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CHAPTER 1 LITERATURE REVIEW 

1.1. Introduction 

In this dissertation, a multiobjective optimization tool is introduced that is 

developed for reducing electricity cost and pollution emission (associated with energy 

consumption) of pump stations of water distribution systems (WDS). 

In the first chapter, the background of this field of study is reviewed and necessity 

of doing this type of research is justified. The general concept of optimization of pump 

schedules, hydraulic modeling techniques, optimization methods, objectives of 

optimization, active research groups, and benchmark test cases are main subjects that 

have been covered in this chapter. 

In the first section of the second chapter, the problem that is addressed in this 

study is defined, and the hypothesis is stated clearly. After that, the developed 

optimization tool is explained in detail and the test cases and scenarios that are 

considered with the model are described. All technical details about interface and internal 

function and procedures of the developed optimization tool can be found in this chapter 

The third chapter presents the test results. Raw results are processed and 

analyzed. The statistical indices and quantitative measures used to describe the test 

results are presented.  In the first set of experiments, different features of the developed 

optimization tools are tested on two WDSs. In the second set, the optimization tool is 

compared with a well-known commercially available software package.  

Finally, in the last chapter, conclusions of the thesis are presented. In addition, a 

comprehensive list of opportunities for further investigation and future research is 

presented. A glossary appendix is included at the end of this document that provides 
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definitions for the acronyms, abbreviations and technical terms that are used in this 

document. The reader is highly recommended to refer to that section when facing an 

unfamiliar or unclear phrase or acronym in the text. 

1.2. Background and Necessity of Optimization of Pump Operation 

The pump is a mechanical device for pressurizing fluids. Various types of these 

devices have been used in almost all fields of human activities that deal with fluids, both 

liquid and gaseous. In most cases, the required flow rate and pressure of the fluid may 

include dynamic features, requiring the design to satisfy a range of conditions. The 

specified operation schedule of the pump must address these dynamic requirements. 

Operating schedule of a pumping system defines ON and OFF status of fixed 

speed pumps (FSP) and, the rotational speed of VSPs. These pump operation schedules 

or in short pump schedules are an important component of the operational plan for water 

and wastewater pump station, oil and gas facilities, most of the industrial process that 

deals with fluids, the air conditioner of buildings, etc. Except some rare cases that water 

source always has a higher elevation than all consumption points, almost all water 

distribution systems (WDS) have at least one pump. In many cases, WDSs have more 

than one pump in multiple pump stations and pumps might become scattered throughout 

the whole area of the WDS. In some large WDSs (e.g. Detroit Metropolitan WDS) the 

number of pumps exceeds several hundred. WDS designers commonly use parallel and 

series pump systems and variable speed pumps (VSP) to cover a broad range of required 

flow and pressure of different systems. All of these factors make a WDS so complex and 

dynamic that numerous combination of pump operation plans can satisfy required 
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pressure and flow of the system. Each of possible pump schedules may need different 

power demand and electricity usage 

About 4% of electricity usage in the US is attributed to the supply, conveyance and 

treatment of water and wastewater at a cost of approximately $4 billion per year 

(Giacomello, Kapelan et al. 2013). Moreover, due to increasing in urban and industrial 

water demand and a decrease in access to high-quality water resources, it is predicted 

that the energy consumption of this sector will increase more than 50% by 2050 

(Giacomello, Kapelan et al. 2013). According to the US Department of Energy, 

approximately 75% of the operating costs of municipal water supply, treatment and 

distribution facilities are attributed to electricity demand (DOE 2006). Abiodun reported 

that about 700 million Euros is being expended annually on energy costs of pumping 

stations in the UK (Abiodun and Ismail 2013). 

The high energy demand and increasing trend of the demand and cost of energy 

is a motivation for water system operators to increase the efficiency of energy usage in 

this sector. Pumps are the largest energy consumers in water supply, treatment and 

distribution systems. For instance, in China, the electrical cost of pump operation is about 

30% to 50% of the total operational cost of the WDSs (Abiodun and Ismail 2013). The 

amount of energy used in pump stations depends on the efficiency of pumps and required 

flow and pressure. Most of the time, . Due to these differences in pump efficiencies (even 

within a single pump station), energy usage of multiple pumps will not be the same, even 

if they fulfill the similarly required pressure and flow rate. Moreover, the combination of 

series and parallel pumps may lead to numerous pumping strategies that can satisfy the 

required water flow rate and pressure. It was mentioned that each pumping strategy has 
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different energy and power requirements. However, the optimum pump schedule is 

associated with the lowest energy and power demand while fulfilling all pressure and flow 

requirements of the WDS. Uncertainties and control limitations increase the tendency of 

human operators to maintain water pressure higher than the minimum required pressure, 

which increases energy usage, water leakage and consequently water and energy waste. 

As noted by several researchers, optimizing pump operation has a considerable effect on 

water industries, which can offer up to 10% reduction in the annual expenditure of energy 

and other related costs (Jamieson, Shamir et al. 2007); (Abiodun and Ismail 2013). Based 

on the water-energy nexus report of US Department of Energy, in the year 2011, 39.2 

billion kWh energy used for pumping and aeration of publically available water in the US 

(DOE 2014). About 80% of this energy is consumed in pumping demands (Copeland 

2014). Therefore, the total amount of energy consumption attributed to the pumping of 

publically available water in the US in the year 2011 was 31.36 billion kWh. If we assume 

that all pump operators use some optimization techniques and reduce this energy 

consumption by 10%, 3.14 billion kWh energy will be saved annually. Considering 0.10 

($/kWh) as the average electricity cost in the US (EIA 2016), this optimization can save 

about 314 million dollars annually. Based on eGRID 2012 data, the average CO2 

equivalent, SO2, NOx and Hg emission rate per kWh of generated energy in the US is 

517.98, 0.86, 0.43 and 0.000006 (gr/kWh) respectively (EPA 2015); (Marc Houyoux 

2011). Therefore, in each year, it is possible to prevent the release of 1.63 billion 

kilograms of equivalent CO2, 2.69 million kilograms of SO2, 1.35 million kilogram NOx and 

18.87 kilograms of Hg to the atmosphere by optimizing energy consumption of water 

pump station in the US. In this calculation, we have solely considered energy optimization 
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in pumps of the water sector. If we calculate the effect of the similar type of optimization 

in wastewater industry and consider increasing trend of energy consumption in public and 

private sectors, the amount of the estimated saving will be significantly greater than the 

above-mentioned value. 

There are multiple solutions to a basic WDS optimization problem with constant 

demand and specified pressure constraints. However, in reality, the flow and pressure 

demands of a WDS are not constant. So at different times of a day, different days of a 

week and even different months and seasons of a year, the required pressure and flow 

rate at points in a network may be vastly different. Furthermore, some physical changes 

in the network topology may cause changes in required pressure or even flow rate. For 

instance, adding or removing some pipes, aging, leakage, or breaking of pipes are typical 

occurrences in the WDS that may change the required flow or pressure of the system. In 

addition to these physical and topological changes of a WDS, there are some 

modifications like a change in quantity or types of consumers that may also change the 

required flow rate and pressure of the system. All these changes of demands require the 

use of time-variant operation schedules. Based on a possible combination of pumps, it 

might not be possible to fulfill all pressure requirements of networks at all junctions at the 

same time. Therefore, we may face some undesired high or low pressure at multiple 

demand junctions of WDS. Also, in some WDSs that are equipped with pressure 

reduction or break valves, there is a possibility to operate pumps in a way that results in 

the buildup of unrequired high pressure behind the pressure or flow control equipment 

that means excess energy usage and energy waste. These cases show that based on 
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the condition of a system, optimum pump schedule may change. Thus, there is not one 

optimum pump schedule that answers all needs of a WDS at all times.  

The above-mentioned scenarios make it clear that the amount of energy used to 

meet the demands of a WDS may change over time, and we need to change the 

operational schedule of pumps to meet unsteady demands. However, there are some 

cases that even with the constant demand condition and constant energy usage, the 

energy cost may considerably change. Many power utilities provide energy based on a 

time-dependent tariff. Based on a time of use a type of tariff, energy price changes over 

hours of a day (in some cases even months of a year). Therefore, there may be several 

different price points associated with a specific energy consumption amount, if alternative 

patterns of consumption are considered. In this case, using elevated storage to deliver 

water at those hours that energy is expensive, and pumping water to elevated storage 

during low energy pricing times, will lead to reduced costs for system operation. 

Moreover, some electricity providers include cost penalties for WDSs that exceed 

threshold power consumption values. For instance, consider two pump schedules that 

require equivalent energy. The first pump schedule operates all pumps together for a 

limited period of the day, while the second schedule uses selected pumps throughout the 

whole day.  Due to the higher power output of the first schedule, the first pump schedule 

is likely to result in larger operation cost due to the increased power demand charge.  

Careful planning for operating pumps may lead to a decrease in energy usage, power 

demand, energy usage cost and power demand cost. 

While there have been many previous investigations into the direct (or, internal) 

cost of energy usage in pump stations of WDSs, the external costs have received much 
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less attention. An external cost arises when the social or economic activities of one group 

of persons have an impact on another group and when that impact is not fully accounted, 

or compensated for, by the first group. These external costs are mostly associated with 

the environmental footprint of energy generation. The external cost of energy usage 

mostly depends on the source of the fuel and the means of combustion. Various sources 

of energy emit different types and quantity of pollutants. The environmental effect of the 

pollutant emission of a fixed amount of energy generated by different methods can also 

be different. These various effects may lead to a wide range of external cost of energy 

usage on the environment, society, etc. Electricity distribution systems distribute the 

energy that has been generated by a combination of many differing energy sources. The 

mix of energy sources is variable over space and time. So, there are some times that a 

combination of multiple clean energy generators leads to the generation of less polluting 

energy with lower external cost. Therefore, the external costs associated with energy 

consumption are highly dependent on the spatial and temporal features of the energy 

consumption. Optimum operation of pumps may lead to energy usage at those times that 

the environmental footprint of energy generation is lower, resulting in reduced external 

costs of energy consumption. 

A pump operation schedule can be optimized to satisfy various goals, such as the 

amount and cost of energy used, amount and cost of power demand, amount of pollution 

emission and external cost of energy usage. These goals are not always aligned. For 

instance, reductions in energy usage may lead to (1) more intense (shorter duration) of 

energy consumption, (2) consumption during higher energy fee periods, and/or (3) 
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consumption from “dirtier” generators; resulting higher power demand costs, higher 

energy costs or higher pollution emission and external costs, respectively. 

The advantages of an optimized pump operation are evident. However, the means 

to achieve that optimized schedule are less obvious. At first, let’s investigate the solution 

space of a pump scheduling problem. The solution space of this problem is a collection 

of all possible combination of the operational status of pumps of a system. To understand 

better the potential size of the solution space, we first consider a very simple pumping 

system that has just one fixed or constant speed pump (FSP). We also assume that we 

want to operate the pump for a one day period (24 hours), and that the operational state 

of the pump (ON/OFF) can be changed only once per hour. The number of combinations 

of all possible operational states for the first hour is 2 (ON or OFF) and for a two-hour 

period is 2×2 = 22 or four combinations. Consequently, the number of possible operational 

plans of this pump during 24 hours is 224. If we have two pumps in the system, the size 

of possible operational plans will be 224×224=248. To understand better the magnitude of 

this solution space, we can compare to the number of all atoms in the observable 

universe.  This number of atoms (Wikipedia-contributors 2003) is less than the number of 

possible pump schedules of a pump system with 12 pumps. Similarly, If we imagine that 

there is a way that we can use a supercomputer with highest theoretical possible 

computational power (6×1033 operations per second per joule of energy (Wikipedia-

contributors 2005) that use the entire available energy of the largest power generator in 

the world (Three Gorges Dam with total electric generating capacity of 22,500 MW 

(Wikipedia-contributors 2002), determination of the global optimum pump schedule for a 
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small system with just 6 pumps and find the global optimum pump schedule with 100% 

certainty would require hundreds of thousands of years. 

As explained with the examples above, to solve these types of problems using a 

deterministic algorithm (Wikipedia-contributors 2004), we need exponential time with 

respect to variables of the problem (e.g. number of pumps). Therefore, based on 

computational complexity theory, we can classify it as an EXPTIME problem or 

exponential time problem (Wikipedia-contributors 2013). In the same way, Yates et al. 

and Marchi et al. classify the problem of finding the optimum design of WDS as the non-

deterministic polynomial-time–hard (NP-H) problem (Yates et al. 1984; Marchi et al. 

2014). To summarize, we can say that these types of problems cannot be solved 

completely by any algorithm in polynomial time. The size of the solution space for even a 

small pump optimization problem is so large that is not possible to find the optimum pump 

schedule by evaluating all possible solutions. 

In addition to the size of solution space, there is another issue that needs special 

attention. The relation between change in the status of pumps and change in power or 

energy demand of system is not linear. The head-flow rate and efficiency-flow rate curves 

of pumps are usually non-linear. Also, operating parallel and series pumps in a system 

have a reciprocal effect on the operation of pumps, which increase non-linearity of head-

flow rate and efficiency-flow rate relations. This means that turning on a pump that is 

connected to other pumps in a parallel or series configuration may change the suction or 

discharge pressure of other pumps, thereby moving the operational point of other pumps 

on the head-flow rate and efficiency-flow rate curves. In this case, the status of a pump 

may not change directly, but changing the status of other pumps in the system can modify 
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discharge or efficiency of the pump indirectly. There are many other non-linear aspects 

to the WDS optimization problem, such as the relation between pump status and pollutant 

emission or cost of consumed energy. Therefore, it is concluded that the pump operation 

optimization problem is highly non-linear. In addition to non-linearity, the pump operation 

optimization problem is a non-convex problem. Non-convexity makes finding the global 

optimum solution extremely hard. For this type of problems there might be multiple local 

optimums, and finding the global optimum (if it exists) is not guaranteed. 

1.3. Optimization Objectives 

In Section 1.1 it was explained that optimization of a pump schedule may have 

various benefits. One of the most important objectives of almost all optimization schemes 

is cost reduction. Specifically, in the WDS case, the objectives of reducing the capital cost 

of constructing WDS and reducing the energy usage cost of pumps have been 

investigated by numerous researchers; Tang, Zheng et al. 2014). Most of the initial 

optimization efforts for WDS design and operation combined the cost of construction and 

operation into a single objective. If we assume that the energy price is a constant rate at 

different times, it is evident that by reducing the amount of energy usage, the associated 

energy cost will also be reduced. For that case, the amount or cost of energy usage are 

interchangeable from an optimization perspective.  However, for cases that include 

variable energy costs (time variant energy pricing), the more appropriate optimization 

objective is cumulative cost of energy consumption. As explained earlier, such variable 

pricing applications result in multi-valued billing for identical consumption totals. So in 

practice, when most of the electricity tariffs depend on usage time, it is more meaningful 

to consider the reduction of energy cost (e.g. $/kWh) as an objective function instead of 
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using the energy consumption amount (e.g. kWh). Accordingly, in most cases 

researchers considered the change of energy consumption charge during a one day (24 

hours) simulation period. Wang et al. considered the hour between 8:00 to 17:00 as peak 

hours of electricity tariff. So a day was divided to 00:00 to 8:00, 8:00 to 17:00 and 17:00 

to 24:00 (Wang, Chen et al. 2013). Baran et al. also used time-dependent electricity tariff 

that was defined based on-peak (17:00 to 23:00) and off-peak (00:00 to 17:00 and 23:00 

to 24:00) hours (Barán, von Lücken et al. 2005). However, Shamir and Salomon used a 

more complicated electricity tariff. They used the real and complex electricity tariff of Haifa 

city in Israel which includes three time periods, representing high, medium, and low 

energy costs. The tariff is different for the weekend and holidays and the various seasons 

of the year (Shamir and Salomons 2008). 

Considering the real electricity tariffs, in many cases, there is a power demand 

charge ($/kW) in addition to the energy consumption charge ($/kWh). The cost of energy 

consumption is added to the cost of maximum required power to determine the total 

electricity cost of the system. Working multiple pumps at the same time may cause an 

increase of required power for pumping unit of a WDS. This may increase the total 

electricity cost of the system. There are some examples that researchers pay attention to 

the power demand charge (Fracasso, Barnes et al. 2014). Fracasso and Barnes included 

the amount of max power demand (kW) as an objective of the optimization process.  

Martinez et al. optimized operation of Valencia WDS and they reported that about 

17% reduction of operation cost is possible during a one-year optimization period. Also, 

it was evaluated that by this amount of saving after 16 months the cost of equipping 
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Valencia network by SCADA system will be returned. Most of this saving occurred during 

the high consumption months (Martínez, Hernández et al. 2007). 

About four decades ago, when researchers started to think about optimization of 

WDSs, most of them focused on construction cost (reducing the cost of piping) and 

operation cost (minimizing the cost of energy usage and power demand of pump station). 

However, after a while, other objectives like increasing reliability and water quality or 

decreasing environmental footprint were included in the optimization process. In the last 

decade, the attention toward the environmental effect of energy usage and sustainability 

of WDSs increased due to increase in public and scientific awareness of climate change 

and effect of pollutant emissions from power generation (Wu, Maier et al. 2013). Wang et 

al. tried to reduce the environmental effect of WDS operation, in term of preventing land 

subsidence caused by groundwater withdrawal (Wang, Chen et al. 2013). They reported 

that their suggested algorithm could find an optimum solution with 500 generations using 

good initial guesses. They claimed that this algorithm converged to an optimum solution 

very fast (Wang, Chen et al. 2013). However, considering the size of their problem, it is 

not completely clear that if this algorithm can outperform other algorithms that have been 

used in other researches (especially for large WDSs). Wu et al. did a comprehensive 

research on multiobjective optimization of WDS design. Minimizing total life cycle GHG 

emissions was one of the objectives of their optimization method (Wu, Maier et al. 2013). 

Including the environmental effect of WDS in optimization process is a new approach and 

most of the related researches consider only the reduction of GHG in design optimization 

problems rather than reducing pollutant emission in operation optimization problems. 

