 < p1,pa,p3 < 0o with 1/py +1/ps+1/p3 = 1/r and 0 < r < co. In addition, Ty, also maps

L® X [P x LY — L5, [P x L® x L9 — L*, L x L' x L>® — L' for every 1 < p,q,t < co and
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I/p+1/g=1/s.

The proof of Theorem is to reduce the trilinear pseudo-differential operator with the
symbol of flag singularity to a localized version and takes advantage of the flag paraproducts
from Muscalu’s work [72] on the LP estimates for the Fourier multipliers with symbols of
flag singularity. Namely, we need to prove an equivalent localized version Theorem of
Theorem (see [73], and also [26] for the multi-parameter setting). Moreover, the key
to prove the localized result is that, conditions allow us to only consider the dyadic
intervals with lengths at most 1 in the flag paraproducts.

More precisely, in section we show that our main theorem can be reduced to an

estimate for a localized operator

T (£.9.h)(x) = ( /R a0 mbo (1, Q) f(E)(mh()e =1 Vg dndC) po ),

where ¢o(z) is a Schwartz function supported near the origin and ag, by satisfy a stronger
decay condition than the classical Hormander-Mikhlin condition.

In section , we will decompose the operator be’o to some operators of different forms.
Among these operators, some of them could be reduced to the classical pseudo-differential
operator in Theorem [2.1] and the others could be written as flag paraproducts, which are
used in the proof of Theorem [2.2] in the forms of

1

(Ti(f.9,h) - po)(z) = Y

1€l

1
where Bi(g,h) = Z ?@a o) (h, 97) 67,
seq i< 1712



17

but with dyadic intervals have lengths at most 1.
Then by taking advantage of the flag paraproducts mentioned above, we will be able to

prove the desired estimate for the localized version of our theorem in section 5.

2.2 Notations and Preliminaries
Let S(R) denote the Schwartz space of rapidly decreasing, C* functions in R. Define the

Fourier transform of a function f in S(R) as

extended in the usual way to the space of tempered distribution S’(R), which is the dual
space of S(R).

We use A < B to represent that there exists a universal constant C' > 1 so that A < CB,
and use the notation A ~ B to denote that A < B and B < A.

We call the intervals in the form of [2¥n,2%(n + 1)] in R to be dyadic intervals, where
k,n € Z. We denote by ID the set of all such dyadic intervals.
Definition 2.4. For I € D, we define the approximate cutoff function as

dist(z, I) )~100

B (2.6)

xr(z) = (1+

Definition 2.5. Let I C R be an arbitrary interval. A smooth function ¢ is said to be a
bump adapted to I if and only if one has

1 1

O <o
Pl < OO T T e =




18

for every integer M € N and sufficiently many derivatives [ € N, where x; denotes the center
of I and |I| is the length of I.

If ; is a bump adapted to I, we say that |I|'/P¢; is an LP-normalized bump adapted to
I, for 1 <p < 0.
Definition 2.6. A sequence of L?>-normalized bumps (®;);cp adapted to dyadic intervals
I € D is called a non-lacunary sequence if and only if for each I € D there exists an interval
wr = wjz| symmetric with respect to the origin so that supr/D; C wr and |wy| ~ |I|71
Definition 2.7. A sequence of L?>-normalized bumps (®;);cp adapted to dyadic intervals
I € D is called a lacunary sequence if and only if for each I € D there exists an interval
wr = wjy so that supp@ C wr, |wr| ~ |I]7! ~ dist(0,w;) and 0 & 5w;.
Definition 2.8. Let Z, 7 C D be two families of dyadic intervals with lengths at most 1.
Suppose that (¢31> ez for j = 1,2,3 are three families of L?-normalized bump functions such
that the family (¢?)rez is non-lacunary while the families (gb}) 1e7 for j 2 2 are both lacunary,
and (¢f,) seg for j = 1,2, 3 are three families of L?-normalized bump functions, where at least
two of the three are lacunary.

We define as in [72] the discrete model operators T} and T} j, for a positive integer ko by

T h) =3 U%U, OB, h), 6 (2.7)
Iel
where  Blgh) = Y — (g, o) h 6206 (2.8
JET | |<[w?] 712
Tl,;m(f,g,h):Zﬁuwbw},kg(g,h),aﬁ%wi (2.9)
IeT
where  Blu@h = Y ﬁ<g,¢b><h,¢3>¢3 (2.10)

JeJ 2k0 w3 |~[w?|
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2.3 Reduction to A Localized Version
To prove the theorem, we proceed as follows. First pick a sequence of smooth functions

(¢n)n € Z such that supp ¢, C [n —1,n + 1] and

§£:<pn = 1.

Then we can decompose the operator T, in (2.1)) as

Tw=>» Th

nez

where

To(f. 9, h) (@) = Tw(f, g, h)(x)on(2).

Suppose we can prove the estimate

156 CFs g W)l S W Xa s l9X 2l 12X 5 s (2.11)

where I, is the interval [n,n 4 1], and x;, is defined as in (2.6)).

Then our main Theorem can be proved by the following estimate

Ta(f.g. W S O NTm (g DY S O N g%, 12X, 15, ) "
nez nez
S O IRLIEP O x> 1ha, II22) P
nez nez neL

S 1 F o llgllpa 1 llps -



20

Thus, we only need to prove (2.11)).

Consider that for a fixed ng € Z, we have

T2 (9. 0() = [ |0l €mns (1. O @) () QA e,

where ¢, is a smooth function supported on the interval [ng — 2, ng + 2] and equals 1 on the
support of ¢,,. Then we rewrite the symbols a(x, &, n)@,, () and b(x,n, ()P, (x) by using

Fourier series with respect to the x variable

(:L' 5 77 90710 Zall § 77 27rz:z:l1

1 €Z

(.T 7, C 30710 Zblz 5 7] 2mwl2

lo€Z

where by taking advantage of conditions (2.5)) we can have

1 1
P ar (€| <
e &S i T e+ )P
1 1

o 7b
| l2(77 C)| ~ (1 + ’l2’)M (1 + |77‘ + h/|)5+7

for a large number M and sufficiently many indices «, 3,~. Note the decay in [y, [ means

we only need to consider the case for 1, ly = 0, which is given by

(T L) = ([ ol mbol, OF OGO dgndC) o ),
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where symbols ag, by satisfy the following conditions

1
(14 [&l + [nh)e+?
1
(1 Inl + )P

953 ao(€.m)| S

10,700 (n, Q)| < (2.12)

Using the translation invariance, we only need to prove the following localized result for
Ng = 0

Theorem 2.9. The operator

T (f,9. ) () = ( /R ao(&mbo(n, O F(©G(mh(Qe ™+ VdgdndQ)po(x)  (213)

has the following boundedness property

1T’ (s 95 W)l S 1F %o 119X 116 1 s (2.14)

for1 < p1,pa,p3 < oo and 1/p1+1/pa+1/ps = 1/r, where @y is a smooth function supported
within [—1,1] and ag, by satisfy the conditions (2.12)).

In addition, this estimate also holds for the cases where at most one p; = oo fori=1,2,3
or p1,p3 = 00,1 < py < 0.

Now we are ready to do some decompositions to the operator in (2.13]).

2.4 Reduction of the Localized Operator

In this section, we will mainly show the problem can be reduced to some operators or

paraproducts that we are familiar with.
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Let ¢ € S(R) be a Schwartz function such that supp¢ C [—1,1] and $(§) =

[—1/2,1/2]. Define ¢ € S(R) be the Schwartz function satisfying

B(€) = ¢(€/2) — $(€),

and let

Note that

1= Z Ur, where supp i) C [—2F+ 2Ry [2F1 28+ for k > 0.

k>—1

1 on

Then for any m,n € Z, we use m > n to denote m —n > 100 and m ~ n to denote

|m — n| < 100. Consider the decomposition

1(&,m,¢)
(3 Y @SS g Q).
K >—1 kY >—1 ky>—1 kY >—1

Without loss of generality, we consider

(> > Ui (E)ny () = > Ui (€)ry ()

ki >—1k/>-1 ki >k >—1

(2.15)

+ Y U @) + > U O )+ > g (Ot (n)

— 1<K, <k K} k! K4 >100,0r K}/ >100 K, k! K KY <100
= A+B+C+D,

(2.16)
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where term D can be written out specifically, which contains finite number of terms:

D = $()¢(n) + Others

To estimate C, note in this case actually both k] and k{ are at least 1. Suppose k] > 100,

we have:

ST b ©big) = > dule

K ~k// k| >100 k>100

and then

¢= Zl/)k lﬁk; Z% )i (n

k>100 k>100
where supp iy, C [—2/+101, _k=101] { [gk—10L gk+101]

Estimates for A and B are quite similar:

A=>10 > ey (1) (€ Z Ve(§)pr(n (2.17)

k| —1<k{<k{—100 k>100
B=> (Y @)=Y i) (2.18)
K —1<kj<k{—100 k>100

where ¢ is a Schwartz function with supp pp C [—2K7100 2k+100] "For £ > 0 we call the
families like (¢1)r to be U type functions, whose Fourier transform have almost disjoint
supports for different scales and call the families like (¢g)r to be ® type functions, whose
Fourier transforms have overlapping supports for different scales. In the rest of work, for
convenience purpose we don’t distinguish between 1, and @k, since they are of the same
type and have comparative scales for the supports of their Fourier transforms, and we always

use Yy to represent such W type functions. Similarly we always use ¢y to represent a ¢ type
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function. With such notations we can write (2.16)) as

~—~
X

NCS™ ()

ki>-1 k/>-1
= Z 1/% SOk Z SOk wk Z % 1/% (2-19)
k>100 k>100 k>100

Later from the proof, we will see in (2.19) the three summations work similarly, since what
we really need is at least one lacunary family in each summation. And all the functions in D
play a same role as $(§)¢(£), which means we actually can replace (2.19)) by an equivalently

version, which is

3 OHEG M) + BB (E), (2.20)

k>0
where at least one of the families @(5))k and (@(5)) k is U type.

Now to deal with (2.15)), it’s equivalent to consider

Em ) = (). ), Vg (g (1 N> D Ve, () gy
Ei>—1k/>-1 kE,>—1kY>—1

Z%¢m Z%<% +@(n)$(¢))

Z% )62, (n Z%<% Z% )62 (M)(m@(C)
Z% )82, (¢ mwwwwwmwo

= E+F+G+H, (2.21)

where for convenience purpose the symbol “a” is used to show the equivalence, and we will

simply treat 1(£,7,() = E + F'+ G + H in the rest of the work.
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Then by using the above and (2.13)), we can decompose the localized operator as

T (£.9.0)(x) = ( /R o8, mbo (1, Q) ()M M VdgdndC)po )

= ([ anl&mta(n, B + F + G+ I)FOGmHO™ 7 dedndd (o)

= TEO0 4 TRO0 | GO0 THO0, (2.22)

2.4.1 Estimates for T;Z’O’O

Recall

T 9@ = ([ aoe i OFESmEmHQ

F©)g(n) ()X = T+ O dgdnd() po (),

where note that mg (&, 1, ) := ag(&,n)bo(n, ()@(f)@(n)@(n)gﬁ(() satisfies the condition

1
(L [€] =+ [l + [¢[)ero+

08070 mu(&,m, 1 S

for sufficiently many indices «, 3, y. Then our desired localized estimate follows from Theorem
, since we find the operator Tg,o,o is just the localized operator used in the proof of
Theorem [2.1], see [26}[73].

2.4.2 Estimates for Tan’O’D + TaCZ’O’0

Recall

Z% Jo2 ()G (m)3(C),

where at least one of the families (¢} )z, and (ng\l )iy is U type.
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When (ng\l)kl is W type, Note that to make qgi\l(n)@(n) # 0, ky will have a upper
bound for the summation, say k1 < 100. Then desired estimate under this situation can be
done by using the same way as in T , since only finite number of terms are involved.

When (qz;i\l )k, is ® type, we must have (qg}; )k, 18 W type. Recall

TEO(f, g, h)(x) =

» / o(&; DL ()82 (Mbo(n, OP(R(C) F()a(m)h(Q) e E O dedndC) o (x), (2.23)

o YR

then we can use Fourier series to write

TN k Tin k
ao(& )0, (€)o7, (n) = D Chr, 2mime/2 gzminan/2t, (2.24)

n1,n2€Z

where the Fourier coefficients C’ff} n, are given by

1 e o) —2min k1 _omin k
CSi ny 92k1 /R? ao(f:ﬁ)@lﬂ(f)qbil (77)6 2ming€/2 16 2mingn /2 1'

By the decay condition (2.12)) and the advantage that (gzg}; )k, is W type, we can get the

following by integration by parts sufficiently many times

1
cho1S
el S T T+ Tl

Note by the decay in nj,ny we only need to consider the case when ny,ny = 0, see 73] and
the proof in section [2.5| for more details, and similar things can be done for by(n, {)@(n)@(().

Then, we can use Hélder’s inequality and take advantage the fact that ¢ is a bump function
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adapted to [—1, 1] to prove the localized result for (2.23)), that is,

I [ SL O st OF©atmh(©r = dgdndc)eo(o).

(©)em() F(©)gm)h(C)e*™ E T dgdndl) o ()|,

Q
=[]
&

= Z%*f (2)( * 9) (2)G0() (0 * B)(2)0() |
= Z% # 1)@ 20 (@)1 * 9) (@)E0(@) sl (0 * B) (@) Bo() g

5 HfXIO le ”gXIo sz HhXIO Hp3>

where we take ggo to be 1 on supp ¢y and supported in a slightly larger interval containing
supp ¢o. The last inequality is true since (¢, )g, is ¥ type. Also, in the above we can simply
write ), qgi\l(n)gb(n) = ¢(n) in the above since k; is positive.

2.4.3 Estimates for TaEb’O’O

Recall

= (3" 0L ©62, (S oL, )7, (©)

k1 >0 k2 >0
where at least one of the families (¢, )x, and (@7 )x, is ¥ type and at least one of the families

(o4, )k, and (o7, )i, is U type.

