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CHAPTER 1 INTRODUCTION 

1.1 Neural interface 

In the nervous system, electrical signals are generated by neurons and conducted 

through a complex network. Since 1950s, the development of devices to interface the 

nervous system has attracted a lot of interest. Such devices connect neurons via electrical, 

chemical, magnetic, mechanical or optical activation of neurons. Electrical recording and 

stimulation are applied in neuroscience research to understand the physiological processes 

at the cellular level, and in the treatment systems for neurological disorders such as 

Parkinson.s disease [10], epilepsy [11], and Tourette syndrome [12]. With rapid advances 

in the past three decades, their application is also extended to neural prosthetics to help 

restore functions in the nervous system, such as retinal implants, cochlear implants, and for 

urinary bladder function restoration, and limb control in paralyzed individuals [13, 14]. In 

all these applications, the most essential part in the neural interface, where implantable 

microelectrode arrays work as a bridge between nerve cells and outside equipment for 

transferring charge. Besides of stimulating and recording, neural electrodes are also 

designed to detect neurochemical and electrophysiological signals to understand the role 

of the specific chemical in brain function. This type of electrodes is also known as sensing 

electrodes. The detected neurochemicals include dopamine, norepinephrine, serotonin, 

ascorbate, uric acid, adenosine, and acetylcholine.  
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1.2 Neural stimulation and recording 

1.2.1 Transduction of electrical signals in neurons 

The signal transductions in neurons are modeled in Figure 1.1 [15]. The resting 

membrane potential of neurons maintain in the order of −60 to −95 mV through active 

pumping of positively charged sodium ions out of the cell. Neurons are typically 

activated by the receptors that open ion channels in the membrane in response to specific 

triggers, such as neurotransmitters [16]. After ion channels are open, sodium ions flow 

into the cell, the intracellular potential becomes less negative relative to the extracellular 

space and approaches zero. The cell is depolarized. When ions keep flowing into the cell, 

Figure 1.1 (a) Neural signal transduction model in neurons. (b) Model of voltage potential 

at the membrane of a neuron. (c) Cathodic electrical stimulation model [4]. 
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nearby voltage-gated sodium channels open [17], allowing further influx of sodium that 

consequently depolarizes other adjacent channels [4]. The action potential propagates by 

activating and opening a sufficient number of voltage-gated sodium channels. Action 

potentials normally travel in one direction from the soma to the axon terminal. Under 

orthodromic signal conduction, neurotransmitters released from the axon terminal bind  

to  receptors  on  the  target  neuron,  which  are  generally  on  the  dendrites (Fig. 1.1(a)). 

Once the neurotransmitters bind to the target receptors, ion channels open and contribute 

to the depolarization of the membrane [18].  

Electrical stimulation generates action potential by introducing an artificially 

generated electrical impulse. Charge is delivered to neurons with a cathodic (negative) 

current pulse. In general, a stimulation electrode is placed near the cells being targeted. A 

larger counter electrode is placed at a distant site to complete the circuit. During a cathodic 

(negative) stimulation pulse, a negatively charged microenvironment is created in the 

extracellular space around neurons near the electrode. This leads to the depolarization of 

the cellular membrane, opening of the voltage-gated ion channels, and further 

depolarization of the cell (Fig. 1.1(b, c)).  

1.2.2 Types of stimulation/recording electrodes 

Microwires  

The first generation of neural interface was sharpened metal wires, such as stainless 

steel, tungsten (W), platinum (Pt), iridium (Ir), or gold (0Au). [1]. Microwires are coated 

with a non-cytotoxic insulator material, except for the tips. Figure 1.2 (a) shows a typical 

microwire arrays fabricated by Plexon. The non-insulated tips were used to record the 

highly localized extracellular potentials from the neurons close to the tips and also to inject 
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the localized stimulation current to excite neurons [1]. Their narrow structures make it 

possible for the microwires to be placed very close to single neurons in vivo, causing 

minimal damage in tissue. They give long-lasting individual neurons recording, sometimes 

more than one year. Nicolas et al. recorded 247 individual cortical neurons from 384 out 

of 704 chronically implanted microwires in monkey’s brain up to 18 months after 

implantation [19]. One particular advantage of microwires is that they can be applied to 

access deep brain structures. By using the arrays of microwires, simultaneous recording at 

the level of neuronal populations is possible. However, the metal wires are easily bent 

during the implementation, so that the accurate location of the electrode tips relative to 

each other is not controllable. There are also some issues related to the materials in use. 

For example, stainless steel is fragile near the tips; tungsten has higher stiffness and rugged 

structure to provide very stable recordings; however, tungsten is very noisy at low 

frequencies. In fact, metal electrodes generally have less SNR because of higher impedance 

for the frequency range of spike signals. As a result, porous and conductive coatings are 

being applied. Platinum electrodes plated with platinum black provide stable recordings, 

high SNR, and create a porous low-impedance structure, although it is mechanically fragile. 

Recently, CNTs and conductive polymers have been used to coat the tips of the metal wire 

electrodes. In 2008, a research group coated the tips of conventional tungsten and stainless 

steel wire electrodes with a combination of CNTs and polymer for the first time. After the 

deposition of CNTs on indiumtin oxide MEAs, the impedance decreased from 940 kΩ to 

38 kΩ at a frequency of 1 kHz, and showed ~40-fold increase in charge transfer before and 

after coating [20]. 

Micro-machined electrodes 
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The second generation of neural electrodes is micro-electromechanical system (MEMS) 

electrodes, which can be fabricated into complicated structures using microfabrication 

techniques. Microfabrication techniques provided enabled small size and accurate 

dimensional control that have been demonstrated by integrated circuit (IC). Recently, the 

techniques have been used to fabricate microelectrode arrays (MEAs) for simultaneously 

recording from or stimulating from a number of neurons. Different micromachining 

techniques are used in Bio-MEMS applications such as micro needles and implantable 

microelectrodes. Compare to the microwire tips that may move apart during implantation, 

the spatial relation between electrodes in microfabricated arrays is determined during the 

microfabrication process and remains fixed. 

(a) 
(b) 

(c) (d) 

Figure 1.2 (a) Microwires [1] (b) Utah array [5] (c) Michigan probe [8] (d) flexible 

MEAs [9]. 
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There are two major types of silicon microelectrode array: the Michigan probe and the 

Utah array. Michigan probe [8], made at Michigan University during 1970s, is a single-

shank electrode having several recording sites on the shank surface. Figure 2(a) shows a 

basic structure of a micro-machined microelectrode probe for recording or stimulation in 

the central nervous system. The recording sites are typically made of iridium, gold, 

conductive polymers such as polypyrrole (PPy) or poly (3, or 4- ethylenedioxythiophene) 

(PEDOT), and recently CNTs. One of the advantages of these microelectrodes is a high 

density of sensors with predetermined locations with high spatial resolution. Furthermore, 

multiple sites can be formed over the shank of the electrode, thus enabling simultaneous 

recording of neuronal activities in the various layers of the cortex. 

Another type of silicon-based microelectrodes is Utah arrays [5]. These electrodes 

consist of conductive, sharpened silicon needles electrically isolated from each other. The 

typical length of the Utah array is 1.5 mm. The tips of the needles are coated with platinum 

or iridium oxide (IrOx). The rest is insulated with biocompatible polymers such as 

polyimide or parylene-C. The architecture of these electrodes enables single-unit recording 

with high spatial resolution, as well as exciting the neurons by electrical stimulation. Such 

microelectrode array can also be safely inserted into the brain. The Utah microelectrode 

arrays have been extensively used in research for the last 20 years. Figure 2(b) shows the 

architecture of Utah arrays. Needles of different height (thus 3D) in Utah arrays also have 

been demonstrated. 

Most MEAs are based on rigid substrates and cause neural damage and inflammation 

at the implant site for intracortical implantation. Flexible arrays are developed to improve 

the mechanical mismatch between the stiff planar silicon electrodes and the soft three-
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dimensional tissues of the brain. Different polymers such as polyimide and parylene have 

been used as structural substrates. Parylene-based MEAs demonstrate extremely flexibility, 

highly conformal coverage of the muscle surface and a stable electrical contact, resulting 

in an improved signal-to-noise-ratio (SNR) [9]. The flexible surface of electrodes cause 

less tissue damage; however, surface electrodes have low sensitivity and selectivity. In 

addition, it is difficult to insert the flexible electrodes precisely into the nervous tissue.  

1.2.3 Requirements for electrode materials 

In the neural networks, ionic currents are carried via chemical species in electrolytic 

media (cerebrospinal fluid) to support the bioelectric potentials for the neuron 

communications. The communication involves the exchange of energy that is present in 

the form of ionic carriers and in the form of electronic carriers (electrons and holes). This 

is completed by means of capacitive coupling (without net charge transfer) and or by charge 

transfer reactions (Faradic reactions). Two most commonly used models to describe the 

electrochemical behavior are capacitive mechanisms (charging and discharging of the 

electrode double layer, no electron transfer) and Faradaic mechanisms (chemical oxidation 

or reduction, reversible or irreversible). 

Up to now, different materials such as platinum, alloys of platinum and indium, iridium, 

iridium oxide, titanium nitride, conductive polymers and carbon derivatives such as 

graphene, carbon nanotubes, etc. have been used for the electrode arrays. It is important to 

consider the following properties when selecting an electrode material. 

• Good biocompatibility. 

• Smaller geometry size to improve selectivity. 

• Safe charge injection capability with small power consumption. 
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• Reversible reaction during charge injection to avoid the formation of toxic product at 

electrode-tissue interface. 

• Low polarization and impedance at the phase boundary for efficient injection of charge. 

•  Long term mechanical stability and corrosion resistance for chronic stimulation 

applications. 

• Visible to MRI, X-ray and other noninvasive diagnostic techniques. 

1.2.4 Electroactive nanomaterials for neural interface 

The development of new materials is important in the design of seamless neural 

interfaces with a high degree of sensitivity. It is essential to maintain a high degree of 

electrode sensitivity, especially when measuring single unit action potentials with signals 

on the order of microvolts. Long-term stability is another motivation for the design of novel 

materials. Electroactive nanomaterials such as metal nanoparticles [21, 22], carbon 

nanotubes [20, 23], silicon nanowires [24, 25], graphene [26, 27],   and conducting polymer 

nanostructures [28, 29] has the potential to achieve stable and sensitive chronic neural 

interfaces by significantly increasing the SNR. By reducing the dimensions to several 

orders of magnitude smaller than the dimension of the cell, the neural probe may penetrate 

into the neurons and have chance to accurately measure intracellular action potentials. It 

has also been suggested that these nanomaterials may integrate into the cell membrane and 

create electrical shortcuts. Therefore, the responsiveness of the neurons may be improved 

by forming tight contacts with the cell membranes which might favor electrical shortcuts 

between the proximal and distal compartments of the neuron.  

Metal nanoparticles [21, 22] 
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Gold and platinum are the most commonly used metals for neural electrodes. They are 

known to be more inert under biological environments compared to other metals. For a 

given micrometer-sized electrode, to reduce the interfacial impedances, the surface area 

must be increased.  Electrochemical deposition of Pt or Au is one of the measures to 

achieve the goal. Depositing platinum results in a highly porous electrode surface with a 

dendritic structure (platinum black). When a current density of 100 nA/ μ m 2 was applied, 

the sensitivity has increased by a factor of 1000. The electrode impedance was reduced 

from 1.4 M Ω to 10 k Ω for a 10 μ m-diameter microelectrode using this method. Although 

it is not suitable for long-term use or implantation because of mechanical properties, 

platinum black has served as a standard material that enhances the sensitivity of neural 

sensors for extracellular recordings. Careful engineering of electrodeposition conditions 

can produce a stable and robust nanoporous platinum structure, with an impedance of 2.4 

k Ω and a charge injection limit of 3mC/cm2 for a 45- μm-diameter microelectrode. 

To enhance the electrode sensitivity by increasing the surface area, gold nanostructures 

have also been fabricated on microelectrodes. Nano-sized thin gold pieces (“nanoflakes”) 

were formed on micro-sized gold electrodes by electrodeposition, resulting in an 

impedance of 11 k Ω for a 50 μm-diameter microelectrode. Gold nanopillar electrodes were 

also fabricated using template-based methods. To directly measure action potentials (in-

cell recording), three-dimensional (3D) protruding microelectrodes were introduced by the 

Spira group at the Hebrew University of Jerusalem. They used the electroplating process 

to fabricate arrays of rounded protruding gold microelectrodes (“gold spines”) that could 

be engulfed by neurons. The surface of these 3D gold electrodes was coated with 

polypeptides that bind to the cell membrane receptor proteins. In this way, a tight sealing 
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between the cell membrane and electrode surface was formed. They were able to record 

neural signals on the order of a few mV. They can also detect sub-threshold membrane 

activity that is generally not measurable by extracellular recording techniques. 

Carbon nanotubes [20, 23] 

The unique structure and properties of carbon nanotubes (CNTs) have been shown to 

modify electrical interfaces effectively. First, CNTs can dramatically decrease the 

electrode impedance and increase the charge injection limit. The interface impedance 

values can be reduced to 1 ∼ 10 k Ω, and the charge injection limit can reach 3 mC/cm2. 

Second, CNTs produce a stronger mechanical bond with cells, which was found to be 

another reason for the larger neural signals were recorded from CNT electrodes. Neurons 

spontaneously migrated and adhered to pristine CNT surfaces within two weeks have been 

reported, showing higher affinity to chemical vapor deposited CNTs than silicon nitride 

surfaces. This high physical affinity to the electrode surface accounts for the large signals 

on the order of a few hundred microvolts, or 10 times larger than conventional 

microelectrodes. Third, the penetration of the cell membrane by CNT fibers could enhance 

electrophysiological properties of neurons cultured on CNTs. This nanoscale interfacing 

could significantly alter the intrinsic cell properties by electrically short-circuiting neuronal 

compartments. 