Therefore, the environmental effect of energy usage and pump operation has not been 
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adequately investigated. It was not possible for the author to find any article that includes 

the environmental effect of WDS design or operation on the optimization process before 

2010. In fact, it appears the study Wu et al. were one of the first studies that included 

greenhouse gas (GHG) emissions as an objective of the WDS design optimization (Wu, 

Maier et al. 2010). Recently, Stokes et al. suggested a framework for the modeling and 

optimization of GHG emission associated with energy usage and pump operation of 

WDSs (Stokes, Simpson et al. 2012). In most of these efforts emission rate of energy 

usage was considered as a constant value and was linearly related to the amount of 

consumed energy. However, it is known that most of the time, the source of electrical 

energy is a mix of various types of power generators. As this combination of generators 

may change in time, emitted amount of GHG or other pollutants per unit of energy may 

change. So, consuming the same amount of energy at two different times might result in 

different effects on the environment. In reality, as water demand of WDS and electricity 

price may change during an optimization process, emission rate of energy usage may 

also change. Researchers at Wayne State University recently completed a research 

project to optimize pump operation of WDS considering the real-time effect of energy 

usage on pollutant emission. In that project, the LEEM methodology was developed to 

calculate the amount of pollutant emission associated with energy generation at different 

points in space and time. LEEM is an acronym for Locational Emissions Estimation 

Methodology. LEEM is implemented in several products and is offered as streaming data 

for the industry. Users can connect to its online server and obtain local information of 

marginal pollutant emission of electricity generation at a different time (lb/kWh). The 

marginal emission at any location and time is the expected emissions due a unit increase 
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in demand at that location and time that is produced by the marginal generator (Rogers, 

Wang et al. 2013). 

The objective of reducing energy consumption can be expressed in monetary units 

when represented as energy consumption cost. This allows the energy objective to be 

added directly to other objectives (such as power demand cost) that are expressed in 

monetary units. Similarly, it is possible to convert the objective of reducing the 

environmental footprint of energy usage into a reduction of external cost of energy usage. 

A power station that generates emissions of SO2, NOx, particulates, etc. causing damage 

to building materials, biodiversity or human health, imposes an external cost. This is 

because the impact on the owners of the buildings, crops or on those who suffer damage 

to their health is not taken into account by the generator of the electricity when deciding 

on the activities causing the damage. Therefore, the environmental costs are ‘‘external’’, 

although they are real costs to these members of society, the owner of the power station 

is not taking them into account when making decisions (Streimikiene, Roos et al. 2009). 

So the idea of using the external cost of electricity come from this point that we include 

the electricity usage cost that is directly related to electricity generation cost as one of our 

optimization objectives, but there are some hidden and external costs of electricity 

generation that usually have not been accounted in electricity tariff. Most of these costs 

are related to environmental effects of air pollution associated with energy production 

activities. So by including the external cost of electricity in the objective function of WDS 

optimization, we can simply add the environmental effect of energy usage with energy 

usage cost. However, it should be noted that external costs of air pollution vary according 

to a variety of environmental factors, including overall levels of pollution, geographic 
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location of emission sources, the height of emission source, local and regional population 

density, meteorology, and so on (Holland and Watkiss 2002).  

Wu et al. attempted to include the effect of variable emission rate and electricity 

tariff on their WDS design optimization efforts. They assumed three scenarios for 

electricity tariff changes and three scenarios for a change of emission factor 

(kgCO2e/kWh) in 100 years operation period of a simple transmission line that pumps 

water from source to three reservoirs with constant and similar head and demands. Three 

optimization scenarios were completed with variable electricity tariffs, and three other 

optimizations were done with variable emission factors. These scenarios and changes in 

electricity tariff and emission rate were created based on probable Australian government 

policy in future. Results indicated that variation in electricity tariffs have a significant effect 

on the total cost, but little effect on the total GHG emissions. Also, it was concluded that 

higher electricity tariffs can remove networks with higher emissions from the Pareto-

optimal front, which potentially leads to a final WDS with lower GHG emissions. In 

contrast, emission factors have no direct effect on the total cost of WDS operation (Wu, 

Simpson et al. 2012).  

Besides the above-mentioned objectives, some constraints seek to direct the 

algorithm to solutions that satisfy operational requirements of the WDS. For instance, as 

frequent pump switching (OFF/ON) can cause increased maintenance cost and may 

damage pumps faster (Wang, Chang et al. 2009), some researchers place a limit on the 

maximum number of pump switches. Similarly, water pressures at system junctions or 

water flow rate in pipes can be constrained. Constraints can be handled explicitly or can 

be converted to objective and handled implicitly during the optimization process. One of 
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the common methods of converting a constraint to an objective is using penalty formula. 

By this approach, violation from a constraint can be converted to a penalty value and be 

added to other terms of the objective function. For instance, in a minimization problem, a 

penalty can be a positive number that has a direct relation to the amount of violation from 

a constraint. In this case, a solution with more violation from desired limits will have higher 

penalty value. Adding the penalty value to the amount of objective function increases its 

value, causing that solution to appear less desirable as an optimum solution of a 

minimization problem. 

In most traditional hydraulic simulators (e.g. EPANET) (Rossman 2000), the user 

inputs required flow rates at junctions and software solve equations to calculates the 

pressure at those junctions. In this case, the significant negative pressure at demand 

junctions shows that required flow of the junction has not been satisfied. So it is common 

in WDS optimization to constrain the pressure range at junctions and use it as a measure 

to evaluate the quality and feasibility of the solution. Pressure penalty can be calculated 

as a function of pressure violation at each junction (deviation above or below a specified 

allowed maximum or minimum, respectively). Other constraints, such as minimum 

velocity or the highest number of pump switches can be treated like pressure constraint 

and included implicitly in optimization process by using the penalty formulation. Zecchin 

et al. used pressure penalty to add pressure constraint to the objective function of ant 

colony (AC) algorithms that they used for WDS design optimization (Zecchin, Maier et al. 

2007). Wang et al. also suggested a method to calculate the number of pump switches. 

They just considered the water level in the tank as a constraint and didn’t take into account 

pressure of different junctions. (Wang, Chen et al. 2013). Lopez-Ibanez also investigated 
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the effect of constraint on the maximum number of pump switches and constraints on 

minimum time interval in time-controlled trigger representation. He found that lower limit 

of the maximum number of pump switches that does not hinder the search for an optimum 

solution is related to characteristics of the network. In some cases, three switches can 

lead to the right results. While assigning a large number as the maximum number of pump 

switches increases the flexibility of the pump schedule assignment, but as it causes 

exponentially larger solution space, the process of finding an optimum solution gets much 

harder (Lopez-Ibanez 2009). 

In addition to this implicit methodology, there are some explicit methods for 

handling the constraints. For instance, Siew and Tanyimboh adopted a pressure 

dependent analysis approach to simulate both normal and pressure deficient networks 

(Siew and Tanyimboh 2010). They used their method on some test cases and got good 

results (Siew and Tanyimboh 2011, Siew, Tanyimboh et al. 2013). Baran et al. also used 

an explicit heuristic out of main optimization algorithm to evaluate the feasibility of 

solutions and fulfill technical and hydraulic constraints. Although, even they included the 

maximum number of pump switches inside their optimization algorithm (Barán, von 

Lücken et al. 2005). 

Most researchers have considered the WDS optimization problem as a single 

objective problem. Most of them solely focused on the economic side of the problem and 

considered the cost minimization as the optimization objective. However, some 

researchers, including Wang et al. used multiobjective methods for optimization of the 

WDS operation (Wang, Chen et al. 2013). References to the multiobjective optimization 

of WDSs accounting for network reliability can be traced back to the 1980s, when Walski 
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et al. used the WADISO program to solve WDS pipe sizing problems, considering both 

cost and the minimum pressure of the network (Walski and Hartell 2012). However, during 

past decade, by improving multiobjective optimization algorithms, the usage of these 

methods in WDS optimization increased considerably. In particular, due to the increasing 

interest of researchers on the environmental effect of WDSs, the use of multiobjective 

methods for simultaneous optimization of both cost and environmental outcomes has 

increased.  

Optimizing the WDS based on more than one parameter does not necessarily 

require the use of multiobjective methods. For instance, two objectives can be added 

together to form an index; then the index can be optimized by using single objective 

methods. This approach was used for the previously described application involving the 

monetization of energy usage and power demand. Similarly, adding the cost of pollution 

emission to the energy and power cost helps us to optimize these three objectives by 

using a single objective value. 

There is another method that can be used for converting a multiobjective problem 

into a single objective problem. In this approach, the normalized value of objectives can 

be added together to form a unitless aggregate index. Then the unitless index can be 

minimized or maximized. In this case, there is no need to convert all values to cost and 

then add them together. So this method can be used for objectives that cannot be 

monetized easily. The final amount of objective function that is calculated by this method 

is not cost and does not have any specific unit. It is just value for evaluation and 

comparing solutions. Normalizing each value can be done by dividing it by the maximum 

possible amount of it. It helps to use normalization to convert values of all objectives to a 
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number between 0 and 1. It is important to note that finding the maximum possible amount 

of an objective is not always easy. For instance, there is not an easy way to calculate 

maximum possible pollution emission or maximum energy consumption of a WDS. So in 

some cases, this normalization step can be omitted. Normalized or raw values of each 

objective can be multiplied by a weighting factor and then added to other terms of the 

objective function. These weighting factors show the relative importance of various terms 

of the objective function. For instance, if the weighting factor of normalized pollution 

emission is two times more than the weighting factor of normalized energy consumption, 

the effect of pollutant emission on the selection of an optimum solution is two times more 

than the effect of energy consumption. If we omit the normalizing step and use the raw 

amount of each objective to calculate the fitness of one solution, possible range and scale 

of values should be considered in selecting the proper weighting factors. If a possible 

range of values for objective one is thousands of times smaller than the scale of values 

for the second objective, the weighting factor of objective one should be thousands of 

time greater than the second objective to balance the effect of both objectives on the final 

amount of calculated fitness. It can be seen that even in the previous method that we 

suggested using cost to unify value of all objectives, the energy consumption charge 

($/kWh), power demand charge ($/kW) and emission factor ($/physical unit of pollutant) 

act as weighting factors. In Bi and Dandy’s research on WDS design optimization based 

on water quality, objective function value was the summation of all pipe cost and net 

present value of chlorine cost. In this study, the minimum pressure and chlorine 

concentration were constraints of the problem (Bi and Dandy 2013).  
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Pollutant Emission Pump Station Optimization (PEPSO) is a software tool 

developed by the water research team of Wayne State University for optimizing pump 

schedule of WDS (Miller, Rogers et al. 2014). The initial version of PEPSO uses weighting 

factors to unify the effect of all different objectives of the optimization process into a single 

objective function. Wu and Behandish calculated the amount of the objective function by 

the total weighted cost of energy and amount of three penalties (Periodic water level, 

Emergency lower-bound and Prevention of overtopping constraints) about water level of 

tanks (Wu and Behandish 2012). Abiodun and Ismail did a bi-objective optimization that 

aimed to reduce electricity cost (using time of use electricity tariff) and reducing 

maintenance problems (reducing the frequency of switching pumps; Abiodun and Ismail 

2013). They used both normalizing and weighting factors methods to combine two terms 

of the objective function. For this purpose, amounts of the objectives were normalized by 

dividing on the differences between max and min values. 

It was explained that a multiobjective problem can be converted into a single 

objective problem. However, it also was mentioned that calculating a single-objective 

value by using values of different objectives is not always easy and straight forward. For 

instance, for calculating the total cost of a solution we need to convert the effect of 

pollutant emission to the external cost of energy usage and add it to the cost of electricity 

usage. However, calculating the external cost of energy is not easy, and it depends on 

many parameters beyond the limits of the optimization problem (e.g. type and the location 

of the power generator, location, and time of energy consumption, etc.). So it is not easy 

and always the best method to convert a multiobjective problem to a single objective 

problem. An alternative way is using multiobjective optimization methods to optimize the 
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multiobjective problem directly and find the Pareto front, instead of one optimum solution. 

Pareto front is a set of Pareto optimal solutions that are better than other solutions with 

respect to all objectives but cannot dominate each other with respect to all different 

objectives. Figure 1 shows the Pareto front and the dominancy concept. It is assumed 

that the illustrated plane is the solution space of a minimization problem, and each 

junction represents a solution. Axes (f1 and f2) shows the value of each of the two 

objectives. We can see that those light color solutions (e.g. point C) do not have any 

advantage on dark color solutions (e.g. Point A or B) with respect to both objective values. 

However, comparing darker solution together, we see that there is not any dark point that 

both of its objective values is less than both objective values of another dark colored 

solution. Therefore, darker solutions dominated lighter solutions, and none of darker 

solutions dominated another darker solution. These non-dominated points create a 

Pareto frontier. The final answer of multiobjective optimization methods is a Pareto 

frontier (not one single optimum solution). However, in practice, we need one solution to 

implement in the real operation plan. So after using a multiobjective optimization method 

and finding the Pareto frontier, an expert, based on specific needs, can select the proper 

solution from the group of non-dominated solutions and use that as an optimum practical 

solution. The selection of one single solution among the solutions of a Pareto frontier can 

be facilitated by using some general rule that shows the importance of each objective with 

respect to the other objectives and acts as a weighting factor. In this case, one part of the 

Pareto frontier that has some solutions with better values of the objective with a larger 

weighting factor (or higher level of importance) can be investigated for selecting the best 

solution. 
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Figure 1- Pareto frontier and dominancy concept (Wikipedia-contributors 2002) 

In recent years, multiobjective optimization methods were used in some WDS 

optimization research investigations. For instance, Baran et al. used six multiobjective 

algorithms to optimize the operation of water transmission lines based on four objectives. 

They considered reducing energy cost, reducing maintenance problems, reducing peak 

power demand, and reducing water level variation in a reservoir (Barán, von Lücken et 

al. 2005). Fu and Kapelan used a multiobjective optimization method for finding the best 

design of WDS based on pipe cost and system robustness that was the probability of 

simultaneously satisfying the minimum pressure constraints at all junctions (Fu and 

Kapelan 2011). Wu et al. also used a multiobjective method for optimizing the design of 

a WDS (Wu, Maier et al. 2013). The three objectives that were considered in this study 

were: 1) minimizing the total life cycle cost of the system, 2) maximizing the hydraulic 

reliability of the system, as represented by the resilience measure and 3) minimizing total 

life cycle GHG emissions. For the calculating operating cost, some simplified assumptions 

have been made. For instance, it was assumed that pumps should be refurbished in 
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average each 20 years (without considering the operation plan). Also, it was assumed 

that the efficiency of pumps was constant (85%) through the whole simulation. For 

calculating GHG emission due to energy use for producing pipes and operating pumps, 

a constant annual rate was used. By using this constant rate, energy consumption was 

converted to the mass of emitted GHG. The network resilience measure was employed 

in this article as a hydraulic reliability measure. This measure makes use of the concept 

of the surplus power factor. It can be used to measure the resilience of a network subject 

to failure conditions, and thus the hydraulic reliability of the network, on the basis of both 

pressure and flow. 

Converting multiobjective problem to a single objective problem makes the 

optimization algorithm simpler. Also, its optimum result is a single solution that can be 

used directly. Multiobjective optimization algorithms are more complicated that the single-

objective methods and their result are a group of non-dominated solution that one of them 

should be selected as a final solution. Therefore, in comparison with single-objective 

methods, this final selection process is an extra step. Usually using the result of 

multiobjective algorithm needs human experts to evaluate solutions of the Pareto frontier 

and use their experience or some heuristic to select the optimum practical solution (based 

on their needs and preference). Despite these drawbacks, using multiobjective methods 

has some considerable advantages. By using multiobjective methods, finding optimum 

solutions with respect to one objective do not have any effect on the process of finding 

optimum value of other objectives. In addition, there is not any need to a normalizing and 

weighting method to add up the value of multiple objectives. Also, in the end, knowing all 
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possible solutions of the Pareto frontier, gives an opportunity to experts to select a 

solution based on their needs. 

Considering all discussed materials regarding optimization objectives and 

constraints, one example of formulating the problem of optimization of WDS operation is 

shown here: 

min(𝐸𝑃𝐶, 𝑃𝐸)           Equation 1 

That means, minimize energy and power cost (EPC) and pollutant emission (PE) 

while, 

∑ 𝑄 = 0    (Conservation of mass at all junctions of WDS) 

∑ 𝐻 = 0   (Conservation of energy around all loops or path of WDS) 

𝐻𝑚𝑖𝑛 < 𝐻 < 𝐻𝑚𝑎𝑥  (Keeping the water pressure at junctions or water level in tanks in 

the allowed range) 

𝑉𝑚𝑖𝑛 < 𝑉 < 𝑉𝑚𝑎𝑥   (Keeping the velocity of all pipes of WDS in the allowed range) 

𝐷𝑚𝑖𝑛 < 𝐷 < 𝐷𝑚𝑎𝑥   (Keeping the operation duration of a pump in the allowed range) 

𝑛 < 𝑛𝑚𝑎𝑥    (Limiting the maximum number of pump switch) 

EPC and PE can be calculated by these formulas: 

𝐸𝑃𝐶 = 𝐸𝑛𝑒𝑟𝑔𝑦 𝑢𝑠𝑎𝑔𝑒 𝑐𝑜𝑠𝑡 +  𝑃𝑜𝑤𝑒𝑟 𝑑𝑒𝑚𝑎𝑛𝑑 𝐶𝑜𝑠𝑡      Equation 2 

𝐸𝑃𝐶 = ∑ ∑ 𝑃𝑖𝑗𝐷𝑖𝐸𝑝𝑖
𝑛
𝑖=1

𝑚
𝑗=1 + max(𝑃𝑖𝑗) . 𝑃𝑝       Equation 3 

Where, 

𝑃𝑖𝑗  is Power demand of pump j at duration i (e.g., kW); 

𝐷𝑖  is Duration i (e.g., hour); 

𝐸𝑝𝑖  is Energy price i (e.g., $/kWh). 