Also we consider the corresponding localized operator

TEOO(f g h)(z) = / Z% 02, (m))as(€. m)) Z% 0L, (O)bo(n. 0))
-f<§>g<n>ﬁ<c>em<€+”+< dﬁdndé)wo(l’)-
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By using Fourier series as before, we only need to consider the following operator

( /R (AL O Z% )62, (O)F(©)F(mh(Q)e =) dedndC)po().
k1

As usual we consider three cases of £/

(37 + 30+ 3)6h ©ar, )0k, ), (C)

k1>ko  ki<ks  kicko
I+J+K,

and decompose
E0,0 . 1,00 J,0,0 K,0,0
Tab - Tab + Tab + T :

Note K is actually a symbol in BSRO, since k is positive. That is

Ty ™" (f,9,h) (@ / mic (&0, ¢) () §(mh(Qem 1 dedndC) po(w),

where m (€, n, ) satisfies the condition as (2.12)). Thus, the desired localized estimate follows
from the proof of Theorem , just as TaIZ’D’O.

Talb0 ¥ and T(;;O’ are similar, we define T, by the following equality

Top(f, 9, 1) (@) - pola) = Ty (f.g.h) () =

/ Z«z»kl )62, (n Z% )02, (O F©ah(Q) e E O dedndC) g (x).  (2.25)

From [72, (73], we know T, can be written by using paraproducts, which is the following
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lemma.

Lemma 2.10. Define T, as in (2.25), then we can write

T (f,9,h)(x) =

M-1 oo 00
f;ga + Z ko leo f>g> )( )+ Z (27kO)MTM,kO(fagah>($)
=1 ko=100 ko=100

where

Ti(f9.h) = 3 —{f, 61 (B9, h), 63

1T |]|
' 1
with Bi(g,h) = Z —l<ga¢§><ha ¢3) 97
A o
w Swz

Tigo(fr9.h) = Z (f (Bl 1 (9. h), 67) 6%

=AlE

1
with Bl[yko (g, h) = Z ?<g7 ¢1J> <h7 ¢2j>¢3

Jeg | |2
2k0 w3 |~ [w?|

In the above,

(a) Ti(f,g,h) and B} (g,h) are defined as (2.7) and (2.8)) in definition (2.8)).

(b) For each I, T)(f,g,h) and B(g,h) are of the type [2.9) and (2.10) in definition [2.8] 1

here is actually involved in the families (¢2); and (¢%)s, but it won’t affect our proof

since it does not change the types of those functions.

(¢) M s a large positive integer, and the multiplier mpsx,(&,1,C) in Tary, satisfies the
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condition

1
(14 [€] + [l + [Pt

I3?3552mM,k0 (&m QI S (2%)* ot (2.26)

for sufficiently many indices «, 3,y

(d) All the dyadic intervals in Ty and T}y, have lengths at most 1 for all kg > 100,1 <[ <

M —1.

Proof. We follow closely the work 72|, where the Fourier expansions of ggi\l (n) are used to get
the desired forms of paraproducts. The only two statements we need to show are that all the

dyadic intervals there have lengths at most one and the decay number 1 in the denominator

from ([2.26]). Actually both of them follow from the fact &y, ko > 0. O

So far we have reduced Theorem to the estimate of the operator TaIZ;O’O :

2.5 Proof of Theorem 2.9

In this section by using the decomposition in Lemma [2.10] we are able to prove the

localized estimate for TGI,;O’O, which will complete the proof of Theorem [2.9]

2.5.1 Estimates for >_°_, (27%)" Ty, (f, 9, h)(x)
For this part, note that the condition ([2.26)) is almost the classical case. Then by repeating

the work in [26]73] we will see this condition can provide an estimate

I Taro (f, 9, )0 (@) | S C2 N Xyl 90l 13X 6L

which is accepted since we can choose M large enough.
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2.5.2 Estimates for Ti(f, g,h)(x)

Taking advantage of that |I| < 1, we can split

T 0. h)@) = 3 —(FoN(BHe.R), R+ 3 —(f, 61 (B9, h), 62}

IC51y ‘I’ I1C(5Ip)c |
= I+1I (2.27)

For Part I, we do the following decompositions first

f= ZfXInla nglnzv Z hXIn3’
ni na n3

where I,, = [n;,n; + 1], = 1,2,3,n; € Z. Then we can write

Ti(f,9.0)(x) = Y > Y Ti(f X1, 9X1y s hiX1, ) (@)

ny n2 n3g

When |n4], |ngl, |ns| < 10, the desired estimate follows from Theorem

| Z Z Z Tl(fXIm,gXLLQahXIn3)($>‘900<9U)||r

In1|<10 |na|<10 [n3| <10

S YD Ml Do 9xigllel Do AXaag ls

[n1]|<10 Ina|<10 Ins|<10

S/ ||f>~610 Hm ”g>~(10 ||p2 Hhxfo ||p37

where the last inequality holds from x[—11,11] S X1, ().
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When |n4], |nal, |ng| > 10, we write

HTl(fXInl y IX Iy s hXIn3)($) ~o(@)|

=1 Z |J| T (X0, s @1 {9X Ly 00) (PX 1, G007, 0501 ()0 (@) -

IeT Jeg
w3 |<|w2|

Then we use Holder’s inequality to get

1

I L P O (01 5 (s, 63 (62, 63063000 (@)]),

1 1 dist(Z,,, 1), py—1 dist(1p,, J) | _u
< —_— —1 1 P1 —2

21 dist In37 J A p3—1
(g 7)1+ %) Nl 1550
W /(1 + —dlSt‘(;T’ D)*M?(l + —dlsjffl’ J>)’N3dx
VNS dist(Ln,, 1) s dist(Lny, J) | _w dist(Lns, J) _n

< I p3 -~ - 7 R S 1 N/
< m(ur’ W= ) ) )

dist(z, 1), _ dist(z, J), _
- / 1+ 8@ Dy, g disHE, J) ol e (2:28)

|I| ’J| ) NBdff“fXInl”legXlnz

where M;, N; are sufficiently large integers and gb‘},gbf] are L?-normalized bump functions
adapted to I, J for j = 1,2, 3.
We first consider the case when dist(7, J) < 3. Recall we have the restriction that |w3| <

|w?|, which implies that |I|/|J] < 1. By using the subadditivity of || - || we have

1Ty (f X1, s 9X Ty X1, ) () - 0 ()]

1 ist(1,,, 1 ist( [ ist(]
>, > G+ —dISt([n” yan g Bns )y g Bt J) v
i,j>0 IC5I0,JC9Ig ‘ ’ | ’ |J‘ |J|
|I|=2%,|J|=2"J

/(1 N dist(x,[))_M2(1 N dist(zx, J) . _

1] ] )N dz || X1, pn 19X 0y 2 X 1y )™
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N

Yoo @2 (] =6) ML+ 2 (|ng| = 9) V(1 + 27 (|ng| - 9)) 7

i,j>0 IC5I0,JC91,
|T|=2—7%,|J|=2"]

X1, o 19X 2 2 VX 1 s )

S (Il = 6)7" (In2| = 9) ™™ (Inal = 9) ™™ 1 X1, s 910, e 1 eX D )"

Observe that for large enough integers My, N1, N we have

X1n1(|n1| - 6) < Xios X1n2(|n2| - 9) S Xios X1n3(|”3| - 9) < XIo-

Thus,

ST ST T, 9xa, b, ) (@) - po(@)]]

[n1[>10 |n2|>10 |n3|>10

SO0 D0 D ((mal = 6) M (Inal = 9) 7N (Ing| — 9) 7
|n1|>10\n2|>10|n3\>10
Xy 19X Ty Lo 1AX 1 Nl )"

S ) D = (|naf = 9) 7= (Ins| —9) 73

[n1]>10 |n2|>10 |ng|>10

X160l |9 X R p2 12X 1o )"

S U Xnllp X lp: 1PX 1 lps)"

For the other possibility, that is , when dist(/, J) > 3, we consider whether J is close to
I,,, or I,,. Without loss of generality, we assume dist(J, I,,,) < 2,dist(J, I,;) > 2, and other
cases will follow in the similar way. Using the notation J,, = [m,m + 1],m € Z and (12.28))

we can get

| T (fXTa, > 9X 10y X1, ) () - 00 ()]l



34

1 dist(L,,, 1), _ dist(1p,, J) . _
TS Y Y e Sl g )
1,j>0 IS5y |m|>3 JCJm,|J|=2—7
|I|=2—1 dist(J,Ing ) <2,dist(J,Inz)>2
dist(L,...J). dist(z, I) . dist(z, J) .
1+ 1S(J3 )) NQ_/(1+ 18(;7 )) Ma(q 4 1s§;: )) Na g
|| R 1] ||
Xty o 19X L o 1AX 1y L)
S>> > (2'(1+ 2'(|ma] = 6)™)(1 + 27 (Jm — )~ m|
1,j>0 IG5y |m|>3 JCJm|J|=2—1d
|I|=2—1 dist(J,Ing ) <2,dist(J,Ing)>2
X Ty o 19X T i 1AX 1 )™
S > (21 4 2'(|na| = 6)) 7 (1 + 27 (Jm — ng|)) ™2 |ng| =™
,j>0 IS5Iy |m|>3 JCIm|J|=2—79
[I]=2—i dist(J,Iny ) <2,dist(J,Ing)>2
'||fXIn1 ||p1||gXIn2 |p2||hXIn3 |p3)r7

where Ny = min{Ms, N3} is sufficiently large and we use m ~ ns.

Now we take the sum over ni, ns, n3 and get

S 3T ST T Xy 9y b)) (@) - ()]

|n1\>10 |n2|>10 \n3|>10

N.
< Y Y ST (il - 6)F (sl - 3)"F
[n1]>10 [n2|>10 |n3|>10
WX, N 19X 1y o 1 PX I )"
_ Ny
S ) D ((ml—6)" ol (] - 3) 7

|n1|>10 |n2\>10 \n3|>10

'Hf)ZIo “Pl “g)zlo ||p2 ||h>~<10 ||p3>r

S U Xaolle 19X 0 lpa [1AX 16115 )"

For other possible chooses of ni,nq, n3, they will be treated in different ways. Among
these cases, when |ni| > 10, we can do similar things as the above to get our desired

estimate directly, by considering whether .J is close to I or not. Note in the case we are free
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to take summation over J since we have a decay on 7 and j < .

But when |n;| < 10, say |n1],|na| < 10, |ng| > 10 things are different. In this situation,
the term (1 + %)*Ml in ([2.28) won'’t give us a decay factor, which means we will have
trouble when taking the summation over dyadic intervals I. Actually the decay factors from

other terms are with respect to 7 which can’t help since ¢ > j. Recall our desired estimate

in this case

> D Tl Xy 90y hxan, ) @) - 0@l S 1L Xl 1970 o2 1P L (2:29)

[n1],ln2]<10 [ng|>10

Suppose that from the proof of Theorem (see [72,|73]) we can get an additional decay

with respect to nz such like 1/|ns| for sufficiently positive integer M, then we only need to

apply Theorem [2.2] to get

> D Tl Xty 9Kty hX1,) (@) - 0 () |2

[n1],|n2]|<10 |n3]>10

—1 >~ ~ ~
S T Xt o 1910l 10X s 12k o 0o o

Now we will see how to get such a decay 1/|n3|*. As before we consider two possible cases
dist(7, J) < 3 and dist(/, J) > 3.

When dist(7, J) > 3, as before consider the integral

. ]’ :
/(1 N dist(x, ))_M2(1 n dist(z, J)>—N3dx‘
R 1] |/

We can get a decay about |m|™ for J C J,,,m € Z, and see whether .J,, is close nsz to
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or not. As before by considering whether J is close to I,,, or not, we will get an additional
decay 1/|ns|M.

When dist(/,J) < 3, as before we have that J is near the origin J C 9. In this case
our desired decay comes from the size and energy estimates used in the proof of Theorem
2.2 see [72,[73]. Those size and engergy terms corresponding to the function hy,, would
be defined based on the inner product terms like [(hxy,,, ®%)|. Now since J is close to the
origin, such inner product will provide a decay about 1/|nz|*. (Or one can see the proof of
Lemma 2.13 or section 8.11 in [73] to see clearly we can actually get such a decay factor for
the size estimate.) That means we can get an additional decay from the result of Theorem
2.2} since the boundedness there is based on the size and energy estimates.

So far we have proved Part I in (2.27)).

For Part I1, using the intervals I,, = [n,n + 1], J,, = [m,m + 1], m,n € Z we can write

|T1(f, g, h)(x) - po()]];
=1 > > C (B0 g, 85 (hy 65) (62, 65) 05 () o (@) |1

IC(5I0)e  JET |]|2 |J|
w3 1<]w?|

2.2 2 2 | Mf@WM@%@WWW-

In|>5 meZ ICL, JSJm
w3 <|w?|

N

We will use Holder’s inequality and take advantage of the decay factors as before to write

the above as

DI IS |||1| S — (£, on){g. 03)(h. 65) (67, 87) 81 ()0 ()

|TL‘25 mGZZJZO Ig[n_,Jng .
[I|=2—%,|J|=2"7
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1 1 ~ p1—1 5 p2—1
S22 > GEmEURn el ) U el

|n|>5 m€eZi,j>0 ICIn,JCJm
|[I|=2—%,|J|=2"7

l)mi(l—i_w)MS/R(l"‘%TD)Mz(l‘FM)Nde)T

pP3—
P3

(X g0 1pal /|

SSYSY ST @+ 20— 2) M0 Tl 9K e B [

In|>5meZi,j>0 ICIn,JCTIm
[I]=27"1,]J]=2"J

- /R (1+ —disj(j’ D)‘M?(l + —disj(ﬁ’ J))_N3dx)T, (2.30)

where again M;, N; are sufficiently large integers. Then we consider two possible cases,
dist(I,, Jn) < 5 and dist(1,, J,,) > 5.

When dist(7,, J,,) < 5, we use the same technique as before
M N N N
(Inf =272 [xnl S Xl and  [X5,| ~ [Xu.l,

for M sufficiently large. Note that the decay factor for ¢ actually implies a decay for the

summation over dyadic intervals J, since i > j. Then we can estimate (2.30)) by

oMy . . ,
S > (U =27 2%l X e 12K e L)
Inl>5
oMy . . .
< ) (=217 )1 Rollps g%l 1 2Xollps)
[n|>5

5 (”f)NCIon Hg)zfonHh)NUo ||p3)r>

which is the desired estimate.
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When dist(7,, J,,) > 5, we need to take advantage of the integral in (2.30). That is,

/(1 4 B Dy BUE )y,
S| o

where L = min{M,, N3} is large enough. Now (22.30)) can be written by

S22 2 > as2(el-2)T
[n|>5 |m—n|>51,j>0 I1CIn,JCJm
[|[I|=2"%,|J|=2"J
N FX s 19X o 1P X g s |2 = 1] =)
—M3 ~ - - r
S Y o (Un =22 )X o 19X e 12X )

In|=5

5 (”f)NCIo le ||g>~(fo ||p2 ||h)~(10 ||P3)r7

where as before the decay factor for ¢ allows us to take the summation over dyadic intervals
J, since 1 > J.