Silicon nanowires [24, 25] 

Silicon nanowires have been implemented in field effect transistor (FET)-type active 

sensors for in vitro neural interface platforms. Silicon nanowire field-effect transistors 

(NW-FETs) arrays with active sensing areas ranging from 0.01 ∼ 0.06 μm have been 

reported. The work shows the possibility of simultaneous recordings from the axon and 
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dendrites of a single neuron with NW-FET arrays. A NW-FET array (device sensitivity 

31.1 nS/mV) on a flexible transparent substrate has been used to record neural signals 

ranging from 0.3–3 mV from neural circuits in brain slices. These works showed that the 

NW-FET is a promising sensor that can provide sufficient sensitivity with unprecedented 

spatial selectivity (∼ 0.06 μm2). Silicon nanowires have also been used as nanoelectrodes 

for the neural interface. Park et al. developed a vertical silicon nanowire array with 

individual nanowires 150 nm thick and 3 μm high. A group of several wires can cover a 

single neuron, and an array of grouped nanowires was used to interrogate a small neural 

circuit. A high signal-to-noise ratio was achieved on the order of 100 with the measured 

signal amplitude on the order of a few mV. 

Graphene [26, 27] 

The limitations of silicon and metals include their poor stability in biological 

environments, relatively high electrical noise, and rigid mechanical properties which 

damage the surrounding tissue. Researchers have attempted to find other potential 

materials. As one of the candidates, graphene have attracted many attentions due to its 

unique properties, including its electrical conductivity and mechanical stability. Graphene 

is a two-dimensional single-layer sheet of sp2 -hybrid carbon atoms in a hexagonal 

arrangement. Graphene has shown exceptional properties at room temperature, including 

high elastic modulus (ca. 1.0 TPa), remarkable thermal conductivity (3000 W m−1 K−1), 

high electron mobility (200 000 cm 2 V −1 s −1), excellent electrical conductivity (1 S 

m−1 ), and low resistivity (ca. 10 −6 Ω). Especially, the ability of easy functionalization and 

good biocompatibility make graphene suitable for biomedical applications. Moreover, 

graphene has a large specific surface area (2630 m2 g−1) and good chemical stability. 
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Thanks to all these distinctive properties, graphene is attractive as an attractive alternative 

to silicon for neural applications.  

Conductive polymers [28, 29] 

Conductive polymers are newly emerged type of neural interface materials for 

recording and stimulation. The conductivity of conductive polymers such as polypyrrole 

(PPy) and poly(3,4-ethylenedioxythiophene) (PEDOT) can be controlled by an 

electrochemical polymerization process. With the control, it is possible to lower the 

interfacial impedance for neural sensors. Typically, impedance of conductive polymer 

electrodes was ranged from 10 to 100 kΩ for 1250 μm2 electrode. The electrical 

polymerization process was also found be beneficial for entrapping biological materials 

such as nerve growth factors or peptides on electrode surfaces. Recently, PPy or PEDOT 

nanotubes were also fabricated. Microelectrodes with these nanotubes had lower 

impedances and higher charge injection limits than those with thin-film PPy or PEDOT. In 

addition, longer neurites on nanotubes was also observed. 

1.3 Neurochemical detection 

1.3.1 Neurotransmitters 

 In the mammalian brain, information propagates throughout an intricate system of 

neuronal networks by electrical and chemical transmission. Electrical signals, also named 

as action potentials, are generated by ion movement (mainly Na+, K+, Cl-) across the 

neuronal cell membrane [18]. Action potentials are received in the dendritic regions of the 

cell, summated at the cell body. Subsequently the signal propagates via a series of voltage 

gated ion channels located along axonal regions, which ultimately excites or inhibits other 

neurons within the network. The point of communication between two neurons is known 
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as a synapse. At a synapse, chemical messengers (called neurotransmitters) are secreted by 

the presynaptic cell through a process known as exocytosis. Exocytosis is initiated as the 

action potential reaches the terminal region of the presynaptic terminal, voltage gated 

calcium channels open causing an influx of calcium into the presynaptic cell [30]. This 

influx of calcium signals the fusion of intercellular neurotransmitter-packed vesicles to the 

cell membrane, which subsequently release their content into the extracellular space 

between the two neurons, called the synaptic cleft.  

Neurotransmitters in the biogenic amine class are consisted of catecholamines 

(dopamine, norepinephrine, and epinephrine), serotonin, and histamine. This “small 

molecule” class of neurotransmitters serves mainly to modulate neural function rather than 

to provide excitatory or inhibitory input. Studying this particular class of neurotransmitters 

collects important information in treating physiological defects that lead to developmental 

and cognitive disorders, as well as neurodegenerative disease states. For example, 

serotonin and norepinephrine have influences on mood and anxiety disorders [31], 

regulation of sleep-wake cycles [32], Alzheimer’s Disease [33]. Dopamine has effects in 

Parkinson’s Disease [34], schizophrenia [35], drug addiction and reward pathways [36]. 

Unfortunately, more than one biogenic amine works on each of these diseases. 

Additionally, biogenic amines have shown influence to each other [37]. This interaction 

also has clinical relevance in the treatment of a lot of diseases, e.g., schizophrenia. This 

integrative effect of a variety of biogenic amine terminals has also been implied in drugs 

of abuse, such as cocaine. Therefore, a truly integrative detection technique is required that 

is able to function in real-time in vivo, in order to appropriately study the fast, integrative 

and multifaceted nature of small molecule neurotransmission.  
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1.3.2 Techniques for sensing neurotransmission 

Although many imaging and analytical techniques existed, they are not suitable for 

studying neurotransmitter concentration fluctuations. Neurotransmission in the brain is an 

extremely localized event in which neurotransmitters are released in to the extracellular 

space in small “microenvironments”; occurring on the millisecond to second time scale. 

The sampling resolution alone would exclude many available detection techniques. 

However, the techniques of microdialysis and electrochemistry meet the requirements and 

suitable for detection in such microenvironments. 

Microdialysis 

Microdialysis is a sampling technique that has been widely used in neuroscience. It 

collects extracellular fluid through a microdialysis probe (typically 150-250 μm in diameter) 

via the perfusion of fluid through a dialysis membrane. The dialysate can then be analyzed, 

either online or offline, with a variety of analytical techniques. The chromatographic and 

spectroscopic techniques have already been maturely developed for distinguishing 

neurotransmitters from possible interferents (e.g. ascorbate, urate, and acidic metabolites 

of monoamines) as well as from each other. However, the significant drawback of 

microdialysis is the poor temporal resolution at which it operates. It is generally on the 

time scale of minutes [38]. 

Electrochemistry 

The significant benefit of electrochemical techniques is the fast data collection which 

is unattainable by microdialysis, although the sensitivity and selectivity of electrochemical 

sensors are still relatively low. To use the electrochemical technique, the analyte of interest 

must be electrochemically active. Fortunately, many molecules present within the brain are 
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electrochemically active. The electrochemically detectable small molecules include 

biogenic amines (described earlier) and hydrogen peroxide. Other physiological processes 

such as fluctuations in soluble gasses (e.g. nitric oxide, oxygen) and pH (via 

electrochemical interaction with surface groups on carbon electrodes) can also be 

monitored with electrochemical methods [39]. 

In contrast to microdialysis, electrochemical sensors are in situ detection methods, 

inherently possessing greater temporal resolution. The carbon fiber ultramicroelectrode 

(CFM) is the most widely used sensor for electrochemical neurobiological studies. These 

ultramicroelectrodes (sub 25 μm) enable even faster detection speeds because of small 

ohmic drops in resistive solutions, small electrochemical diffusion distances, and small 

double-layer capacitances [40]. The small size of the carbon fiber microelectrode also 

facilitates the detection of neurotransmitters in small brain areas with minimal tissue 

damage. 

The small sensor size and fast temporal resolution make electrochemical detection an 

optimal choice for in vivo neurotransmitter monitoring. The most widely used 

electrochemical strategies for studying neurotransmitter fluctuations include: a 

potentiostatic method called constant potential amperometry, and a potentiodynamic 

technique called fast scan cyclic voltammetry (FSCV). The sensing mechanisms of both 

techniques involve the application of a voltage to an electrode which is sufficient enough 

to oxidize or reduce the molecule of interest at the surface of the electrode. Dopamine, for 

example, can be oxidized to dopamine-o-quinone in a two electron process. Typically these 

redox reactions induce a current flow in the pico to milli ampere range, depending on the 

type of sensor, detection strategy, and concentration of analyte. 
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FSCV at CFMs has been used for years to detect and identify neurotransmitters both in 

vivo and in vitro in real-time [41]. Redox reactions are initiateded at the working electrode 

by the application of a triangular potential “waveform” with respect to a non-polarizable 

reference electrode (typically Ag/AgCl). By responding to the potential, analytes are 

oxidized on the forward scan and subsequently reduced on the reverse scan. Waveform is 

altered for different types of sensor, as well as to achieve maximum sensitivity and/or 

selectivity for target analytes. For example, the most effective waveform for the detection 

of dopamine is scanning from a resting potential of -0.4 V to 1.3 V and back to -0.4 V at a 

scan rate of 400 V/s. Large nonfaradaic “charging currents” was induced by such fast scan 

rates, due to the fast application of a voltage to the capacitive electrical double layer that 

exists between the solution-electrode interface. Fortunately, this capacitive current is 

relatively stable. After data acquisition, this background current can be digitally subtracted 

to yield only the faradaic constituent (current from analyte redox reactions) in the form of 

a cyclic voltammogram (CV). 

Constant potential amperometry (or simply “amperometry”) utilizes a static D.C. 

voltage to generate current from analyte oxidation (~0.7 V for dopamine). The temporal 

resolution of FSCV is determined by the rate of successive scans (typically 10-60 Hz). In 

the contrast, constant potential amperometry can operate on the microsecond timescale, 

thus able to monitor even more rapid events, for example, the individual vesicular release 

events from single cells at a carbon fiber microelectrode [6]. While this technique does 

offer exquisite time resolution, it compromises selectivity and sensitivity. The positive 

holding potential limits preconcentration of all analyte which limits the sensitivity. The 

static potential also precludes analyte identification, which also makes it unpractical in a 
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multi-analyte environment like the intact brain, where many electroactive species interferes 

each other (i.e. ascorbate, urate, neurotransmitter metabolites, etc.) in high concentrations. 

1.3.3 Electrodes for neurotransmitter detection 

Single carbon fiber electrode 

The carbon fiber ultramicroelectrode is the most widely used sensor for electrochemical 

neurobiological studies since 1980’s (Figure 1.3(a)). The fabrication of CFM generally 

involves the aspiration of a single carbon fiber into a small glass capillary. The capillary is 

then subsequently pulled around the carbon fiber to form a water-tight seal [2]. The final 

dimensions of the CFM are then determined by cutting the fiber under a microscope 

(typically 100 μm in length) to form a cylindrical electrode. The electrode can also be 

polished on a micropolisher to create a very small sensor that is suitable for use in single 

cell studies [6] (Figure 1.3(b)).  

The use of carbon electrodes in electrochemical techniques enabled the direct 

observation of neurotransmitter fluctuations within in vivo and in vitro [41]. This coupling 

laid important foundation for an entire field of study within the neurosciences. On the other 

hand, the ability of carbon fiber microelectrodes to probe microenvironments could also be 

a limitation: the information is only gained about one small environment within a highly 

integrative system.  
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Multiple carbon fiber arrays 

As a matter of fact, in the studies such as catecholamine release and reuptake, 

neurological diseases and disorders, drug addiction and their respective treatments, 

microelectrode arrays (MEAs) are in need to monitor neurochemical fluctuations at 

spatially different locations. For years, researchers have attempted to fabricate spatially 

separated sensors with the ability to simultaneously monitor multiple neurochemical events. 

However, the conventional fabrication strategies have constrains. Such fabrication 

generally placed carbon fiber electrodes in multi-barreled glass capillaries, and 

subsequently pulling and polishing carbon fiber electrodes into multidisc electrodes 

(Figure 1.6(c)) [7]. The microelectrodes fabricated in this way are individually addressable, 

Figure 1.3 (a) Carbon fiber microelectrode [2] (b) Carbon fiber microdisc [6] (c) Carbon fiber 

microelectrode arrays [7]. 
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yet not able to monitor spatially separate neurochemical events. The diffusion distance for 

a typical FSCV experiment done at 10 Hz, for example, is estimated to be approximately 

11 μm in each direction [42]. Interestingly, the diffusion of dopamine from a synapse was 

also shown to be around 10 μm [43]. The arrays obtained in traditional way are not apart 

far enough, therefore only being able to monitor a single neurochemical event. A truly 

efficacious microelectrode arrays should monitor neurochemical fluctuations at spatially 

different locations for more applications in the neurosciences. 

Microfabricated microelectrode arrays 

An FSCV coupled MEA would be a valuable research tool that enables integrative 

electrochemical detection of neurotransmitters in vivo. Such a probe should be sensitive 

and selective towards electrochemically active molecules, with adequate fast time-response. 

The microfabrication of such probes would have significant advantages over other 

traditional fabrication methods, in the aspects of a higher degree of reproducibility, batch 

fabrication, and the ability to spatially separate the electrode sites at predetermined 

geometrical arrangements.  
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CHAPTER 2 INTEGRATION OF FLEXIBLE PARYLENE 

SUBSTRATE WITH FREELY STANDING CARBON NANOTUBES 

AS NEURAL INTERFACE 

2.1 Background and motivation 

2.1.1 Carbon nanotube MEA for neuronal recording and stimulation 

The design and fabrication of CNT MEAs is the mainstream of the use of CNT in 

neuro-applications recently [44]. Such MEAs are generally composed of islands of high 

density CNTs. Both MWCNTs and SWCNTs structures have been used. CNTs were either 

deposited as a coating on top of metal electrodes [20, 45, 46] or directly grown from a 

catalyst patterned substrate [44, 47, 48].  

Many works have been done by coating CNTs on metal MEAs. CNT coating has been 

shown effective for improving recording and stimulation. Keefer and co-workers [20] have 

coated indium-tin oxide MEAs with MWCNT/gold.  Pristine CNT coatings were also used 

for coating. The fabricated MEAs were used to record and stimulate mice cortical cultures. 

SWCNTs were also directly deposited onto standard platinum MEAs by Gabriel et al. via 

drop coating and drying. The CNT coating enhanced electrical properties, decreased 

impedance and increased capacitance. The electrodes successfully performed extracellular 

recordings from ganglion cells of isolated rabbit retinas [45]. Micro-contact printing 

technique is another measure for coating CNTs. Fuchsberger and co-workers [46] used this 

technique to deposit MWCNT layers onto TiN microelectrode arrays by using PDMS 

stamps. The coated MEA have shown the capability for the electrochemical detection of 

dopamine and electrophysiological measurements of rat hippocampal neuronal cultures. 