And 

𝑃𝐸 = ∑ ∑ 𝑃𝑖𝑗𝐷𝑖𝐸𝑚𝑖
𝑛
𝑖=1

𝑚
𝑗=1  𝐴 ≼ 𝐵  𝑖𝑓𝑓 {

𝑓𝑖(𝐴) ≤ 𝑓𝑖(𝐵)    ∀𝑖 ∈ 1, … , 𝑀
∃𝑗 ∈ 1, … , 𝑀   𝑓𝑖(𝐴) < 𝑓𝑖(𝐵)

    Equation 4 

Where, 

𝐸𝑚𝑖  is Emission rate of power generation at duration i (e.g., kg/kWh); 

Note that 𝑃𝑖𝑗𝐷𝑖 is equal to energy usage of pump j at duration i. 
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The electrical power demand of pump j at duration i (Pij) can be calculated as: 

𝑃𝑖𝑗 =
𝑄𝑗𝜌𝑔𝐻𝑗

𝜂𝑗
 𝐴 ≼ 𝐵  𝑖𝑓𝑓 {

𝑓𝑖(𝐴) ≤ 𝑓𝑖(𝐵)    ∀𝑖 ∈ 1, … , 𝑀
∃𝑗 ∈ 1, … , 𝑀   𝑓𝑖(𝐴) < 𝑓𝑖(𝐵)

      Equation 5 

Where, 

𝑄𝑗  is flow rate of pump j (e.g. m3/h); 

𝜌 is density of fluid (e.g. kg/m3) 

𝑔 is gravity of earth (9.81 m/s2) 

𝐻𝑗  is water head at pump j (e.g. m); 

𝜂𝑗  is overall (wire to water) efficiency of pump j (%); 

Assuming that the density of water and gravitational acceleration of earth are 

constants, it can be seen that power demand of each pump is related to flow rate, water 

head and overall efficiency of the pump. Each pump has two nonlinear equations that 

relate head and efficiency to flow rate. So linear changes in flow rate cause nonlinear 

changes of the pump head and efficiency that consequently cause a nonlinear change of 

power demand and eventually energy usage. 

Conservation of mass at each junction and conservation of energy around each 

loop or path are two implicit system constraints. Allowed pressure range of junctions, 

allowed velocity range of pipes, allowed duration of working of a pump and the maximum 

number of pump switches are other constraints. It should be noted that the highest and 

lowest range of level (volume) of water in tanks can be considered as maximum and 

minimum range of water head (pressure) at the node of the tank in WDS model. The 

result of research of Wang et al. reveal that a larger minimum level of tank volume will 

lead to higher electricity cost. Therefore, the minimum level should be determined 

carefully and set as low as possible (Wang, Chen et al. 2013). It is possible to add more 

constraints to the problem formulation to make the final result more practical. For 



26 

 

instance, we can consider the minimum rest time between turning off a pump and turning 

it on again as a constraint. However, it should be noted that increasing constraints make 

the optimization problem more complicated and decrease the possibility of finding the 

best solution in a limited time. 

If it is wanted to optimize water quality too, it should be considered in formulating 

the above-mentioned equations. It can be added as a constraint that shows the minimum 

concentration of chlorine; or water quality can be controlled by water age or even the 

lowest velocity of water in pipes. Although the optimizing WDS design based on water 

quality has been studied previously, research on optimizing pump operation based on 

water quality is not observed by the author in any articles. This lack of research can be 

explained by considering this fact that water quality is a function of initial chlorine 

concentration and size of pipes that defines velocity and travel time of water in the 

network. So pump schedule has a minor effect on the change of the chlorine 

concentration in the network. If it is not impossible, it is hard to control water quality in 

WDS by optimizing the pump schedule. 

In the above formulation, three factors make this problem a nonlinear optimization. 

First of all, conservation of energy formula that includes the relation between flow and 

head is a nonlinear equation. Also, both energy consumption charge and emission factor 

are nonlinearly changing by time. These three factors do not let us use well-established 

and straightforward optimization methods that had been developed for linear problems. 

Beside nonlinearity of this problem, we have a more important issue that makes solving 

this problem considerably harder. This issue is non-convexity of the solution space of the 

problem. In almost all real world cases, we face multiple pumps that can be operated in 
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a system with various parallel and series configurations. We know that pumps which are 

working in series or parallel configuration may affect each other’s operational condition 

and efficiency. This effect may cause non-convexity in the relation between duration of 

operation of pumps and energy that used for conveying water from a source to a demand 

point. Also, electricity cost pattern and variation of the pollutant emission rate in time can 

exist in a shape of a non-convex function. All these factors together, create a non-convex 

function that relates operation variables (e.g. working periods of pumps) and cost or 

pollutant emission of operating WDS. Non-convexity of the solution space of this problem, 

can create a lot of local optimum points and make it impossible to be 100 percent sure of 

finding the global optimum solution (if it exists). Non-linearity and non-convexity of this 

problem make a lot of deterministic optimization algorithm inefficient for solving this 

problem. 

1.4. Optimization Methods 

In comparison with most of the engineering majors, optimization is a new field of 

study. Scientists, at first, started to use some deterministic techniques to find the optimum 

solutions of the problems. Some optimization methods like linear programming were 

created for solving linear problems. In linear problems the relation between variables of 

problem and optimization objective is linear. Although these mathematically based 

methods were working very well for linear problems, most of the real world engineering 

problem are non-linear. Specifically, in the field of water engineering, most of the 

problems like optimization of the design or operation of WDS were non-linear, non-convex 

problems. So linear methods were not able to solve these complex problems effectively. 

At the same time, an increase of engineering activities and limitations of resources 
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encouraged engineers to enhance the effectiveness of their solutions. So needs for 

optimization techniques that can solve complicated problems with multiple constraints, 

multiple goals and a large number of possible solutions increased. Other methods like 

dynamic programming (DP) and non-linear programming (NLP) were used to solve these 

types of optimization problems. Most of these methods tested on small scale problems 

and provided good results. However, they were not efficient and successful in large and 

real size problems. At this period, using powerful computer systems increased the 

computational power considerably. This progress lets the engineers and researchers 

create and use new optimization methods that were highly computational demanding, but 

effective. Many researchers over the last 25 years focused on developing different 

techniques to optimize WDSs. Within the last two decades, many researchers have 

shifted the focus of WDS optimization from traditional and deterministic techniques, based 

on linear and non-linear programming, to the implementation of methods that were based 

on heuristics derived from nature (Zecchin, Maier et al. 2007), (Bi and Dandy 2013). 

Accordingly, after using deterministic methods, metaheuristic methods are the second 

group of optimization methods that are used in WDS optimization problems. In addition 

to these two major groups of the optimization method, we also can see a group of hybrid 

methods which are a combination of two above-mentioned groups (Zheng 2013). As 

these methods are not a separate group of optimization methods, and their name is self-

explanatory, we prefer to stick with two-group categorization approach. 

By reviewing some parts of previous optimization efforts in this field, and take a 

chronological look at the previous research effort, we can see the shift from using 

deterministic methods toward metaheuristic and evolutionary algorithms.  We can start 
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from the mid-70s. Alperovits and Shamir (1977) used a linear programming (LP) method 

to optimize the design of water network to reduce the cost of pipes. This method was 

inefficient and caused significant computational overhead (Zheng 2013). So Quindry et 

al. (1981), Calhoun (1981), Stephenson (1984) and Morgan and Goulter (1985) used 

slightly different LP methods to solve this least cost problem of WDS designing. All of 

these methods use some simplifying assumption and iterative procedures to convert a 

nonlinear problem to a linear problem and solve them with LP. However, other 

researchers started to use some NLP methods to solve this non-linear problem in its 

original form. Lansey and Mays (1989), Fujiwara and Khang (1990) used multi-step NLP 

methods to solve this problem. Despite all these early efforts on using deterministic 

algorithms to solve WDS optimization problems, they could not guarantee to find the 

global optimum (Zheng 2013). Although they were efficient in the search for the local 

optimum, they might get stuck in those locations. Most of these methods worked better 

with the tree shape (branched) networks and could not perform efficiently on medium or 

large scale looped networks. Also, they struggled to use discrete decision variables. 

Although early optimization efforts were focused on deterministic methods, a tendency 

towards them decreased in past decades. One of the latest and boldest research efforts 

in this category has been made by Samani and Mottaghi (2006). They used a binary linear 

programming method to solve this problem (Samani and Mottaghi 2006). This approach 

lets them use discrete decision variables, but even this approach just performed well for 

solving small problems. 

Ulanicki et al. used a dynamic programming method to minimize the objective 

function mathematically by using gradients, and the calculations have been done by using 
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vector algebra. Two full parameterization and partial parameterization approaches were 

investigated in their research. A full parameterization approach is one in which the optimal 

control problem is discretized and parameterized in time and directly solved using an NLP 

solver. In this case, all variables, including control, state, and algebraic variables are 

treated by the solver as decision variables. An alternative is a partial parameterization 

approach. In this method, the optimal control problem is discretized and parameterized in 

time, and a discrete-time optimal control problem is obtained. Subsequently, the state 

and algebraic variables are numerically resolved using a system simulator. The reduced 

gradients of the problem functions with respect to the controls were evaluated using either 

sensitivity equations or by integration of adjoint equations. In this case, only the control 

vector represents the decision variables (Ulanicki, Kahler et al. 2007). 

In recent years, Evolutionary Computation has proven to be a powerful tool to solve 

optimal pump-scheduling problems (Barán, von Lücken et al. 2005). The great advantage 

of metaheuristic algorithms on deterministic methods is that they can be used for almost 

all types of optimization problems without considering the linearity or convexity of the 

problem. Metaheuristic algorithms do not require derivability, monotonicity, and continuity 

of the functions, but only require the objective function values. Metaheuristic algorithms 

cannot directly tackle the problem of the optimal design or operation of WDSs because 

the only constraint they handle is related to the range of the decision variables. Therefore, 

constraints related to the hydraulic behavior of the solution must be checked separately, 

or constraints can be converted to objectives (Marchi, Dandy et al. 2014). In addition, due 

to stochastic characteristics of these methods, it is not granted that they converge to the 

same solution during multiple runs, and also they cannot guarantee to find the global 
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optimum solution (if it exists). The metaheuristic methods and specifically evolutionary 

algorithms (that are based on the evolution of a population of solution) had been used for 

solving some optimization problems. However, after introducing genetic algorithm (GA) 

by John Holland in the early 1970s, using evolutionary algorithms considerably increased 

in all engineering fields. In the case of WDS optimization, first time Simpson et al. 

suggested to use GA in the mid-90s (Simpson, Dandy et al. 1994). Although the most 

optimization efforts regarding WDS are related to reducing the capital cost of construction, 

there are also considerable researches about finding the optimum operational plan of 

pumps, finding the optimum location for sensors, calibrating hydraulic models, etc. 

Lopez provided a summary table (Table 1) in his dissertation that shows WDS 

pump optimization efforts in a decade from 1995 to 2004 (Lopez-Ibanez 2009). This 

period is almost the first decade that researchers demonstrated a tendency to use 

metaheuristic algorithms for solving optimization problems in water-related engineering 

problems. 

As it can be seen in Table 1, the Genetic Algorithm (GA) is one of the most used 

algorithm in optimization field and especially in water-related problems (Zheng 2013), 

(Wang, Liu et al. 2012). In comparison with the old deterministic algorithm, GA showed 

the better ability to find high-quality optimum solutions. Initially, common binary coding 

method was used for GA, but Dandy et al. used a gray coding scheme that helps GA to 

search the surrounding area of a good solution easier (Dandy, Simpson et al. 1996). Also, 

integer coding was used by Vairavamoorthy and Ali (Kalanithy Vairavamoorthy and Ali 

2000). They used a tournament selection method; that prefer a feasible solution with 
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lower pressure violation to other solution even if the objective function value was not the 

minimum value.  

Table 1- Summary of optimization approaches for pump scheduling (Lopez-Ibanez 2009) 

Reference 
Optimization 

algorithm 
Tanks Pumps Hydraulic model Representation 

Mackle, Savic &Walters (1995) 
Evolutionary 

algorithm 
1 4 Regression model Explicit 

Ormsbee & Reddy (1995) Nonlinear heuristic 2 2 
Hydraulic 
simulation 

Explicit 

Nitivattananon, Sadowski & 
Quimpo (1996) 

Dynamic 
programming 

8 10 Mass balance Explicit 

Pezeshk & Helweg (1996) 
Adaptive search 

optimization 
0 32 

Hydraulic 
simulation 

Explicit 

Savic, Walters & Schwab 
(1997) 

Hybrid GA/MOEA 1 4 Regression model Explicit 

Andersen & Powell (1999) 
Nonlinear 

Programing 
15 20 

Hydraulic 
simulation 

Explicit 

Simpson et al. (1999) 
Evolutionary 

algorithm 
1 1 EPANET Implicit 

Atkinson et al. (2000) 
Evolutionary 

algorithm 
6 7 

Hydraulic 
simulation 

Implicit 

Goldman & Mays (2000) Simulated annealing 3 2 EPANET Explicit 

Sakarya & Mays (2000) 
Nonlinear 

optimization (GRG2) 
1 1 EPANET Explicit 

Wegley, Eusuff & Lansey 
(2000) 

Particle swarm 
optimization 

0 0 EPANET Explicit 

Boulos et al. (2001) 
Evolutionary 

algorithm 
1 3 

Hydraulic simulator 
(H2ONET) 

Explicit 

Ertin et al. (2001) 
Dynamic 

programming 
1 3 Mass balance Explicit 

Kazantzis et al. (2002) 
Evolutionary 

algorithm 
1 1 EPANET Mixed 

Sotelo, von Lucken & Baran 
(2002) 

MOEAs: SPEA, 
NSGA, NSGAII & 

MOGA 
1 5 Mass balance Explicit 

Dandy & Gibbs (2003) 
Evolutionary 

algorithm 
1 1 EPANET Implicit 

McCormick & Powell (2003b) 
Progressive mixed 

integer programming 
10 35 Mass balance Explicit 

McCormick & Powell (2004) Simulated annealing 10 35 EPANET Explicit 

van Zyl, Savic &Walters (2004) Hybrid GA 2-6 3-7 EPANET Implicit 

 

Accordingly, in this method they did not need to include a pressure penalty in the 

objective function. Wu and Simpson used fast messy GA and it showed considerable 
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improvement in efficiency of optimization in comparison with standard GA (Wu and 

Simpson 2001) 

Figure 2 shows a visual classification of common metaheuristic methods 

(Wikipedia-contributors 2014). A Large number of these algorithms are inspired by nature, 

and most of them can be categorized in the evolutionary algorithm group. Most of these 

algorithms have been designed for single objective optimization. However, almost all of 

them can be modified to do multiobjective optimization too. Non-dominated Sorting 

Genetic Algorithm two (NSGA II) is one of the most used version of multiobjective GA. 

 

Figure 2- Visual classification of metaheuristic methods  

As was mentioned earlier, many of these algorithms have been used for WDS 

optimization during past two decades. Zheng et al. provided Table 2 which shows the first 
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significant implementation of metaheuristic algorithms for optimizing WDS through the 

past decade (Zheng, Zecchin et al. 2012). Zheng concludes that metaheuristic algorithms 

are better than deterministic algorithms in the case of WDS optimization, because: 1) 

They are better on exploration; 2)They can handle discrete search space better; 3) They 

can handle multiobjective optimization directly (Zheng 2013). 

However, the efficiency of a metaheuristic algorithm will decrease by increasing 

the number of decision variable and expanding the solution space. As most of these 

algorithms are population-based, the whole optimization process needs significant 

computational resources and time as evaluations are required of each member of the 

population.  

Table 2- First significant research efforts on usage of metaheuristic algorithm for optimizing the 
WDS design problem (Zheng 2013) 

Algorithm First reference 

Genetic algorithm (GA) Simpson et al. (1994) 

Simulated annealing (SA) Loganathan et al. (1995) 

Tabu search (TS) Lippai et al. (1999) 

Harmony search (HS) Geem et al. (2002) 

Shuffled frog leaping algorithm (SFLA) Eusuff and Lansey (2003) 

Ant colony optimization (ACO) Maier et al. (2003) 

ANN metamodels Broad et al. (2005) 

Particle swarm optimization (PSO) Suribabu and Neelakantan 
(2006) 

Scatter search (SS) Lin et al. (2007) 

Cross-entropy algorithm (CE) Perelman and Ostfeld (2007) 

Differential evolution (DE) Suribabu (2010) 

Honey-Bee Mating Optimization (HB) Mohan and Babu (2010) 

Genetic Heritage Evolution by Stochastic Transmission 
(GHEST) 

Bolognesi et al. (2010) 

 

Although GA was the most used metaheuristic algorithm to optimize WDSs, there 

are also many studies in the past decade that adopted other metaheuristic algorithms. 

For instance, the particle swarm optimization (PSO) algorithm has received considerable 
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attention in the literature, and differential evolution (DE) is one of the latest techniques 

which is applied to this problem (Marchi, Dandy et al. 2014). Also Zecchin et al. applied 

five types of Ant Colony (AC) algorithms (which are based on the foraging behavior of 

ants) to four WDS design problems: Ant System (AS), Ant colony system (ACS), Elitist 

Ant System (ASelite), Elitist-Rank Ant System (ASrank) and Max-Min Ant System 

(MMAS). They compared their results with other researchers’ results in the same test 

cases. In comparison with other algorithms in the literature, ACs and specially ASrank 

and MMAS, showed very promising results. Some of these ACs performed better for a 

small problem and some for a large problem. Compared with MMAS, ASrank was more 

efficient, but ASrank did not perform as well as MMAS in the bigger and more challenging 

case studies. These abilities related to exploring (the ability of the algorithm to search 

vast areas of the solution space) and exploiting (the ability of the algorithm to search more 

thoroughly near areas where good solutions have been found previously) abilities of the 

algorithm. MMAS act better in those cases due to its greater ability to explore (resulting, 

however, in longer search time), while still exploiting the best information (Zecchin, Maier 

et al. 2007). Similarly, Lopez-Ibanez states in his Ph.D. thesis that there are some 

successful implementations of the common evolutionary algorithm in optimizing pump 

schedule, but there is a lack of experimental analysis of comparing another alternative 

algorithm for doing this task (Lopez-Ibanez 2009). So he tried to test AC algorithm for 

optimizing some water networks. The two ant colony algorithm was compared with single 

and multi-objective GA algorithms. The optimization goal of the single-objective test was 

to reduce energy usage, and objective of the multiobjective test was to reduce energy 

usage and pump switches. It was stated that AC outperformed all common evolutionary 
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algorithm in literature and this work, for Richmond WDS. However, this conclusion cannot 

be made completely for the second network (Van Zyl network; Lopez-Ibanez 2009). 

Chu et al. used an immune algorithm that is inspired by the biological defense 

process of the immune system to solve New York City tunnel design problem and found 

the least-cost design. They also combined immune algorithm with GA to get a better 

result. They found that in comparison with GA, the immune algorithm can find the optimum 

solution in less number of iterations (Chu, Lin et al. 2008). Bagirov et al. used particle 

swarm optimization, an artificial bee colony, and firefly algorithms to optimize pump 

operation of a small WDS with two tanks and three pumps. They also compared the 

results by using three criteria: the “optimal solution" obtained; (b) the efficiency; and (c) 

robustness. Their tests showed that the artificial bee colony is the most robust and the 

firefly is the most efficient and accurate algorithm for optimizing pump operation in small 

systems (Bagirov, Ahmed et al. 2012). 