Now are are done with Part I, which means we have proved the desired estimate for
Ti(f, 9, h)(x).

2.5.3 Estimates for Y " _,,(27%)! Ty, (f, g, h)(z)

There is nothing new in this case, since it will be almost the same as what we did for
Ti(f,g,h)(x). Note for Tj,(f,g,h)(x), the only difference is that we have |I|7' ~ |w?| ~
2k J|71 ~ |w?|; instead of |[I|7! ~ |w?| > |[J]7! ~ |w3| in Ty(f, g, h)(x). That is, let |I| =
270 |J| = 277, we will have i — kg = j > 0,ky > 100. Recall we only need 7 > j in the
proof for Ti(f, g, h)(x), and the method obviously works for T}, (f,g,h)(z) in the setting
1 — ko =7 > 0,ky > 100, which will give us a bound uniformly with respect to ky. Then

we will be able to take the summation over ky by using [ > 1. In this way we can get the
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estimate for Zzzmo(?_ko)lﬂ,ko(f, g,h)(z).
So far we have proved the desired localized estimate for the operator Ty "’(f, g, h)(z) in
(2.22), which means Theorem has been proved. Then from this localized result, we can

conclude that Theorem 2.3l is true.
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CHAPTER 3 BI-PARAMETER AND BILINEAR

CALDERON-VAILLANCOURT THEO-
REM WITH SUBCRITICAL ORDER

3.1 Introduction

Pseudo-differential operators play important roles in harmonic analysis, several complex
variables, partial differential equations and other branches of modern mathematics, see e.g.
[31], [79], [44], [85], [83], [87], [89], etc.

We first recall that the Hormander class S)'(R") of linear pseudo-differential operators

are defined to consist of operators in the form
10w = [ o8 Fle) - e (31)
where z,£,n € R" and o satisfies

102020 (x,€)| < Cap(1 + |€])mHolel=rld]

for all multi-indices «, 8 and some positive constants C, g depending on «, 5. The function
f is taken initially from the Schwartz class S(R™).
Hormander [37,[38] proved the operators with symbols in 5275 are L? bounded when
0 <6 < p <1 In a celebrated paper, Calder6n and Vaillancourt [10] established the L?
boundedness when 0 < § = p < 1. C. Fefferman [29] further extended to the LP boundedness
(1 < p < oo) for operators with symbols in S, §" with 0 <0 < p < 1and m > n|% —3l(1=p).
11

The result of C. Fefferman is sharp in the sense that for m < n|; — 3|(1 — p), then the L?

boundedness fails. Paivarinta and E. Somersalo later considered the critical case of § = p
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in |78 by establishing h? to h? boundedness for all 0 < p < 0o, where h? is the local Hardy
space of Goldberg [35]. The result of [78] strengthens the H' to L' boundedness of Coifman
and Meyer [24] when m = . We also refer to the more extensive treatment of pseudo-
differential operators and their applications in PDEs to [4], [31], [79], [44], [46], [83], [87], [89],
etc.

The bilinear analogue of such pseudo-differential operators are defined to be the class

B ;’?5(11%2”) consisting of operators of the following form: Let f, g € S(R") and define

~

Tt = [ [ otegm - 76 G- ey 3:2)

where x,£,n € R™ and o satisfies
0507030 (2, €,m)| < Capry (14 [€] + [y ole=eUBEDD (3.3)

for all multi-indices «, 3, and some positive constants C, 3, depending on «, 3, 7.

The first work of bilinear singular integrals and pseudo-differential operators is due to
Coifman and Meyer [24]25] which originated from specific problems about Calderén’s com-
mutators. Subsequently, the symbolic calculus for bilinear pseudo-differential operators was
studied, e.g., in the works [6,68] motivated by the bilinear Calderén-Zygmund theory devel-
oped [17,134,43], etc. and references therein. In particular, critical order for boundedness of
bilinear pseudo-differential operators with symbols BSy|, has been considered in [6,/70].

The LP estimates of multi-parameter and multi-linear Coifman-Meyer type Fourier multi-

pliers were established in [74]. Recently, Chen and the first author [22] gave a different proof
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of the LP estimates of [74] and also establish the L” estimates under the limited smoothness
of the Fourier symbol; Dai and the first author [26] proved the same L? estimates of [74] for
multi-parameter and multi-linear pseudo-differential operators. More recently, Hong and the
first author [36] carried out a theory of symbolic calculus for multi-parameter and multi-linear
pseudo-differential operators.

Let m € R and 0 < p,0 < 1. In this article we will study the following type of bi-

parameter and bilinear pseudo-differential operators defined for f, g € S(R*"):

~

Tfa) = [ [ ole&n)F©) g ey

where © = (z1,22),& = (£1,&),n = (m,1m2) € R" x R™ and o satisfies

|3a18a28518’718523720<x,57n)| < Ca,ﬂ,’y(l + &+ |7hD%-&-ﬂml—ﬁ(lﬁm—l’hl)

1 Yw2 Y& UM T2 U2

(1 + |&] + |no|) 2 Tolazl=p(B2lHh2D) (3.4)

for all multi-indices o = (a1, a2),5 = (81, 52),7 = (71,72), and some positive constants
Cu 3,4 depending on «, 3, 1.

We denote the class of such symbols by BBS)";. We also denote by Op(BB ;?5) the class
of all operators T, with o € BBS];;.

It is clear that the estimates in that the bi-parameter and bilinear symbol o(zx, £, n)
satisfies are weaker than those in (3.3)) satisfied by the bilinear symbol. It is these estimates
which make the substantial difference between the bilinear pseudo-differential operators and

the bi-parameter and bilinear pseudo-differential operators.
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Given the above bi-parameter and bilinear operator T' = T, we can define its adjoints

T*! and T*? as follows:

(T(f,9),h) = (T"'(h.g), f) = (T"(f,h),g) for all f, g € S(R")

The main result on this is the following:

Theorem 3.1 (Main Theorem). Let m € R, 1 < p,q,r < 00, and % + % =1

T

(a) All the operators of class Op(BBSg) are bounded in LP x LY — L" if

1-0)

(b) If the operators of class Op(BBSgy) are bounded in LP x LT — L”, then we must have

1 1
7_71__})
q r

The index m(p, ¢) in the above theorem can be interpreted as being subcritical in the sense

) ?

N =
=
Q| =

m < m(p,q) = —2n (max{

Y

N —
"=

m < m(p,q) = —2n <maX{

that if m < m(p, q) then any operators with symbols in the class BBSj|, must be bounded
from LP(R*') x LY(R?") to L"(R*") for any p,q,r satisfying p,q,r > 1 and 1—1) + % = %,
while if m > m(p, ¢) then there exist operators with symbols in BBSgY, such that they fail
to be bounded from LP(R?*") x L(R?") to L"(R*") when p,q,r > 1 and % + é =1 We
should mention in the bilinear (one-parameter) case, Bényi, Bernicot, Maldonado, Naibo
and Torres [6] established the boundedness for m < m(p,q) and Miyachi and Tomita [70]

proved the boundedness at the critical case when m = m(p, q).
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The proof of the Main Theorem mainly consists of two parts: the boundedness of L> x
L>® — L™ when m < —2n, and the boundedness of L? x L? — L' when m < —n, and then

our theorem follows from the interpolation argument.

3.2 The Boundedness on L>® x [*° — [

In this section, we will prove the boundedness of the bi-parameter and bilinear operator
T, on L>® x L>® — L. Actually we can prove the following more general case:
Theorem 3.2. When m < —2n(1 — p), for o0 € BBS]s where 0 < 6,p < 1,5 < 1, we then
have that T, : L*>° x L>®° — L,

To prove this theorem, we need the following lemma in the bi-parameter setting (see
also [36]). A one-parameter version can be found in [6].

Lemma 3.3. Let m € R,0<0,p < 1,0 € BBS]}.

(a) If 0 < Ry, Ry <1 and supp (o) € {(x,&,n) : |&] + [ni| < Riyi = 1,2} then

ITo(f, Dl S (RiBo)™ | f leollglli,  fog € L.

(b) If Ry, Ry > 1 and supp (o) € {(2,&,m) : B < €|+ Ini| < 4Ry,i = 1,2} then

T, (f, )l S (RiR) " 5| fllpllgllpoe,  frg € L

(¢c) If 0 < Ry < 1,Ry > 1 and supp (o) C {(x,&§,n) : [&] + |m| < Ry, Ry < & + ] <

4Ry}, then

1T, (f.9)lleee S (Ra)"(Ra) =" 5| fllioelgllime,  frg € L.
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Proof. Consider

T.(f,9) = | K(v,z—y,z—2)f(y)g(z)dydz,

R’VL
where

K(z,y,2) = /n oz, & n)e™ Ve 2 dedn = Fil(o(z, -, ) (y, 2)

and F,,' denotes the inverse Fourier transform with respect to (£,71) € (R? x R?). Then it

suffices to show that

(a) SUP,cRr2 fRn |IC([L’, Y, z)|dydz 5 <R1R2)2n7

(b) SUp,epe [y [K(@,y, 2)|dydz < (R Rp) "%,

m
2

(¢) Supsere Jpn [K(z,y, 2)|dydz S (R1)"(R2)(1_p)"+

for the corresponding three parts in the lemma.

For part (a), note o is a smooth function with compact support. For an N € Ny, we have

(14|, )P Ky 2) ~ / o2, €)1 — A — D)™ (270270 dgdy
- / (1= Ag = AN (0, € m) (€€96m)dedn,
which implies

<R1R2>2n
(1 +[(y, 2)[P)N

Kz, y,2)| S

and part(a) is true if we choose N > 2n.
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For part (b) consider

[ Wy otz = [ s [ K2y

lya |41z |<(Rg) P lya|+122 1> (Rg) P

Kz, vy, 2)|dydz + Kz, vy, 2)|dydz.
\y1|+|zu§<R1)—P| (2., 2)ldy \y1|+\Z1\z<R1)—P| (2., 2)ldy
lyzl+122|> (Rg)—P lyzl+122|<(Rg)—P

By using Cauchy-Schwarz inequality, Plancherel’s formula and Ry, Ry > 1, we have

2
(/y1|+zl|§(R1)p |’C(.Z‘, Y, Z)]dydz)

lya|+lz2|<(R2)™P

< —2pn 2
S (Faft) ly1]+21|<(Ry)—P Kz, y, 2) [ dyd-
2|+ |22 <(Rg) P

SR> [ ol o) Py

[€2]+In2|~Ro

E1]+In1|~Ry
[€2]+Ing2|~Ro

< (RyRy) 2 / (L4 160] + )™ (L + (€] + ]y dedy

(Rle)i on (R R )m+2n _ (RlRQ) (1— pn+m)

K(z,y, 2)|dydz)* < ( (s 20) PV (g2, 22) YK, y, 2) Pdydz)

ly1l+lz11=(R1)~P ly1l+lz1=(R1)~P
ly2|+]2z2|>(R)~P lya|+lz2|>(R2) P

1
y dyd
(/y1I+21|>(Rl) o |( Y1, Zl)|4N|(y2722)|4N Y Z>

lya|+lz2|=2(R2)™F

S (R1R2)p(4N_2n) /g iR [(—=A¢, — Am)N(—A@ - Anz)NU(Ia§7n)|2dfd77
(el +Ing |~ Ry

S L L
(el +lma |~ Ra

5 (R1R2)p(4N—2n)<R1R2)m—p4N+2n _ (R1R2) 2(1—p) n+m
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and

2 < 2N 2
(/y1|+z1|§<R1>P Ky, 2)ldyd=)" (/y1+z1|sm1>ﬂ vz, 2) 7 KAz, y, 2)[dydz)

lya|+lz2=(R2)~F lya|+|z2=(R2)~F

1
. (/ - —4Ndydz)
}Zimzi:iﬁ;;_i (Y2, 22)]

< Ry RPN (=L¢ = Ay,) Yo (2,6, m)Pddn
[€1 [+In1|~Rq
[€214In2|~Ra

SRR [ (] ) ]+ Dl dedy
\éé\JrW;\NR;

5 Rl —2an2p(4N—2n)R1m+2nR2m—p4N+2n _ (Rl R2)2(1—p)n+m'

Thus, we are done with part (b).

For part (c¢) we consider

[ Ky 2ayaz = [ K2y + | K,y

" ly2|+|22|<(R2) =" ly2|+]22|=(R2)~°

Then:

(f K.y, 2)ldyd)* < ([ 0+ (.20 ) Kol . ) Pyd:)
ly2|+[22|<(R2)~° ly2|+|22|<(R2) =P

1
X (/
ly2|+|z2|<(R2)~P (1 + |(y1, Zl)|2)2N

< Ry / (1= Ae — Ag) o, €,n)Pdédn

dydz)

S Ry (L + &l + [m D)™ (X + || + |n2])™dEdn
|€2]+In2|~Ro
[€11+Im|<R1<1

5 R2—2an2m+2an2n _ (Rl)Qn(RQ)Q(l—p)n-i-m.
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( / K (2, y, 2)|dyd=)* < ( / 1+ 11, 202N (g, 22) PN K, 1, 2) Plyd=)
ly2|+|22|>(R2)

ly2|+|2z2|>(R2) ="
1
X (/ 2\2N AN
ly2|+[22|>(R2) P (1 + |(y1a 21)| ) |(y27 Z2)|

SRPONI [ B = 8 (-D B e, &) P
I§1I2+In1 \QSRlél

S (R [ (1 60+ ™ (L4 el + el ded

[€2]+]n2|~Ro
[€1]+Im <SR <1

dydz)

< (R2)p(4N—2n)(R2)m—p4N+2n(Rl)Zn _ <R1)2n(R2)2(1—p)n+m’

~

where we choose N > 2n. O

Now we use the above lemma to prove the boundedness T}, : L™ x L — L*>:

Proof. We take functions vg(z,y), ¥ (z,y) € S(R?) such that supp ¢g C {|z|+|y| < 1},suppyp C
{1/2 < |z| + |yl <2} and 3377 y(w,y) = 1,2,y € R, where ¢;(z,y) = ¢¥(2772,277y),j €

N, . Then we do the decomposition:

o(x,&m) =Y oz, &),

7,k=0
where oji(2,€,n) = o(x, &, 1) (§1, m)Yr(§2,m2)- By Lemma we have

J(mt2n(1=p)) _k(m+2n(1-p))

1Toy(fs e S22 27 2 fllcllglloe, 5,k € No.