MWCNT coated microelectrodes were found to have recording properties superior to those 

of commercial TiN microelectrodes. Drop coating and micro-contact printing methods are 
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quite simple to implement CNT coating. However, the synthesized film may have weak 

adhesion to the surface compared with covalent or electrochemical techniques, therefore 

limiting their wide applications.  

CNT MEAs are also fabricated by direct growth of CNTs on substrates. Superior 

electrical properties of CNT microelectrodes were reported. Gabay and co-workers 

fabricated the CNT MEAs by growing high density MWCNT islands on a silicon dioxide 

substrate [44]. The intrinsic texture of the CNT electrodes offers a very large surface area, 

and consequently contributes to high electrode specific capacitance (non-Fradaic behavior 

was validated) and low frequency dependence of the electrode impedance. By using these 

electrodes, spontaneous activity of rat cultured neurons was recorded. Shein et al. [49] also 

directly synthesize CNT on microelectrodes and demonstrated direct electrical interfacing 

on rat cultured neuron. Each electrode recorded the activity from a cluster of several 

neurons; this activity was characterized by bursting events (see Figure 5). Later on, the 

same group reported the studies of the electrical activity of neuronal networks [50] and the 

neural interface with mice retina [51]. The results revealed gradual improvement of SNR 

of CNT electrode over time in the tissue-electrode coupling.  

All the works above produced only randomly distributed CNTs as electrodes or 

coatings. Wang and co-workers presented microelectrodes composed of vertically aligned 

MWCNT pillars on a quartz substrate [47]. The nanotubes were functionalized with PEG 

to create a hydrophilic surface. The obtained hydrophilic CNT microelectrodes 

demonstrate a high charge injection limit without Faradic reactions. In vitro electrical 

stimulation of embryonic rat hippocampal neurons was monitored by observing 

intracellular calcium level change using a calcium indicator. Yu et al. [48] also fabricated 
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VACNF MEA and used it for potential electrophysiological applications. Extracellular 

stimulation and recording of both spontaneous and evoked activity in organotypic 

hippocampal slices was completed. Works also have been done to systematically compare 

PPy-coated VACNF MEA with tungsten wire electrodes, planar platinum MEA, and an as-

grown VACNF MEA for the recording of evoked signals from acute hippocampal slices 

[52]. Recently Su and co-workers synthesized CNTs on a cone-shaped silicon tip by 

catalytic thermal CVD. The CNT surface was treated by oxygen plasma to convert the 

CNT surface from hydrophobic to hydrophilic, in order to improve CNT wettability and 

electrical properties. The oxygen plasma-treated three dimensional CNT probes revealed 

lower impedance and higher capacitance compared with the bare silicon tip. The oxygen 

treated CNT probes were also employed to record signals of a crayfish nerve cord [53]. 

These researches reveal a number of important advantages of CNT MEAs over silicon 

probes used in current neuroscience research and clinical applications. Silicon probes 

typically consist of a silicon support, silicon nitride, and silicon dioxide insulation layer. A 

major shortcoming of these devices is the metallic materials in use which exhibit Faradaic 

characteristics (compared with the capacitive CNT electrodes).  In addition, the metals 

have shown no affinity to neuronal cells compared with the preferred neuronal adhesion to 

the rough CNT surfaces. 

2.1.2 Flexible CNT MEA for recording and stimulation 

The existing neural electrodes mostly employ silicon as substrate that is rigid and stiff, 

not conformal to the organs with curvilinear surface. This mismatch would induce tissue 

damage that is most undesirable for acute and chronic neural recording. As a result, 

developing soft and flexible electrode substrates has become actively pursued research area. 
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To date, many flexible electrodes are metals deposited on polyimide, parylene, or PDMS. 

Recently, the combination of flexible substrates and CNTs electrodes for neuronal 

applications has gained attention. 

Recently a novel all-CNT flexible electrode suited for recording and stimulation of 

neuronal tissue has been developed. High density MWCNT films were transferred onto a 

flexible PDMS film to realize the flexible devices [54].The direct growth of the CNTs on 

SiO2 resulted in poor adhesion. The poor adhesion between the CNT film and the substrate 

make it easy of the transfer of the CNTs to the PDMS substrate. The technology is simple 

and the resulting stimulating electrodes showed extraordinary electrochemical properties. 

The capacitance was revealed to be 2 mF/cm2 which is similar to that of TiN and pristine 

MWCNTs electrodes fabricated on a rigid silicon substrate. (2 and 10 mF/cm2, 

respectively). Recording and stimulation tests with chick retina validate the device 

suitability for high-efficacy neuronal stimulation applications. 

Lin and co-workers [55] implemented a flexible CNT-based electrode array for 

neuronal recording. The CNT electrode array was grown and patterned on a silicon 

substrate, then transferred onto a flexible Parylene-C film. The process included four-steps: 

CNT growth, polymer binding, flexible film transfer, and partial isolation. The resulting 

vertically aligned CNTs were partially embedded into the polymer film. Recording the 

electrophysiological response of a crayfish nerve cord was performed with three electrode 

set-up. The SNR of the flexible CNT electrode was 257. 

Flexible CNT electrodes were also obtained by direct growth of CNTs on flexible 

polyimide substrates by catalyst-assisted CVD [56]. The growth was completed under low 

temperatures (<400oC). The synthesized MWCNTs resulted in decreased impedance and 
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increased capacitance. UV-ozone exposure was used to improve the interfacial properties 

between the CNT electrodes and the electrolyte by increasing the surface wettability 

(changing it from super hydrophobic to hydrophilic). UV-ozone treatment has shown to 

yield a 50-fold impedance reduction. Interestingly, flexible CNT electrodes were found to 

exhibit resistive characteristics, in contrast to other reports that suggested that capacitive 

conduction dominates. Examination of neuronal cell cultures indicated good 

biocompatibility. Furthermore, recordings of evoked action potential from lateral giant 

neurons in the abdominal ganglia of crayfish were performed. SNR was about 150, 

comparatively good as that of a suction pipette and better than gold electrodes (SNR of 122 

and 36, respectively). Following this work, a flexible CNT MEA integrated with a chip 

containing 16 recording amplifiers was presented [57]. CNTs were also grown directly on 

a polyimide flexible substrate. The CNT microelectrode had shown electrode impedance 

ten times lower and capacitance six times higher than a gold microelectrode of the same 

size, as well as better charge injection capacity compared. Tests with cultured neurons 

validated the biocompatibility of the device. In vitro spontaneous spikes were recorded 

from a caudal photoreceptor from the tail of the crayfish neuron with SNR of 6.2. The in-

vivo electrocorticography (ECoG) of a rat motor cortex was also recorded by the flexible 

CNT MEAs. 

2.1.3 Challenges and motivations 

The existing fabrication methods for flexible CNT electrodes fall into two categories 

[19, 24, 54, 56-64]: transferring and direct growth of CNTs on polymers at low temperature 

(≤ 400˚C). Adhesion between CNTs and substrate is a big issue that hinders the 

development of transferring techniques. In addition, transferring processes always involve 
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pressing and release that can only produce mesh CNTs. Yet, CNT mesh is approximately 

2D surface and not as effective as 3D structure when interfacing with neural networks [65, 

66]. Recently, Lin etc. [55] developed a polymer binding method to transfer vertical 

aligned CNTs. This method is simple but has less control over the height of CNTs. Direct 

growth of CNTs on polymers can also generate 3D neural interface. But the growth of 

CNTs at low temperature results in inferior graphitization thus deteriorated properties of 

CNTs. It is also hard to control the density and height of CNTs under the low temperature 

limitation. Hence, it will be a significant breakthrough for neural interface technology if 

we can integrate vertically aligned CNTs with flexible substrate without compromising 

their properties. Here we develop a new technique that combines a chemical vapor 

deposition (CVD) of parylene and xenon difluoride (XeF2) etching in order to integrate 

hybrid CNT electrodes on a ultrathin (<10um) polymer substrate without the need for a 

transfer process or lowering the growth temperature. The CNT microelectrode arrays on a 

flexible polymer substrate have also been tested in-vivo. 

2.2 Experimental 

2.2.1 Fabrication of flexible CNT MEA 

Flexible CNT MEAs were fabricated using the process flow as demonstrated in Figure 

2.1.   The process steps are described as follows. (a) After standard cleaning, 300nm low 

stress silicon-rich nitride was grown on a silicon substrate using a low pressure chemical 

vapor deposition (LPCVD). Ti/Pt (20nm/200nm) was evaporated and then patterned by 

lift-off to serve as electrodes, contact pads, and interconnects. Arrays of holes were defined 

on Pt to serve as etching windows for the final release step. The typical diameter of the 

etching holes is 10um with spacing of 50um. (b) In a second lift-off step, TiN (100nm) was 
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selectively patterned on the electrode areas, followed by RF sputtering of a 2nm thick Fe 

layer. The wafers were then loaded to the thermal CVD chamber for the CNT growth. The 

growth took place in a gas atmosphere of C2H4/NH3 at 80 torr for 30 min. (c) To protect 

the synthesized CNT arrays from the following process steps, a layer of photoresist was 

spun to coat the CNTs. (d) Afterwards, a 3um thick parylene C layer was deposited by 

CVD. (e) Then oxygen plasma etching was applied to open the etching holes. XeF2 

isotropic gas phase silicon etchant is applied to undercut the bulk silicon in the handle 

wafer for device release. This technology is simple and CMOS compatible. No transfer 

printing process is involved. (f) Subsequently, a second parylene layer (10um) was 

deposited to encapsulate the device and seal the etching window as well. Finally, electrodes 

and contact pads were opened by oxygen plasma before the release of the flexible device 

from the substrate.  

2.2.2 Appearance of the flexible device  

The overall view of the device was captured by Bruker White Light Interferometer. It 

is a powerful 3D optical microscopy technique in characterizing large surface with 3D 

features.  
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Figure 2.1 Fabrication process flow 
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2.2.3 Characterization of CNTs 

The morphologies of the synthesized CNTs were analyzed by Scanning Electron 

Microscopy (SEM). The images were obtained using a JSM-6510LV SEM at 15KV 

accelerating voltage. The degree of graphitization for CNTs was measured using the E-Z 

Raman spectroscopy system at 532 nm excitation.  

2.2.4 Electrochemical characterization of the flexible CNT MEA 

Electrochemical measurements were performed in Phosphate-buffered saline (PBS, 

pH7.4) solution. Experiments were done in a glass beaker using a three-electrode system 

inside a Faraday cage. The flexible CNTs/Graphene electrode served as working electrode, 

and a Pt wire acts as counter electrode. A commercial Ag/AgCl was used as reference. All 

the electrodes were connected to the impedance analyzer (HP4284) to apply with an 

alternating current (AC) of 50mV at swept-frequency of 20 Hz to 100 kHz.  The same 

configuration was used for cyclic voltammograms (CV).  The measurement instrument was 

Gamry PC4 Potentiostat. The potential window was ranged from -0.3V to 0.9V. All the 

measurements were taken after an initial electrochemical cleaning step where the electrode 

potential was cycled at 2V/s until a stable and reproducible response was observed.  

2.2.5 Electrophysiological experiments 

The capability of the flexible CNT MEA to stimulate and record neural activity in vivo 

was examined. All procedures were approved by the Wayne State University Animal 

Investigation Committee. The experiments were performed on adult male Sprague-Dawley 

rats weighing 350-400g. They were sedated and anesthetized by an instramuscular 

injection of ketamine hydrochloride (43 m/kg), xylazine (7 mg/kg), and butorphanol (0.1 

mg/kg). Supplemental doses were used as needed to maintain anesthesia throughout the 
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experiment. After operation, the L5 lumber spinal nerve and left sciatic nerve were exposed. 

After cutting the dura, a pool was formed from skin flaps, and the spinal cord and nerve 

roots were immersed in warm (37oC) mineral oil to prevent them from drying. The 

electrical stimulation was applied at sciatic nerve and the neural signal was recorded at the 

spinal nerve. The impulses on two channels were amplified, monitored on an oscilloscope 

and an audio monitor, digitized, and analyzed using PC-based spike discrimination and 

frequency analysis software. All software was part of the Computerscope Enhanced 

Graphics Acquisition and Analysis (EGAA) system (R.C. Electronics, Goleta, CA). For 

later detailed analysis, the data were also simultaneously recorded on an analog tape 

recorder (MR-30, TEAC, Montebello, CA).  

2.3 Results and Discussion 

2.3.1 Characterization of the flexible device and CNTs 

Figure 2.2(a) is the optical image of the obtained device. The electrodes can be flexed 

by tweezers over almost 180˚ without breaking. The good flexibility is owing to the low 

elastic modulus of parylene C, which is of 2~4 GPa, about two to three orders of magnitude 

lower than that of metal and silicon [67]. Micrometer-scale thickness is also important to 

provide the required flexibility. To evaluate the thickness, clean glass slide was used as 

control in the parylene growth processes. The thickness of the parylene on control sample 

was measured by Bruker Dektak XT surface profiler. The two times of evaporations 

produced about 10 um thick parylene. Electrodes were observed under microscope before 

and after bending. No obvious changes of CNT electrodes were found, indicating good 

adhesion between the CNTs and polymer substrate.  

The overall surfaces of the CNT electrodes are revealed by white light interferometer 
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image in Figure 2.2(b). The device is featured with 16 electrodes. Each electrode consists 

of array of 12 carbon nanotube pillars. Each CNT pillar is sized of 20 x 20 um with distance 

of 50 um to each other. Thousands of nanotubes interact through Van der Waals to form 

free standing pillars projecting orthogonally from the surface.  The height of the CNT pillar 

is measured to be about 2um. The cross-sectional SEM image of an as grown CNT pillar 

(Figure 2.2(c)) also proves a homogeneous height of 2um and an average nanotube 

diameter of 35 nm. Figure 2.2(d) is the SEM image of the CNT electrode on parylene. The 

undercut can be clearly seen, in consistent with the described fabrication process. Higher 

magnification SEM (Figure 2.2(e)) reveals that CNTs are freely standing instead of lying 

on the surface after the process, proving the advantage of our technology to integrate 

parylene substrate with 3D CNT structure. The intrinsic 3D nanostructure is believed to be 

more effective in neural stimulation/recording than CNT mesh that is often associated with 

the transferring techniques [68]. The height of CNTs seems to be shrunken compared with 

the as grown CNTs. This may be due to the diffusion of parylene which results in crouched 

CNT tips. Raman spectra (Figure 2.2(f)) have verified the materials distribution over the 

electrode. In specific, ordered graphite induces G band at ~1580 cm-1, defective/amorphous 

carbon is indicated by the D band at ~1350 cm-1. The IG/ID is about 0.9, indicating high 

degree of graphitization of the CNTs in our research [69]. Although no Raman spectra was 

provided in the low temperature growth techniques for flexible CNT devices, other 

researches have proven the poor properties resulted from lowering the CNT growth 

temperature [70].   
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2.3.2 Electrochemical characterization of CNTs electrode 

The CNT electrodes were characterized electrochemically by cyclic voltammetry (CV) 

and electrochemical impedance spectroscopy (EIS), as depicted in the materials and 

methods section. Electrochemical performances of the electrodes were evaluated in terms 

of impedance (Z) and charge storage capacity (CSC). The calculation of CSC was done 

with a custom MATLAB (mathworks Inc., MA) script. Although the applications may vary, 

the primary requirements for neural electrodes are low Z for recording or large CSC for 

stimulation [71]. Low Z can minimize the noise. On the other hand, large CSC can 

potentially reduce the electrical damage to the electrodes and tissues, thus improve long 
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Figure 2.2 (a) optical image of the flexible devices, (b) white light image of the electrode area, (c) SEM image 

of the as grown CNTs, (d) SEM image of the flexible CNT electrode before neural stimulation and recording, 

(e) higher magnification SEM of (d), (f) Raman spectra of the CNT electrode. 
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term stability.  