Moreover, Simulated Annealing (SA), Honey-bee Mating Optimization (HBMO) 

and Gene Expression Programming (GEP) have been used in past for designing and 

selecting the optimum pipe diameter for water distribution networks (Wang, Liu et al. 

2012). 

In most test cases, the new algorithms could not outperform GA. However as it 

was mentioned previously, recently other algorithms like ant colony (AC) and differential 

evolution (DE) were used for WDS optimization, and they showed that can produce high-

quality results with high efficiency. Although some contradictions might be related to 

specific test cases or selection of parameters of the algorithm (Zheng 2013). So, in 

general, it can be stated that up to this point GA could provide acceptable results in the 
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case of WDS optimization, but other algorithms like DE and AC that were adjusted 

properly for a specific problem could produce a better result. 

In addition to the general algorithms and methods that can be used for solving this 

type of optimization problems, some optimization parameters and factors might affect the 

efficiency and effectiveness of the optimization process. In the following paragraphs, 

some of these parameters and factors have been reviewed briefly and some studies that 

changed these parameters to get better results are mentioned. 

On most of WDS optimization researches, the optimization horizon is typically 

chosen as 24 hours to take account of daily demand patterns and electricity tariff 

structure. A choice of optimization cycle less than 24 hours will not take full advantage of 

cheaper tariff periods (Zheng and Morad 2012). The operational planning horizon defines 

the optimization horizon. Forecast of the demands for an operational planning horizon, 

which in most urban system ranges from a minimum of 24 hours up to a maximum of one 

week, depending on the size of the storage relative to the demands (Shamir and 

Salomons 2008). 

To define the minimum time interval of pump operation, we should consider the 

demand change in time and relation between decreasing the time interval and increasing 

optimization efforts. It was investigated that intervals higher than one hour prevent 

algorithm to find optimum solutions. On the other hand, time intervals less than one hour 

make the searching process for optimum algorithm longer so one-hour time interval is 

suggested as a moderate and efficient value (Lopez-Ibanez 2009). 

Most of researches in this field are focused on finding an optimum pump schedule 

for fixed speed pumps (FSP). It is understandable that researchers initially focused on 
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FSPs, as these types of pumps can be found in almost all pump stations. However, 

variable speed pumps (VSP) are as common as FSPs in new WDSs. In addition, FSPs 

have just two possible states (ON or OFF) and has smaller solution space in comparison 

with VSPs that may have a various operational state with multiple rotational speeds that 

provide more energy reduction and operation optimization opportunities. Despite these 

facts, few researches worked on optimization of pump operation plan of VSPs. From 

limited researches on optimizing operational plan of VSPs; we can point to Wu et al. 

research. They did a WDS design optimization by using GA and including VSPs. They 

reported that comparing the same optimization process with FSPs showed that using 

VSPs can reduce the total cost and GHG emission from WDS (Wu, Simpson et al. 2012). 

Similarly, Hashemi et al. used VSPs instead of FSPs in their pump operation optimization 

and stated that using VSPs can lead to up to 10% reduction in pumping energy cost. 

(Hashemi, Tabesh et al. 2013). 

In addition to the wide variety in optimization algorithms that have been used in 

this field, other factors make each of individual research in this field different from others. 

For instance, there are many different approaches that researchers have taken to pump 

optimization in WDS. Numerous researchers tried to find the best pump schedule that 

was represented by on and off blocks of time that show operation status of a pump during 

a predefined time interval (e.g. one hour; Sadatiyan Abkenar, Stanley et al. 2014). Van 

Zyl used the tank-level controlled triggers, and Lopez-Ibanez tried to find the best string 

of trigger that defines the start and end time of a working period of a pump (van Zyl, Savic 

et al. 2004), (Lopez-Ibanez 2009). The first method that is mostly used by researchers 

called the binary representation of pump schedule and can easily be used by the 
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evolutionary algorithm like GA that looks at each on and off blocks of time like a gene or 

specification of the organism (solution or pump schedule). The second methods of coding 

are mostly called level-controlled trigger and time-controlled trigger. These solution 

representation methods successfully used by Lopez Ibanez in GA and AC (Lopez-Ibanez, 

Prasad et al. 2008). Lopez-Ibanez investigated various representations of pump schedule 

in his thesis and suggested that time-controlled trigger representation can lead to a better 

result and ensure maximum limit of switches per pump in comparison with level-controlled 

trigger representation. However, his result also showed that time-controlled trigger based 

representation did not have considerable advantages on the common binary 

representation (Lopez-Ibanez 2009). An example of pump operation plan that is 

represented by the binary and time-controlled trigger is shown in Figure 3. 

 

Figure 3- Pump schedule representation by (a) binary and (b) time-controlled trigger methods 
(Sadatiyan Abkenar, Stanley et al. 2014) 

Abiodun and Ismail used a multiobjective weighted sum Genetic Algorithm with a 

discrete method of coding and 120-bit memory space for each pump (Abiodun and Ismail 

2013). As the main core of optimization process, a Genetic Algorithm with the real-number 

chromosome (continuous) was used. During crossover step, the whole schedule of a 
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pump gets exchanged (not just the time intervals). Shamir and Salomons used optiGA (a 

general purpose VB GA) in their Haifa WDS operation optimization research. optiGA’s 

built-in option can be used to optimize binary, real, and integer variables in case of 

optimizing a network that has VSP (Shamir and Salomons 2008). 

Metaheuristic algorithms highly depend on the adjustment of parameters of the 

algorithm for a specific problem. Tolson provided a table (Table 3) that shows the number 

of parameters of some famous metaheuristic algorithms that have been used for WDS 

design optimization (Tolson, Asadzadeh et al. 2009). 

Table 3- Number of parameters of algorithms (including penalty function parameters and 
excluding stopping criteria) (Tolson, Asadzadeh et al. 2009) 

Optimization Algorithm Number of parameters 

GA (GENOME) 8 

MSATS7 8 

PSO 6 

PSO variant 5 

SFLANET 5 

HS 5 

MMAS ACO 4 

CE 3 

HD-DDS 1 

 

Wang et al. used a gene expression programming (GEP) method for optimizing 

the design of Hanoi WDS. They also used a range of mutation and crossover probability 

in their research. The crossover probabilities vary from 1.0 to 0.7 with each 0.05 interval, 

and the mutation probabilities differ from 0 to 0.05 with each 0.01 interval. The best 

parameter values adopted were population size of 100, 0.9 probability of crossover, 0.03 

probability of mutation and the maximum number of generations was set to 500 (Wang, 

Liu et al. 2012). The obtained optimum solution compared with six other studies that 
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solved the Hanoi benchmark problem previously. The optimization result showed that this 

algorithm was as good as other algorithms, but not considerably better. 

Abiodun and Ismail used a GA algorithm with a population size of 100 and 5000 

generations. Crossover and mutation rates of 0.4 and 0.05 were used, respectively 

(Abiodun and Ismail 2013). Wu and Behandish used a GA with 50000 generations and 

population size of 100. Also, they considered the periodic water level, emergency lower-

bound and overtopping constraints. (Wu and Behandish 2012). Zheng and Morad used a 

GA with 50000 generations and population size of 100 (Zheng and Morad 2012). Wu et 

al. also performed a multiobjective optimization of WDS design. They used an NSGA II 

algorithm with 3000 generation, 500 population size and crossover and mutation rate of 

0.9 and 0.03 respectively (Wu, Maier et al. 2013). Wang et al. used a GA with the 

population size of 100 and 1000 generation. Crossover and mutation rate of 0.9 and 0.5 

were used respectively. High mutation rate in this study is justifiable; as they were using 

local search and did not need minor mutation for finding the local optimums (Wang, Chang 

et al. 2009). 

Baran et al. used and compared six multiobjective evolutionary algorithms for 

optimizing operation of a small water transmission line. These algorithms are non-

dominated sorting genetic algorithm (NSGA), strength Pareto evolutionary algorithm 

(SPEA), non-dominated sorting genetic algorithm two (NSGA II), controlled elitist non-

dominated sorting genetic algorithm (CNSGA), niched Pareto genetic algorithm (NPGA), 

and multiobjective genetic algorithm (MOGA). Comparing Pareto front of all algorithms by 

using six different comparison factors shows that SPEA was the best algorithm and after 

that NGSA II produced good results (Barán, von Lücken et al. 2005). Besides all these 
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algorithms, in order to transfer general solutions to a feasible solution, a heuristic 

constraint algorithm was used. The population size of 100 and 20000 generation and 

crossover and mutation rate of 0.8 and 0.01 were used respectively in this study. 

Gibbs, Maier, et al. realized that adjusting parameters of optimization method is 

related to a characteristic of problem and parameter of optimization method should be 

selected for each specific problem to get the best result. So they reviewed many methods 

in computer science field to calibrate GA and selected and tested two methods that seem 

useful but have not been used in a practical field like WDS optimization. Two parameter 

setting methods with one base condition and commonly suggested parameters for GA 

were implemented to optimize chlorine injection in Cherry Hill-Brushy network, and the 

results were compared. About probability of crossover and mutation, two separate tests 

were done. In one set of test probability of crossover and mutation kept constant and in 

the other test self-adoptive parameters were used. Three different max generation 

stopping criteria were used for each case and each test combination repeated 13 times 

with random initialization. The average result of runs with various stopping criteria for 

each parameter setting method was used for comparison. The results compared with t-

test and they were considered different if they showed significant changes with 95% 

confidence. The result demonstrated that constant crossover and mutation parameter 

answer slightly better than self-adaptive parameters. However, both calibration methods 

were better than selecting a common parameter for GA. 

Hernandez et al. used a software package called Dynamic Real-time Adaptive 

Genetic Algorithm-Artificial Neural Network (DRAGA-ANN). Some practical constraints 

(e.g. tank overtopping and emptying of tanks, the maximum power usage of the pump 
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station, etc.) were considered and infeasible solution penalized during calculation of 

fitness. A very complex electricity tariff with six different rates during a day and for various 

months of the year was used. GA was modified a little bit. So instead of increasing the 

probability of selecting the fittest solution as a parent, that solution selected directly to 

become parents. Also, the optimum solution of the previous simulation was used as an 

initial guess of the next optimization to reduce the required time of optimization process. 

GA with 2000 generations and crossover and a mutation probability of 0.765 and 0.002 

were used respectively. The optimization goal was finding a pump schedule that uses 

minimum energy and utilize as much as possible from a cheaper source of water and 

without violating any of the operational constraints (Martínez, Hernández et al. 2007). 

As it was explained previously, in addition to the two general categories of 

deterministic and metaheuristic algorithms, there is another hybrid group of algorithms 

that have been proposed by some researchers for optimizing WDSs (Tolson, Asadzadeh 

et al. 2009), (Zheng, Simpson et al. 2014), (Giacomello, Kapelan et al. 2013), (Liu, Yuan 

et al. 2011), (Milan Čistý and Bajtek 2009). These hybrid methods are combining 

deterministic algorithm with metaheuristic algorithm. Typically, one algorithm finds the 

promising regions of the solution space and another algorithm performs the search of 

those sections to find the best solution. So it can be stated that, in general, two separate 

algorithms play exploration and exploitation roles. Conceptually this idea is interesting 

(that is, enlisting the strength of two different algorithms for each of the exploration and 

exploitation tasks). However in practice, such an algorithm has not yet found its way to 

the optimization software market. Using local search with metaheuristic algorithm can be 

seen in researches about two decades ago when Savic et al. enhanced their GA by a 
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local search. This idea improved the possibility of that GA can find the optimal solution 

(Wang, Chang et al. 2009). One of the common problems of the proposed hybrid 

algorithm is their high computational demand, especially in dealing with large size 

problems (Zheng 2013). As a hybrid algorithm, some local search methods can be used 

for polishing the final solution of metaheuristic algorithms. For instance Bi and Dandy 

slightly reducing the size of pipes and changing concentration of chlorine to gain the best 

solution around the founded optimum solution of metaheuristic algorithm for WDS design 

optimization. As another example, beside of multiobjective weighted sum Genetic 

Algorithm, a Greedy algorithm was used by Abiodun and Ismail to generate near optimum 

initial solutions. Also in the final step of each generation, local search is used to improve 

the result and find the best solution in a neighborhood. It helps to find local optimums 

among members of a generation, before crossover and mutation of the next generation 

(that may throw solutions to another part of the solution space before finding the optimum 

in the current search area) (Abiodun and Ismail 2013). 

1.5. Hydraulic Modeling 

In all optimization methods, solutions should be evaluated during the optimization 

process, and finally, the best solution can be reported as the optimum (or near optimum) 

result. For the evaluating solution, we need to know the response of WDS to any change 

of decision variables. There are various methods for evaluating the effect of suggested 

operational plan on network status. Empirical models (e.g. mass balance, process-based 

model), simplified network hydraulic models, and complete network simulation models 

are some examples that can be used to calculate the effect of changes of decision 

variable on responses of the system (Rao and Alvarruiz 2007). The first two groups of 
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methods are relatively fast, and although they have been used for small WDSs previously, 

they cannot provide accurate results for large networks with a lot of non-linearity. Wang 

et al. used a simple test case with one tank and four FSPs. They used some formulations 

to relate tank level and pump status to flow, or pressure of pipes and junctions and they 

did not use complete hydraulic model (Wang, Chang et al. 2009, Wang, Chen et al. 2013). 

Abiodun and Ismail modeled a considerably smaller water transmission system. 

Therefore, it was possible to form an array of a finite combination of the initial status of 

the system and the effects on pressure and tank level, energy usage, etc. (Abiodun and 

Ismail 2013). Similarly, the method that Baran et al. used did not include hydraulic 

analyzing of the model. They simply considered various combinations of 5 pumps and 

one tank and calculated energy usage of each case. Tank level was calculated based on 

mass balance, so extended period simulation (EPS) was not used (Barán, von Lücken et 

al. 2005). 

In some deterministic optimization methods, equations that relate decision 

variables to the status of the network can be implemented explicitly in optimization 

formulation. In deterministic methods, unlike most of the evolutionary algorithms and 

other metaheuristic algorithms, the optimization part of computer code and hydraulic 

simulation part of the code are not separate. For instance Blaszczyk et al. explicitly 

implemented the mass balance equation in their non-linear optimization formulation 

(Błaszczyk, Karbowski et al. 2013). Few researchers even tried to include the hydraulic 

simulation part explicitly in the evolutionary algorithm. For instance, Wu et al. used the 

mass balance at joints and energy balance at loops and considered them as optimization 

constraints of their multiobjective GA (Wu, Maier et al. 2013). They did not use hydraulic 
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modeling software (e.g. EPANET) and the EPS model implicitly and separate from the 

main core of the optimization algorithm. However, most of the recent optimization efforts, 

which used metaheuristic methods, separate hydraulic simulation part of computer code 

from the optimization algorithm.  

One of the most frequently used methods is creating a high-fidelity computer model 

of WDS that inputs operational orders and initial status of the system and after solving 

hydraulic equations provides the final status of the system after a defined period. Over 

the past decades, a lot of researchers try to improve this high fidelity and realistic 

modeling methods. They created some computer programs that by a user-friendly 

interface let the user creates the WDS model and run the simulation to get final results. 

One of the most famous free and publicly available software in this group is EPANET2 

that is published by the US EPA (Rossman 2000). Also, some commercial software is 

available that are widely used in WDS design and rehabilitation projects. (Bentley 2014). 

Lopez-Ibanez reviewed about 20 articles between 1995 to 2004 and reported that most 

of the researchers used complete hydraulic simulation to evaluate the effect of decision 

variables on the status of the hydraulic network (Table 1) (Lopez-Ibanez 2009). 

Researchers try to create models with high physical detail and calibrate them to get 

accurate results. If these hydraulic simulation computer models get calibrated very well, 

they can provide accurate results that are very close to the real condition of the system. 

For instance, Preis et al. modeled a large water network in Singapore with more than 

20000 pipes and 19000 junctions and equipped it with eight pressure and flow rate 

sensors. Measured data were used to calibrate the hydraulic model of the system to 

reduce the modified square error of pressure and flow rate. Finally, after three months, 
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cross-validation of the calibrated model with some 24 and 48 independent measurements 

of flow and pressure showed that pressure result of the model was in agreement with 

direct measurements (especially for locations that system has more sensors). (Preis, 

Allen et al. 2011). However, most of the time these models need to solve a large matrix 

of hydraulic equations to find numerous unknowns of the WDS. Therefore, using the high-

fidelity computer models are computationally demanding. In the case of optimization, it 

may be necessary to iterate the hydraulic simulation of the WDS thousands of times. This 

computational burden of high fidelity hydraulic models can slow down the optimization 

process considerably, preventing good optimization methods to be used for large and real 

size optimization problems. 

The speed of the optimization process can be increased by various approaches. 

Certainly, the use of high-efficiency optimization algorithms can be useful. In addition, 

reduction in the size of the solution space and search space allows the algorithm to reach 

the optimum point more rapidly. Since the solution space of large WDS is so huge and 

vast, even reducing the size of solution space might not help a lot. However, there is 

some possibility to reduce required computational demand to finish an optimization 

iteration. So another method that works effectively for algorithms that need a lot of 

iteration (e.g. evolutionary algorithms) is reducing the required time for each iteration. As 

the required computational time of hydraulic simulation is the bottleneck of reducing the 

required time for each iteration, parallel processing has been used for reducing the time 

of this part of the calculation (Guidolin, Fu et al. 2012, Wu and Behandish 2012). Lopez-

Ibanez explained in his thesis that the computation time of hydraulic modeling part of a 

real size problem is some order of magnitude greater than the required computation 
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resource for the optimization algorithm by itself (Lopez-Ibanez 2009). In parallel 

processing approach, multiple processors simulate hydraulic network simultaneously. So 

if for one iteration of an optimization process, a WDS needs to be simulated multiple time, 

the required time can almost be divided by the number of processors that are doing the 

simultaneous calculation. Lopez-Ibanez used parallel computing to reduce the required 

time for hydraulic simulation part. In this regard, they changed the code of EPANET to be 

able to use that for parallel modeling of WDSs (Lopez-Ibanez 2009). Although parallel 

processing can reduce the required time for each iteration, it does not diminish the total 

required computation. Therefore, the use of this method requires computers that have 

multiple processors with high computational power.  