Then when m < —2n(1 — p), we have

1T (£ 9l < D 1Ty (f 9o

7,k=0
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o
J(m+2n(1—p)) _k(m+2n(1—p))
S > 2 2 [ fllsllglloe S llsollglloo-
k=0

For (T(f,g),h) = (T*\(h,q), f) = (T*2(f,h), g), the following lemma holds
Lemma 3.4. ( [36]) Assume that0 < <p<1,6§ <1 ando € BB s, then for T;j = Thsej

,we have 0* € BBS)'s  j=1,2.

By these lemmas and the duality argument, we have the following boundedness

Corollary 3.5. For T, with m < 2n(p — 1) and ¢ € BB b5 0<land 0 <o <p<1we
have:

Ta(f7g):LOOXLOO_>LOO, LlXLOO—>L1, LOOXLI—>L1.

3.3 The Boundedness of the Operator T,(f,g): L? x L* — L!

In this section, we consider the boundedness of the operator T, (f, g) : L? x L?> — L. The
proof of this result in our bi-parameter setting is rather involved. To prove this boundedness,
we need the following lemmas whose proofs can be given without too much difficulty and we
will omit them.

Lemma 3.6. Let r1,79 > 0, and let N be a sufficiently large integer. Suppose o(x,&,n)

satisfies either of the following conditions:
(a) 10510306, 0, 031030 (. €. )| < (r172) ¥ Xqler 1<r) Xelalra}s for all [al B |7 < N ;

(b) |a&18a28£18528718720-(x75777” < (r1r2)%RX{|771|§T1}X{\772|§T2}a fmﬂ all |O./|, |ﬁ|v |’7| < N:

1 T2 &2 U m T2
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where a = (ay, ), f = (b1, P2), 7 = (71,72) are multi-indices. Then

IT5(f; 9l < Cll 2Nl 2

for all f,g € S(R?), where N and C can be taken independent of 1,19 and depending
only on n.

A one-parameter version of this lemma can be found in [70].
Theorem 3.7. The operators of class Op(BBSy,) with m < —n are bounded in L* x L* —

L.

Proof. For o € BBS(,, we keep using the decomposition in the proof of Theorem

O'([E,fﬂ’]) = Z 0(x7§7n)¢j(€17nl)wk(g%Th) = Z O-jk(x7€7n)7
7,k=0 7,k=0

where the symbol o, satisfies the condition

0510520, 0, O Oz ogu(, €| S ()% (2°) % Xgjeatoimi 122y Xl el <22}

1 YT &2 7m Tn2

Then by Lemma [3.6] there holds

+n

ITo,0 (. 9)ler S (297

m-+4n

> |1 fllz2ll gl z2-

(2°)
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When m < —n, we have

- m4n m+n
DT (f 9l S D @) 29 2 (1 fllz gl = NI Fll2lg -

4,k=0 4,k=0

]

Now that we have finished the proof of the boundedness of L? x L? — L', then by the

duality argument, we also have

Corollary 3.8. For o(x,&,n) € BBSy, with m < —n, we have:

T,(f,9): L* x L* - L', L*xL>®—L* L®xL*— L%

3.4 Proof of the Main Theorem

The following interpolation result follows from the complex interpolation method of the

classes BBSfY, (see [78]).

Lemma 3.9. For mg,m; € R and any 0 € (0,1),

(i) (BBSyy, BBSy )6 = BBSfy.

(ii) If the operators Op(BBSy) are bounded in LP* x L% — L™ with 1 < p;,q;,m; < 00

and 1/p; +1/q; =1/r;,i=0,1.

Then the operators Op(BBSgy) are bounded in LP x L9 — L, where (m,p,q,7) =

0(m07p07q0ar0) + (1 - 0)(m17p17Q17T1)‘
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By using the above interpolation lemma, we can complete the proof for our main theorem.

Proof. For (a), use Corollary and Corollary we have the following interpolation graph:

1
(0,1) P2
_2n
P2
L I
(O’E)
—-N
AV
-}
[
(0,0)

In graph above, we divide the triangle into four parts. When(pil, p%) is taken from each
of the four regions, the corresponding upper bound for m is shown there.
For (b): Note that we have BS§y € BBSy, for m <0, so this follows directly from the

result when o(z,£,n) € BSgin [70]. O
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CHAPTER 4 EQUIVALENCE OF TRUDINGER-
MOSER INEQUALITIES

4.1 Introduction

In this section, we will begin with giving an overview of the state of affairs of the best
constants for sharp Trudinger-Moser and Adams inequalities. section 5.1.1 concerns the
sharp Trudinger-Moser inequalities and section 5.1.2 discusses the sharp Adams inequalities
involving high order derivatives. In section 5.1.3, we will state our main results on the
equivalence between critical and subcritical Trudinger-Moser and Adams inequalities.
4.1.1 Trudinger-Moser Inequalities

Motivated by the applications to the prescribed Gauss curvature problem on two di-
mensional sphere S?, J. Moser proved in [71] an exponential type inequality on S* with an
optimal constant. In the same paper, he sharpened an inequality on any bounded domain €2
in the Euclidean space RY studied independently by Pohozaev [80], Trudinger [90] and Yu-
dovich [91], namely the embedding W, (Q) C Ly, (Q), where L, (Q) is the Orlicz space
associated with the Young function ¢y (t) = exp <a ]t|N/(N_1)> — 1 for some o > 0. More
precisely, using the Schwarz rearrangement, Moser first proved the following inequality:

Theorem (Moser, 1971). Let Q) be a domain with finite measure in Euclidean N —space

RN, n > 2. Then there exists a constant ay > 0, such that

1
9] / exp (aN |u|%> dzx < ¢ (4.1)
Q

1

for any u € Wy (Q) with o \Vul™ dz < 1. The constant ay = wl_\, where wy_y is the

area of the surface of the unit N— ball, is optimal in the sense that if we replace an by any
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number o > ay, then the above inequality can no longer hold with some cq independent of

Moser used the following symmetrization argument: every function u is associated to a
radially symmetric function u* such that the sublevel-sets of u* are balls with the same area
as the corresponding sublevel-sets of u. Moreover, u is a positive and non-increasing function
defined on Bg (0) where |Bg (0)| = |©2|. Hence, by the layer cake representation, we can have

that

/Qf(u) dr = /BR(O) f(u")dx

for any function f that is the difference of two monotone functions. In particular, we obtain

lull, = llw”ll, ;

/ exp (a |u|#> dr = / exp <a |u*|ﬁ> dx.
Q Br(0)

Moreover, the well-known Pdlya-Szego inequality

/ |Vu* P de < / |Vul? dz (4.2)
BR(0) 0

plays a crucial role in the approach of J. Moser.

Moser’s result has been studied and extended in many directions. For instance, we refer
the reader to the sharp Moser inequality with mean value zero by Chang and Yang [14], Lu
and Yang [67], Leckband [57], sharp Trudinger-Moser trace inequalities and sharp Trudinger-
Moser inequalities without boundary conditions by Cianchi [18(19], Trudinger-Moser inequal-

ity for Hessians by Tian and Wang [88], etc. We also refer to the survey articles of Chang
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and Yang [15] and Lam and Lu [47] for descriptions of applications of such inequalities to
nonlinear PDEs.

Recently, using the LP affine energy &, (f) of f instead of the standard L” energy of
gradient [V f||,, Cianchi, Lutwak, Yang and Zhang proved in [20] a sharp version of affine
Trudinger-Moser inequality by replacing the constraint ||V f||,, <1 by &, (f) <1 in Moser’s
inequality.

Moser’s inequality has also been extended to the singular case 0 < g < N:

|Q|}_ﬁ /Qexp <a (1 - %) \u]NN—l) dx < ¢ (4.3)

for any o < ay, any u € Wol’N (Q) with [, |Vu|N dx < 1. This constant oy s sharp in the

sense that if o > ay, then the above inequality can no longer hold with some cy independent
of u.

As far as the existence of extremal functions of Moser’s inequality, the first breakthrough
was due to the celebrated work of Carleson and Chang [12] in which they proved that the

supremum

1 N
sup —/exp <aN|u|N*1>dx
9] Jo

weWy N (Q), fo | VulN de<1
can be achieved when €2 is an Euclidean ball. This result came as a surprise because it has
been known that the Sobolev inequality does not have extremal functions supported on any
finite ball. Subsequently, existence of extremal functions has been established on arbitrary
domains in [30], [62], and on Riemannian manifolds in [59,|60], etc.
We note when the volume of €2 is infinite, the Trudinger-Moser inequality becomes

meaningless. Thus, it becomes interesting and nontrivial to extend such inequalities to un-
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bounded domains. Here we state the following two such results in the Euclidean spaces.
We first recall the subcritical Trudinger-Moser inequality in the Euclidean spaces estab-
lished by Adachi and Tanaka [1].
Theorem (1999, [1]). For any a < ay, there exists a positive constant Cy o such that

Vu e WHN (RY) | [|[Vul y <1:

N
[ ow (alul¥) do < o Jull (1.4)
RN
where
N-2 .
tJ
On(t) =" — E il

J:
The constant oy is sharp in the sense that the supremum is infinity when o > ay.
N

We note in the above theorem, we only impose the restriction on the norm [,y [Vul

without restricting the full norm

1/N
V yvu|N+T/ '“‘N} <1.
RN RN

The method in [1] requires a symmetrization argument which is not available in many oth-
er non-Euclidean settings. The above inequality fails at the critical case & = ay. So it
is natural to ask when the above can be true when o = ay. This is done in [81], [61]

by using the restriction of the full norm of the non-isotropic Sobolev space WhH¥V (RN ) :

1/N
o 190 7 o ]
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Theorem (2005, [81]; 2008, [61]). For all 0 < a < ay :

sup /RN ON (a |u]%> dr < 00 (4.5)

flull<1

where
1/N
N N
foll = ([, (1wul + 1) as)
RN

Moreover, this constant ay s sharp in the sense that if o > ay, then the supremum is
nfinity.

More results about the Trudinger-Moser inequalities on the Heisenberg groups could be
found in [53[54,[56]. It is worth noting that the above results on subcritical and critical
Trudinger-Moser inequalities were proved by using symmetrization arguments, and later
Lam and Lu [51], Lam, Lu and Tang [54] avoided the use of symmetrizationproved to prove
such results via level sets, which enabled them to establish such inequalities on more general
settings rather than the Euclidean space, such as Heisenberg groups.

The inequality uses the seminorm ||Vu||, and hence fails at the critical case o =
ay, the best constant. Thus, it can be considered as a sharp subcritical Trudinger-Moser
inequality. In {) when using the full norm of W (]RN ), the best constant could be
attained. Namely, the inequality holds at the critical case & = a. Hence, is the sharp
critical Trudinger-Moser inequality.

Nevertheless, our main purpose is to show that in fact, these two versions of critical and
subcritical Trudinger-Moser type inequalities are indeed equivalent. Hence, since Theorem

C is easier to study than Theorem B, our work suggests a new approach to the critical
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Trudinger-Moser type inequality.

Sharp Trudinger-Moser inequalities on unbounded domains of the Heisenberg groups were
also established by Lam, Lu and Tang [50,54./56]. We also mention that extremal functions for
Trudinger-Moser inequalities on bounded domains were studied by Carleson and Chang [12],
de Figueiredo, do O, and Ruf [27], Flucher [30], Lin [62], and on Riemannian manifolds by
Y. X. Li [59,60], and on unbounded domains by Ruf [81], Li-Ruf [61], Ishiwata [40], Ishiwata,
Nakamura and Wadade [41] and Dong, Lu [28].

4.1.2 Adams Inequalities

It is worthy noting that symmetrization has been a very useful and efficient (and almost
inevitable) method when dealing with the sharp geometric inequalities. Thus, it is very
fascinating to investigate such sharp geometric inequalities, in particular, the Trudinger-
Moser type inequalities, in the settings where the symmetrization is not available such as
on the higher order Sobolev spaces, the Heisenberg groups, Riemannian manifolds, sub-
Riemannian manifolds, etc. Indeed, in these settings, an inequality like is not available.
In these situations, the first break-through came from the work of D. Adams [2] when he
attempted to set up the Trudinger-Moser inequality in the higher order setting in Euclidean
spaces. In fact, using a new idea that one can write a smooth function as a convolution of
a (Riesz) potential with its derivatives, and then one can use the symmetrization for this
convolution, instead of the symmetrization of the higher order derivatives, Adams proved
the following inequality with boundary Dirichlet condition [2], and Tarsi extended it to the
Navier boundary condition [86] when 8 = 0, and then Lam and Lu extended it to the case
0< B <N |49

Theorem (Lam-Lu) Let Q be an open and bounded set in RY . If m is a positive integer
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less than N, 0 < 8 < N, then there exists a constant Co = C(N,m, ) > 0 such that for any

m.N
ue Wy ™(Q) and |]Vmu||L%(Q) <1, then

1 15} ~N__dzx
i et (1 e S <

for all p < B(N,m) where

N/22mF m+1 N—m .
N [ﬂ (2 )} when m is odd

N—m+1
BN, m) = “vrL ==
’ N 7TN/22mF(%) N—m .
— when m is even
WN -1 r(=s")

Furthermore, the constant (N, m) is optimal in the sense that for any « > (N, m), the
integral can be made as large as possible.

The Adams inequalities for high order derivatives on domains of infinite volume were
studied by Ogawa [76], Ozawa [77], Kozono, Sato and Wadade [45] with non-optimal con-
stants. The sharp constants were recently established by Ruf and Sani [82] in the case of
even order derivatives and by Lam and Lu in all order of derivatives including fractional
orders [48,/49,51,54]. The idea of [82] is to use the comparison principle for polyharmonic
equations (thus could deal with the case of even order of derivatives) and thus involves some
difficult construction of auxiliary functions. The argument in [48,49] uses the representation
of the Bessel potentials and thus avoids dealing with such a comparison principle. Moreover,
the argument in [49] does not use the symmetrization method and thus also works for the
sub-Riemannian setting such as the Heisenberg groups [50,/52]. More results in this direction
were proved in [8,21,50,/54,/56]. The following general version is taken from [51].