 

The Figure 2.3 is the typical voltammograms obtained with the CNT and Pt electrodes. 

Cyclic voltammetry is normally used to evaluate the redox characteristics and the charge 

storage capacity of the electrodes. For neural stimulation, it is critical to avoid faradic 

reactions that may cause degradation of electrodes and/or release toxic chemical species 

that may damage the surrounding tissue [72]. In figure 2.3, CNT electrode shows a strong 

capacitive response as evidenced by the large area under the CV curve and the lack of large 

faradic features. In contrast, the voltammogram for Pt, as shown in the inset of Figure 4, 

exhibits typical H adsoption and desorption between -0.6 and -0.2V and a broad Pt 

oxidation band between 0.25 and 0.9V. The large current step in the cathodic sweep 

between 0 and 0.2V is due to the reduction of dissolved O2 [73]. The difference in the 

currents (Δi) between positive and negative potential cycles corresponds to the sum of the 

charging and discharging currents at the electrode-electrolyte interface [74]. Clearly, the 
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Figure 2.3 CV of the CNT elecrode and Pt electrode, the inset is the 

CV for Pt electrode at different scale. 
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greater the Δi, the larger the enclosed area of the CV curve, the larger the amount of the 

mobile charges that were moved in and out of the interface during the cycle. The amount 

of charge passed during the CV cycle is also referred to as charge storage capacity (CSC). 

The visual comparison of the CV curves reveals that the CSC of the CNT electrodes is 

much larger than that of the Pt electrodes. For quantitative comparison, the integrated areas 

of CV of both electrodes were calculated. The CSC of CNT electrodes were about 8 times 

larger than bare Pt electrodes. This disparity is due to the roughness and 3D structure of 

the CNT films. Greater interfacial area provides more sites for ions to interact with.  As the 

CSC is essentially a measure of the total amount of charge available for a stimulation pulse 

[42], greater CSC generally means higher efficiency for neural stimulation.  
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Figure 2.4 (a) magnitude of impedance spectra, (b) phase of impedance spectra (red is the Pt electrodes, 
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The impedance spectrum of CNT coated electrodes in comparison to bare Pt electrodes 

is represented in Bode plots (Figure 2.4). The modulus of impedance of the bare Pt 

electrodes is significantly lowered after CNT deposition, particularly at frequencies below 

10 KHz. The dramatic reduction of impedance of CNT electrodes is possibly due to 

increase of effective surface area and the high electrical conductivity of the CNT films. 

The efficiency of a recording electrode is usually measured in terms of its impedance 

magnitude at 1 kHz, which is the physiological relevant spiking frequency of neurons. It is 

reported that Z = 1~2 MOhm is sufficiently low for successful neural recording [75]. In 

this research, impedance of CNT electrodes is about 480 Ohm at 1 KHz, about 10 times 

smaller than that of Pt electrodes. Decreasing the impedance of an interfacial electrode 

would enhance the ratio of signal to noise (SNR) of the neural spike by increasing the 

transmitted electric current and decreasing the noise. The accessible surface area of the 

CNT electrodes is not directly measurable, but is proportional to the interfacial capacitance. 

The interfacial capacitance can be calculated by fitting the impedance data to an equivalent 
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Figure 2.5 Impedance spectra of flexible devices before, after 20 times and 50 times 
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circuit model, where the interface is represented by a constant phase element in parallel 

with the faradic impedance and then in series with the solution spreading resistance [47]. 

The fitted capacitance is 1.1 mF/cm-2 for CNT and 0.1 mF/cm-2 for Pt. The ranges of the 

measured capacitance for the existing CNT MEAs are between 0.1 to 10 mF/cm-2 [54].  It 

is worth noting that for the direct grown CNT on polyimide electrodes, the value is 0.2 mF/ 

cm-2 [56]. This difference may be due to the inferior CNT properties caused by low growth 

temperature. The long term stability of the flexible CNT electrodes was also tested by 

means of impedance measurements. Figure 2.5 presents the impedance spectrum of a 

flexible device before and after 20 and 50 times of being bent and flattens. The variation 

of the interface impedance was less than 1% after 50 times bending. It confirms the good 

adhesion of the CNT films to the substrate. The Pt tracts must also have remained intact 

without break during the bending.  

2.3.3 Neural stimulation and recording by flexible CNTs electrode 

To demonstrate the capability of the CNTs electrodes for neural recording and 

stimulation, neurophysiologic experiments were conducted with rats. The animal  
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(b) (c) 

Figure 2.6 (a) schematic of experimental set-up for physiological testing (b) neural stimulation at sciatic 

nerve with flexible CNT electrode (c) neural recording at spinal cord with flexible CNT electrode 
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Figure 2.7 (a) neural recording with the flexible CNT electrodes (b) neural recording with the Pt electrodes 
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Figure 2.8 (a) neural stimulation with the flexible CNT electrodes (b) neural stimulation with the Pt 
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preparation procedure and the neural recording/stimulation have been described in the 

Materials and Methods section. Figure 2.6 shows the experimental setup. The proximal end 

of the L5 spinal nerve was separated from the spinal cord. The sciatic nerve was cut at the 

distal end before the sciatic nerve divides into the tibia and peroneal nerve. For neural 

recording, the L5 spinal nerve was draped over the flexible CNT MEA to record impulses. 

The stimulation was applied in the sciatic nerve stump by bipolar Pt electrodes. The data 

recorded on a tape cassette were digitized and analyzed using spike discrimination and 

frequency analysis software. Figure 2.7(a) shows the neural activity recorded by CNT 

electrodes. The quality of the recordings is typically evaluated in terms of signal amplitude 

and signal-to-noise ratio. The root-mean-square of the noise voltage is about 12. Dividing 

the peak-to-peak amplitude of action potentials by the root-mean-square of the noise 

generates the signal to noise ratio (SNR) [76]. The calculated SNR is 12.5. However, it 

should be noted that the amplitude of the signals in extracellular recordings depends on the 

distance between the neuron and the electrodes; the SNR depends on the examined tissue 

as well as the size and shape of the electrode. Thus they can only be used to confirm the 

acceptable performance of the MEAs but not a direct measure [54]. Compare with platinum 

electrodes (Figure 2.7(b)), we can see that CNT electrodes are able to detect action potential 

generated by lower stimulation voltage, indicating higher sensitivity. The flexible CNT 

MEAs were also employed as a neural stimulator to evoke CAPs in sciatic neurons with a 

pair of platinum hook used as recording electrodes. 0.1-10 V of stimulus pulse (1 Hz, 0.3 

ms duration) was applied. As shown in Figure 2.8(a), the threshold voltage to initiate the 

spike was determined to be 0.4V, lower than that reported by other CNT MEA technologies. 

In comparison, the Pt electrodes (Figure 2.8(a)) exhibit higher threshold voltage for 
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stimulation (3V). The electrodes were precisely positioned using the micromanipulator to 

decrease the effect caused by position difference between testing of CNT electrodes and Pt  

electrodes. The results are in good agreement with the aforementioned electrochemical 

characteristics. The SEM image of flexible CNT devices was taken after neural recording 

and stimulation (Figure 2.9). The tissue coverage caused serious charging effect. But it still 

can be seen that the CNT bundles still existed, indicating good stability of the device.  

2.4 Conclusions 

Despite the great efforts, fabrication of reliable, efficient, and long term stable 

electrodes for neural stimulation/recording still remains challenges. One of the keys is to 

reduce the electrode size but still keep low impedance and high charge injection capacity. 

To meet the requirements, high surface area coatings are usually applied. CNT is one of 

the research focuses because of their extremely large surface area and superior electrical 

conductivity, as well as good chemical inertness. Furthermore, CNT is mechanically 

strong but also compliable to bending or twisting without break, which makes CNT very 

suitable for flexible electronic applications, especially for flexible MEAs in implantable 

Figure 2.9 SEM image of flexible CNT electrodes after neural recording and 

stimulation 
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applications. The current technologies to integrate the CNTs with the flexible substrates 

usually suffer from low CNT yield and bad adhesion in transfer printing process or inferior 

properties in low temperature direct growth on polymers. In this paper, we demonstrated 

a new technology to fabricate flexible CNT based MEAs. The whole device is 

encapsulated by two layers of parylene. CNT growth is done before parylene evaporation 

thus eliminating the low temperature limitation as in the direct growth of CNTs on 

polymers. Consequently, it is realizable to control the properties, height, and density of 

the CNTs. Another advantage of our technology is that it maintains vertically standing 

CNTs (3D) rather than CNT meshes (2D). The 3D structure take the greatest advantage 

of the strength and the flexibility of CNTs, predicting higher efficiency in neural implant 

applications. Compared with polymer binding method, our technique integrates 3D CNT 

structure with flexible substrate in a more controllable way. The electrochemical 

performances of the fabricated devices were assessed by CV and EIS in PBS and 

compared against co-fabricated Pt microelectrodes. The impedance for CNT electrodes at 

1 KHz was 10 times smaller than that of Pt electrodes. The voltammogram indicate 

capacitive current delivery for CNT electrodes and faradic for Pt electrodes. Also the CSC 

of the former is 8 times larger than that of the latter ones. The results revealed superiority 

of CNT as electrode for neural prosthetic applications compared with Pt. The interfacial 

capacitance (1.1 mF/cm-2) is comparable to the reported values measured with CNTs on 

either rigid or flexible substrates (0.1~10 mF/cm-2). The evident improvement compared 

with the directly grown CNT electrodes on polyimide (0.1~0.2 mF/cm-2) may be due to 

the higher growth temperature. Testing of flexible CNT electrode was also performed on 

rat spinal nerve and sciatic nerve. CNT electrodes demonstrate a SNR of 10 and a 
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stimulation threshold of 0.4V. This work represents an innovative approach toward 

realizing advanced flexible neural probes for high resolution neural recording and 

stimulation. 
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CHAPTER 3 CARBON NANOFIBER MICROELECTRODE ARRAYS 

FABRICATED BY PLASMA ASSISTED PRYOLYSIS FOR FAST 

SCAN CYCLIC VOLTAMMETRY ANALYSIS 

3.1 Background and motivation 

3.1.1 Carbon based microelectrodes for electrochemical detection 

Carbon materials have been widely employed in micro-sensor fabrication because they 

afford excellent biocompatibility and rich surface chemistry at low cost [77, 78]. 

Traditional manufacturing processes for carbon-based microelectrodes include 

encapsulation of carbon fibers with insulation materials [79-81], deposition of carbon 

materials directly on micro-pipets [82, 83], and formation of carbon from pyrolysis of 

polymer or photoresist coated on micro-pipets [84, 85]. The application of these single-

unit configurations is limited in integrative environments where spatial resolution and 

multiple targets are of great significance.  

Recently, micro-fabricated carbon electrodes with multiple sensing elements have 

become a promising alternative. Carbon films were sputtered [86] or vacuum-deposited to 

the substrates [87]. However, these microfabrication processes suffer from poor adhesion 

[88]. A more encouraging microfabrication process involving pyrolysis of a patterned 

photoresist has recently been developed to form carbonaceous microelectrode arrays 

(MEAs) [42, 77, 88-99]. Photoresist, as an initial material for microelectrode fabrication, 

is especially advantageous because it is finely patterned by lithography techniques with 

high spatial resolution and repeatability [100]. Plenty of work has been done on 

characterization of photoresist derived carbon films, and they have shown electrochemical 

properties comparable to glassy carbon [100-102]. The pyrolyzed photoresist 

microelectrodes have been applied to sensing various species, such as neurotransmitters 
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[42, 91, 93-95], O2 [42], glucose [98, 99], H2O2 [96], DNA [103], oncoprotein [97], Hg 

[104], Ni [92], etc.  

3.1.2 Fast scan cyclic voltammetry 

For the in-vivo measurements of neurotransmitters, high sensitivity, chemical 

selectivity, and fast temporal resolution are desired. Various detection schemes have been 

used to analyze concentrations of biological species in vivo and in vitro [40]. Microdialysis 

is the most widely used for sampling the chemical environment of the brain. This technique 

provides high degree of sensitivity and selectivity. But it suffers from the slow temporal 

resolution. Constant potential amperometry offers the best temporal resolution. But it lacks 

of chemical selectivity. In comparison, background-subtracted fast-scan cyclic 

voltammetry (FSCV) has been shown good chemical selectivity while retaining subsecond 

temporal resolution. These characteristics make FSCV a very useful tool especially in 

studies of the brain, as it is able to easily identify oxidized compounds, such as 

catecholamines [41]. For example, it can be used to evaluate the drug mechanisms 

associated with the dopaminergic transmission, which may guide the therapeutic 

intervention in pathologies such as Parkinson disease, schizophrenia, and drug addiction 

[33]-[34].  

FSCV measurements is usually conducted in a flow injection system [3]. A flow 

injection system consists of a six port injection valve and a variable resistance infusion 

pump. The pump is used to introduce the buffer and analytes to the electrodes. A 

potentiostat is used to apply waveform and record current. The CV plot, obtained when 

only buffer is introduced, is used as background.  After dopamine injection, the obtained 
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CV plot will subtract the background and generate the FSCV plot with clear oxidation and 

reduction peaks. The FSCV working theory is demonstrated in Figure 3.1. 