Another option for reducing optimization time is using some modeling methods, 

which need less computational power, but can provide results with acceptable accuracy. 

Using surrogate modeling methods that sometimes called as metamodeling techniques 

is the alternative way. For instance, one of the techniques that used in this field is using 

artificial neural networks (ANN) to create a metamodel for WDS. Wu and Behandish used 

both parallel processing and ANN based metamodel and found that, although parallel 

processing can improve the speed of WDS optimization, it is not as effective as using 

metamodel that is created by an artificial neural network (ANN) (Wu and Behandish 

2012). Using ANN is one method from a larger group of methods that Razavi et Al. called 

them surrogate modeling methods and thoroughly investigated them in the water 

resources field in one of their papers (Razavi, Tolson et al. 2012). They express that 

although various motivations may cause to use surrogate models, the main reason is 

reducing computational resource demand of the computationally intensive modeling 
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process. A large group of the most relevant papers in the water resource field selected 

by Razavi et al. (48 articles) to investigate the usage of surrogate modeling in this field. 

They classified surrogate modeling into two main groups of response surface modeling 

and lower fidelity modeling. Except artificial neural network (ANN), other response surface 

modeling uses data-driven function approximation techniques to approximate the model 

response. Usually, each response surface can be used to approximate one response of 

the system. However, lower fidelity modeling is a physically simplified model that needs 

lower computational resources and respectively may produce some results with lower 

accuracy. The simplified model can be used to find all required results of the system at 

the same time. 

Three methods can be used to create the low-fidelity physically based surrogates: 

a) models with reduced numerical accuracy, b) approximation by model order reduction 

and c) reducing the physical model with lower details. Two first methods most of the time 

produce better results. Most of these methods have widely been used in other fields, but 

in water science, they have not been used extensively. However, some well-known WDS 

modeling programs could be found in the market that has a skeletonizing component to 

reduce the physical model and form a lower fidelity and fast surrogate models (Bentley 

2014). Generally with respect to the response surface surrogates, lower-fidelity 

surrogates expected to emulate better unexpected regions of the domain of original 

model, and they can result more accurate in extrapolating. There are some approaches 

to reduce discrepancies between low-fidelity and high-fidelity models (i.e. correction 

functions, space-mapping, and hybrid strategies). 
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Shamir and Salomons used a reduced model of Haifa WDS for operation 

optimization. The results of network reduction algorithm depended on the demands since 

the properties of equivalent pipes (which are created when a junction is removed) 

depended on demand at that node. However, it was claimed that within the range of 

variation of demands over time (factor of 2 between high and low demands), the reduced 

network reproduced results of the full model with very high fidelity. Calculating reduced 

network just took three seconds, so in the case of any change to the network (e.g. pipe 

breakage) reduced model could be modified very fast and does not interfere real-time 

optimization process. The validity of reduction of the model was measured by checking 

the similarity of tank levels over time in the reduced model and the full model. Also, the 

resulted control routine was used again in the full network model, to compare the 

pressures at the junction with reduced model results (Shamir and Salomons 2008). They 

compared the result of optimization of whole and reduced model of Haifa WDS. The full 

model calculation showed 12% reduction in energy cost, but reduced model genetic 

algorithm (RM_GA) showed about 10% reduction in cost. Comparison of full and reduced 

model result revealed that tank level and pressure results had less than 2% difference. 

Optimization with RM-GA for a 31 day period took about 8 hours (almost 15 min for each 

day). RA-GA reduced the simulation time by a factor of about 15. Although Shamir and 

Salomons showed that RM-GA was considerably faster than GA and full hydraulic model, 

in the following paragraphs, when we start to talk about the result of research on ANN, it 

still can be seen that reduced model is slower than ANN+GA. Therefore working on 

reduced model is not as promising as working with ANN metamodel on the speed of 

optimization. 
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As it was explained reducing the time of each hydraulic modeling can lead to 

reduced time of one iteration of the optimization process and consequently can reduce 

the whole optimization time. In this regard, using response surface modeling techniques 

received much attention during past ten years. Machine learning methods like artificial 

neural network (ANN) or support vector machine (SVM) can be used to generate 

metamodels. Razavi et al. also concluded that ANNs is the most commonly used 

response surface modeling techniques. Support vector machines (SVM) are almost new 

learning technique in this field (Razavi, Tolson et al. 2012). In WDS optimization 

researches, these response surface modeling techniques most of the time referred as 

metamodeling techniques (Martínez, Hernández et al. 2007), (Broad, Maier et al. 2010), 

(Behandish and Wu 2014). Metamodels do not use energy and mass conservation 

equation to find the effect of a new pump schedule on the pressure at junctions and level 

of water in tanks. However, they can be generated for each network to map data from 

inputs (e.g. current tank level, pump schedule, water demand, etc.) to outputs (e.g. tank 

level after a defined time interval, energy usage of pumps, etc.). Metamodels are much 

faster than complete network simulation models, and their usage for real-time 

optimization of WDS increased trough past decade. The main result of using metamodels 

instead of high fidelity models is speeding up the optimization process and make the real-

time optimization of medium and large WDS possible. Although due to the nature of 

metamodeling some accuracy will be lost while using them and it may cause some 

difficulties in the process of finding the optimum solution. For instance, a small error of 

metamodel may cause the feasible solution to be considered as infeasible and vice versa. 
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In most of the reviewed works ANNs with one hidden layer were used to create the 

surrogate model. It has been proved mathematically that ANN is capable of representing 

arbitrarily complex, nonlinear processes which relate the inputs and outputs of any system 

via a finite number of nodes on hidden layers (Rao and Alvarruiz 2007). For a problem 

with n decision variable, we need an ANN with one hidden layer of n-1 neurons or two 

hidden layers of (n/2)+3 neurons to fit the original function. It was mentioned that although 

ANN with more than one hidden layer is theoretically able to model most of the complex 

problems, because they are more prone to fall into poor local minima in training, using 

them do not guarantee to get better results. Selecting a proper structure of ANN is the 

most important things that users should do. Figure 4 is a schematic of an ANN that 

receives input information from input layer (layer of blue nodes on the left side) and 

process them through the hidden layer (layer of orange nodes in the middle) and gives 

the result via nodes of the output layer (layer of green nodes on the right side). Each ANN 

has one input and one output layer, but it can have multiple hidden layers. While training 

the ANN, a group of known input and corresponding output data will be presented to the 

ANN and will be used for adjusting the weight of connections between neurons (nodes). 

When an ANN is trained, it can receive input data and pass them through the network 

and generate output data that are similar to the real outputs of the system. All training 

techniques try to adjust the weight of connections between neurons to reduce the final 

error between calculated outputs and real outputs of the system. As it is shown in Figure 

4, input values of an ANN for WDS can be initial tank levels, status, and speed of pumps, 

the status of valves and water demands. Outputs also can be the final water level in tanks 
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after the simulation duration (e.g. one hour), energy use of pumps and pressure at 

junctions of WDS, etc. 
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Figure 4- Schematic of an ANN for WDS 

Razavi et al. explained that they think the design of experiment (DoE) is necessary 

to be sure to create a good metamodel unless the initial set is large enough that can cover 

the whole function domain. They believe that the DoE is in fact required, and a sufficiently 

large, well-distributed initial set of design sites to develop the metamodel is a key factor 

in the success of a metamodeling practice. The minimum size of DoE that is suggested 

by various formulas in this paper are almost small, but it was stated that the optimum size 
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of DoE depends on the condition of the problem and available computational resource. 

Minimum theoretical design sites required for ANN and SVM are higher than other 

methods. The Minimum number of design sites for ANN in reviewed articles were about 

150 to 300, but other methods could be used with the much smaller design set for the 

same problem. More design sites help to fit original function more effectively, but it is 

more computationally demanding. ANN receives some calculated outputs and 

corresponding inputs (design sites) and by back propagation method tries to adjust 

parameters that relate inputs to outputs and minimize calculation error. The frequency of 

updating metamodel with new information was related to the available computational 

resource. 

It was mentioned that ANN is one of the most computational expensive methods 

for training. Using surrogate modeling for a problem with constraint (and especially 

constraints that included in the objective function by penalty) the accuracy of the 

metamodel is really important and defines the feasibility and infeasibility of the solution. 

It was suggested to check the feasibility of solution time by time by original model and 

train metamodel on both feasible and infeasible spaces to improve its accuracy. Creating 

metamodel for a high dimensional problem is more challenging. It is possible to create a 

better model.by: 

 Reducing the number of decision variable and filtering out unimportant decision 

variables 

 Reducing the size of solution space 

 Decomposing problem into a set of smaller scale sub-problems 

http://model.by/
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Except ANN and SVM, most of the methods do not have internal validation 

process. In contrast, flexible models like ANN created models, are highly prone to 

overfitting. Emulating multiple outputs are possible with ANN and correlation between 

outputs can be modeled with it. However, other methods mostly can emulate just one 

output at a time. Although emulating multiple outputs at a time has some advantages and 

can take into account the correlation of outputs, but sometimes it makes the training of 

ANN very hard. 

Razavi et al. categorized the meta-model enabled analysis frameworks in four 

groups: a) Basic Sequential Framework, b) Adaptive-Recursive Framework, c) 

Metamodel-Embedded Evolution Framework and d) Approximation Uncertainty Based 

Framework. (Razavi, Tolson, et al. 2012). The Basic Sequential Framework is the 

simplest framework and includes three major steps for a) design of experiment (DoE), b) 

fitting meta-model c) substituting meta-model for the original model in performing the 

analysis of interest. Adaptive-Recursive Framework is similar to the first framework, but 

the points that have been found in the third step will be evaluated by original model and 

added to the set of design to update meta-model. Metamodel-Embedded Evolution 

Framework is almost similar to Adaptive-Recursive Framework, but it does not have the 

first step for DoE. At first, a population-based optimization algorithm run initially on the 

original function for a few generations. All the individuals evaluated by the original function 

in the course of the first generations are then used as design sites for metamodel fitting. 

In the following generations, individuals are selectively evaluated by either the metamodel 

or the original model. Approximation Uncertainty Based Framework seems the most 

sophisticated framework and added and extension to the adaptive recursive framework 
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and it also includes the uncertainties associated with the approximation of the original 

model. Different methods can be used to calculate the approximation uncertainty, but 

specifically for ANN, Bayesian neural networks provide the variance of prediction. 

As it was mentioned previously, using, ANN based metamodels increased in the 

WDS optimization field. For instance, Broad et al. used ANN based hydraulic metamodels 

for optimizing operation of large and a real system to have least pressure violation, energy 

use and quality issues (Broad, Maier, et al. 2010). Rather than directly calling the 

hydraulic model for each GA trial evaluation, Wu and Behandish employed ANN based 

surrogate models to replace the hydraulic simulator in optimization (Wu and Behandish 

2012). Bi and Dandy created an ANN by 5000 training sites with 40 junctions in the hidden 

layer and used it to optimize WDS design. Their ANN has 22.inputs. However, each of 

the five output (4 pressure and one chlorine concentration of 5 critical junctions) created 

with separate ANN (Bi and Dandy 2013). Roa and Alvarruiz explain that ANN trained with 

a set of known input and outputs that have been produced by running an EPANET model 

by randomly generated initial condition. Then it was tested by test set that was almost in 

the size of 20% of the training set and was produced by the same method. The designed 

ANN has an input layer, one hidden layer, and one output layer. The input set contains 

the combination of pump/valve settings, demands and initial water levels in storage tanks 

while the output set corresponds to the power consumption of pumps, resulting water 

levels in storage tanks, pressures and flow rates at critical locations throughout the 

network. By trial and error, it was decided to put 20 neurons in hidden layer to get the 

best results. Also, it was realized that training set that has more than 2000 training sites 

does not improve ANN results. They showed that Using ANN provides a good result for 
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hydraulic simulation and could produce almost accurate results and decreased 

computation time by a factor of 10. ANN have been used for water quality modeling too, 

but its quality modeling results were not as accurate as hydraulic simulation results. It 

was mentioned that chlorine residue (as a factor of water quality) mostly depends on the 

size of the network and is not strongly depended on the input values of ANN, so ANN 

could not find the good relation between inputs and water quality in this case. So as an 

alternative (and not completely good one) minimum velocity of water in some important 

pipe have been modeled and investigated (Rao and Alvarruiz 2007). Hernandez et al. 

also used a three-layer, feed-forward ANN (with 24, 100, 15 neurons in input, hidden and 

output layers respectively) to gain the domain knowledge of a hydraulic model. 2500 

training samples and 800 test samples were used, and the resulting root mean squared 

error (RMSE) for training and test set were 1.2% and 1.3% respectively. Max elevation of 

tank increased about two meters to produce some infeasible and out of range conditions 

for training more accurate ANN. Pumping status, valve setting, demands of DMAs and 

storage tank level were used as input values and power consumption, Flow rates of 

selected location of DMAs, pressures of entrance points of DMAs and storage level 

considered as outputs. ANN structure designed based on trial and error in multiple 

steps (Martínez, Hernández, et al. 2007). 

The previous studies showed that process of using The ANN to create a hydraulic 

metamodel takes some times and needs many trial and error. It also is related to 

understanding the interaction of valves completely. It was shown that in some researches, 

selecting the ANN structure, number of neurons in the hidden layer and required number 

of training samples need a lot of trial and error that is time-consuming (Rao and Alvarruiz 
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2007), (Martínez, Hernández, et al. 2007), (Bi and Dandy 2013). If the process of shaping 

ANN gets automatic, it can be used to optimize networks even while it has pipe breakage. 

Jamieson et al. explain that as ANN is trained by samples that have been simulated 

by EPS, it might not provide results that are completely similar to the real WDS. The base 

assumption in training ANN is to have a calibrated and accurate EPS model. Many 

parameters (e.g. accurate age and roughness of pipes, etc.) are unknown, so having 

completely accurate EPS model is not always the case. Therefore, ANN can be improved 

by using SCADA data from the real system. ANN can be trained further with real data to 

provide some results that are even better than the EPS model (Jamieson, Shamir, et al. 

2007). 

Similarly, Zheng and Morad coupled ANN based meta-model with GA to find the 

optimized pump schedule of demand monitoring zone (DMZ) of Oldham in Greater 

Manchester in England on a real-time basis (Zheng and Morad 2012). They found out 

that ANN needs some improvement. Because it cannot provide a good result when it 

faces overtopping of some tanks (as it does not have any physical sense similar to EPS). 

So they suggested using real data from SCADA to overcome the problem of aggregated 

tank level error caused by using ANN metamodel. They compared results of optimization 

method with actual operation data and claimed that, using this method, caused about 15-

20% energy saving. For training ANN, 1,000×24-hour scenarios with one-hour time-step 

were used. ANN tested at snap-shot testing level and then verified by extended period 

simulation (EPS). In this study, the ANN equipped with an external constraint to prevent 

overtopping of tanks. 
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Fu and Kapelan explained that offline ANN needed a large number of training 

examples to cover the whole solution space, and its accuracy did not increase around the 

optimum solution. So they suggested to use online ANN and combine it with NSGAII to 

train an ANN with a smaller number of examples at first and then retrain it with adjusted 

frequency to provide a better approximation of the original model around the optimum 

solution of each generation. To keep the training time constant new training examples 

were replaced with old examples. At first EPANET 2 used to solve the hydraulic model 

for some first generations and after collecting enough examples, trained ANN replaced 

with EPANET. Pareto front of each generation simulated again with EPANET and the 

results were used instead of old training data in the training set (Fu and Kapelan 2011). 

Although it should be noted that replacing data of the old train set with some training 

examples around Pareto front might decrease the accuracy of ANN far from Pareto front 

that consequently decreases exportability of the optimizer. New York Tunnel Problem 

(NYTP) was used as a case study of this research. ANN has 21 inputs for the diameter 

of 21 pipes and one hidden layer with ten nodes and one node in output layer to result in 

the fitness of each solution. Training accuracy was 0.0001 with the maximum epoch of 

100. They investigated the effect of characteristics of the training set on ANN and reported 

that NYTP needs a training set of 1000 to 2000 examples and new training cases of 100. 

Higher new training cases (about 500 and 1000) caused some instability. ANN of NYTP 

was almost small, and its training only takes about two seconds. Anytown was another 

case study in this research. This network was larger than NYTP. Based on selected 

parameters in this research, Anytown network needed a higher frequency of retraining to 

get good results in the direction of optimization path. So the used training size was 300. 



60 

 

Bi and Dandy tried to use on-line metamodels for hydraulic and quality modeling 

in their research and used differential evolution (DE) for WDS design optimization (Bi and 

Dandy 2013). ANN toolbox of MATLAB with its default parameters have been used for 

creating the metamodel. To make sure that the optimum solution in each generation is 

feasible EPANET checked it. For defining retraining process, these parameters have 

been considered: the size of training dataset, the number of generations between 

retrainings and the total number of retrainings. As ANN based metamodel cannot 

effectively and efficiently model pressure and a chlorine concentration of all junctions, so 

some critical junction should be selected. Bi and Dandy suggested a 5-state statistical 

method for selecting critical junctions in WDS. The five stages of selecting critical 

junctions are: data range check, demand check, dominance check, correlation check and 

frequency of critically check. They also used a method for generating high-quality training 

data for ANN. 

Broad et al. state that ANN had been used successfully for optimizing small 

example of WDS but in large cases it has some difficulties to approximate the main model 

accurately. These problems might cause some main issues during optimization. Since a 

small error of a metamodel may cause a feasible solution to be considered as infeasible 

and vice versa. These types of problem can be reduced by checking best solutions by the 

high fidelity model and using local search to improve the quality of the final solution. Also, 

other methods like skeletonization and decomposition or Gaussian elimination can be 

used to simplify WDS and reduce training time of ANN and complexity of network for 

approximation purposes. Duration of simulation and simulation resolution should be 

adjusted correctly to decrease inaccuracy, especially in the case of water quality 
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modeling. In that case, simulation duration should be longer than water age. Control 

duration also should be large enough to minimize any numerical irregularities. (Broad, 

Maier, et al. 2010). 

It can be seen that just a handful of researches have been done in this regards. 

Some of them just used the basic sequential framework and created an off-line ANN that 

was trained one time before optimization process. However, there are few other 

researches which used an adaptive recursive framework or metamodel-embedded 

evolution framework used on-line and repetitive training of metamodel. These studies 

mostly focused on hydraulic modeling not quality modeling, and most of them used 

hydraulic modeling for WDS design optimization, not operation optimization. However, 

new researches during the last three years show the interest of researchers in this field 

and possibility of improvements. 