Theorem (Lam-Lu, 2013 [51]). Let m be a positive integer less than N, 0 < < N,
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then there exists a constant Co = C(N,m, ) > 0 such that for any u € Wm’%(]RN) and

m
2

| (=1 +A)2 u||x <1, then

b ) 45
. éNm(Bo (N, m) (1 - N) lu(x)] )\SU|B < ().
Here

N AVP2rT( v
P [ I ] |

i

ovm()= > %

jeN>om

Furthermore the constant By (N, m) is optimal in the sense that if it is replaced by any
number larger than [y (N, m), then the above inequality no longer holds with a constant
Cy independent of wu.

Sharp Trudinger-Moser inequalities were also recently established on hyperbolic spaces
by Mancini and Sandeep [69] on conformal discs and by Lu and Tang in all dimensions [63}64]
including singular versions of subcritical type inequalities [1] and those of critical type [61,81].
Sharp Trudinger-Moser inequalities on infinite volume domains of the Heisenberg groups were
also established by Lam, Lu and Tang [50,54}56].

Very little is known for existence of extremals for Adams inequalities. The only known
cases are in the second order derivatives on compact Riemannian manifolds and bounded
domains in dimension four by Li and Ndiaye [58] and Lu and Yang [66] respectively, and
other cases are still widely open. Adams inequalities have been extended to many other

settings such as on the compact Riemannian manifolds in [32], spheres in [5], CR spheres
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in 23], [8], etc.

Our work mainly focus on the equivalence of the subcritical and critical Trudinger-Moser
inequalities, as well as the equivalence of some subcritical and critical Adam’s inequalties.
The paper will appear in Rev. Mat. Iberoam.

4.1.3 Owur Main Results
We begin with an improved sharp subcritical Trudinger-Moser inequality:

Theorem 4.1. Let N > 2, ay = N (%)m, 0<pB <N and 0 < a < ay. Denote
2

1 I} ~_\ dx
AT (o, B) = sup —_/ N (a (1 - —> |u|N—1) —.
1vully<t lully ™" e N 2]

Then there ezist positive constants ¢ = ¢ (N, B) and C = C (N, ) such that when « is close

enough to ay :

(4.6)

Moreover, the constant ay is sharp in the sence that AT (ay, f) = oo.

Then we will provide another proof to the sharp critical Trudinger-Moser inequality using

Theorem [4.1] only.

Theorem 4.2. Let N >2,0< < N, 0<a, b. Denote

~ \ dx
ML (3= s [ o (aN <1 - %) |u|N1) &
IVul%+ull <1 /RN |z|

MT (B) = MTy.n (B).
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Then MT,, (8) < oo if and only if b < N. The constant ay is sharp. Moreover, we have the

following identity:

Noig\ Y5
1 (ai
MT,; (8) = up N%b AT (a, B). (4.7)
ac(0,an o
()
In particular, MT (8) < oo and
N-1\ T
1 (a&
MT(B) = Sup < )NN_1 AT (o, B)
a an o
an

We now consider the sharp subcritical and critical Adams inequalities on W% (RY), N >
3. Our first result is the following sharp subcritical Adams inequality:

Theorem 4.3. Let N >3,0< 3 < N and 0 < a < f(N,2). Denote

B _N_
1 P2 (04 (1-%) |U|N*2)
1Aul g <1 1q| 2V ¥/ /RY ||
Pl
2l
ova()= D>,
jeN:gz%j'

Then there ezist positive constants ¢ = ¢ (N, B) and C = C (N, ) such that when « is close

enough to 5 (N,2) :

—~

c

Al 13 < ATA (o, B) <

2 1_% T2 1_%‘
[1 - </3(N,2>> } [1 - (—ﬂwa)) }

Moreover, the constant (N, 2) is sharp in the sence that AT (ay, 5) = co.
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Theorem 4.4. Let N >3, 0< 3 < N, 0<a, b. We denote:

ova (B(N,2) (1 - %) Jul¥=
M@= s [ al |iﬁ De),

b
[Au|ly +llully <1
2 2

Then Aqp () < oo if and only if b < % The constant B (N,2) is sharp. Moreover, we have

the following identity:

() T T
A\ B(V.2)
Aa,b (6) = sup N—2 ATA (CY, 5) : (49)

In particular, A(B) < oo and

N=-2 NTiﬁ
1 ( a_) ?
B(N,2)
A (5) = sup N-—2
a€(0,8(N,2)) 2
(5(1\772))

AT A (o, B).

Q

Finally, we will study the following improved sharp critical Adams inequality under the
assumption that a version of the sharp subcritical Adams inequality holds:

Theorem 4.5. Let 0 < v < N be an arbitrary real positive number, p = %, 0 < ac<

S (7]
ﬁo(NaV):wi,V_l [W:(szgi)] , 0<B <N, 0<a, b. We note

2

1 dnq (@ (1= ) lul
GATA (a,p) = sup 2 /RN ( ]x|5N ) dzx;

wew o @) (-a)Ful <t [lulf;
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Ons (B0 (N,7) (1= §) ful7*7)

]

dx

GAup (B) = sup /]RN

ueW e ®N):{|(-a) 2 u| +ulh <1
P

where

¢N77 (t) = Z r

7.
jeNgzp-17°

Assume that GAT A (a, B) < oo and there exists a constant C' (N,~, ) > 0 such that

C (N,v,p)

1
(1 N (/30(?\777)) )

Then when b < p, we have GA,p (B) < oo. In particular GA,, () < oo.

GATA (o, B) <

(4.10)

Though we have to assume a sharp subcritical Adams inequality (4.10]), the main idea of
Theorem is that since GAT A («, 8) is actually subcritical, i.e. « is strictly less than the

critical level By (IV, ), it is easier to study than GA,; (/). Hence, it suggests a new approach

in the study of GA, (B).

4.2 Some Lemata

Lemma 4.6.
~_\ d
AT (o, B) = sup / ON <a (1 — E) \u]Nji1> —xﬁ
IVl y <Tiluf y =1 RN N |2]
Proof. For any u € WHY (RY) : [|[Vul|y < 1;[Jull y = 1, we define

v(z) =u(A\x)

A= ||U||N
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Then,
Vv (z) = AVu (Az) .
Hence
IVolly = [Vully < L flolly =1,
and

_ 1 BN ) e
_||u||%‘ﬁ/ﬂw¢N(“<1 N) i )|as|‘

[]

By Lemma [£.6] we can always assume [ul|y, = 1 in the sharp subcritical Trudinger-Moser
inequality.
Lemma 4.7. The sharp subcritical Trudinger-Moser inequality is a consequence of the sharp
critical Trudinger-Moser inequality. More precisely, if MT,, (B) is finite, then AT (a, ) is

finite. Moreover,

i< [ . )
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In particular,

then

o ¥a o %a
Vo|y = | — vaul® < [ —
ol = () 7wl < ()
= () L g ()
v N — an )\b u N = o .

Hence ||Vo||% + |[v]|% < 1. By the definition of MT,, (3), we have

_ By -y da
fooov (o= ) 15

- /RN o (a<1 - %) |u(/\x)|N/(N_1)) d (A7)

Az’
dx
_ )\N—B/ 1 By ppra-n
o O (aN( N 1 ol
N—1 N-g
N
< <“N) MT,
— N—1 a,b (6) .

a\ N @
- ()
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Lemma 4.8.

ATA(f)= s /¢N,2(a(1_%)|u|m)
.

lAu]| v <L;[lull y =1
> T

Proof. Let u e W22 (RY) : |Aul|x <1 and set

v(z) =u(\x);

A= lul

oz

Then it is easy to check that

Av (x) = A Au (\z)

and
lAo]s = |Aul]y
N 1
[ / v (2)]? do = / lu(\2)|? de = — | |u(z)|? doe = 1.
Moreover
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Lemma 4.9. Assume A, (8) < oo, then AT A (o, ) < 0o. Moreover,

N-p
(i)™ )
B(N,2)
ATA (o, ) < = Aup (B) -
o N
1- ﬂ(N,2)>
In particular, if A(B) < oo, then
N_§
2 N

o -~
v(x) = u (Ax
0= (ovg) 00
X2y o\ @
‘o ﬁ(ﬁm) _
1= B(ﬁ,2)>
then
o 2 o =
AU N = AU, N <
il = (5avgy) 1l = (509)

b @ ol h=1- 2
HUHJJ_(B(N,Q)) o lully =1 (ﬁ(N,Q))

(4.12)
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Hence HAUHCL% + Hva% < 1. By the definition of A, (8), we have

_ By -2 dr
/RN ON2 (04(1 N) \u| ) |$|ﬁ

= [ owa (a1 = Sy 1)

Aa|?

dx
NS L By w-2)) bz
A /]RN ON (OCN( N) v ) mﬁ

N-B
N—2, o

- (T&z))

1- (T(ﬁm)

Aa,b (6) :

4.3 Trudinger-Moser Inequalities of Adachi-Tanaka Type
In this section, we will prove the improved sharp subcritical Trudinger-Moser inequality.

We would like to note here that we don’t assume M7 () < oo in the proof of Theorem [4.1]

Proof of Theorem[{1l Suppose that u € C5° (RY) \ {0}, u >0, |[Vul|y <1 and |ul|y = 1.

Let

Q={z:u(z)> (1— (%)N_1>N

Then the volume of 2 can be estimated as follows:

Q Q an

|Q/1@</%@<T;>N1.
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We have

dz

[ ox (1= ) V)

N N
U U
< e” ——dzx + e —dz
2| x|
{uls]z|>1} {ugl;]z|<1}

C (N, P)

N-1\ (N=B)/N"
(=)

Now, consider

on (a (1= £) ™)

I:/ T
2|
Q
exp (a (1 — %) |u|N/(N_1))
< / 3 dx.
||
Q

On 2, we set

v(z) = u(z) — (1— (%)Nl)}v.

Then it is clear that v € W, (Q) and || Vv, < 1. Also, on Q, with e = 2% — 1 ;

o \ V1 ¥
e (o))
an

N/(N-1)
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1 1 a \V! ~
g<1+e>|v\N/<N-”+<1——>1—N|(1—(—) ) o)

= OV N1 g

Hence, by Trudinger-Moser inequality on bounded domains:

exp (a (1 — %) ]u\N/(N_l))
I< /

d
of '
Q
< /exp (an (1— %) | V=D 4 ) i
/ o

<C(N, B~
C (N, B)

N1\ N=B)/N"
(=)

In conclusion, we have

CN,B)

N-1\ (N=B)/N"
(-@)")

Next, we will show that AT (ay, 5) = co. Indeed, consider the following sequence:

AT (o, 8) <

0if |z| > 1,

1/N n
Un () = <w]]v\;lﬁn> log (ﬁ) ife s <|z|<1 .

N-1

1
1\ ™ N -¥%5
<U.)N—1> (Nriﬁ> if 0 S |.§L’| S e N-F
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Then we can see easily that

IVunlly = 1; funlly = on(1).

However

JRA GRS

dz
2|
RN
Tl
{osmgﬁf}
e Nﬁfﬁ
= wN—1¢N (n) / TN_I_'BdT
0
_ wnaon () N1 asn - 00

T (N-f) 'N-§

Now, it is clear that there exists a large constant M, such that when n > M,

¢ 1 n o NW-1) ! N —-p 1
N _ N/N A N-1 N/N (] N, N-1
lld = [ G M s [ (SR (o (1) ar

r

So

un||N 7~ ] when n > M.
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Now we consider the following integral

on(a(1 — B/N)|u,|¥77)

. o "
eiNTiB 1 L n s
2 [ (et pmi R )

n

e NP Q Q@
e / ON (—n> N8y 2 ON (—n) e "
0 an aN

We note that there exists a large constant M, independent of « such that for n > M,

N (&n> ~ elan )"
an

as long as = >

1
an 2°

Now we have

dn(a(l = B/N)lu|¥)

RN |$|B

1 1
~(1—— >11-—
@ ( Tl)aN o ( HlaX(Ml,Mg)) aN
or
1
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Then

. (a1 = B/N)lun| ¥T)

[ []”

2 nN—Be—Q

7
z( _&) (4.13)

And note that when « is close enough to ay, we have

a \N—-1
Lo (E> ~ 1,
Sy
which implies
c (N, B)
AT (@, B) 2 N1\ (N—B)/N
(- ()")
an
when « is close enough to ay. O]

Now, we will provide a proof to Theorem using the above improved sharp subcritical
Trudinger-Moser inequality (4.6)). This suggests a new approach to and another look at the

study of the sharp Trudinger-Moser inequality:

Proof of Theorem[{.3. First assume that b < N. Let u € W' (R¥)\ {0} : | Vul|% +ull5y <
1. Assume that

[Vully =6 € (0,1); Jully <1-6°.
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If £ <6 <1, then we set

u (Ax)
v(z) = p

1

(1)}
A=
7 >0
Hence
[Vull
Volly = Vgl = 1
N N 1 N N _ (1—=0697
lolly = [ 1l do = [ w0l do = gl < S = 1

By Theorem [.1], we get

k) sy Gl 1

£l

_N _
) AN_ﬁ/ on (65 an(1 = £) o/
- RN |

Ny I-%
< AN=BAT (ewﬂow,g) < <_(1 — 0 )”> C (N, B)

—
2w

o=

IR

C(N,B) <C(N,pB,a,b) since b < N.

fo<o< %, then with
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we have

Vully =2 [|Vully <1

lvlly < 1.

By Theorem [.1}

on (ax 0= l) o (e
/RN N /RN

|x|ﬁ dx

<CN,f).

B8

Next, we will verify that the constant ay(1 — %) is our best possible. Indeed, we choose the

sequence {uy} as follows

0if |z| > 1,
1/N n
up(z) = <w]xfn) log (ﬁ) ife ™7 <|z] <1 . (4.14)
N-1

1
L) R ~ N
(ww—l) (Nriﬁ) if 0 <[] < e v-7

Then,
1

1
nnN

IVunlly =15 funlly = O(

).

Set

wn () = Ayt () where A, € (0,1) is a solution of A2 + A2 [Ju,[|% = 1.

)\nzl—O( b)_>k—>ool'
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Then

a b
[Vwally + [lwal[y = 1.

Also, for a > ay :

/ O (a (1-%) !wn!%>

dzx
|
N-2 (1B ‘
exp (o (1= ) | 757) = 37 LS 7
> =0 dx
- / |z|?

_.n
{Og\x|§e N-B }

w0l o] s

an

> | exp

— 00 as n — OQ.