 

3.1.3 Challenges and motivations 

FSCV with carbon fiber microelectrodes (CFMs) has been extensively applied for 

electrochemical analysis of neurotransmitters (i.e., dopamine, serotonin, histamine) and 

trace metal ions (i.e., Cu2+, Pb2+) [105-107]. Pioneering work on developing FSCV 

compatible pyrolyzed photoresist film arrays has been reported by Zachek and Wightman 

[42, 95]. They employed photoresist derived MEAs for dopamine detections using FSCV 

and applied an extended electrochemical waveform to over-oxidize the carbon surfaces for 

improved sensitivity [42, 95]. The surface modification by over-oxidation is believed to 

enhance the adsorption of dopamine and consequently increase the sensitivity [108].  

It has been well accepted that increasing reactive surface area is an effective way to 

decrease limit of detection (LOD) and improve sensitivity of microelectrodes [89]. While 

Dopamine injection 

No dopamine 

Dopamine 

Flow Injection Buffer 
Flow Injection Valve 

Flow Injection Cell 
Waste 

Carbon Fiber Microelectrode 

Figure 3.1 Schematic of FSCV working theory [3]. 
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geometry surfaces are miniaturized, a number of approaches have been used to increase 

the physical reaction sites, including 3D architecture [89, 91, 98], coatings of nanomaterials 

[96, 99], flame etching [80], laser activation [109], and electrochemical treatments (e.g., 

overoxidation) [108, 110-112]. These methods either generate new surface area or refresh 

the surface by removing uninterested reactants. However, none of these methods retain 

both good controllability/repeatability and easy processiblity. 

In this paper, we propose a novel method to fabricate nanofiber structured MEAs from 

pyrolyzed photoresist. Dual oxygen plasma treatments were employed to achieve excellent 

electrochemical sensitivity. The plasma treatments are easy to control and readily 

integrated with microfabrication process. Moreover, it is believed that the plasma treatment 

causes compressive stress within the electrodes, which contributes to the improvement of 

the adhesion between the carbon films and the substrate, therefore boosting electrode 

stability. Dopamine, which is extensively characterized via FSCV, was chosen as the probe 

to display the electrochemical response of the MEAs fabricated in different conditions. The 

stability of the obtained MEAs have also been investigated for the first time for photoresist 

originated carbon electrodes. And the synergistic effects of using negative photoresist, two 

step pyrolysis, and the compressive stress caused by plasma on enhanced stability has been 

proposed and discussed. The carbon based MEAs developed in this work shows excellent 

unit sensitivity and stability. This advanced strategy represents a robust approach to 

fabricate MEAs with good control of surface area and conditioning, which will eventually 

be differently functionalized for simultaneous multi-target detections. 
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3.2 Experimental 

3.2.1 Chemicals 

Dopamine solutions were prepared by immediately dissolving dopamine HClO into 

Tris-buffer prior to each experiment. Tris-buffer ingredients (15 mM 

H2NC(CH2)OH)3·HCl, 140 mM NaCl, 3.25 mM KCl,1.2 mM CaCl2, 1.25 mM 

NaH2PO4·H2O, 1.2 mM MgCl2 and 2.0 mM Na2SO4 with the pH adjusted to 7.4) were 

purchased from EMD Chemicals Inc, USA. All aqueous solutions were made with 

deionized water. 

3.2.2 Electrode fabrication 

The process flow of the electrode fabrication is shown in Figure 3.2. After standard 

RCA cleaning, 1 μm low-stress silicon nitride was grown on a silicon substrate by low-

pressure chemical vapor deposition (LPCVD). Ti/Pt (20 nm/200 nm) was deposited by e-

beam evaporation and patterned by lift-off to serve as electrode pads and interconnection. 

2μm silicon oxide was deposited by plasma enhanced chemical vapor deposition (PECVD) 

and patterned to expose electrodes and contact pads. SU-8 photoresist was patterned onto 

the electrode area. Next, the sample was treated by primary O2 plasma (8min, 300W, 30 

sccm O2, 160 mTorr) in order to create filament-like nanostructures in SU-8. A two-step 

pyrolysis was performed to convert the SU-8 polymer to carbon. The samples were first 

heated in a nitrogen environment at 300 °C for 30min. Then the temperature was risen to 

900 °C in 20 min. The nitrogen gas was turned off and a mixture of H2(2%)/Ar was 

introduced for 1h.  The furnace was slowly cooled down to room temperature. The wafer 

was diced to release the devices. A secondary O2 plasma step was applied to the obtained 
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electrodes (30 s, 100 W, 30 sccm O2, 160 mTorr) in order to enhance sensitivity. In the 

following discussion, the samples with different treatments are labeled in Table 3.1. 

Table 3.1  Parameters for dual oxygen plasma treatment in the device fabriaction 

 0s O2 

plasma 

post-treat 

10s O2 

plasma post-

treat 

20s O2 plasma 

post-treat 

30s O2 plasma 

post-treat 

0W O2 plasma 

pretreat, before 

pyrolysis 

CMEA 001 N/A N/A N/A 

300W O2 plasma 

pretreat, before 

pyrolysis 

CMEA 002 N/A N/A N/A 

0W O2 plasma 

pretreat, after 

pyrolysis 

CMEA 100 CMEA 101 CMEA 102 CMEA 103 

300W O2 plasma 

pretreat, after 

pyrolysis 

CMEA 200 CMEA 201 CMEA 202 CMEA 203 
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Figure 3.2 process flow for the fabrication and treatment of carbon nanofiber MEAs. A 

description of each step can be found in Section 3.2.2 
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3.2.3 Electrode characterizations 

The morphologies of the produced PPF electrodes were observed by SEM. The images 

were taken using a TUSCAN GAIA dual beam focused ion beam system. The surface 

roughness of the PPF electrodes were assessed using a NanoScope AFM with silicon TESP 

probe tips (Nanosensors). The degree of graphitization was measured using the E-Z Raman 

spectroscopy system at 532 nm excitation. X-Ray photoelectron spectroscopy (XPS) 

measurements were performed on a Kratos Axis Ultra spectrometer that was equipped with 

a monochromatic Al X-ray source (hv = 1486.6 eV). The measurements were carried out 

at 150W power (15KV, 10mA) in an analysis chamber at a pressure of < 5x 10-9 mbar.  

3.2.4 Instrumentation and data acquisition 

All electrochemical experiments were performed in a two-electrode setup using Dagan 

ChemClamp potentiostat (Dagan, Minneapolis, MN). Custom-built software, CV 

(Knowmad Technologies, AZ), written in LABVIEW 2012 (National Instruments, Austin, 

TX), was used for background subtraction, data analysis and signal processing. An 

Ag/AgCl reference electrode was fabricated by electroplating Cl– ions onto a silver wire 

(A-M systems, WA) for 5 s. All color plots and cyclic voltammograms (CVs) were 

collected and averaged across 8 different electrodes. Pooled data is presented with errors 

bars signifing the standard error of the mean (SEM). Student’s t tests were performed on 

paired data sets; p < 0.05 was taken as significant and signified with a star. 

3.2.5 Flow Injection Analysis 

The MEAs was inserted into a flangeless short 1/8 nut (PEEK P-335, IDEX, 

Middleboro, MA) and fastened to a modified HPLC union (Elbow, PEEK 3432, IDEX, 

Middleboro, MA) placed in the output of the flow injection apparatus. The apparatus 
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consisted of a six-port HPLC loop injector affixed to a two-position actuator (Rheodyne 

model 7010 valve and 5701 actuator) and a syringe infusion pump (kd Scientific, model 

KDS-410, Holliston, MA). A rectangular pulse of analyte was introduced to the MEA 

surface at a flow rate of 2 mL min-1. For calibration and surface variation experiments, 

standard dopamine solutions were injected in a random order instead of sequentially to 

avoid tenting effects. 

3.3 Results and Discussion 

 3.3.1 Electrode design and fabrication 

Spin coating with subsequent photoresist photolithographic patterning is a well-

developed technique in the semiconductor industry. Pyrolysis of the photoresist material 

(a) (b) 

(d) (c) 

Figure 3.3 optical (a-b)images of carbon nanofiber MEAs, (c) and (d) SEM images 

showing the microstructure of the pyrolyzed photoresist without and with primary 

oxygen plasma treatment respectively 
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in an oxygen-free atmosphere is known to form carbon structures via depletion of volatile 

materials. Therefore, we employed photoresist as a structural material to create carbon 

electrodes in array formation which are integratable into microdevices. The novelty in our 

work is incorporation of a two step pyrolysis procedure (two temperatures) and a dual O2 

plasma treatment (different power and duration) and  into the fabrication procedure. 

In our electrode design and fabrication, there are three aspects to address:  

a) Electrode geometry and dimensions: Our interests lie in biological and 

environmental analysis, thus electrode dimensions should be minimized, as a 

starting point, we chose an active geometric surface area ranging from 3000 to 5000 

μm2 which is comparable to the surface area of cylindrical CFMs used in previous 

studies [106, 107]. As shown in the optical images in Fig 3.3 (a,b), four electrodes 

were fashioned in parallel as an array to form the tip of a single device with a 

spacing of 30 µm, in order to keep our device under 30 µm to maintain negligible 

tissue damage [113] and to prevent cross-talk [42].  

b) Control of surfaces and structures: It is important to produce an active carbon 

surface with sufficient reaction sites over a fixed geometric area. Our O2 plasma 

pretreatment creates a forest of highly reactive carbon nanofibers, with abundant 

edge planes, as evident in Fig. 3.3c. These carbon nanofibers are responsible for 

greatly augmenting surface area compared with flat carbon film electrodes. This 

phenomenon can be seen in the SEM images of the PPF electrodes with and without 

O2 plasma in Fig 3.3(c) and (d) respectively where untreated PPF resembles a flat 

plane while the pretreated PPF consists of carbon nanofiber structures. The 

mechanisms of nanofiber formation are well described [114]; in brief, the SU-8 
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polymer chain is comprised of both aromatic and linear sections thus the etching 

rates of these two sections are different. This phenomenon, which results in a higher 

vertical than parallel growth rate, promotes the the formation of nano-filaments, 

which are predecessors for nanofibers. In addition, SU-8’s high number of aliphatic 

chains means that the crystallization temperature for SU-8 is general higher than 

for positive photoresist which already tend to contain high numbers of ringed 

hexagons. This means that at the same pyrolysis temperature, more defect sites will 

be formed on SU-8 than on positive photoresist [101]; an auspicious surface effect 

for electrochemical applications [112].  

c) Stability: Here we define stability as adhesion of carbon structures to the substrate. 

SU-8 is known to provide better adhesion after pyrolysis compared with positive 

photoresists [78, 101]. A likely reason is that negative photoresists have low glass 

transition temperatures and low molecular weights, which means that the 

photoresist flows once melted during  pyrolysis. The result of this effect is fewer 

pores and cracks that arise due to gas [78, 101]. Because pores and cracks are 

usually the cause of poor adhesion, negative photoresists tend to display better 

stability. However, we and others still experienced instability via peeling of carbon 

patterns from the insulated substrate when using a traditional one step pyrolysis 

[101, 114].  (data not shown) We addressed this problem by employing a two-step 

heating process, as previously described [114]. The two measure process involves 

employing a lower temperature (300 ℃) as an initial step before utilizing 1000 ℃ . 

The additional lower temperature lead to better adhesion and allowed us to form 

devices stable in aqueous environments. This is likely because compared to a one-
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step process, the two-step process will reach the pyrolysis temperature less 

dramatically. This more gradual meander towards 1000 ℃  more readily releases 

tensile stress near the interface between the photoresist and the substrate, that exists 

because of the thermal expansion coefficient. Additionally, for the same reason, 

less dramatic degassing reduces the odds of micro-crack formation. Both of these 

effects improve the adhesion of the film. Finally, we postulated that the primary O2 

plasma step itself contributed to improving adhesion, and tested this notion in 

section 3.3.3 (vide infra). 

3.3.2 Characterization of PPF MEAs 

Our electrodes were characterized by different methods in surface analysis and 

electrochemistry. 

AFM 
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To ensure that a dual O2 plasma treatment (vs. a one step treatment) does not negatively 

influence carbon nanofiber electrode surface structure, we employed atomic force 

microscopy (AFM). The surface topography of the our MEAs was evaluated by tapping 

mode AFM. Images (5 x 5 µm) are presented in Figure 3.4. Cross-sectional plots 

accompany each image. The surface features on PPF MEAs after primary O2 plasma are 

Figure 3.4 AFM images with associated line plots collected at electrodes CMEA 100 

(a), CMEA 103 (b), CMEA 200 (c), and CMEA 203 (d). The primary oxygen plasma 

treatment does contribute to increase the surface roughness, while secondary oxygen 

plasma treatment does not. 
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greatly enhanced (c,d) compared to PPF MEAs with no plasma treatment (as see in the 

SEM imagine, vide supra). For both PPF MEAs with and without primary O2 plasma, there 

are no significant structural changes after the secondary plasma, showing that a dual plasma 

process does not unfavorably impact the PPF surface. 

Raman 

To verify that the surface of the nanofibers formed after the dual O2 plasma treatment 

is suitable for electrochemistry, we took advantage of the ability of Micro-Raman 

spectroscopy to indicate the presence of edge planes, regions with more reaction sites  for 

electrochemical reactions, on our carbon nanofiber surfaces. Figure 3.5 shows Raman 

spectra of SU-8 before pyrolysis (CMEA 001/002), after pyrolysis and no  O2  plasma 

(CMEA 100), after pyrolysis and the secondary plasma (CMEA 103), after pyrolysis and 

the primary plasma (CMEA 200) and after pyrolysis and dual plasma (CMEA 203). Before 

pyrolysis, no characteristic peaks were observed, however after pyrolysis, two broad peaks 

centered around 1350 (D band) and 1590 (G band) cm-1 were present. The band at around 

1350 cm-1 is consistent with disordered carbon, while the band at around 1590 cm-1 can be 

assigned to crystallized graphitic structure [115]. The integrated intensity ratio of D/G is 

frequently used as an indicator of the fraction of disordered SP2 C-C bonding present in 

the graphitic structure, therefore higher ID/IG is indicative of presence of more edge planes 

[116]. The ratios for the different samples are summarized in Table 3.2. The primary 

plasma treated samples presents a higher ID/IG ratio (~1.1) compared to the untreated 

samples (ID/IG ~0.9) showing presence of more edge planes. It also can be seen that the 

primary plasma treated sample has lower peak intensity than the untreated one, possibly 

due to the change of morphology and the formed nano structure [102]. Interestingly, 
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CMEA 100 and CMEA 103 had the same ID/IG ratio, indicating the secondary O2 plasma 

did not introduce significant amount of defects to the structures. 