Pump operation optimization result is sensitive to the accuracy of the hydraulic 

model and predicted water demand. If the hydraulic model is not calibrated or the 

predicted water demand pattern is not similar to the real water demand, optimum pump 

schedule might not be able to answer required pressure or demand of the system in real 

practice. So it is recommended to use model calibrator tools and water demand prediction 

techniques to create high-quality inputs for the optimization process that helps to provide 

practical and optimized results. Investigating different calibrator tools and demand 

prediction techniques are beyond the scope of this study. Here it is assumed that a 

calibrated hydraulic model with accurate water demand pattern is available as an input to 

the pump operation optimizer tool. 
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1.6. Test Cases and Benchmark Problems 

By reviewing previous researches, it can be seen that most of the studies focused 

on small scale WDS or water transmission lines. These networks have a handful of pipes, 

junctions, pumps and occasionally one or two elevated tanks. For instance, Wang et al. 

used a small water transmission line with one tank and 4 FSPs (Wang, Chen et al. 2013). 

Similarly, Abiodun and Ismail used a small water transmission line with one tank and 5 

FSPs for their bi-objective optimization. Baran et al. also used a small transmission line 

with one tank and 5 FSP in their research. Wu et al. used two small water transmission 

lines with one tank, 1 FSP, 36 pipes and 16 junctions in the first system and two tanks, 1 

FSP, 41 pipes and 19 junctions in the second system (Wu, Maier et al. 2013). Wu, 

Simpson, et al. also used a small system with three tanks, 3 FSPs, eight pipes and five 

junctions in their WDS design optimization (Wu, Simpson et al. 2012). A small portion of 

real systems are similar to small test networks of these researches, but most of the time 

we face large networks with a couple of hundred pipes, junctions, and a considerable 

number of pumps, valves, tanks, etc. There are a few studies that tried to optimize real 

and large size WDS. For instance, some large WDS were used in optimization test cases 

of POWADIMA projects of the European Commission. In this project, a combination of 

GA and ANN were tested on a modified model of Anytown and two real WDNs (Haifa and 

Valencia). Haifa was selected as a small and hilly network with multiple tanks and 

Valencia as large, but almost a flat network (Jamieson, Shamir et al. 2007). Rao and 

Alvarruiz used Anytown benchmark WDN for their study, and they changed it a little bit to 

form Anytown Modified WDN. This network contains three tanks, 3 FSPs, 41 pipes and 

19 junctions (Rao and Alvarruiz 2007). Martinez et al. studied Valencia WDS and reported 
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promising results. Valencia WDS has two water treatment plants with significantly 

different production costs and serves 1.2 million people. The hydraulic model includes 

two tanks, 17 pumps, ten valves, 725 junctions, 772 pipes and 6 DMAs. They showed 

that by using an ANN based hydraulic metamodel, the optimization of Valencia WDN with 

17 pumps takes about 10 minutes. The ANN was about 94 times faster than EPANET 

simulation for Valencia WDS (Martínez, Hernández et al. 2007). Another large scale 

system worth mentioning from the WDS optimization literature is the large and real 

system demand monitoring zone (DMZ) of Oldham in Greater Manchester in England. 

This case was investigated by Zheng and Morad and also Wu and Behandish in their 

optimization research (Zheng and Morad 2012), (Wu and Behandish 2012). Oldham WDS 

is composed of more than 3200 pipes, 3500 junctions, 420 valves, five reservoirs, 12 

storage tanks and 19 fixed speed pumps (FSP). Wu and Behandish tested two 

optimization methods on demand monitoring zone (DMZ) of Oldham (Wu and Behandish 

2012). In addition to real WDSs, some researchers developed an abstract model of a 

WDS and used in the hypothetical system for their studies. For instance, Marchi, Dandy, 

et al. introduced a rural network with 476 pipes and 98 loops (Marchi, Dandy et al. 2014). 

As explained in the introduction section of this thesis, the size of the solution space 

is directly related to the number of pumps. Therefore, networks with more pumps need 

exponentially more iteration, time and computational power to find the optimum solution. 

In addition, larger networks with a higher number of pipes and connection are harder and 

more time consuming to evaluate hydraulically. Even one iteration of a solution of a larger 

network is more computationally demanding than the small network. Although Wang et 

al., Abiodun et al., Van Zyl et al. and others reported good results in implementing some 



64 

 

methods for optimizing a small WDS (Wang, Chen et al. 2013), (Abiodun and Ismail 

2013), (van Zyl, Savic et al. 2004), it does not mean that the same method works for 

solving the same type of problem with a larger network.  

There are a considerable number of articles that optimized benchmark WDSs. The 

advantage of these benchmark systems is that they are used by many researchers during 

the past decades and the best known near optimum solution of them are available for 

comparison with the result of new studies. Some famous benchmark networks are D-

town, Anytown, Hanoi and two loop networks. Hanoi and two loop WDSs are simple 

systems without pumps that mostly are used for design optimization. The Hanoi water 

distribution network has 32 junctions and 34 pipes structured in 3 loops. No pumping 

facilities have been considered since only a single fixed head source at an elevation of 

100 m is available. The minimum head requirement at all junctions is fixed at 30 m. The 

set of commercially available diameters is [12, 16, 20, 24, 30, 40 inches]. The Hanoi 

system has been used in a lot of WDS design optimization researches like Wang et al. 

researches(Wang, Liu et al. 2012). D-town and Anytown are almost large scale (or, at 

least, simplified version of large scale networks) that can be used for various purposes. 

None of the above-mentioned networks have variable speed pumps (VSP). D-town has 

been used as the benchmark WDS of a series of scientific competition with the name of 

Battle of Water Networks (BWN). The D-town network has 11 pumps in 5 pump stations. 

It also has seven tanks. Although this network has some loops, it is a branched network 

in general and has different separate pressure zones. 

NYTP, double NYTP, HP are famous case studies, but they are small in 

comparison with real problems. The Balerma system that contains 454 pipes and 3 loops 
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created to simulate a more realistic problem. However, even this system was almost 

hydraulically simple. Hanoi problem is just good to check if an algorithm can find a good 

feasible solution or not. As the feasible solution space of this problem is limited. Zucchin 

et al. used these four WDSs in their research on WDS design optimization by AC: the two 

reservoir problem (TRP), the New York tunnel problem (NYTP), the Hanoi problem (HP), 

and the doubled New York tunnel problem (2-NYTP) (Zecchin, Maier et al. 2007). Bi and 

Dandy did some tests on design optimization of the New York tunnel problem (NYTP), 

modified New York tunnel problem (MNYTP) and Jilin network (JN) (Bi and Dandy 2013).  

Figure 5 shows the schematics of some of these WDSs. Also, Table 4 provides 

some information about them that can be used to gain an idea of the size and 

characteristics of each test case. 

The Haifa-B model which serves a population of some 60,000 and ranges in 

elevation over 450 meters was used by Shamir and Salomons. The full model WDS 

includes 987 pipes, 867 junctions, nine storage tanks, eight pressure reducing valve, 17 

FSPs in 5 pumping stations and six demand manage areas (DMA). The reduced model 

contains 77 junctions and 92 links and maintains all pumps and tanks (Shamir and 

Salomons 2008). Ulanicki et al. used a WDS in the south of France, as a case study. This 

system includes five pump stations. One of the pump stations has VSPs, and others have 

FSPs. The WDS also has three valves, 48 junctions, 37 pipes and seven tanks (Ulanicki, 

Kahler et al. 2007).  
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Figure 5- Schematics of some of the benchmark WDNs: D-town (top left), Anytown (top right), 
Hanoi (bottom left), Two loops (bottom right) 

Morley created a framework for evolutionary optimization in WDSs (Morley 2008). 

He used most famous benchmark WDSs in his dissertation and result of his work, and 

others are published in the Exeter University of UK. It formed a reliable database of 

hydraulic models of WDSs and categorized them to be used in five groups of researches: 

a) Expansion, b) Layout, c) Operation, d) Sensor Placement, e) Design / Resilience. The 

collected WDS hydraulic models have been provided for public use and are available 

through the website of the center for water system (CWS) of Exeter University. Some of 
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the famous benchmark WDS of this database are Wolf-Cordera Ranch, EXNET, Gessler 

1985, Anytown, New York tunnel, D-Town, Hanoi, Richmond (CWS 2014). Wang et al. 

(who are also from CWS group of Exeter University) did an extensive two-objective 

optimization test on 12 small to large WDS (Wang, Guidolin et al. 2014). They put the 

hydraulic model file of these network on the CWS website for public use. The provided 

hydraulic models are used, and their information is listed in Table 4. They were sorted 

based on the number of junctions in WDS. So by the first look at Table 4, we can see the 

size of the network is increasing from top to bottom. However, beside the number of 

junctions in a network, there are other parameters (e.g. number of pipes, loops, etc.) that 

show the size of the system. By taking a look at the pump and tank column, we can see 

that some benchmark systems does not have any pump and tank and most of them just 

have one source of water. 

These networks mostly were used as a WDS design, resilience or expansion 

optimization test cases. The main usage of each benchmark system based on its 

characteristics and previous usages in the literature is categorized that can be seen in 

the last column of Table 4. Although some of these networks like New York Tunnel, 

Anytown or Gessler 1985, had been used for more than two decades in WDS related 

optimization researches, and they have almost well-established known global optimum 

result, most of them had been created and can be used for WDS design optimization and 

do not have enough number of pump and tank that can be used for WDS operation 

optimization (Simpson, Dandy et al. 1994), (Laurie J Murphy, Dandy et al. 1994). 

Accordingly, D-Town, Richmond, and Monroe WDSs can be used as operation 
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optimization test cases. Anytown, Wolf Cordera Ranch and skeletonized version of 

Richmond network also are simpler WDSs that can be used for this type of researches. 

Table 4- Benchmark WDSs for optimization tests 

WDS Junction Pipe Loop Pump Tank Reservoir Valves Main Usage 

Two-Loop Network 7 8 2 0 0 1 0 Design 

Gessler 1985 12 14 3 0 0 2 0 Design 

Two-Reservoir Network 12 17 6 0 0 2 0 Design 

New York Tunnel 20 21 2 0 0 1 0 Design-Expansion 

GoYang 23 31 9 1 0 1 0 Design 

Anytown 25 47 23 3 2 1 0 Design-Expansion 

Blacksburg Network 31 35 5 0 0 1 0 Design 

Hanoi 32 34 3 0 0 1 0 Design 

BakRyan 36 58 23 0 0 1 0 Design 

Fossolo 37 58 22 0 0 1 0 Design 

Richmond - Skeletonized 48 51 4 7 6 1 0 Operation 

Pescara 82 100 19 0 0 3 0 Design 

Modena 276 317 42 0 0 4 0 Design 

D-Town 399 443 45 11 7 1 5 Design-Expansion 

Balerma Irrigation 
Network 

451 454 4 0 0 4 0 Design 

Richmond 879 965 87 7 6 1 1 Operation 

Monroe 1540 1971 432 13 3 1 0 Operation 

Wolf Cordera Ranch 1790 2005 216 6 0 4 4 
Design-fire 

hydrant 

Exnet 1896 2469 574 0 0 2 2 Design 

 

The Richmond water distribution system is owned by Yorkshire Water in the UK, 

and the owner gave permission for this system to be used in academic studies. It was 

used in a Ph.D. research project on operational optimization of water distribution systems 

by Kobus van Zyl (van Zyl, Savic et al. 2004). It Also was used by Giacomello to test a 

fast hybrid optimization method (Giacomello, Kapelan et al. 2013). So it is suggested by 

CWS as a benchmark system for the operational optimization problem. Reducing the 

energy cost is the objective of the optimization of the Richmond WDS. This WDS has 

seven pumps in 6 pump stations. It also has six tanks that each of them is connected to 
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one pump station. In the original problem, the water level in tanks is controlled by pumps, 

so there is not any constraint on the pressure at junctions. Each pump station has unique 

off-peak and on-peak electricity tariff. The best operational cost found in the literature 

(excluding penalty cost of £0.15 per pump switch) was £33 982 from Van Zyl‘s studies 

(van Zyl, Savic et al. 2004). 

Except Monroe system that has two variable speed pumps (VSP), none of the 

other benchmark networks have VSPs. Although it should be mentioned that Monroe 

WDS have not been used as frequently as other benchmark networks. 

In addition to above-mentioned benchmark systems that had been used 

previously, Jolly et al. recently selected 12 real WDSs in Kentucky and formed a database 

that can be used in WDS researches and especially optimization efforts (Jolly;, Lothes; 

et al. 2014). These WDSs classified based on their characteristics. For instance, three 

configurations defined for categorizing topology of networks: a) Branch, b) gridded and c) 

loop configurations. Total demand of network has been distributed based on pipe 

diameter, and some adjustment has been made for transmission mains. As all systems 

were in almost the medium range size, a typical diurnal demand curve published by the 

American Water Works Association was used as the demand curve. Jolly et al. expressed 

that they tried to create these models as close as possible to a real world system, but 

because of security issues, they intentionally modified some part of the models. Also, 

some sensitivity test has been done on the network to calibrate them before publishing. 

1.7. Analyzing Results and Comparison Methods 

The difference in objectives, methods, study cases, etc. provides a broad outlook 

regarding optimization of WDSs. However, these differences make it hard to compare 
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results of various studies and select the most effective method for solving this type of 

problems. 

In early studies, researchers just tried to suggest an optimization method, test it on 

a WDSs and report the results. However, after a while, new studies tried to use the result 

of previous studies (specifically the best known near-optimum result of a benchmark 

WDS) and compare their new results with previous studies. Although comparing the 

quality of new results with the results of previous studies can be a good base for 

comparison, multiple factors involved in optimization makes it hard to find an entirely 

suitable case of comparison. In fact, many factors can influence the final results: the 

problem characteristics, the number of function evaluations allowed, the variable coding 

method, the nature of the objective function, the specific algorithm operators and the 

range in which the algorithm parameters were tested (Marchi, Dandy et al. 2014). 

Besides, almost all metaheuristic algorithms and population-based methods have some 

stochastic characteristics that cause them to produce slightly different results even within 

multiple runs of the same algorithm. So it is really important to use statistical indicators 

and tests that show if the observed difference in the results of different methods are based 

on the stochastic nature of the algorithms or if it shows a meaningful difference between 

the methods. Bi and Dandy conduct 30 runs with each calibrated algorithm in their 

researches, and average, min, max and standard deviation of results were used for 

comparison between the results of various methods (Bi and Dandy 2013). Lopez-Ibanez 

also used the statistical method in his thesis, for comparing the result of tests with different 

parameters (Lopez-Ibanez 2009). 
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The efficiency of different methods can be compared in terms of required time or 

computational efforts to find the optimum or a near optimum solution. To have a fair and 

accurate comparison, it is important to include all computational demand of the whole 

optimization process. Also, required time is highly dependent on the computational power 

of used hardware and software. These issues can interfere with reporting the comparison 

result and cause some faulty conclusions. Zucchin et al. researched on WDS design 

optimization by different types of AC algorithm. 20 runs were conducted with each 

algorithm for each test case, and statistical results of these runs were compared with the 

results of other algorithms of previous researches on the same test cases. The 

performance of the algorithms was measured based on solution quality (i.e., the best cost 

that is the minimum cost found in a run) and search efficiency (i.e., search time that is the 

number of function evaluations required to find the best cost for each run). Also, solutions 

feasibility of the results of this study and other’s results was assessed by EPANET 

(Zecchin, Maier et al. 2007). 

Marchi, Dandy, et al. tries to come up with a methodology for comparing 

evolutionary algorithms for optimizing WDSs. The general proposed comparison 

methodology has these steps: a) selection of the EA techniques to be compared; b) 

selection of appropriate test problems; c) calibration of each EA algorithm for each test 

problem; d) final runs of each EA method for each test problem; and e) analysis of the 

results. Also, it was suggested that all algorithm should use the same hydraulic solver. It 

is proposed that, for the first step, at least, one of these algorithms should be included in 

comparison: Genetic algorithms (Simpson et al. 1994; Dandy et al. 1996; Savic and 

Walters 1997; Reca and Martínez 2006), differential evolution (Suribabu 2010; Vasan and 
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Simonovic 2010; Zheng et al. 2011a) and ant colony optimization (Maier et al. 2003; 

Zecchin et al. 2005) due to their numerous successful applications to WDS problems. 

They suggested using the range of parameter of each algorithm found from literature and 

also check algorithm with a variable amount of parameter to calibrate it for a specific 

problem. Then multiple runs should be conducted with a calibrated algorithm and 

average, standard deviation and percentage of result that found global optimum should 

be calculated. For avoiding the weight pressure penalty to be another calibration 

parameter, this policy suggested to be followed: For comparing solutions always feasible 

solutions are better than infeasible solutions and among infeasible solutions, solutions 

with the lowest violation are better (Marchi, Dandy et al. 2014). 

In the case of multiobjective optimization, the comparison is even more 

complicated. As the result of a multi-objective optimization method is a Pareto frontier of 

non-dominated solutions, it is not possible to compare the value of a single optimal 

solution with the best known near-optimum solution. In this regard, Baran et al. suggested 

some metrics to compare Pareto frontier result of various algorithms (Barán, von Lücken 

et al. 2005). Fu and Kapelan determined the optimal value with S-metric and diversity 

metric. S-metric indicates the closeness of the solution to the theoretical Pareto Front and 

spread of solutions over objective space (Fu and Kapelan 2011). 

1.8. Gaps in Research 

In both cases of increasing efficiency of optimization process for optimizing real 

size water network in a short period and incorporating environmental goals in the 

optimization process, researches are ongoing, but it was not possible for the author to 

find comprehensive research efforts that could do the optimization process of a medium 
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or large size WDS effectively and include environmental objectives besides energy usage 

and cost objectives.  

Initially, researchers used deterministic methods (e.g. linear programming) to 

optimize the design and operation of WDS. They mostly were focused on reducing the 

cost of building and operating networks. Although during past two decades, researchers 

inclined toward using metaheuristic and an evolutionary algorithm. However, most of the 

research in this area had been done on some small and simple WDSs. 

Up to the present day, few researchers have tried to include the environmental 

effects of water networks in the optimization process. Some of them considered the 

amount of pollution caused by producing pipes and pollutant emission of the energy 

usage of pump stations. In most of these researches, a constant value was used to 

convert the amount of used pipe or energy to greenhouse gasses (GHG) emission. 