Now, we will show that

N-1, NP
1 (i v
MT,; (8) = sup =T AT (a, )
ac(0,an) a \ N

()

when MT,; (8) < oo. Indeed, by (4.11)), we have

N-8

N1, b
1 (ﬁ v

sup N-1, AT(Q75)<MTab(ﬁ)

Now, let (u,,) be the maximizing sequence of M T, (8), i.e., u,, € WHN (RM)\{0} : ||V, |5+



[un]|% < 1 and

We define

Hence

Also,

oo o2

78

u (M)

() = 19,

1 v a 1/b
Ay = (M) 0.
IV

”VUnHN =1 and “vn“N <1l

) lu ‘NNI) dx
" 2|

- N/(N—1
%mlmu—%m4“>)

¢ ( \Y
) /\f:f‘ﬁ/ Nl
RN

¥ 1= (=
<2t (190,17 aw8) < sup .

Hence, we receive

|




79

when MT,, (8) < oco.

Now, if there exists some b > N such that MT,, () < co. Then we have

B oy
lim_ . - <1 - (—) ) AT (a, 5) > 0. (4.15)
N apn
Hence _3
N1\ "5
o N
@
im < 00
—O(—)OtN N_1 ];
(-)")
which is impossible since b > N. The proof is now completed. O]

4.4 Adams Inequalities

4.4.1 Sharp Adams Inequalities on W22 (RY)
We now prove Theorem Again, it is worthy nothing that no version of Theorem

is assumed in order to prove Theorem [4.3]
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Proof of Theorem[{.3, Let u € Cg° (RY)\{0}, u >0, |Aully <1 and |lully = 1. Set

Qu) =<z € R u(x) > [1_ (ﬁ(;’%)%?]ﬁ

Since u € C§° (R™), we have that Q(u) is a bounded set. Moreover, we have

) ¥ I
2u)] < / di <
Q(u)1_< o )T 1_( o )T
B(N,2) B(N,2)

We have the following estimates:

/ OnN2 (a(l — %) |U|N/(N—2)> ’;i%

RN\Q(u)
15} _ dx
< / O 2 <a(1— ﬁ)\UW(N ? E
{u<1}
2
< C(N) [ul Fdz
2]
{u<1}
y ¥
< C(N) l® g+ ul®
x| x|
{u<li|z|>1} {ugl;|z]<1}
<C(N,B).

We now show that AT (ay, ) = oo. Indeed, let ¢ € C*° ([0, 1]) be such that
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For0<6<%weset

N N p%
||A¢r||1%f < wny-10 (N7 2)7 log (_) AT’
2 T
N2
y A
N,2)'%
a(N,2) = CAGE )z :
Noy

Now, we set

Then

N\ '~
e = (108 (3)) " ores,
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N
|Aw |2 < wy_ia(N,2)* A, and
2

Au |32 < A
lauw |37 < =5
Now,
N/(N-2)
AT (ay, §) 2 i 1 /¢> BN,2) (1= 40| 1
a2 = Do O P A N [lAu ]y
Ur B,
[Aur|

(N —B)log (7)

(11 +0 (i)

> lim
= A N s B
= 50 4 A 157 g
2 2
N1
2 30 v
> i
2 lim “ H%(l_%) WN-1 37— 5¢N2
e 1+ 2
—ooasr — 0.
Now, consider the following sequence
( N la? )

g () = NB(N,Q)% H(Ink)" ¥ In
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Also,

1
N 2 5\ 5 1
Juel| 3 < wn (Nﬁ (N,2)v (1nk)‘ﬁ) ’ /er In =dr
2 r
0
N
1-2Z ?
WN_1 1 N 1 1
Ink -
TN {B(N,Q) ! ] " (luk) ¥
k
—2 ]
< A(lnk) ' +B(nk) = -
for some constants A, B > 0.
Let
Uk
Vp = ———
o Buy
2
then
[Avg[x =1
and
N N _1 N2 ]
ol § < uallE < A k)™ + B (k)™ o

By the definition of AT A («, 5), we get
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Zlw
SN—
DO

|

exp —B(ﬁfﬂ) (1 —
>(C

Note that when k (independent of «) is large

Jaw) 37 @ o

LAY L BV2)

So we have

2w

AT A(a, B) > exp { (1 . %) (6(13, 5~ 1> In k;} (In k)"~

When « is close enough to 5(N,2), we are able to choose k large enough as required before

such that
1
Ink =~ 7 -
- B(N.2)
or
15} o
- — —— — — 1) Ink~1.
( N)\swv2 )"
Then
2
1 o 1
ATA(O&,ﬂ)ZC(l o ) ~ N—2
- B(NV.2)

when « is close enough to (N, 2). O

We now offer another proof to Theorem [4.4] using the improved sharp subcritical Adams

inequality (4.8]).
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Proof of Theorem[{4} Assume 0 < b < . Let u € W2z (RY)\ {0} : HAuHa% + Hqu% <1

Assume that

lAully =6 € (0.1); fluly <106

If% < # < 1, then we set

_ u(Ax)
'U(.T)— 9
1
1 — goya
A=l y) >0
2
Hence
jauy = 20
U%— 0 = 13
N
olf = [ ¥ do = [ ¥ e = oo puid < S

By Theorem [£.3], we get

BN.2) (1= %) |u(r)] Z)d(A |

( af
)

ona (BN.2) (1= 3) ™) [ O
o

Aw |z|?

ON2 (9%5 (N,2) (1 - %) |U|N/(Nf2)

MNP
= Aw |z|?

oz \ "7

< AVPATA <9%5(N,2),5> < <(1 _0? ) ) C (N, B)
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fo<e< }L, then with

we have

[Av]ly = 4[|Auflx <1

o]y < 1.
2

By Theorem [4.3}

o2 <ﬁ (V.2) (1-§) |u|%> dr < 4V oN (sz
/RN v /RN

£l

< C(N,p).

We now also consider the Adams’ test functions as in the proof of Theorem [4.3] Let

B> B (N,2). Set

Uy (|z) A [l ||
w,(|z]) = A= where A, € (0,1) is a solution of A} + ———* =1
[Au || x 12w,y
Ar — o+ 1.

Then

[+ ey = 1
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and
o ona (B F) lwl72) 81— 2) AR 0,77\ dr
lim 3 dr > lim /¢N2 N 3
ro0+ Jpn |z| o0t | Au, |3 ||
N-p N — ) log (%
> hm WN=1 " ¢N2 B ( B) Og(r) — OO

T r—0t N — 6

B(N,2) . (Hw’llwﬂ?(@)) ]N22

as r — 07 if we choose € small enough.

It now remains to show that

N-—2 N_8
1 ( o Y &2\ %
T\ B(V,2)
Aa b (ﬁ) - sup N-2, ATA ( ﬁ)

By (4.12)):

AT A (o, f) < Aap (B) .

sup —— .
a€(0,8(N,2)) o N
(%)

Now, let (uy,) be the maximizing sequence of Aqy, (8), i.e., u, € W22 (RM)\{0} : ||Aun|]a% +

lun||% <1 and

[oma (8002 (1= 5 ) lal¥) 25 o 40 6).
RN ||

We define a new sequence:

o u (M)
= Ay
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1—||Aun||N e
A= | ———— >0
Hence

1AV, ]|y =1 and fJua]lx <1

Also,

O 7)) 22
[ one (052 (1= 5 ) 1l) 25

AN_B/ PN.2 (IIAunIIN/N DB(N,2)(1- L) |vn|N/<Nf2)>
RN

o dx
|
N8
N- N/(N-2) 1- (ﬂ(ﬁz)
< AN-BATA (HAunH B(N,2) ,5) < sup s AT A (a, B).
a€(0,8(N.2)) ( o >N”
B(N,2)
Now, we assume that there is some b > & such that A, (3) < co. Then
N2\ o
N
1= (ﬂ(ﬁ 2)
Aup(B) = sup — AT A (o, B)
(0.8(V.2)) ( o >N”
B(N,2)
and so
NN
1= (58)
limaqg(v,2) 2 AT A (a, ) < o0
a N
(¥
Also, by Theorem [4.3}
N2,y R
1= (585) ©
N7
Tt 2) P AT A (a, B) > 0, (4.16)
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Hence: Nb
N-2.\ “m
| (1 - () )
1o v N2\ "2 >0
(1 - (ﬁu‘%)) )

which is impossible since b > % The proof is now completed.

4.5

4.4.2 Adams Inequalities on W (]RN)-Proof of Theorem

Let u € WP (RV) \ {0} : H(—A)% uHa + ||u||f; < 1. We set
P

=0€(0,1); JJull, <1-0"

If 2% < 0 < 1, then by define a new function

v(x) = u(gxx)
Ao U ?a)jb >0

0%

we get
(~8)F 0 (@) = o ((-8)Fu) ()
Hence
g e,
H( Aol = 0 =5

1 1
P _ Py = — Az) [P de =
ol = [ e =g [ 0wl de = oo

lull, <

(1-6%

P
b

P AN

=1.
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By the definition of GAT A («, ), we get

/.

O (B (N,7) (1= §) ful7*7)

¢Mw(ﬁoUwa(1——%J|u(Axﬂ#%>

dr = d(\
2 ! / Bk O)
o1 _ B =T
s / Ony (07760 (N,7) (1= £) o] )dx
R 2
AN C(N.B)
S )\N_ﬁGATA (9%60 (Na ’7) aﬁ) S <(10—1> ’ B

o

Z[w

(0-er)

T (1—g)w

C(N,B) < C(N,pB,a,b) since b < p.

fo<d< 2%, then with

v(z) =2"u(2x),

we have

By the definition of GAT A («, ) :

s

Ox (o (N,2) (1= §) ful7*7)
2

Bo (va)

p=17 1=
2 p
9P‘1/30(N77)) ]

50 (Nv’Y)

%) lel#7)

<C(N,B).

== (1 -
dx<2N/ ¢N’7<27ﬁ (
B RN |z|°

dx
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CHAPTER 5 TRUDINGER-MOSER INEQUALITIES
WITH EXACT GROWTH AND THEIR
EXTREMALS

5.1 Introduction

In this section, we consider the Trudinger-Moser inequalities with exact growth, which
allows the critical inequalities under the restriction of the semi-norm.

to get the critical case @ = ay while still using the seminorm ( Jan |Vu|Ndx) / , in

dimension two, Ibrahim, Masmoudi and Nakanishi [39] used / %dw instead of / -

R2 R2
1dx.

Recently, Lam and Lu studied some sharp versions of the Trudinger-Moser inequalities

for functions in D™ (RY) N L7 (RY). More precisely, they proved that

N O\ N1
Theorem B (Lam—Lu-2014). Let N > 2, ay = N (F](V&rjl)>N "and 0 < B < N.
2

Thenforall0§a<ozN(1—%),quandp>q(1—%) (p>qif =0), there exists

a positive constant Cpy n a5 > 0 such that

N
N—1 p
exp (a Jul ) Jul e a(1-2) LN N e (N -

Moreover, this constant oy (1 — %) s sharp.

A consequence of the above theorem is the following inequality:

Theorem C (Lam-Lu-2014). Let 0 < < N and ¢ > 1. Then for all 0 < a <

ay (1 - %) , there exists a positive constant Cy y s such that

NP (04 |U|N*1> s
L 5 < o o209 v DY (®Y) 120 (RY) - [y < 1
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The constant oy (1 — %) 1 sharp. Here

> %if,@>0.

jen, j> 1 (1-2)

> Gifg=o.

. . a(N—-1)
JEN, j>25F—

Q)N,qﬂ (t) =

Here we study a version of the Trudinger-Moser inequality with exact growth on DYV (]RN ) N
L1 (RN) :
Theorem 5.1. Let A >0, 0 < B <N, p>q¢g>1and0 < a < ay (1—%). Then there
exists a constant C = C(N,p,q,\,B) > 0 such that for all w € D'V (RY) n L7 (RY) :

|Vul|y <1, there holds

N
N

1

RN

/ s (o >> do < Clluli ). (5.1)

(1 + A Ju 7T (R)) [z

Moreover, the inequality does not hold when p < q.
We also studied the maximizers of the above Trudinger-Moser inequalities in the subcrit-
ical case p > ¢q. We actually proved

Theorem 5.2. Let A >0, 0< < N,qg>1, 0<a<ay andp > q. Denote

1 PNg8 (O‘ (1 - %) uN*l)
TME,;Nxapg = sup / B dz.
N

I P (1_
weDLN (RN)NLI(RN): [V y <1 HUHZ(l—N)RN (1 + A ’u\ Np_l(l > |$’B

Then TME, s Naap can be attained in any of the following cases

(a) >0 and all 0 < a < ay,

(b)ﬁzO,W%NandallO<a§&N,
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(¢c) =0, dN-D e N, p>N and all 0 < a < ay,

(d) =0, q<N_1)€N,p§N,p<%q and o = ay .

5.2 Some Useful Results

In this section, we introduce some useful results that will be used in our proofs. We first
recall the definition of rearrangement and some useful inequalities. Let Q C RY, N > 2, be
a measurable set. We denote by Q7 the open ball B C RY centered at 0 of radius R > 0
such that |Bg| = |Q].

Let u : © — R be a real-valued measurable function that vanishes at infinity, that is

{x : |u(z)| > t}] is finite for all ¢ > 0. The distribution function of u is the function

pu(t) = {z € Q- fu(z)| > 1]

and the decreasing rearrangement of u is the right-continuous, nonincreasing function u*

that is equimeasurable with w :

u*(s) =sup{t > 0: p,(t) > s}.

It is clear that suppu* C [0, |Q2]]. We also define
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Moreover, we define the spherically symmetric decreasing rearrangement of u :

u Q% = [0, 00

u#(r) = u* <0N |x|N> :

Then we have the following important result that could be found in [55]:

Lemma 5.3 (Pdlya-Szegé inequality). Let u € WP (R™), p > 1. Then f# € W (R") and
IV, = IV,
Lemma 5.4. Let f and g be nonnegative functions on RN, vanishing at infinity. Then
[i@g@dr< [1#@)g* @ o
RN RN

in the sense that when the ldft side is infinite so is the right. Moreover, if f is strictly
symmetric-decreasing, then there is equality if and only if g = g7 .
We will next prove a lemma that will be used several times in our work.

Lemma 5.5. Let Q C RN, |Q| < oo. Suppose that
fn— f a.e in
and there exists ¢ > 1 such that f, is uniformly bounded in L (2) and f € L9(Q). Then

foo fin LM (Q).
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Proof. For arbitrary € > 0, by Egorov’s theorem, we can find a measurable D C €2 such that

fn — f uniformly in D,

|Q\ D| <e.