Table 3.2 Comparison of ID/IG and O/C ratio of electrodes under different 

treatments 

  CMEA 

001 
CMEA 002 CMEA 100 CMEA 103 CMEA 

200 

CMEA 

203 

Raman 

ID/IG 
No peak No peak 0.90 0.91 1.10 1.11 

O/C ratio 

from XPS 
1.01 10.02 0.13 1.06 0.13 3.5 

  

Figure 3.5 Raman spectra of photoresist derived carbon electrode with different treatments 
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On CFMs, the electrochemical signal is inherently regulated by analyte adsorption, 

which itself is controlled by the presence of oxygen moieties on the carbon surface. Thus 

to verify that our electrodes contain sufficient surface oxygen, we utilized x-ray 

photoelectron spectroscopy (XPS) to analyze surface groups. Samples were vacuum sealed 

immediately upon removal from pyrolysis furnaces or other process steps for later XPS 

spectra. Although this short-time exposure to air may result in some oxidation of the 

surface, it is thought that oxidation of pyrolyzed photoresist in air is slow enough to be 

negligible within the time frame of our experiment [117]. Despite this, as a cautionary 

measure, we kept the exposure time in air for all our samples consistent. The changes in 

the XPS spectra, therefore, are considered to be primarily caused by our different 

fabrication conditions and treatments. Atomic concentration ratio, O/C, (see Table 2) was 

determined from the C1s and O1s spectra (Fig. 3.6). Primary O2 plasma introduced more O2 

to the surface as expected. After pyrolysis, the O1s peak diminished drastically for both  O2  

plasma treated and untreated samples. Previous studies on the pyrolysis of photoresist have 

indicated that oxygen and nitrogen are removed at 300~500oC [116]. In our case, the 

pyrolysis was carried out at 900 oC, which explains the O1s peak reduction. In fact, the 

reductive atmosphere used for pyrolysis is expected to generate a hydrogen terminated 

surface [78], which may interfere with electrochemical behavior of carbon surfaces. The 

increase in O/C after plasma treatment elicits the elimination of hydrogen and subsequent 

surface occupation of oxygen groups, consistent with prior work showing that plasma 

treatments can form surface carboxyl functional groups [118]. It is worth noting that the 

increase of O/C in primary plasma treated samples is greater than the one without primary 

plasma which may be attributable to more reactions sites for binding oxygen groups on the 
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nanostructured surface originating from the primary plasma treatment. These data imply 

that primary O2 plasma is responsible for creating more reaction sites; while the secondary 

O2 plasma accounts for bringing O2 containing groups to the surface.  

These surface analyses illustrate that two step pyrolosis and dual O2 plasma treatment 

(CMEA 202) create a rich carbon surface for electrochemistry, we next explore the 

suitability of this surface for FSCV analysis. 

 

 

 

 

Figure 3.6 XPS comparison of photoresist derived carbon electrode with different 

treatments 
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3.3.3 FSCV Characterizations 

3.3.3.1 Electrochemical effects of dual O2 plasma treatments on MEAs 

 

FSCV utilizes scan rates typically between 400 and 1000 Vs-1 and acquires one cyclic 

voltammogram in approximately 2 ms every 100 ms. The fast scan rate renders the method 

highly selective but also generates a large charging current. Background subtraction 

eliminates the charging current, resulting in cyclic voltammograms characteristic of redox 

active species that can be used as a “fingerprint” for analyte identification. Dopamine, as a 

biologically important and well-characterized  molecule, was chosen as a standard analyte 

herein to compare with related studies. A typical FSCV characterization for the 4-electrode 

array is shown in Fig. 3.7. Cyclic voltammograms were collected for 30 s during a flow 

Figure 3.7 (a) a FIA response of electrode CMEA 202 to injection of 1 uM DA. (a) 

shows a CV taken at the vertical white dashed line from the color plot in (b). (c) 

shows a plot of response current vs time, which was determined by taking i vs t from 

the horizontal white dashed line in the color plot (b). 
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injection analysis (FIA) of 1.0 μM dopamine onto the 2-step pyrolysis, dual O2 plasma 

electrodes (CMEA 202). The traditional triangular waveform for dopamine detection was 

employed where the potential ramps from – 0.4 V to + 1.3 V and back at a scan rate of 400 

Vs-1 and application frequency of 10 Hz. The color plot illustrates this 30 s FIA event with 

an injection of dopamine between 5 and 15 s (interpretation of a color plot can be found in 

Hashemi et al. [119]). Fig. 3.7(a) is a cyclic voltammogram taken during the dopamine 

injection, indicated by the vertical white dashed line in the color plots Fig. 3.7(b), shows a 

redox couple at 0.75 V / - 0.25 V, which is in accord with values reported for conventional 

CFMs under the same experimental conditions. Figure 3.7 (c) displays the current vs. time 

profile at the maximum oxidation potential taken from the horizontal white dashed line in 

the color plot. Our optimized electrodes are highly sensitive, yielding 76.6 ± 4.9 nA (n = 

12 ± SEM) for a 1.0 μM dopamine injection, (compared with prior studies showing 10 nA 

for conventional CFMs with surface areas ~ 1000 μm2) [42]. 

The vast sensitivity improvements was attributed to the O2 plasma treatments for three 

reasons: 

a) Our pre-treatment leads to formation of fine structures on the MEAs and 

increased physical surface areas within equivalent geometric surfaces. The result is 

increased FSCV response because mass-transport is less hindered thus analyte flux 

is increased.  

b) An additional advantage of O2 plasma treatment is the creation of edge planes 

(indicated by the Raman spectra, vide supra). Prior studies on pyrolytic graphite 

have shown that edge planes are the primary reaction site [120, 121].  
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c) Previous studies on conventional CFMs have shown that the dopamine FSCV 

response is adsorption-controlled at physiological pH [81, 94], thus over oxidation 

(to induce oxygen moieties on the carbon surface) [42, 94] and a negative resting 

potential between scans [42, 94] are used to promote this adsorption. Our O2 plasma 

treatment induces many oxygen containing functional groups to the reactive sites 

(XPS data, vide supra). As a result, dopamine adsorption, and hence sensitivity, on 

the electrode surface is greatly enhanced.   

We next optimized the dual O2 plasma treatment conditions to establish the optimal 

electrode performance. 12 electrodes (3 devices) were selected for a primary plasma treated 

(green) and untreated (purple) group. Figure 3.8 compares the average current responses at 

the maximum dopamine  oxidation potential for both groups under secondary O2 plasma 

for 0, 10, 20, and 30 s. In general, the green group showed more current response than the 

purple group. When the secondary plasma treatment time increased, the current response 

for both groups showed an overall increasing trend and reached plateau at 20 s. The 

plateaued response of the green group (~80 nA) was almost 3 times that of the purple group 

(~27 nA). At 30 s, both groups reached saturation state, likely due to a damaged surface 

via extended secondary plasma [122, 123]. Because there was no significant difference 

between the current responses at 20s and 30s for both groups (p = 0.8015), the duration of 

secondary O2  plasma treatment was set at 20s. 
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3.3.3.2 Calibration and limit of detection 

A standard calibration of the optimized MEAs for dopamine is presented in Fig. 3.9 (n 

= 12 ± SEM). The calibration was conducted within a concentration range from 0.10 μM 

to 10 μM. The limit of detection (LOD) was 0.10 μM, which is significantly lower than 

reported values for PPF electrodes [42]. A linear calibration range up to 5.0 μM is 

appropriate for biological analyses. The sensitivity (slope) in this range is 80 nA/uM as 

shown in the inset.  

Figure 3.8 Effect of pre and post treatment on the sensitivity. The pre-treated samples 

show greater response current than non-pre-treated ones. 20s post-pyrolysis treatement 

saturates the surfaces with oxygen containing functional group 
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3.3.3.3 Stability  

As previously discussed, the primary reason for conventional PPF electrodes stability 

failure is peeling of the carbon film off the substrate and we addressed this by employing 

negative photoresist instead of positive photoresist. Successive injection tests were 

performed for both primary O2 plasma treated and untreated groups. We injected 1 μM 

dopamine onto a device 50 times, and we recorded the peak oxidation peak currents at 

different channels each time. The normalized currents (observed current / average current) 

are plotted versus injection number in Figure 3.10. Both groups showed consistent 

responses with 50 successive injections, yet the untreated PPF electrodes displayed a 

greater standard deviation, likely because the primary O2 plasma can cause certain 

compressive stress that further enhances the adhesion of the generated carbon films. 

Figure 3.9 detection limit (sensitivity) of the optimized electrodes. The plot shows 

voltammetric peak current as a function of dopamine concentration. The error bars are 

the standard deviation (n=12). Inset: linear range of dopamine on MEAs. All 

measurements were done at 400 v/s, 10Hz in TRIS buffer, pH 7.4. 
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The minimal standard deviation of pretreated MEAs also implies good reproducibility. 

Highly reproducible batch microfabrication processes are advantageous in decreasing 

electrode surface area deviations, thus improving the capability of reproducible 

electrochemical detection. In contrast, the traditional manually cut carbon fiber 

microelectrodes are less precisely controlled,  and are not suitable for accurate multi-site 

and multi-analyte detection, even though they can be bundled up to create a compact unit. 

 

Figure 3.10 Effect of oxygen plasma pre-treatment on device stability. Figure (a) and 

(b) show the peak oxidation current of successive DA injection onto pre-treated and 

un-pretreated MEAs respectively with FIA (positive potential limit +1.3V, negative 

potential limit -0.4V, scan rate 400 V/s). Horizontal lines indicate SD limits. 
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3.4 Conclusions 

PPF MEAs are an important tool for providing multiple measurement platforms with 

versatile spatial geometry. In this paper, we described the development of a new type of 

PPF MEAs that give highly reproducible, sensitive and stable responses when coupled to 

FSCV. These desirable characteristics are due to nanofiber formation via a novel strategy, 

application of a two step pyrolysis process and dual O2 plasma. We utilized a host of 

analytical methods to show that our strategy greatly improve film adhesion and surface 

reactivity. These devices represent an important first step towards dynamic, simultaneous 

and selective multi-analyte FSCV detection. 
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CHAPTER 4 FLEXIBLE CNT BASED CUFF ELECTRODE FOR 

PERIPHERAL STIMULATION 

4.1 Background and motivation  

4.1.1 Functional electrical stimulations and applications in peripheral nervous 

system 

Central nervous system and peripheral nervous systems 

The human nervous system is mainly consisted of the central nervous system (CNS) 

and the peripheral nervous systems (PNS). The CNS includes the brain and the spinal cord, 

while the peripheral system is composed by the spinal, cranial and autonomic nerves and 

their branches. The CNS processes the information and store data through brain and flows 

information through the spinal cord as channels. The PNS, composed by the spinal, cranial 

and autonomic nerves and their branches, takes the information from the environment or 

transmit orders to muscles or organs. More specifically, the peripheral nervous system 

relays information from the brain and spinal cord to the extremities, and vice versa. 

Damage or trauma can compromise the nervous functions partially or completely. 

Interfacing to nervous system is of interest to restore the lost function or to discern the 

information they carry so that appropriate prosthetic interventions can be implemented. 

Peripheral nerve tissue provides an ideal neural interfacing site for prosthetic limb control. 

An amputated peripheral nerve contains all of the motor and sensory pathways associates 

with the lost limb, and these pathways retain significant function after injury. The candidate 

interfacing sites in the CNS is encased within the cranium and vertebral column, which 

makes it more difficult to access noninvasively [124]. In contrast, direct peripheral nerve 

is easy to access to avoid the reactive gliosis and electrode failure in cortical interface due 

to tethering forces and mechanical damage, thus minimizing surgical risk and 
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complications [125]. Also, it has been reported that the peripheral neural tissue is viable 

for interfacing even years after injury or amputation [125].  

There are a wide variety of neuron types which form separate nerve pathways for 

different functions [126]. The sensory system transfer physical energy from the 

environment into neural signals. The motor system produces movement by translating 

neural signals into contractile. When a limb is amputated or injured, all of the associated 

motor and sensory pathways in the peripheral nerve still retain most functions. Thus it is 

possible to restore the lost or impaired peripheral nerve functions. Moreover, successful 

peripheral nerve interfacing can also restore some functions (e.g. voluntary movement) due 

to stroke or injury in spinal cord. The voluntary movement is generated in the brain neurons 

which send signals to spinal cord and finally to motor neurons. In the cases of spinal cord 

injury, the peripheral nerves largely remain intact and can be interfaced to initiate 

peripheral muscle contraction efficiently. 

Peripheral nerve stimulation 

The peripheral nerve stimulation has many applications, including the treatment of pain, 

restoration of motor functions, and treatment of epilepsy by electrical stimulation of the 

vagus nerve [126]. This chapter will focus on the restoration of limb motor functions on 

patients who have damaged neural pathways. For better understanding of motor function 

restoration, a brief introduction of motor system is given as following. Large motor neurons 

lie their cell bodies in the spinal and or brain, and spread axons out of spinal cord through 

a ventral root. Each axon traverses small branch of peripheral nerves until it enters the 

muscle it controls. At this point, a synapse takes place to functionally connect a motor 

neuron and a target muscle fiber. Through this connection, an action potential (AP) 
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transmitted to motor neuron will produce a “twitch” type myofibril contraction as an output. 

This contraction is all or none type, independent of the stimulus intensity. For 

neuromuscular electrical stimulation (NES), electric currents onto the target nerve. The 

ions flow from the anode to the cathode passing through the nerve and generates an AP. 

The AP reaches the motor neuron and cause the corresponding movement. A few examples 

of NES are illustrated in the following paragraph. 