Considering a constant emission rate for using energy at any time and location is not a 

realistic assumption. This method mostly relates the emission reduction to energy 

reduction and does not take into account the change of pollutant emission by using energy 

from different sources at different location and time. 

The operating schedule of pumps from the past does not affect the future solution. 

However, it seems that to control the max number of pump cycle and max working time 

of pump, the previous working condition of pumps should be taken into account, and there 

is not any research that comprehensively investigated this issue. 

Although optimization pump scheduling solutions have been done for some real 

WDSs, there is still a lack of a robust and general pump scheduling methodology that is 

efficient and effective for medium and large size water distribution systems. Such systems 
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typically contain dozens of pumps, resulting in a vast solution space; and multiple storage 

tanks, resulting in highly non-linear hydraulic constraints. In addition, evaluating each of 

the trial solutions usually requires an extended period hydraulic simulation. A typical 

optimization run requires thousands of scenarios to be separately evaluated before a 

near-optimum solution is obtained. As a result, the optimization run times for real-world 

systems can exceed several hours or even days (Wu and Behandish 2012). 

Even commercial optimization tools on the market that are mostly using the result 

of recent studies in this field can optimize a medium of large size WDS in a reasonable 

amount of time. For instance, Darwin Scheduler part of WaterGEMS software that is one 

of the most well-known pump operation optimizer in the market can handle less than 200 

controls effectively (Bentley 2014). It means that it can effectively optimize the operational 

plan of WDS with at most eight pumps during a 24 hour simulation period with one hour 

time intervals (8×24=192<200). Although this product uses fast, messy GA (which is one 

of the states of art optimization algorithm in this field), it takes about one day for this tool 

to optimize a medium size WDS (Alighalehbabakhani, Abkenar et al. 2014). It also just 

able to optimize CO2 emission of used energy based on a constant emission rate 

It was mentioned in previous sections that some researchers defined constraints 

to limit the number of pump switches or control water level in tanks, etc. However, it was 

not possible for the author to find any comprehensive study that takes into account all 

essential factors of providing a pump operation plan that fulfills all practical requirements 

of a pump operation and can be used directly in real condition. It means that result of 

most of the current optimization methods cannot be used directly in an actual operation, 

and they need to be modified with an operator to become more practical. Here is a list of 
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items that have not comprehensively been studied in previous research and need more 

attention in future studies: 

 Adjusting exploration and exploitation abilities of the optimization algorithm and 

using effective local search or other more intelligent heuristics beside main 

optimizer algorithm to improve the efficiency of optimization 

 Conducting optimization of medium and large scale WDSs with practical details 

like using VSPs and valves 

 Using time and location dependent rate of emission instead of fixed emission rate 

values 

 Defining better measure for optimizing based on maintenance objective and 

adding constraints about working hours and cycles of pumps 

 Making clear the method of providing efficient ANN for creating WDS metamodels. 

Defining various causes of the inefficiency of ANN, investigating the reason of 

aggregated tank level error, while using metamodel and suggesting possible 

solutions for improving the metamodel creation process 

 Using real data beside the results of calibrated hydraulic model to train ANN and 

using other machine learning algorithm for producing metamodel 

 Define a methodology for creating online and live ANN that keeps using newer 

training sets always to maintain the metamodel updated 

 Doing more investigation on the shape of the Pareto front and the effects of 

different parameters on that 

 Defining a guideline to help the user to select the best solution among the solutions 

of Pareto frontier 
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 Investigating more about the effect of optimization parameters (e.g. crossover and 

mutation rates) on optimizing efficiency 

 Defining a clear process to improve metamodel and prevent it from producing 

infeasible results and understand overtopping or emptying of tanks 

 Adding more intelligence to optimization method to select solutions that are more 

applicable to real operation from a practical point of view. Moreover, considering 

operational constraints during the optimization process, as much as possible 
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CHAPTER 2 RESEARCH HYPOTHESIS AND METHODOLOGY 

2.1. Statement of the Problem and Research Hypothesis 

It was explained in the previous chapter that although considerable research has 

been completed on pump operation optimization during past decades, this type of 

problem remains an immense challenge for application to real networks of mid- to large-

size.   Calculation of the near optimum solution for a medium or large size network (more 

than 10 pumps) requires a considerable amount of time. Another complication is that the 

pollutant emission caused by energy usage has not been studied extensively yet. Even 

in the few studies that pollutant emission was considered as an objective of optimization, 

the pollutant emission was aligned directly with the amount of energy used. Therefore, 

the locational and temporal variations in pollutant emission is a novel area for research. 

Finally, although in different studies various types of constraints and heuristics were used 

to find the near optimum solution that meets practical needs of pump operation (e.g. 

number of pump switches, tank level control, running time of pumps, etc.), there is no 

available optimization tool and method that consider all requirements, for finding a 

practical optimum pump schedule. Accordingly, the objective of this study is to develop a 

pump operation optimization tool for WDSs that has the following characteristics: 

 Applies multiobjective optimization to reduce energy consumption, electricity 

usage cost and pollutant emission in a spatially- and temporally-sensitive manner. 

 Efficient and precise computational algorithms. 

 Ease of use – with limited supervision and training. 

The primary hypothesis of this study is: 
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It is possible to develop a pump operation optimization tool that decreases both 

energy usage and related pollutant emissions for real WDSs within a reasonable 

simulation time period. 

This hypothesis has three components:  

 It is possible to develop a pump operation optimization tool that can find near 

optimum solution for medium and large size WDS in a relatively reasonable time 

(fraction of an hour to fraction of a day). 

 It is possible to develop a pump operation optimization tool that can find a near 

optimum solution which is practical and can be used directly and with minimum 

expert supervision for operation of the WDS 

 It is possible to develop a pump operation optimization tool that can find a near-

optimum solution which decreases energy usage and related pollutant emission 

and is sensitive to time and location of generating energy. 

As described in previous sections, there are multiple benefits of this research. In 

particular, the “value added” of this project includes: 

 Decreasing the required computational resource for optimizing pump operation 

and decreasing the required time for finding the near-optimum solution. 

 Collecting and compiling various heuristics and optimization details that had been 

used previously in pump operation optimization studies to increase the efficiency 

of the main optimization algorithm and increase the quality of the final near 

optimum solution. 

 Making the final solution of optimization process practical so that it can be used 

directly in real operation with minimum expert supervision. 
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 Adding pollutant emission calculation and optimization function (to the WDS pump 

operation optimization. 

 A modular design of the optimization tool that allows each part to be replaced with 

alternative codes for future studies to improve its efficiency without the need to 

create a completely new optimization tool from scratch. 

It was mentioned in Chapter 1 that a few recent studies have used metamodeling 

or parallel computation to decrease required time of pump operation optimization. Also in 

some studies, reducing the pollutant emission and environmental footprint of pump 

operation plan have briefly been studied. But the author could not find any studies that 

unify all above mentioned ideas and considers pollutant emission optimization besides 

energy usage optimization while the required time of optimization is reduced by using 

metamodeling methods. Moreover, in previous studies, there is a relatively low emphasis 

on developing an optimization method and tool that can generate the practical type of 

result which needs minimum edits by experts, before getting used in the real operation 

plan. As a result, not even experimental optimization tools, but also commercial pump 

operation optimization tools in the market are not able to generate practical outputs for 

the operational plan of medium and large size WDSs within a reasonable time. So one of 

the practical advantages of this study is taking one step toward developing a completely 

automate, real-time and online tool that can optimize the operation process of WDS based 

on a couple of economic and environmental objectives. Another practical advantage of 

this dissertation is its realistic point of view regarding the pump operation optimization 

needs in the market and trying to take one step toward creating an optimization tool that 

can be accepted by operators of WDS and decrease reliance on the individual human 

judgment in real WDS operation. The theoretical advantage of this study is preparing a 
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fast and modular multiobjective optimization platform that each part of its structure can 

be changed in future to improve its efficiency and practicality. Also, this study tries to 

prove that it is practically possible to optimize the operation of pumps of a WDS and 

decrease energy consumption cost while the related pollutant emission is also decreased. 

2.2. Tool Development 

As part of the present investigation, a computer program has been developed and 

tested for application to the problem of optimizing pump operation of WDSs.  This 

computer program is named PEPSO, which stands for Pollutant Emission Pump Station 

Optimization. In this section, all components of PEPSO are introduced, and their 

functionalities are explained. 

Visual Basic (VB 11.0) programming language was used along with Microsoft .Net 

Framework 4.5 to develop PEPSO as a modular software with graphical user interface. 

Modular structure makes modifying and future enhancement of PEPSO easier for 

developers. PEPSO also is designed with a multithreading structure that uses the 

capability of multi-processor computer systems to speed up some part of the optimization 

process. PEPSO uses the multithreading capability to separate the optimization 

calculation from other time consuming graphical process of the user interface. In addition 

to 16000 lines of code that are written, PEPSO uses code libraries of EPANET Toolkit 

V2.0.12 (Rossman 1999, Rossman 2008) for hydraulic simulation, FANN V2.2.0 (Nissen 

2003, Nissen 2003) for ANN training and MATLAB Runtime V8.5.0 (MathWorks 2015) for 

3D plotting. 

2.2.1. Graphical User Interface 

PEPSO was aimed to work as a user-friendly software that WDS designers and 

operators with an average knowledge of hydraulic and WDS operation can use. 
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Therefore, the inclusion of a strong graphical user interface (GUI) was a key element in 

PEPSO’s development. In order to achieve this aim, the following detail’s were 

considered in design of the GUI (Wikipedia-contributors 2015):  

 Clarity and Concision: All different types of elements like labels, icons, and 

colorful plots were used to make the interface as clear as possible for the 

user. Other elements like tabs, tables, boxes and borders were used to 

separate and categorize input and output sections and create a tedious 

interface that is clear and concise at the same time. 

 Familiarity: Windows user interface guidelines were used to design a 

familiar interface for even those users who use PEPSO for the first time 

(MSDN 2015). Moreover, logical color coding and standard signs and icons 

were used to provide a familiar interface to all users. 

 Responsiveness and Efficiency: Various shortcuts and menus were used to 

make importing data, defining and running the project and receiving results 

as efficient as possible. Also, it was tried to reduce required time for 

retrieving data from saved or downloaded files 

 Consistency: The whole interface has been designed based on a 

comprehensive logic. Therefore, after working with the first form, the user 

can implement the learned logic for interacting with other forms. 

 Aesthetics: By selecting appropriate size and type of component of interface 

and using colors and shapes it was tried to make the interface like modern 

software that is attractive to user's eyes. 
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 Forgiveness: Various exception handling methods with a fully explained 

warning and error messages were provided to prevent the process from 

crashing due to a bad input or user interaction. 

 PEPSO has seven major forms that allow the user to define an optimization 

project and execute it. Figure 6 illustrates the process flow enabled by PEPSO’s interface. 

Each of the steps and related forms is explained in the following section.  

 

Figure 6- PEPSO Flowchart 
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2.2.1.1. Main Form 

The Main form is the first form that appears on the user’s screen upon execution 

of PEPSO. It provides access to all forms via menus and tool strip. It also shows a 

summary of all defined or loaded project information. During the optimization run, the 

main form provides run-time information and statistics of the optimization process. Figure 

7 provides a screenshot of the main form that is displayed at one point for a test 

simulation. 

  

Figure 7- Main form of PEPSO 

2.2.1.2. Project Configuration Form 

The project configuration form is the initial point for defining a new project. It also 

can be used for changing some basic information of a loaded project, such as name, 

project folder address, and hydraulic model file address. Through buttons of this form, 



84 

 

users have access to all other forms for adjusting project parameters before running the 

optimization process (see Figure 8). 

 

Figure 8- Project Configuration form of PEPSO 

After initializing a project using the configuration form, a suite of additional forms 

can be accessed to further define the project. These additional forms include the 

electricity, pollution emission, constraints, optimization, and report options form. All of 

these forms have been designed with the same logic to create a consistent user 

experience. This ensures that multiple scenarios of electricity tariff, pollution emission, 

pump, tank, junction and pipe constraints and optimization options can be defined, saved, 

loaded and selected as an active scenario by using the same logic. 

2.2.1.3. Electricity Form 

Most of the industrial electricity tariffs have two parts: a) energy consumption 

charge and b) power demand charge. The energy consumption charge ($/kWh) should 
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be multiplied by the amount of consumed energy (kWh) to calculate energy consumption 

cost ($). Similarly, power demand charge ($/kW) should be multiplied by peak power 

demand to calculate the power demand cost ($). The peak power demand of an electricity 

meter can be calculated as a maximum power demand of the electricity meter during a 

defined billing period (e.g. one month) that is measured in a defined time intervals (e.g. 

30 minutes intervals). Total electricity cost is electricity consumption cost and power 

demand cost of all electricity meters.  

The electricity from has two tabs.Users can input various types of electricity tariffs 

in the first tab. The tab can accommodate electricity tariffs that have a constant rate 

energy consumption charge, as well as time-variant rates ($/kWh). Also, power demand 

charge ($/kW) and duration and intervals of calculating peak power demand can be 

defined via this tab. Note that it is possible to define and use multiple electricity tariffs in 

an optimization scenario for different electricity meters. However, each electricity meter 

can have only one electricity tariff. 

After defining, at least, one tariff, the second tab can be accessed to define 

electricity meters and assign the defined tariff to them. Most of the time a pump station 

has one electricity meter.However, it is possible to define multiple electricity meters for 

pumps that are physically located in one pump station. Each electricity meter should have 

a list of the connected pumps. Peak power demand and energy consumption of the 

connected pumps to an electricity meter will be added up before calculating the electricity 

cost. Note that each pump can be connected to only one meter. Figure 9 shows tariff (left) 

and meter (right) tabs of the electricity form. Latitude and longitude of electricity meter are 

necessary input parameters if the user plans to use the pollution emission calculation or 
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optimization routines. Location of the electricity meter will be used to retrieve the emission 

factor values from the LEEM subroutines. 

  

 

Figure 9- Electricity tariff (Top) and electricity meter (Bottom) tabs of the electricity form of 
PEPSO 
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2.2.1.4. Pollution Emission Form 

One of the unique characteristics of PEPSO in comparison with other WDS 

operation optimization tools is its ability to use the emission factor report of LEEM to 

enable real-time spatially-explicit emission reduction optimization. The pollution emission 

form is the interface for user-defined pollution emission calculation scenarios. Each 

scenario may include one pollutant or a user-defined pollution index that is a linear 

combination of multiple pollutants. Users can elect to receive emission factor values from 

the LEEM server via internet or use an offline LEEM report. The offline LEEM report option 

is useful when the user wants to compare results of different optimization runs and wants 

to prevent unwanted changes due to receiving different reports from LEEM during 

different optimization runs (due to the time-sensitive nature of the emission factors). 

Figure 10 provides a screenshot of the pollution emission form. 

 

Figure 10- Pollution emission form of PEPSO 
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It should be noted that only those pollutants that their information can be obtained 

from the LEEM server or an offline report can be selected in this form. Currently, LEEM 

2.5 server provides emission factor (lb/kWh) of five pollutants (CO2, NOx, SO2, Hg, and 

Pb). PEPSO uses the user-specified location of each electricity meter (from the electricity 

meter tab of electricity form) and time of optimization, to query emission factors from 

LEEM server. 

2.2.1.5. Constraints Form 

The constraints form has four tabs that allow users to define customized constraint 

scenarios for pumps, tanks, junctions, and pipes. It also is possible to select the default 

constraint scenario that PEPSO automatically defines based on characteristics of the 

WDS model. Although it is not recommended, it is possible to turn off constraint scenarios, 

allowing network optimization in the absence of any constraint on the operation of pumps, 

the water level in tanks, pressures of junctions or water velocity. 

As shown in Figure 11 (top), the first pump tab of the constraints form allows the 

user to define whether a pump is a variable speed or fixed speed pump. For a variable 

speed pump, the user can input the pump’s minimum possible relative rotational speed 

(RRS). RRS is a number between 0 and one that 0 means the pump is off, and 1 means 

the pump is working with its maximum rotational speed. Based on the pump affinity law, 

the power demand of a pump is directly proportional to the cube of the RRS (Pelikan 

2009). When RRS of a pump is 0.5, it only can push water with (0.53) = 12.5% of its 

nominal power, so it is not practical to use a number less than 0.5 as the minimum RRS 

of the pump. Note that the maximum RRS of all pumps is considered 1 (100% of the 

maximum rotational speed of the pump). Other constraints for pump operation include a) 

a maximum number of switches in a day, b) a minimum duration of time between pump 
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shut-down and start-up, and c) maximum continuous period of operation for the pump. 

When a pump operation schedule violates these limits, a penalty will be calculated and 

added to the total penalty of the pump schedule. 

Users can define these limits as hard constraints or not. This means that in addition 

to calculating penalties, these limits can be used for defining an acceptable or 

unacceptable pump schedule. If the user decided to define these limits as hard 

constraints, violation from them completely discredits the pump schedule from being 

selected as the optimum final result. PEPSO will not use these hard constraints during 

the optimization process. However at the end when a solution should be selected among 

the Pareto frontier as the optimum solution, these hard limits will help to filter out 

unacceptable solutions. Using a hard constraint during the optimization may limit the 

ability of PEPSO to explore the solution space for the optimum solution. 

In the constraints form for the tank (Figure 11 bottom), users can define allowed 

and desired minimum and maximum level of water in the tanks. Note that the minimum 

and maximum tank levels that are defined in the EPANET model file are physical limits 

and EPANET does not let water level to go beyond these limits. However, the desired 

minimum and maximum levels that are defined by users are soft constraints. Water level 

can go beyond desired limits, but this violation causes some penalties. By default, the 

minimum and maximum desired water level constraints of a tank are 15% higher and 

lower than the bottom and top level of the tank, respectively. The minimum and maximum 

allowed water level that can be defined by users are hard constraints and like hard 

constraints of the pump operation tab, will not be used during the optimization process. 

However at the end of the process, they will help to filter out all unacceptable solutions 

from the final Pareto frontier. By default, the minimum and maximum allowed tank levels 
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are equal to the minimum and maximum tank levels of the EPANET hydraulic model, 

respectively. 

 

 

Figure 11- Pump constraint (top), tank level constraint (bottom) tabs of constraint form of 
PEPSO 
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Figure 12- Junction pressure constraint (top) and water velocity constraint (bottom) tabs of 
constraints form of PEPSO 
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Five last columns of the tank constraint table can be used for constraining water 

level in the tank at a specific time. For instance, if the operational requirement of a WDS 

dictates that a tank should be 50% full at 7:00 AM, this part of the table can be used to 

define constraint water level and time. Like desired minimum and maximum level, this is 

a soft constraint and will be used only for calculating penalties. However, if users select 

the “strict water level control at specific time” option, it will be used as a hard constraint 

for filtering out the unacceptable solution at the end. 