Thus

/|fn—f|da:—>0.

D
Also, by Holder’s inequality

1/q 1/q*
[in=siar<| [1r-sra)| | [ra
O\D Q\D O\D
< CeVe

Hence f, — fin L' (Q2). O

Now, we recall a compactness lemma of Strauss [7],84].

Lemma 5.6. Let P and () : R — R be two continuous functions satisfying

P(s)
Q(s)

P(s)

—0as |s|] 00 and —= —0ass—0

Q(s)

Let (uy,) be a sequence of measurable functions: RY — R such that

sup / 1Q (un (2))] d < o0
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and

P (up (z)) "= v(z) a.e., and lim |u,(z)| = 0 uniformly with respect to n.

|z| =00

Then P (u,) — v in L' (RY) .

Using Lemma [5.6, we will study the continuity and compactness of the embeddings from
Di(’i\if (RN ) N L4 (]RN ) into L (]RN ) and L* (RN ; l;%). More precisely, we have the following
lemma:

Lemma 5.7. Let N > 2, 0 <t < N. Then the embedding D)}y (RN) N L7 (RN) — L (RV)
1s continuous when r > q and compact for all r > q. Also, the embedding DY (]RN) N

rad

L1 (RN) — L" <]RN; &%) is continuous when r > q (1 — +) and compact for all r > q.

Proof. By the Caffarelli-Kohn-Nirenberg inequality [9]: There exists a positive constant C'

such that for all u € C§° (RY) :

[ wll, < C L™ [Vulll,

1—a
|

q
where

pg>1,r>0 0<a<l
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and

0<a—ocifa>0and

a—1 1 ~
N N

1
a—oc<1lifa>0and -+
p

we could obtain the continuity of the embedding D"V (RY) N L7 (RY) — L <]RN ; d—””) with

’

7’>q(1—%) (r > qif t = 0). Indeed, we choose p = N; a = 8 =0; v = —% a =

L)
Now, let 7 > ¢, we now will prove that the embedding DY (RM)n L (RY) — L™ (RY)

is compact.

Indeed, let {u,} € DY (RY) N L7 (RY) be bounded. Then we can assume that

rad

U, — u weakly in DY (]RN) N L7 (RN) .

rad

Set

Up = Up — U.

By Radial lemma, we get that
| 1|im |, ()] = 0 uniformly with respect to n.
T|—00

Also, using the Lemma [5.6] with

P(s) =s"; Q(s) =57+ st
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then we can conclude that v, converges to 0 in L!. It means that wu, converges to u in L".
Now, let 7 > ¢, we will prove that the embedding D}y (RY) 1 Lt (RY) < L7 (RY; &)
is compact.

First, let {u,} € D:Y (RY) N L7 (RY) be bounded. Again, we can assume that

rad
U, — u weakly in D:c’g (RN ) N LY (RN ) .

Choose p such that 1 < p < %, then for R arbitrary, we get

1/p 1/p
d / 1
/ [t — ul” —xt < / |tup, — u|™” dx / —dr
|z |z
lz[<R z|<R z|<R
L/p
<CR+"" / |, — u|'” dx

Also,

/|u —u|rd—$<i/ lu —u|rdx<g
" |3:\t_Rt " - Rt

lz|>R lz|>R
Using the compactness of the embedding DY (RY) N L7 (RY) — L™ (RY), choose R

sufficiently large, we get that w, converges to u in L" (RN ; d—z> : O

et

Now, we will prove a variant of Lemma 2.2 in [64]:

~ -~ 1/N
Lemma 5.8. Given any sequence s = {sy};.0, let [|s]|; = Z Isk|, |slly = <Z |3k]N> sl =

) k=0 k=0
0o 1/q
<Z |55 |? ek> and

k=0

k) = it {1l lsll, = b sy < 1}
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Then for h > 1, we have

3
2

Choose

It’s clear that

1
Islly =15 lIslly =n'"#;

Q3

e

Isll ey ~

2|~

n

SO

23

u (nl‘ﬂ S5
n

z|-

Now, assume that for some € < 1, n > 1 and sequence s :

Q3

(&
Islly = 1; llslly = v/n: llsll) <&

Z|=

n

It means that for k > n :

= ‘

e

sk] Se

3
2|~
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Consider the new sequence by = s : k <n and b, =0 : k > n, we get

_1 £
Hlez Hs”l_Z‘Sj‘ znl N _C_i'

j>n nnN

Hence

N o1 N

N-1 E\ N=1

Hb’|1N12(n1_11V—C€1> :n<1—C—>N12n_C€.
nnN n

On the other hand,

(sj—sk)”
N N 1 N ; J 2
N-1 _ 2\ 3(N-1) _ = Jksn
BT = (1el) ™0 < S EE
Hence
> (sj— k)’ Sen' N
J:k<n
Choose m < n such that
min|s;| = [sn
Then
1
bll, = 7 [sm| S Ven!™v.
Hence
1
|3m| 2 T
nn
and we get
eq
”SH(e) 2

S
Z|=
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which is a contradiction. ]

Using the above lemma, we can now prove a Radial Sobolev inequality in the spirit of

Ibrahim-Masmoudi-Nakanishi [39]:
Theorem 5.9 (RadialSobolev). There exists a constant C' > 0 such that for any radially

nonnegative nonincreasing function o € DV (RN) N L4 (RN) satisfying u(R) > 1 and
/ N ,N-1
wN_l/ ') " dt < K
R

for some R, K >0, then we have

N [o(t)[* £V dt
exp [ (R)] /
3 RY < C* 3
pvT(R) K=

Proof. By scaling, we can assume that R =1; K =1, i.e., wN_l/ o' (1))N tN1dt < 1. Set
1

N
hy =ay e (ek/N) ; Sk =hg — hypg1 >0

then

=

Islly = ho = ay ™ ¢ (1).

2z

Also

N—-1
N

S = hy — hipp1 = ay [¢ (ek/N) — (e(k+1)/N)]
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ek/N
N-1
=, / o' (t)dt
e(k+l)/N
e(k+1)/N 1/N e(k+1)/N (N 1)/N
N ' N ,N-1 1
< ay | (¢)|" ¢ dt ;dt
ek /N ek/N
(1) /N /N
< | wys / ! ()| eVt
ek/N
Hence
Islly < 1.
Now
e(k+1)/N e(k+1)/N
k20 0y k>0 SN
> Z ‘gp(e(’““)/N)‘q ekl > Z | hyosr |7 P2
k>0 k>0
=D _ImfTer >y fsil”e!
k>1 k>1
Thus

I, Z|sk|qe’“—so+2|sk|”<hq /Is@ (1 at.

k>1

Also, for1<r<exp< . ) :
QN—-1.N

=l NolL N-1
ho —apyy ¢ (r) =ayy o (1) —ay” ¢(r)

1
N—1

=,y [ u(t)dt
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Hence

So

el/2n

)1t dt > [ [o(t)| "tV dt 2 b
0
1 1

Now, we can conclude that

()"t dt 2 [Is[IF,) 2 7
~ () ~ N1
h
1

5.3 Trudinger-Moser Inequalities with Exact Growth-Proof of The-
orem (5.1

Proof. Tt is enough to prove the inequality (5.1)) when A = 1 and p = ¢. By the symmetriza-
tion arguments: the Polya-Szego inequality, the Hardy-Littlewood inequality and the density

arguments, we may assume that u is a smooth, nonnegative and radially nonincreasing func-

N

(I)N’ B atN-T
tion (we just need to make sure that the function < ! =y is nondecreasing on R™
14V N >

N
N
but it is easy since % and Py, 3 (at NIX1> are both nondecreasing on R'). Let
t -N
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Ry = R;(u) be such that

Ry
/ |Vu\Ndx = le/ ]ur\NTN’ldr <1-—¢,
Br, 0
0
/ \Vu|" dz = wN_l/ u, [N PN < g
RN\Bg, R

Here gq € (0,1) is fixed and does not depend on u.

By the Holder’s inequality, we have

u(ry) —u(ry) < / — u,dr (5.2)

N—-1

()
™

N—

1—eo\ Y ro\ N
< ( O) <ln—2) for 0 < ry <ry < Ry,

WN-1 (8]

IA
—
B
i

2
=

T
&
S

[un

and

1/N ~
u(ry) —u(ry) < < =0 ) (ln 2) for Ry <7y <. (5.3)

We define Ry :=inf {r > 0: u(r) <1} € [0,00). Hence u(s) < 1 when s > Ry. WLOG, we
assume Ry > 0.

Now, we split the integral as follows:

N N
s (lul ™) s (@lul ™)
/ dv = / 9 (1_B8

(1 + Auﬁﬁ—%)) 2|

RN
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First, we will estimate J. Since u < 1 on RV \ Bp,, we have if 3 > 0 :

Similarly for the case 8 = 0, we also have
_B
7<),

Hence, now, we just need to deal with the integral I.
Case 1: 0 < Ry < R;.

In this case, using ([5.2)), we have for 0 <7 < Ry :

N—-1

L e\ UN No1
u(r) <1+ ( 50) <1n &) :
WN-1 T

By using

where

(5.4)
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we get

In—+C(e).

r

Lo\ V)
u%(r) <(l+¢) < 60) Ho

WN-1

Thus, we can estimate the integral I as follows:

o \Y(N=1) Ry 1/(N—1)
oz(lJrE)(ijN_Ol) Nflfa(1+€)((jiﬂ) "
< CR, r N-t dr

0

< CRY™

<C /1dx

Br,

zw

< Ol

Case 2: 0 < Ry < Ry.

We have
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Using ((5.3)), we get

um—um@g<5°ym(m@>Nmrzm.

WN-1

Hence

Then, we have

N—-1 R
u%(r)§(1+ )( =0 ) In— 4+ A(e), Ve > 0.
WN-1 T
So
N
Pq,s <O‘ |U|N71)
I, = / L (1-2) ﬁdm
g, (120770 R) )l
y R
SC/eXp <a(1+€)( =0 ) ln—0+aA(5)> PN By
WN-1 T
Ry
1 1
1 —B—o(lte e N-T Beoflte . N—1T
a(1+5)(“’:70_1)jRN frats )(WNO*) _ RN fratit )(WNO*)
< CR, ° : —
N-pg-a(l+e)(z2)"
C
< — (R R
N—ﬁ—au+@(£g)‘l
N N\ 1-%
<C(RY-R) ¥
1-8
N
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-2
< Ol

1

(since a < ay (1 — £), we can choose £ > 0 such that N — 8 — a (1 +¢) ( =0 >N71 > 0).

N WN—1

] DN.q.8 (a|u|ﬁ) )
So, we need to estimate [; = / ~— dr with u (Ry) > 1.
<1+/\UN—1(1N)> ||

Ry
First, we define

v(r)=u(r) —u(R;) on 0 <r < Ry.

It’s clear that v € W, (Bg,) and that / \Vo|Y do = / \Vu|™ dr < 1 - &.
B B

Ry Ry

Moreover, for 0 <r < R; :

N N

u¥=(r) < (L+e)o™1(r) + Ale)uv— (Ry).

Hence

dx (5.6)

dz

60“4(5)uﬁ (R1) / e(H—a)ow%(r)
ks

N—

where w = (14+¢) ¥ w.

=

It’s clear that w € W™ (Bg,) and /\Vw[Ndx = (1 +€)N_1/ VoV de < (1+

BRI BRl
1
N-1

e)N"1(1 — &) < 1if we choose 0 < ¢ < (ﬁ) — 1. Hence, using the singular Trudinger-
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Moser inequality, we have

N
awN-T(r)
/ 6|de < C|Bp,|"" ¥ < CRY™. (5.7)
Br,

Also, using Theorem 5.9 we have

_ -5
eaA(s)u%(Rﬂ N_ exp (NNa—é(;)u% (R1)> . N
_a (1_B Ry < —q_ Iy <5'8)
uN—l(l N) (Rl) unN-1 (Rl)
L s
< | CA(e)™T / lu|? dz
RN\Bpg,
-
< (Cull?)

if we choose

N
- ~ 1
c (1 — €0>
By (5.6), (5.7) and (5.8)), the proof is now completed. H

Remark 5.10. When 5 = 0, we note that the inequality (5.1)) still holds when we replace

Oy 40 by a function ® such that there exists Cy, > 0:

® (aN \u|%> < Cngq€xp (aN |u]%) Vu;

P (aN \u]%) < Cnyglul? for every |u| < 1.
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5.4 Sharpness

We define the sequence

WN—1 N-8 ’
wnle) = (2L Vlog (), e T <lal <1,
0, |z| > 1.
Note that
[Vu,|lxv =1

and for sufficiently large n,

n

N-B 1
c 1 n o aN-1) N -7
w,||? = a/N N1 +/ a/N
[[unllg /0 S (N_ﬂ) eszB(wN_ln)
(N-1) e 1 N-B
R~ nq/o Nl + nQ/N/O yle Mdy
a(N—1) nN 1 1

Now we consider the LHS of (5.1)),

/ Py g plan(l— B/N)|u|%)da:

o (A

/G_N_ﬂ Py g plan(l —ﬁ/N)(le_l) (553)) N1
0 (1+ ()N (25) |1

WN-1 N-8

Vv

n

I(N—1)

N-pB _
0

n N n nN n N

(5.9)
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Note to make (5.1)) true providing n sufficiently large, we need

1 B 1 q
oy R lunllf ™ ~ —pgy = 1> N 11— B/N)
n NN n e

5.5 Proof of Theorem [5.2

Before proving Theorem [5.2 we will study a lower estimate for TME, a5 When
B =0; —Q(Z\]I\;l) eN.