Drop foot is a common gait abnormality caused by a neurological disorder in stroke 

patients who are unable to achieve dorsiflexion of the foot. It has been successfully 

compensated in some patients with stimulation of the peroneal nerve with FES to initiate 

ankle dorsiflexion. This application also has been demonstrated to improve patients’ 

rehabilitation. FES is also used for patients who have good stance ability but problems with 

gait. In this case, electrical stimulation assists the swing phase so that the patients gain the 

ability to walk for short periods. Another application of FES in lower limbs is to assist the 

standing process. Regarding upper limbs, grasping impairment is one of the severe 

consequences of stroke or spinal cord injury. The patients usually unable to produce 

voluntary wrist or finger extension or grasping. To restore grasping, electrodes are placed 

along the forearm to stimulate radial, median or ulnar nerves. Stimulation of radial nerve 

provoke wrist and finger extension, while the stimulation of median and ulnar nerves is 

responsible for wrist and finger flexion. 

4.1.2 Cuff electrodes for peripheral nerve stimulation 

Electrodes are main components of neural interface. Two main approaches in the 

design of peripheral nerve interface are extrafascicular electrodes and intrafascicular 

electrodes[127, 128]. Extrafascicular electrodes are placed in contact with the nerve 
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epineurium, yet with no invasion. Examples include cuff, wire, hook electrodes. The 

second approach is invasive, used to penetrate nerve and locally stimulate the fascicles. 

The intrafascicular electrodes provides higher level of selectivity but potentially cause 

nerve damage. Therefore, non-invasive neural interfaces are preferred for clinical 

applications. For many physiological acute studies, a length of nerve needs to be dissected 

and suspended onto hook-shaped wire electrodes and elevated into a pool of nonconductive 

fluid (usually paraffin or mineral oil). By doing so, the electrical signals are confined within 

the nerve trunk and isolated from the surrounding tissues. The preparation becomes 

difficult particularly for short or deeply located nerves or when testing multiple sites in 

different parts of the body. It is especially unsuitable for repeated stimulation over a long 

period of time. For this reason, nerve cuff electrodes have increasingly aroused attention. 

Cuff electrodes have conductive electrodes embedded in an insulating sheath (cuff), in 

immediate contact with peripheral nerve epineurium. The insulating sheath makes it 

possible to eliminate use of oil pool, therefore simplify the preparation. The testing 

repeatability has also been improved due to the fixed position on nerve.  

In old days, the fabrication of cuff electrode involve handmade parts and assembly of 

discrete components [129]. For example, stich wires into the side walls of commercially 

available silicone rubber tubing. The devices fabricated by these traditional methods have 

a bulky size and a limited number of channels, limiting their clinical applications. Today, 

the MEMS technologies offer great capability in device minimization and multi electrode 

sites integration. Electrode arrays on a flexible polymeric substrate have been fabricated 

by MEMS technologies. Electrode materials such as Pt, roughened Pt, IrOx, Ir, gold, and 
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polymer substrates such as polyimide, parylene, PDMS have been employed for the 

fabrication.  

4.1.3 Motivations 

Besides of general mechanical and biocompatible issues, there are a number of 

additional considerations in design of cuff electrodes for effective electrical stimulation: 

(1) The electrode material must have sufficient surface area to acquire large enough 

charge capacity. In this way, the stimulus magnitude required for nerve activation 

is minimized. Also minimized is the possibility of electrically-induced tissue 

destruction. 

(2) Selectivity must be improved to stimulate different sub-populations of axons. 

(3) Chronic applications require good adhesion between electrode contact and polymer 

substrate. 

For the first design consideration, coatings of Pt black or roughened Pt has been 

employed to increase the surface area. CNTs have recently aroused tremendous interests 

in neural electrode because of their extraordinary good electrical and mechanical properties, 

especially their intrinsically large surface area. In regard of the second design principle, 

multi electrode arrays have been integrated into the flexible substrate to improve selectivity. 

Recently, a polyimide split-ring shaped cuff electrode was designed with four triangular 

bendable platinum electrode protruding the ring. The protruding electrode can make tight 

contact with the nerve without really penetrating the epineurium. This design takes the 

form of penetrating electrodes to increase the selectivity while using the soft polymer 

substrate to reduce the invasiveness and minimize the nerve damage. Regarding to the third 
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design concern, few works haven been done to increase the adhesion between the normally 

used metallic thin film electrode and polymer substrate in cuff electrodes. 

In this chapter, we illustrate a novel design of CNT based cuff electrode (the schematic 

of the design is shown in Figure 4.1 (a)). CNTs were used as electrode to achieve large 

charge capacity. And the CNTs were integrated vertically into polymer substrate, analogue 

to penetrating electrodes to increase the contact and selectivity. On the other hand, CNTs 

are much less stiff than Si based penetrating electrodes. Therefore nerve damage is limited. 

Furthermore, the CNTs and flexible parylene substrate were integrated through a novel 

sandwich manner to enhance the adhesion, making the device potentially suitable for 

Figure 4.1 Schematic of the flexible CNTs cuff electrode (a); improved uniformity of electric 

field generated by CNT electrodes (b). 
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chronic application. Another advantage of using CNTs electrode is the improved 

uniformity of the electric field. For flat electrode, the electrode field distortion usually 

happens at the edge. But for CNTs electrode, the distribution of this edge effect is more 

uniform, which will reduces the deviation caused by the distorted electric field, as 

demonstrated in Figure 4.1 (b). 

4.2 Experimental 

4.2.1 Fabrication of flexible CNT based cuff electrode 

The fabrication process has been described in experimental section in Chaper 2. Briefly,   

low stress silicon-rich nitride was grown on a silicon substrate using a low pressure 

chemical vapor deposition (LPCVD) as insulation. Ti/Pt (20nm/200nm) was evaporated 

and then patterned by lift-off to serve as electrodes, contact pads, and interconnects. Arrays 

of holes were defined on Pt to serve as etching windows for the final release step. In a 

second lift-off step, TiN (100nm) was selectively patterned on the electrode areas, followed 

by RF sputtering of a 2nm thick Fe layer. The wafers were then loaded to the thermal CVD 

chamber for the CNT growth. The growth took place in a gas atmosphere of C2H4/NH3 at 

80 torr for 120 min to achieve higher CNTs. To protect the synthesized CNT arrays from 

the following process steps, a layer of photoresist was spun to coat the CNTs. Afterwards, 

a 3um thick parylene C layer was deposited by CVD. Then oxygen plasma etching was 

applied to open the etching holes. XeF2 isotropic gas phase silicon etchant is applied to 

undercut the bulk silicon in the handle wafer for device release. This technology is simple 

and CMOS compatible. No transfer printing process is involved. Subsequently, a second 

parylene layer (10um) was deposited to encapsulate the device and seal the etching window 

as well. Finally, electrodes and contact pads were opened by oxygen plasma before the 
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release of the flexible device from the substrate.  

4.2.2 Characterization of flexible CNT based cuff electrode 

The morphologies of the synthesized CNTs were analyzed by Scanning Electron 

Microscopy (SEM). The images were obtained using a JSM-6510LV SEM at 15KV 

accelerating voltage.  

4.2.3 Electrophysiological experiments 

Five male adult Sprague Dawley rats (weighted 400 grams) were used in this initial 

study. The rats were anesthetized with an intraperitoneal injection of Xylazine and 

Ketamine. All procedures were approved by the Wayne State University Animal 
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Figure 4.2 experiment setup for sciatic nerve stimulation 
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Investigation Committee. The right sciatic nerve were exposed. The flexible CNT cuff 

electrode were wrapped around the sciatic nerve. The cathode and anode of the stimulator 

were connected alternatively to each of the contact pairs of the CNTs electrode. Stimulation 

was performed by application of a single monophasic pulse. CNTs based electrodes on 

rigid substrates were placed in the gastrocnemius muscle through a 2-3 mm incision. EMG 

signals were recorded using BioPak system. A clip on the base of the tail was used as 

ground. The muscle contraction force was measured using a load cell connected to the right 

leg. The experimental setup in shown in Figure 4.2. 

Figure 4.3 Cuff electrode design plots: (a) the size of the whole device, (b) the 

size of electrodes (the unit is cm). 
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4.3 Results and discussion 

4.3.1 Characterization of device 

Fig. 4.3(a) shows the deign layout with dimensions of the parylene planar device. Fig. 

4.3 (b) shows the design layout wit dimensions of the CNT electrodes and array spacing. 

The CNT electrode is in size of 2500 um2. Two Pt electrodes with area of 40000 um2 are 

also in the array (labeled as 8 and 16 in Figure 4.3). The device consists of three parts: 

microelectrode sites, parylene wrapped leads, and contact pads. The device is designed to 

wrap around the sciatic nerve of rat (0.8~1 mm of diameter). The electrode size and spacing 

were chosen to evenly locate around the nerve when the flexible device is rolled around 

the rat sciatic nerve. Thread is inserted into the holes at the edge of flexible device to tie 

the device onto the nerve in order to further improve the contact. The photograph of the 

flexible parylene cuff electrode is shown in Figure 4.4(a). Figure 4.2 (c) exhibits the close-

up view of one parylene cuff electrode implanted around the sciatic nerve. The external 

connector is commercial FPC. Through this connector, a flexible nerve cuff electrode can 

be freely connected with external instruments. And in the acute rat experiment, the contact 

pads are inserted into the connector and fixed, with only the other parts can be stretched. 

The electrode sites is composed of vertically grown CNTs. Figure 4.4 (b) depicts the CNTs 

grown on Si substrate before coating of parylene. The CNTs are well aligned with height 

of about 60 um.  

Direct mechanical interaction between cuff and nerve is an obvious means by which 

neural damage might be inflicted. The main consideration for safe design of nerve cuff 

electrodes is mechanically flexibility. In this work, parylene was chosen as the substrate 
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material for the development of highly flexible and re-formed nerve cuff electrodes. 

Parylene has been applied in a variety of biomedical devices due to its superior mechanical 

strength and biocompatibility. Successful implantation of the fabricated parylene electrode 

also demonstrates a high level of conformability. Apart from these general considerations, 

there are a number of additional factors in design of cuff electrodes for safe and effective 

electrical stimulation, as stated above. Our design has coped with these issues 

correspondingly:  

(1) For safe and effective electrical stimulation, the stimulus magnitude should remain 

below the charge-carrying capacity of the electrode to avoid an irreversible reaction 

(a) (b) 

(c) (d) 

CNT electrodes 

Figure 4.4 (a) photos of the fabricated device, (b) the CNTs on Si before the 

coating of parylene, (c) CNT electrode arrays on flexible parylene substrate, 

(d) Single CNT electrode on parylene substrate. 
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including water hydrolysis, electrode dissolution, and evolution of gases (6). Lots of 

electrode modification techniques (such as coatings of large surface area materials like 

IrOx, black Pt, PEDOT, or roughening the electrode surface: roughened Pt) have been 

performed to enlarge surface activation area to increase the electrode charge capacity and 

to minimize the required stimulus magnitude for nerve activation (1). In our work, CNTs 

has been adopted as electrode due to its intrinsically large surface area.  

(2) Selective stimulation is challenged by the three dimensional structures of peripheral 

nerves, in which individual fibers connected to and coded for unique motor and sensory 

information. Nerve fiber more close to a stimulation electrode will be evoked and give out 

more selective or specific signal. Penetrating electrodes afford direct contact with axons, 

thus pertaining higher selectivity. However, invasiveness of penetrating electrodes also 

induce nerve damage. Cuff electrodes has no invasiveness, but with the compromised 

selectivity due to electrodes positioned outside the epineurium. As a result, innovative 

designs have been developed to increase the selectivity of non-invasive electrodes. 

Recently, a split ring shaped polyimide based electrode has been designed. The device 

consisted of four bendable triangular sharp contact probes around the polyimide frame. The 

probes, taking the form of penetrating electrode, are confined by the polyimide ring to 

provide a good contact with the nerve. Nonetheless, these probes are based with polyimide, 

which is much less invasive than silicon based penetrating electrodes. Our work further 

expanded this design by using vertically grown CNTs as electrodes. CNTs have high 

strength and high stiffness. It has been reported that the strength and stiffness of CNTs can 

be significantly improved by using longer and denser CNT arrays. The vertical CNT arrays 

protruding out of the parylene substrate plane to fill the gap that normally exits between 
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the cuff electrode and nerve.  The strong stiffness afford the CNT arrays with resistance to 

bending and make it possible for CNTs to penetrate through the epineurium and access to 

individual axon. More importantly, the small radius of the CNT is more advantageous than 

normally used penetrating electrode: small radius will cause less damage, meanwhile avoid 

stimulus of adjacent axons.   

(3) For chronic applications, nerve electrodes have to be stable inside the physiologic 

environment.  Poor adhesion between electrode contact and polymer substrate is normally 

one of the most common reason for instability. Compared to the usually used sputtering of 

metal thin films onto the polymer substrate, our work provides a more reliable way to 

fabricate flexible cuff electrode. The two layer of parylene sandwiched not only the 

conductive CNT electrode and metal trace, but also the SiN as a buffering layer. Therefore 

the adhesion of the electrode to the flexible substrate has been greatly enhanced.  
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(a) 8 (Pt) and 16 (Pt) (distance between electrodes: 0.143cm): 

 

(b) 6(CNT) and 13 (CNT) (distance between electrodes: 0.130cm): 
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(c) 8(Pt) and 15 (CNT) (distance between electrodes: 0.130cm):: 

 

(d) 8 (Pt) and 2 (CNT)  (distance between electrodes: 0.106cm, the discontinuity 

is pause of stimulation because of change of tape): 

 

(e) 8 (Pt) and 13 (CNT) (distance between electrodes: 0.0946cm): 

0.0

0.1

0.2

0.3

E
M

G
 (

m
V

)
-0.3

-0.6

-0.9F
o
rc

e
  

(N
)

-1.2

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Stimulation voltage (V)

10V9V8V7V
 

F
o
rc

e
 m

a
g
n
it
u
d
e
 (

N
)

6V

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

0.26

0.28

E
M

G
 m

a
g
n
it
u
d
e
 (

m
V

)

0.0

0.1

0.2

0.3

E
M

G
 (

m
V

)

-0.3

-0.6

-0.9F
o
rc

e
 (

N
)

-1.2

0.0

0.2

0.4

0.6

0.8

 

F
o
rc

e
 m

a
g
n
it
u
d
e
 (

N
)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

10V9V8V7.5V7V6.5V

E
M

G
 m

a
g
n
it
u
d
e
 (

m
V

)

6V

Stimulation voltage (V)

0.0

0.1

0.2

0.3

E
M

G
 (

m
V

)
F

o
rc

e
 (

N
)

-1.2

-0.9

-0.6

-0.3

0.0

0.2

0.4

0.6

0.8

 

F
o
rc

e
 M

a
g
n
it
u
d
e
 (

N
)

6.5V 7V 8V 9V 10V

Stimulation voltage (V)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

 E
M

G
 M

a
g
n
it
u
d
e
 (

m
V

)



82 
 

 

 

(f) 8 (Pt) and 10 (CNT) (distance between electrodes: 0.0363cm): 

(g) 8 (Pt) and 7 (CNT) (distance between electrodes: 0.0263cm): 
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Figure 4.5 the measured force magnitude and the corresponded 

EMG magnitude for each pair of electrodes. 
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4.3.2 Comparison of the CNTs and Pt based flexible cuff electrode for neural 

stimulation 

Functional electrical stimulation has many applications. In this thesis, we will focus on 

restoration of motor functions. The applied stimulus is aimed to achieve contraction in a 

muscle to perform the desired movement. The amplitude of the pulse must be adequate to 

successfully stimulate the muscle fibers. The fibers that are nearest to the electrode and 

have the largest diameters will be excited first. As the amplitude increases, those away 

from the electrode or with smaller diameters will be recruited. The contraction force 

generated by the stimulus needs to be properly regulated to reduce the possibilities for 

muscle damage or fail of function (for example, too much force for grasping will break the  

 

target item). Thus it is very important to quantify the contraction force when applying 

different amplitude of stimulus. In this work, a load cell was used to measure the force of 

Figure 4.6 the calculated area under curve of EMG peaks at the stimulation voltage 10 V 

for Pt/Pt (8/16) electrode pair and CNT/Pt (8/15) electrode pair. The error bars are the 

standard deviation (n = 6). 
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twitching. Figure 4.5 shows the measured EMG response and contraction force generated 

by the sciatic nerve stimulation. The larger the electrical potential generated by muscle 

cells, the bigger the force of the twitching. This work provides a reliable way to make 

guidelines for safe functional electrical stimulation for motor function restoration and 

rehabilitation.  

As discussed in Chapter 2, CNTs is a more effective neural stimulator compared to Pt 

mainly because of enlarged surface area. In this chapter, we also compared CNTs and Pt 

in cuff electrode for peripheral nerve stimulation. Figure 4.6 shows the EMG signals 

collected from 10V stimulation by CNTs/Pt and Pt/Pt electrode couples. At the same level 

of stimulation magnitude, the area under area of the peak is larger for the signals initiated 

by CNTs compared to Pt. It indicates that more axons are excited by CNTs electrodes.  

4.3.3 Effect of electrode positions  

Theoretically, the excitatory field within a cuff can be accurately controlled. Hence, it 

is possible to precisely manipulate the current flow and regulate the particular neural 

elements to be activated or blocked. The electric field depends on the distance between the 

cathode and anode pair. In this work, all 16 electrode sites on a cuff device is labeled as 

shown in Figure 4.3. Couples of electrodes with different spacing were chosen as anode 

and cathode for stimulation. The threshold voltage for the muscle fibers to be exited were 

recorded in Figure 4.8 to compare the effect of the electrode position around the nerve 

epineurium. The electrode couples that positioned further apart will start twitching at lower 

voltage. It is because that short circuit is formed easily by putting electrodes closely. As a 

result, the current will mostly flow through the epineurium. In contrast, current is forced to 

flow through axons when electrodes are placed far away. Figure 4.7 are the area under 



85 
 

 

curve (AUC) and duration of EMG peaks by 10V stimulation via electrodes at different 

Figure 4.7 Duration (a) and AUC (b) of EMG peaks generated by 10V stimulation 

via electrode pairs positioned with different distances. The error bars are the standard 

deviation (n = 6). 
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distances. When electrodes are placed further away, the electrical route is longer, the 

number of neurons to be recruited is bigger. Consequently, the duration and AUC of the 

EMG peak is bigger for the more separated electrodes. The completed mapping of 

stimulation in future work will be of great significance to guide selective stimulation.  

4.3.4 Effect of stimulation frequency  

Neural stimulation is affected not only by stimulation pulse amplitude, but also by 

frequency. Stimulation frequency determines the output force and the type of contractions. 

This is possibly due to a process known as “sum of contractions” which takes place in the 

myofibrils. If the muscle fibers are already in a contracted state and not relaxed before 

another excitatory stimulus is received, an increased force is generated. At low firing 

frequency, muscle fibers are contracted with small tension and have enough time to relax 

before next stimulus takes place. At higher firing rate, muscle contracts with higher force 

magnitude and less distinction of individual twitches. As the frequency keeps increasing 

and finally exceed the frequency of tetany, force saturation is achieved. Tetany is the state 

at which the stimulated muscle will no longer have tremor. As a result, muscle fatigue is 
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inflicted. Figure 4.9 shows how the muscle respond to different stimulation pulse 

frequencies (1 Hz, 10 Hz, 100 Hz). At 100 Hz, the muscle fibers reaches the tetany state 

and the contraction force shows no fluctuation. Our device affords a good platform to 

investigate the fatigue effect of muscles and facilitate many applications. For example, 

diagnose the fatigue frequency caused by vibration in driving vehicles in order to support 

the design of vehicles for comfort driving.  

 

 

4.3.5 Summary of rat experiments and root cause analysis 

Table 4.1 summaries the failed rat experiments that have been done using the fabricated 

parylene cuff electrode. The success rate is low (2 out of 5) and the failure reasons include: 

complicate operation procedure leads to dry nerve or device failure; unregulated tightening 

force blocked the neural transmission. In the future, we need to design simple operation 

procedure and packaged device to facilitate the mounting of cuff electrode and reduce the 

damage.  

Figure 4.9 (a) EMG magnitude at different stimulation frequency. (b) The percentage of force 

generated at 1Hz and 10Hz related to the normalized force at 100Hz. 
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Table 4.1 Analysis of experimental failure 

Experiment # Failure reason Future resolution 

1 Tried to test two limbs. Started 

testing after operation on two 

limbs. Nerve died after long time 

waiting. 

Do testing on limbs one by one. 

2 Tied the cuff electrode too tight 

around nerve. The nerve lost 

function. 

Regulation of the suture 

tightening force. 

3 Everything is normal, but no 

signal. 

Electrodes broke during the 

operation. Need to simplify the 

operation procedure and make 

sturdier electrode. 
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4.4 Conclusions 

This chapter has demonstrated a prototype of flexible cuff electrode based on CNTs. 

The combination of parylene and vertical CNTs is advantageous in safe and effective 

peripheral nerve stimulation. The preliminary animal test show that CNT is more effective 

as electrode material than Pt. The electrode couple spaced farther away generates 

stimulation at lower threshold voltage and with larger amplitude. The work in this chapter 

provides a promising alternation for the currently used metal on polymer cuff electrodes 

for clinical applications.  
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CHAPTER 5 CONCLUSIONS AND FUTURE WORKS 

5.1 Conclusions 

In this thesis, we developed MEMS devices for neural stimulation/recording and neural 

chemicals detection, using carbon nanotube/nanofiber bundles as electrodes. Compared to 

traditionally used planar metal films or carbon films, the carbon nanotube/nanofiber 

bundles are more advantageous in above applications because: (1) Carbon is more stable 

and has wider water safe window than metals; (2) The intrinsic 3D nature of carbon 

nanotube/nanofiber bundles provides more surface area to restore charges and offer more 

sites for electrochemical reactions to happen. (3) The high strength but low stiffness of 

CNTs inflicts less tissue damage, critical for effective and long-term neural 

stimulation/recording. Moreover, the novel fabrication technique demonstrated in the 

thesis enables the integration of 3D carbon nanotubes with flexible parylene substrate for 

many non-invasive potential applications.  

In Chapter two, we developed a novel fabrication technique to combine CNTs grown 

at high temperature and heat-sensitive parylene susbstrate. This method applied two XeF2 

etching steps to wrap the CNTs electrodes with insulating parylene layers. In comparison 

to normally used fabrication approaches for flexible CNT electrodes, our method can 

preserve the 3D structures of CNT bundles, consequently more surface area, lower 

impedance and larger charge capacity. The animal experiment results show that our 

electrodes can initiate neural signal at voltage as low as 0.3 V, and record signals with high 

SNR of 12, superior than Pt electrodes and most of other CNT electrodes. It also 

demonstrates good adhesion of CNTs to the parylene substrate, which is of great 

significance for chronic applications. This flexible CNT based neural interface is ideal for 
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effective neural stimulation/recording and has wide applications in pain treatment, 

prosthetic and therapeutic devices. 

In Chapter three, we developed a novel carbon nanofiber structured micro-electrode 

arrays, derived from photoresist, for FSCV detection of neural transmitters. This design is 

aimed to address three problems associated with traditional single carbon fiber 

microelectrode in glass tube: (1) multi-sensing unit make it possible for detection of multi-

analysis at different locations in the target; (2) MEMS fabrication techniques improves the 

repeatability of electrode production and the performances; (3) Carbon nanofiber 3D 

structure afford more reaction sites for neural chemicals, thus higher detection sensitivity 

(80nA compared to 10nA for detection of 1uM Dopamine). In particular, our work adopted 

two-step pyrolysis and dual oxygen-plasma treatment for the electrode fabrication and 

processing and achieved better performance than other photoresist derived film electrode 

in dopamine detection using FSCV (fill in numbers). The likely reasons are: (1) We used 

negative photoresist as precursor material instead of positive photoresist. The flow of 

negative photoresist during pyrolysis results in better adhesion. In addition, we applied the 

two-step pyrolysis of the negative photoresist to further improve the adhesion due to the 

low heating rate; (2) We employed dual oxygen plasma treatment to create nanofiber 

structure and increase the attachment of oxygen containing functional groups to the fiber 

surface, facilitating the reaction of dopamine and consequently enhancing the detection 

sensitivity.  

In Chapter four, we extended the work of Chapter two and designed a CNT based 

flexible cuff electrode for peripheral nerve stimulation. The fabricated cuff electrode can 

successfully wrap around the rat sciatic nerve and function as stimulator. We also connect 
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a load cell to record the force associated with the muscle twitching due to the neural 

stimulation. The results show that CNT electrodes can initiate stronger neural signals than 

Pt electrodes, indicating that the 3D structure is accessible to more neurons than planar pt. 

We also did experiments to illustrate the effect of stimulating frequency and electrodes 

spacing on the neural stimulation and muscle response. The higher stimulating frequency 

led to stronger muscle twitching. The tetany frequency is 100Hz. The electrode couples 

that positioned further apart will generate twitching at lower voltage. These work exhibit 

the potentiality of this cuff electrode for study of muscle fatigue and mapping of 

stimulation and use in rehabilitation and peripheral prostheses. But we also noticed the low 

success rate in the rat experiments and summarized the possible reasons as well as the 

corresponding solutions. Optimal device geometry and experimental procedures need to be 

designed for the future work.  

5.2 Future works 

This thesis has clearly shown that carbon nanotube bundles outperform Pt as neural 

electrode in effective neural stimulation/recording. However, there are still a number of 

problems need to be addressed before real clinical applications.  

(1) Optimization of synthesis and surface modification of nanotubes/nanofibers pillars 

For neural stimulating and neural transmitter detection, the accessible surface area 

needs to be maximized. The diameter, height and density of the nanotubes/nanofibers in a 

pillar can be optimized to maximize the active surface area. For CNTs, It can be achieved 

by better control of the catalyst layer thickness and the synthesis process. For carbon 

nanofibers derived from photoresist, it can be achieved by better control of photoresist 
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thickness, the pyrolysis process, and treatment conditions. Surface modification by 

attached functional groups is another measure to increase the active surface area.  

(2) Multi analyte detection 

The carbon nanofiber structured electrodes have been proved to be an efficient 

dopamine detector. Our next step is detection of multiple analytes. Recently, a covalent 

functionalization strategy to modify surface with specific molecules in controlled densities 

for FSCV applications has been reported. It was an effective method to integrate selective 

components to the electrode surfaces without comprising the fast response time of FSCV. 

In the future work, different channels of an MEA will be modified with certain selective 

molecules, for the purpose of simultaneous detections of different targets.  

(3) Optimized design of flexible cuff CNT electrode 

The prototype of flexible cuff CNT electrode has been fabricated and preliminary 

testing has been demonstrated. And the reason of low success rate has been analyzed. The 

design of the cuff electrode and operation procedure need to be optimized to achieve 

improved stimulation efficiency. It is also necessary for the device packaging for future 

clinical applications.  
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DEVELOPMENT OF CARBON BASED NEURAL INTERFACE FOR 
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Electrical stimulation and recording of neural cells have been widely used in basic 

neuroscience studies, neural prostheses, and clinical therapies. Stable neural interfaces that 

effectively communicate with the nervous system via electrodes are of great significance. 

Recently, flexible neural interfaces that combine carbon nanotubes (CNTs) and soft 

polymer substrates have generated tremendous interests. CNT based microelectrode arrays 

(MEAs) have shown enhanced electrochemical properties compared to commonly used 

electrode materials such as tungsten, platinum or titanium nitride. On the other hand, the 

soft polymer substrate can overcome the mechanical mismatch between the traditional rigid 

electrodes (or silicon shank) and the soft tissues for chronic use. However, most fabrication 

techniques suffer from low CNT yield, bad adhesion, and limited controllability. In 

addition, the electrodes were covered by randomly distributed CNTs in most cases. In this 

study, a novel fabrication method combining XeF2 etching and parylene deposition was 

presented to integrate the high quality vertical CNTs grown at high temperature with the 
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heat sensitive parylene substrate in a highly controllable manner. Lower stimulation 

threshold voltage and higher signal to noise ratio have been demonstrated using vertical 

CNTs bundles compared to a Pt electrode and other randomly distributed CNT films. 

Adhesion has also been greatly improved. The work has also been extended to develop cuff 

shaped electrode for peripheral nerve stimulation.  

Fast scan cyclic voltammetry is an electrochemical detection technique suitable for in-

vivo neurotransmitter detection because of the miniaturization, fast time response, good 

sensitivity and selectivity. Traditional single carbon fiber microelectrode has been limited 

to single detection for in-vivo application. Alternatively, pyrolyzed photoresist film (PPF) 

is a good candidate for this application as they are readily compatible with the 

microfabrication process for precise fabrication of microelectrode arrays. By the oxygen 

plasma treatment of photoresist prior to pyrolysis, we obtained carbon fiber arrays. Good 

sensitivity in dopamine detection by this carbon fiber arrays and improved adhesion have 

been demonstrated.  
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