Lemma 5.11. Let 3 =0, w €N and 0 < a < ay, the following estimates hold

(a) if p> N, then TMEpqnpa > Favemy,-

1 N

(b) if p < N and p < £=Lq, then TME, g nyan > 725 -

Proof. Define

WN -1 N ’
wlw) =1 (G log (1), e F < o] <1, (5.10)
0, 2] > 1

Note

o F N LN 1\
lunllf = WN—l/ <£> TN_ld?“+wzv-1/ (—)q/N <log—) rNldr
0 an e N WN-1T r

n  aw-ye " N NN
= wal(—)qTW + wn-1 ( ) / yle My
0
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In this case ¢ngo(r) = X272, v &, and
S

onaalant ™)
R™ 1 _|_ )\uN—l
2 n _1 _N_
e N ONgo <QE> N1 1L Ongo (a(ﬁ)’v‘l(log%)”‘l) N
= wN—l/ —ET dT+WN_1/ n I D NP T
014 (%) N N 14 A Tm) Y (log 1) v
LN
PN 4,0 (Oé%) e ¥ N0 (a(ﬁ) *lyN”) N1
= WnN-1 D + wWwN-1 N D D r dr
1A ()" 0 1+ AG ) Ty
anN

Note that for sufficiently large n,

q(N-1) 1

(a) I>('J‘CI(N—TI))'Af01ra110<04§Ncum
a7,

N-1»
q(l\llv—l) 1
(b) In particular, I — WA N when a = ay.
aV-1)yy

and

1 ONgo (Oé(w - n)%l(log %)N’1>
I = CUN_1/ q N-1 1 N=1 g,

N - % q —Nyd
WN-1 14+ (L)N(N i) p_l (q(N—l))| WN_1T e Y
WN-17
n qg(N-1)
+WN—1/N @ 7 N Fyt ) e Nvay
0 (q(]\]fv—l))| WN-1T
1N
N ¢N,q,0 (WN 1n) 71yN71> qg(N-1) N )
= CUN—l/ N P «(N_1) | N 94 e—Nydy
—1) 9 N=1 WOn 1T
0 1+)\(WN—1 )N(N Ty N1 ( ) 1
qg(N—-1) N %
o N .
N qe Nyd
+(q(N71))! N 1<wN_1n /0 Y y
q(z\]fv—1)
— IIT+ sy B
N
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where

N ywhgea) efN N & q_)\ﬂ _N NN 0w
~ ¢N,q,o (m) Yy m(m)N?J (q(J\]fvfl))!(wN_ln) Yy
WN—l/O 1+)\( )N(]\I;—l) N1
WN_1M Y
e Ndy
N N
= wN_l/ S(y)e dy.
0
If « = ay and p < N, note
g(N-1) n _p_
o N N N It NI
111 Z PIEEEY NN WN—l/ ]3{[ > > e—Nydy
( ) WN-1T 0 1_|_)\(WN 1n)N(N71)y 1
1 NJFN(N 1)
<)
Taking advantage of the assumption £ < 2=l we have £ < £ + N1 then
N
1 ngqo(ozuév’l)d I+11
€r =
lunlld Jrn 14 u¥T A+ B
‘Z(N 1) D 1 i+ P oéq(I\IrV_l)
(q<N 1) A+( )Y = ()N (7‘1%—1>)!B o2
~~ > .
N—1
A+B (L1

Note that if p > N, we can conclude that when

« N NN %‘_
y<<)\(w+1>) ( N ) = cln),
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we have
(N-1) a(N—1)
N 1 N qu N N q o N N 49, __p P
a N N=T | vyl — )\ N+N(N71) It N1
¢N,q,0< (waln) 4 ) (‘Z(N_l)>! waln) Y <q(1\]7\]—_1)>' WN-_1M Y
g(N—-1)
1 NN\~ T
(Oé(wN]Yln) lyN71> Oéq(]\;\’_l) N R — g+ 2
- ((N 1) | _)\(Q(N—l))| w n)N Ty
q(N— _
+1>‘ ~ ) WN-1
N
1 N \J
f: a(wNNln)N‘ly ‘1>
+
1l
j=1E 4o o
J
o0 (O{(WNNln)%ly%>
-y e
j_q<N 1)+2
Then we get the following estimates
e(n)
/ S(y)e My
0
c(n) N 1 N qu(l\;\’_l) N q OJQ(AJ]V_I) N q p p
> a iy N-1 | — Nyl — )\ N NED 0t VT
_/0 <¢N’q’0( (wN,ln) y ) (q(N—l))!(wN,ln) Y (Q(N—l))!(wzvfm Y
—Ny WN-1
e dy -
y 1_|_( N )N(Nfl)(%)%l
WN—-1T
l+% 1 £+l+i
< lNNl/yq+]\?_1\;1€Nydy 1p> lNN 1’
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q p n
I\NTFv—T1 (¥ (N=1) N
Z‘(‘) / Y e Ny > "R / e vy
c c(

n (n)

g(N—-1)
> —n"s

+£& e~ Ne(n)

Since ¢(n) ~ n~ and n is sufficiently large, we conclude

Now we have

g(N-1) q(N—1)

o N @ N -
1 On,g0(au d I+1I ((AN*J(T)!A—{_[[[—F—(W)!B qu(NiNl)
Tz —

lunlld Jrn 1+ uvT A+ B A+ B = (q(N—l))|

N
N-1
n

Proof of Theorem [5.2k We recall that

1 CI)N,q”g (ozuNfl)
TMEpqNap= sup / : > dx

weDLN (RNYNLI(RN): ”V“”NS1||U||3<1_%)RN

where 0 < f <N, 0< A\, ¢g>1,p>q, and

> Lif 8> 0.

jeN, j> 1A (1-2)

> %ifﬁzo.

. . qg(N—-1)
JEN, j>5F—

Dygp(t) =

Let (ux) be a maximizing sequence of TME,, 4 y a5 in DV (RY) N L? (RY) such that
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|IVug|ly <1, ie.,

dm — TMEpyq»Nz)Va:B'

_N
1 CI)N,q,B <C¥U,]iv_1)
i/

(1 + A|uk1ﬁ(1—%>) 2|

q(1
|urlq N RN

By symmetrization arguments, we can also assume that each w; is radially nonnegative

then we have that v, is radially nonnegative nonincreasing function in D%V (RN ) NnL? (RN );

IVorlly < 15 [lokll, = 1 and

_N_ N
PN g8 (OzU;iVl) DN, (Owk]:Vl)
1 i 1 4,
i/ ‘ : !

) (1B r= B > (1B
Hung(l N]RN <l—l—)\|uk|N71(1 N)) |g:|5 ||UkHZ(1 N) 1+>\|Uk| 71(1 N)) |x|’5

- TMEp,q,N,A,a,ﬁ'

Hence, we an assume without loss of generality that

v, — v weakly in DbV (]RN) N LY (RN) ;

v — vae in RY; ||[Voy < 1; o], < 1.

Case 1: >0
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We note here that for all R > 0:

R
1= ol = / v ? de > | SN / o ()] PN Ldr
RN 0

R =
> |SN_1| |k (R)|? /TN_ldr = |SN_1| |k (R)|? ~
0

Hence

N O\ 1
vk (R) < <‘ N—1|> RN/a"

1/N
We now fix € > 0 and set R, = <ﬁ) . Then for every R > R, : v, (R) < e.

We denote jy 45 > 1 to be the smallest natural number such that jy 45 > w (1— %) .

Then

N

N J
Dy (avﬁl) ) (ow,iV 1)
de < — / N /0
/ ER P

£ 5!
ol Re jaf> R J2INa

Ly N NETiN,g.8
< —zay P exp [ avl Tt ) o
Re

RN

1 .
< ﬁaﬁv‘q’BCN’qﬁ [velly (by Theorem B)

€

1 .
< ﬁa%v’q’BC’Mqﬁ (—0ase—0).

€

Now, consider

N
Dy g (avéV”)
/ d

(14 Ao #TCO)) Jaf?

x.

|z|<Re

w1
Since % — 0 as |s| — oo, we can find L. (that goes to co as ¢ — 0) such that
1AJs| N=T U

2w Hw
SN—| ~—
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(-
LA T < ¢ for every |s| > L.. Then

1—

2w Fw
~— —

P
14A[s| V-1

‘I|<R5; |'Uk|2Ls

It remains to consider

N
PN ,q.8 (akal >
But by Dominated Convergence Theorem, it is easy to deduce that (since

N
—1) PN,q,8 <O‘UI£V 1) PN.,q,8 (O‘Le -

a.e. and < > € L' (B
(1+szvp_1(1ﬁ)>|z|ﬁ (1+)\Uk]\,p_1(1]€7)>|z|ﬁ |z|? (Br.))

=

2

PN,q,8| v

Hence, when we let ¢ — 0, we have

TME N\, S/ dzx.
Pl (14 Al 70 Jop?
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Thus v # 0 and then

Dn g8 (ow%)
TMEp D] < / dx

RN

<1+Ah4ﬁ5@’%»]mﬁ

lvlla ™ gx

As a consequence, v is a maximizer for "M E, ; N x o8-

Case2:ﬁ:O;W¢N

We can denote jy, > 1 to be the smallest natural number such that jy, > w

(actually, jyq > q( 1) since q(N Y ¢ N). In this case, we have

JN q+J q+N TJ

PR Sk T
]N q+.7

N
JN,q—9q j=0
< TN da

(1+A|vk|ﬁ)

]Nq+J ‘H'N TJ

Z T
JN q+]

\z

< eN-1INaT 1Cp g Hkaq

L
N—

eN-1INaTICL Ny —0ase — 0.
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Here, the last inequality comes from Remark [5.10] since the function

&]N,q+]uq+ Nflj

) <a \u]%) - Z (Jng +9)!

Jj=0

satisfying

o (04 ]u\NL> < Cn,exp (a \u]%> ;

& (a|u|™ < Cpyglul? for every |u| < 1.
»q

N
(the second one is clear since the smallest power in @ (a Mm) is |u|?; To explain the first

one, we note that jy, > L% > jy, —1>0:

. N (s . N-1 .
aJNq+Juq+N 1J ° O[JN,qJFJuNfl(jquflJrJ)u%‘H_JN,q

N
<I><a um> = - -
! Z (g +3)! JZZO: (g +3)!

=0

Since 0 < & N av=b) 4o - Ng < 1, we can find two positive numbers A and B such that
INg

q(N

i
U +t1=invg < Au+ B. Hence

O dNatigy Tt (INa— 1+
o () s S

aIN.atiyN=1 1(3Nq+] adN.ati=1lyN=1 1(JNq+j 1)

+ Bay
Z; (Jng +7)! Z (Ung+7 = D!

7=0

< Cygexp (aful¥7)).

N
(o3 q,0 <o¢ka >
The integral / ——————dx can be dealed similarly as in Case 1. Hence, again we

P
oo™
|z|<Re

have that v is a maximizer for TM E,, ; N A .3-
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Case3:ﬁ:0;q<N—N_1)€N

We assume that in this case, the supremum cannot be attained. Then, we set

(I)N,q,O (OéUN71> O[q(NNfl)
F(u) = - ul.

- N-1
(1 +)\|u]N—1) (q< v >)!

Hence

N
Py g0 (ow,;\'1>
TMEp,q’N’)\@ = lim Y dx
kaooRN (1_‘_)\‘%6’1\171)
aq(f\]fv*U
= Jim [ Flo) + (&=
RN N .

Again, we will first consider here / F(vy,)dx. We have

lz|=Re

P
14+ Ao, V-1
/> R. /> R. < + Aol
N q(l\lfv—l)ﬂ
00 (owkNl q(N—1)
a N U‘]
N—-1 . N—1
E (0 4)) (e Yk

N

= ]
(1 + A |Uk|ﬁ)

N—1) , .
Q(N ) 45

g(N—-1) .
N
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IN

«

N
. Py g0 (ow,fl>
eN-1 / -

N
<aeV-1Cngpr (— 0ase—0).

Also,
N
Png0 (avé\]1>
F(u) <e — < eCnygpn (= 0ase—0).
|z[<Re; |vi|>Le lz|<Re; |vk|>Le (1 + A |,Uk| N71>
Considering F(vy), again we can use the Dominated Convergence Theorem

|$‘<Rs§ |vk|<Ls

to conclude that
Ty oo / Fluog) < / Flv).

|z|<Re; |vk|<Le |z|<Re; |v|<Le
Hence, we have
. D0 <av%> 2D A
TME, ¢Nxa < aeNT1C0N g o +eCN g p AT - — v! | de+———.
(14 Ap™T) (B2 (52):
|.Z|<RE; "UlgLE N N
Letting ¢ — 0, and noting that R. — oo; L. — oo, we get
- _ / Dngo0 (ow N*l) e A ECED
p,q,N,\a = » - v T+ ———.
1 (N-1) (N-1)
o\ (T ATy () (-0,
If v # 0, then
& o a(N-1) a(N-1)
TME < / B i) deg T
D,q, N, \,aa » - v €T
N1 (N-1) (N-1)
ING=) =) =
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N
/ q)Nqo N*I) P o) ot oS5
||v|| 1+)\]U| ) (q(l\]fv—l)>! <q(1\]fv—1)>!

N

@Nqo omNi
HUH/ 1+)\‘U‘N

In other words, v is a maximizer for TM E, ; N xa-

V\_/

g(N—-1)

Hence v = 0, then TME, ;na0 < “m—pv- This is impossible either when p > N or

(Q(J\]’V 1))!
q<p< qw1tha—abeLemmam
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ABSTRACT

MULTPARAMETER AND MULTILINEAR PSEUDO-DIFFERENTIAL OPERATORS
AND TRUDINGER-MOSER INEQUALITIES

by

LU ZHANG

August 2016

Advisor: Dr. Guozhen Lu
Major: Mathematics

Degree: Doctor of Philosophy

Pseudo-differential operators play important roles in harmonic analysis, several complex
variables, partial differential equations and other branches of modern mathematics. We s-
tudied some types of multilinear and multiparameter Pseudo-differential operators. They
include a class of trilinear Pseudo-differential operators, where the symbols are in the for-
m of products of Hormader symbols defined on lower dimensions, and we established the
Holder type LP estimates for such operators. They derive from the trilinear Coifman-Meyer
type operators with flag singularities. And we also studied a class of bilinear bi-parameter
Pseudo-differential operators, where the symbols are taken from the general Hérmander class,
and we studied the restriction for the order of the symbols which could imply the Holder type
LP estimates. Such types of operators are motivated by the Calderén-Vaillancourt theorem
in single parameter setting.

Trudinger-Moser inequalities can be treated as the limiting case of the Sobolev embed-

dings. Sharp Trudinger-Moser inequalities on the first order Sobolev spaces and their anal-
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ogous Adams inequalities on high order Sobolev spaces play an important role in geometric
analysis, partial differential equations and other branches of modern mathematics. There are
two types of such optimal inequalities: critical and subcritical sharp inequalities, both are
with best constants. Critical sharp inequalities are under the restriction of the full Sobolev
norms for the functions under consideration, while the subcritical inequalities are under the
restriction of the partial Sobolev norms for the functions under consideration. There are
subtle differences between these two type of inequalities. Surprisingly, we proved that these

critical and subcritical Trudinger-Moser and Adams inequalities are actually equivalent.
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