The junction and pipe tabs of the constraints form that are shown in Figure 12 (top 

and bottom respectively) allow the user to select strategic junctions and pipes from the 

list of all junctions and pipes of the WDS and assign the minimum and maximum allowed 

and desired pressure or velocity limits to each of them. It also is possible to indicate the 

relative importance of each junction or pipe in respect to others by defining the constraint 

importance multiplier. By default, these multipliers are equal to one for all junction and 

pipes, resulting in equivalent penalty associated with the violation of pressure or velocity 

limits of all selected junction and pipes. However, changing the constraint importance 

multiplier of a junction increases the penalty associated with pressure violation of that 

junction with respect to others. Like the tank level constraints, the desired limits define 

soft constraints. The pressure or velocity violation from these limits increase the 

calculated penalty. It is important to know that violation from each of the minimum and 

maximum limits of water level in the tank, water pressure at junction or water velocity has 

different meaning and PEPSO stores these violations separately. PEPSO will use them 

separately to discover promising ways of changing the pump schedule for improved 

results. The pressure and velocity allowable limits are stricter hard constraints and will 
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just be used for filtering out acceptable solutions from the final Pareto frontier at the end 

of the optimization process. 

2.2.1.6. Optimization Options Form 

Users can open the first tab of optimization options form to define optimization 

algorithm parameters and objective functions (see Figure 13, top). In the upper part of 

this tab, three objectives of optimization (electricity cost, pollution emission, and penalties) 

can be selected. Electricity cost is composed of energy consumption cost and power 

demand cost ($). Pollution emission is the weight of a single emitted pollutant (lb) or 

values of the user-defined pollution emission index. Lastly, the penalty value is total 

penalty formed from pump operation constraint violations, tank level violation, pressure 

violation and velocity violation. Here users also can define relative weights of each 

selected objective. This weight will not be used during multi-objective optimization 

process of PEPSO that optimizes each objective independently. However, at the end of 

the process and before reporting the final optimum solution, it will be used to select the 

optimum pump schedule among all the acceptable solutions in the final Pareto frontier. 

The middle section of the options tab defines stopping criteria. Optimization can 

be stopped under any of 5 user-defined conditions: (1) elapsed computation time, (2) the 

maximum number of iterations, (3) the maximum number of or solution evaluations, (4) 

when a set of predefined objectives is reached, or (5) a maximum number of stagnant 

iterations. The bottom section of this tab gives users some options to adjust the 

optimization algorithm options and hydraulic simulation method. For instance for NSGA 

II optimization method, users can define the number of solutions in each population, 

crossover and mutation percentage and rate, and the number of elite solutions of each 

population. It also is possible to select EPANET or ANN model for hydraulic simulation. 
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The crossover and mutation percentages define the portion of the population that should 

be used in crossover (reproduction) process or should be mutated, respectively.  

 

Figure 13- Optimization option (top) and initial pump schedule (bottom) tabs of the optimization 
options form of PEPSO 
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The crossover and mutation rates define the portion of a selected pump schedule 

which should be changed during crossover and mutation processes, respectively. By 

default, both the crossover percentage and rate are 50%. The mutation percentage and 

rate by default are 5% and 10%, respectively. High mutation and crossover rates may 

change the selected pump schedule drastically that may aid PEPSO’s exploration of the 

solution,  but may also decrease the efficiency of exploitation process and fine tuning the 

near-optimum solution. 

The second tab of the optimization options form that is shown in Figure 13 (bottom) 

helps users to customize start point of optimization and define an initial population of 

solutions. By default, PEPSO forms the initial population by a group of randomly created 

pump schedules. It also adds two extreme pump schedules to the population to catch two 

extreme points of solution space. In one of those two extreme pump schedules, all pumps 

are off and in the other one, all pump are on. However, in addition to the default initial 

population, users can define some initial pump schedules and use them to replace all or 

part of the initial random population. This option is especially useful when it is desirable 

to initiate an optimization run from the result of a previous optimization run. It also can be 

used for comparing different optimization scenarios when users want to keep the initial 

population of all scenarios the same. 

2.2.1.7. Reporting Option Form 

The reporting options form provides all options that users need to customize 

reports of PEPSO. The top section of this form allows users to select different types of 

reports that should be included in the text output. A field in the middle section of the form 

is provided to define the file name for the optimized EPANET model. The bottom section 

of the form shows all options for customizing the graphical report. Users can select 
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different types of graphical reports, their updating frequency, and detailed adjustments 

about label or scale of axes of the graphs. Figure 14 shows a snapshot of this form. The 

text report, “Richmond Test_Optimized.inp”, with optimized model and graphs, will be 

saved in the project folder. Users can select to show (during optimization) and save a) 

the best practical pump schedule, b) the optimization objectives trends, and c) the 3D 

Pareto frontier graph at defined iteration intervals. 

 

Figure 14- Report option form of PEPSO 

2.2.2. Optimizer 

After defining the optimization project and saving the project file, the user can press 

the run button to start the optimization process. The optimization process can be broken 

down into three main phases: a) pre-optimization b) iterative optimization and c) post-

optimization (finalizing and reporting). In the pre-optimization phase, the optimization run 

will be initialized and the initial population will be created, evaluated and edited. Flow 

chart of Figure 15 shows the pre-optimization process.  
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Pre-
Optimization 

Process

Downloading or Reading LEEM report and finding emission 
factors (kg/kWh)

Using Defined Initial Solutions & Random Solutions to Create the 
Initial Population

Initializing EPANET Input File 
(timing, controls & reporting options)

Reading Data of WDS Component from the EPANET file
(component’s count, ID, index)

Adjusting Start Timing of Electricity Tariff(s), Pollution Factors (s) 
& Add Them to the Project Structure

Using Electercity Tariff(s), Electricity Meter(s), Emission Factors, 
Constraints, Optimization & Reporting Options & WDS data to 

Fill the Project Structure

Hydraulic Modeling of Initial Population With EPANET Toolbox
(energy usage, peak power demand, tank level, junction 

pressure, pipe velocity, pump warnings & system warning)

Calculating Electricity Cost ($)
(energy usage & power demand cost)

Calculating Pollution Emission 
(kg)

Calculation Total Penalty
(pump operation, tank level, junction 

pressure & pipe velocity penalties)

Start Optimization with a 
Sorted Initial Population

Creating or Loading a Project & Running 
the Optimization Process

 

Figure 15- Flowchart of pre-optimization process 

In the iterative optimization phase, crossover and mutation steps will be used to 

generate better solutions. Then new solutions will be evaluated, and a new generation 

will be formed from the available elite solutions. This process will be repeated until 

meeting a stopping criterion. After stopping the iterative process, the program starts the 

post-optimization phase. In this final phase, PEPSO selects the best solution and 

prepares and stores all requested reports in the format of text, EPANET model, and 

graphics.  
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Iterative 
Optimization 

Process

Post-
Optimization 

Process

Non-dominated Sorting & Adjusting Solution Ranks Based 
on the Final Tank Level Violation & Warning Messages

Solution Selection

Crossover Mutation

Elitism & Forming the Next Population

Hydraulic Modeling With EPANET Toolbox of ANN

Sorting Combined population of Old & New Solutions

Update the Output Plots & Add Result of 
the Iteration to the Text Report

Checking Stopping Criteria

Selecting the Best Solution Calculate Average Results of the Population

Preparing Final Plots & Text ReportCreating the Optimized EPANET Model

Start Optimization with a 
Sorted Initial Population

End Optimization

Calculating Undesirability Index Values

Calculating Electricity Cost ($)
(energy usage & power demand cost)

Calculating Pollution Emission 
(kg)

Calculation Total Penalty
(pump operation, tank level, junction 

pressure & pipe velocity penalties)

Polishing the Final solution

 

Figure 16- Flowchart of iterative optimization and post optimization processes 

The flowchart of Figure 16 shows different processes of the iterative optimization 

and post-optimization phases. The section 2.2.2 and its subsections explain main 

modules that are used in these three phases of optimization. Hydraulic solver and output 

reporter modules that are primarily used in the second and third phase will be explained 

separately in sections 2.2.3, 2.2.4 and their subsections. 
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2.2.2.1. Optimization Initializer 

The optimization initializer module of PEPSO reads all required data from the 

project file and stores it in a suitable structure for optimization. It reads and stores all 

information that is provided through the forms that were introduced in Section2.2.1, in 

addition to information of WDS that is provided by the EPANET hydraulic model and 

emission factors that are provided by the LEEM report. A copy of all imported data into 

the optimization data structure will be written into the first section of the optimization text 

report. It helps users to better understand characteristics of the optimization run when 

they are using the final text report. The optimization project data structure keeps the 

address of the project folder and name of all input and output files. By default the project 

folder stores the project file (*.prj), ANN models of the WDS (*.net), text output (*.txt), 

graphical outputs (*.fig and *.jpg) and EPANET optimized model (*.inp).  

Address of the Project Folder

Address of the EPANET Model

Address of the Text Output

Max Constraints Table

Address of the ANN Training Set

Optimization Start Time

Unit System

1

List of Electricity Meter2

         EPANET Water Network Model3

Pump Constraints4

Tank Constraints5

        Strategic Junction Constraints6

         Strategic Pipe Constraints7

List of Pumps

List of Tanks

List of Strategic Junctions

List of Strategic Pipes

List of Demand Patterns

     Optimization Options8

Reporting Options9

Initial Population10

    Final Pareto Frontier10

 

Figure 17- Diagram of the optimization data structure (for more information see Appendix B) 

As previously mentioned, the optimization structure also read and stores 

information of the EPANET hydraulic model, including the number of WDS components, 
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pattern, report and start times, and unit system that is used in the EPANET hydraulic 

model. Figure 17 shows the main diagram of the optimization data structure. All numbered 

items in this diagram are sub-structures that have been expanded in Appendix B. 

All inputs, including water demand pattern, pump status, electricity tariff, emission 

factors and all outputs in the form of time series must have the same time reference, time 

step and duration as the optimization time reference, time step and duration. The 

optimization initializer module uses the start time of optimization, optimization time step, 

hydraulic model time step, hydraulic pattern start time and time steps, and hydraulic 

simulation start time to adjust the timing of all inputted energy cost and emission factor 

patterns and prepares them for use in the optimization process. 

In the current version of PEPSO, the optimization duration and time step, which 

are defined by users via the optimization options form, dictate duration and time step of 

all the above mentioned time series. However, the start clock-time of the EPANET 

hydraulic model defines the time reference and start point of the time series, including the 

pump schedule. If the duration of the defined energy cost pattern is less than the duration 

of optimization, the same pattern will be repeated to cover the whole optimization 

duration. In the case of the emission factor, this correction is a little bit more complicated. 

LEEM 2.5 currently provides between 6 to 37 hours of emission factor prediction (based 

on time and location of data query). Therefore, if the duration of predicted emission factors 

data is shorter than the optimization duration, emission factors of the same clock time of 

the previous day will be used to fill the lack of predicted emission data. It is assumed that 

emission factors of the previous day are not considerably different from emission factors 

of the same clock time of the next day and are acceptable candidates to fill the lack of 

prediction data without changing the final result drastically. However, errors are expected 
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especially when this assumption covers days that are holidays, weekends, drastic 

temperature/climate changes, and so on. 

If the optimization time step is larger than energy cost pattern or emission factor 

time steps, all energy cost and emission factor values that fall into an optimization time 

step will be averaged based on their contribution time. For instance if the optimization 

time step is one hour and for 15 minutes of an hour energy price is 0.1 ($/kWh) and for 

the other 45 minutes is 0.16 ($/kWh) the weighted average energy price of that time step 

is (15 / 60) × 0.1 + (45 / 60) × 0.16 = 0.145 ($/kWh). If the optimization time step is shorter 

than the energy cost pattern or emission factor time steps, these will be broken into the 

smaller time steps with equal length to the optimization time step. For instance, assume 

that the optimization time step is three hours and emission factor of CO2 at the first hour 

is 1.5 (lb/MWh) and for the next two hours is 0.9 (lb/MWh). The emission factor value of 

that three hour time block is calculated as: (1 / 3) × 1.5 + (2 / 3) × 0.9 = 1.1 (lb/MWh). 

Sometimes it may happen that LEEM cannot provide an emission factor value for a time 

step. In this case, PEPSO fills the missing value with average emission factor during the 

optimization period.  

All PEPSO calculations use the time unit of seconds. So all non-second input time 

values will be converted to second. All requested non-second output values will also be 

converted before reporting. In addition to the time unit, all other physical units of PEPSO 

calculations are SI units. Although it is possible for users to use the US customary unit 

system for inputting and receiving outputs, PEPSO converts these units to SI system, 

before using in the calculation and converts the result back again to the US customary 

before reporting. Pressure unit in PEPSO calculation is the meter of water head, and 
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discharge unit is cubic meter per second. However, for input data, PEPSO accepts all 

units that are accepted by EPANET V2.0.12 (Rossman 2000). 

The optimization initializer module also creates an initial population of solutions 

and appends it to the optimization structure. This function that creates the initial 

population is explained in the following section. 

2.2.2.2. EPANET Input Initializer 

In the pre-optimization phase, PEPSO initializes the EPANET model of WDS. This 

initialization process prevents some potential error caused during the optimization 

process and provides a standard format for simulating and reporting by EPANET. In this 

process, at first, water demand pattern of junctions will be replaced with modified demand 

pattern that has the same duration and time step that is defined by the user. After this, 

start time of patterns, pattern time, reporting time step and the hydraulic time step of the 

EPANET file will be adjusted based on the optimization run requirements. Report status 

option of the EPANET file will be changed to “YES” to make sure that EPANET simulation 

report has all required information (including warning messages). By default, the number 

of hydraulic simulation trials and accuracy of convergence will be changed to 40 and 

0.001, respectively. The lower trial number and accuracy may result in a faster hydraulic 

simulation but may increase the probability of receiving a system unbalanced warning 

and decrease the accuracy of calculation that might affect the efficiency of optimization. 

The goal of PEPSO optimization is a determination of an optimized pump 

schedule. So PEPSO should start the optimization process with a hydraulic file without 

any predefined pump controls, rules, and operation patterns and find the best set of pump 

controls to meet the objectives. Therefore, before starting the optimization process, all 

pump rules and controls of the input EPANET model should be removed, and initial status 
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of all pumps should be reset to off (by default). Similarly, all variable speed pump patterns 

should also be removed. To be able to change pump schedule of the EPANET file during 

the optimization process, some initial pump control lines are needed in the control section 

of the EPANET input file. Number of these controls should be equal to the number of 

pump schedule cells (number of pumps × number of time steps). So an initial and pump 

control line will be repeated by the number of pump schedule cells and added to the 

control section of the EPANET input file. 

These initial control lines are only placeholders of pump control lines that will be 

created by PEPSO during the optimization process. These initial control lines should not 

have any effect on the operation of pumps, so the EPANET initializer module of PEPSO 

creates them by using EPANET pump ID of the first pump that is off at one time step after 

the final time step of the optimization process. For instance, if we are going to optimize a 

pump schedule for a 24 hour period with one hour time intervals, “PUMP 1 IS OFF AT 

TIME 25” can be the placeholder pump control lines. This definition for the placeholder 

pump control line shows that this initial control will not have any effect on optimization 

results and is created for filling the required lines of the control section of the EPANET 

input file. 

After making all these changes on the EPANET input file, the file will temporarily 

be saved for the optimization purpose. At the end of the optimization process, this file will 

be overwritten with the optimum solution. 

2.2.2.3. Initial Population Creator 

As explained in section 2.2.1.6, users can choose to start the optimization process 

from a randomly created population of solutions, or they can define a population 

(completely or partially) as a starting point. For creating a random pump schedule, the 
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status of the constant speed pumps at each time step will be changed to on or off 

randomly. For variable speed pumps, on or off status of the pump will be defined in a 

similar way. However, for the “on” variable speed pumps, the RSS will be selected as a 

random number between the minimum RRS and 1 (100% as the maximum relative 

speed). The RRS values will always be rounded to two decimal places (which results in 

a 1% accuracy in rotational speed). 

Within the optimization initializer module, the maximum possible junction pressure 

penalties that will be used later during the optimization steps are calculated. Two extreme 

conditions that may result in maximum junction pressure penalties are 1) turning all 

pumps off (to create maximum low-pressure violation) and 2) turning all pumps on (to 

create maximum high-pressure violation). PEPSO automatically adds these two extreme 

pump schedules to the initial population to include results of these two extreme 

conditions. So, the number of initial solutions that can be defined by users is equal to the 

size of the initial population minus two. 

2.2.2.4. Objective Calculators 

Three separate modules of PEPSO are used to calculate independently three 

objective values: electricity cost, pollution emission and total penalty of each solution. 

Before calculating objective values, solutions should be simulated hydraulically and the 

energy consumption, peak power demand, water level in tanks, water pressure and 

velocity at junctions and pipes and pump schedule characteristics (e.g. number of pump 

switches) at all time steps are stored in a temporary file. 

The electricity cost calculator module receives total energy consumption of all the 

pumps that are connected to a meter at each optimization time step. The calculator then 

multiplies the energy consumption value with the corresponding energy consumption 
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charge to calculate the energy consumption cost associated with that electricity meter. It 

similarly uses the peak power demand of all pumps that are connected to the meter to 

calculate associated power demand cost. 

The pollution emission calculator module uses the energy consumption of each 

electricity meter at each optimization time step. It multiplies the energy consumption value 

(kWh) by the corresponding emission factor (lb/kWh) to calculate the emission pollution 

weight (lb). It should be noted that values of emission factors depend on the time of 

energy consumption and location of the electricity meter (pump station). LEEM reports 

the marginal emission factor which is equal to the amount of pollution emission due to 

one unit increase in energy consumption of the whole region. We cannot multiply the total 

energy usage in the region by marginal emission factor to calculate the pollution emission 

of the region. For this purpose, we need to use pollution emission data of the all the 

energy generators that provide energy of the region (not only the marginal generator). 

However, it is justifiable to assume that the total energy consumption of a WDS is 

relatively negligible in comparison with the total energy consumption of a region and is 

not able to change the marginal generator. In this case, the marginal emission factor can 

directly be multiplied by the total energy consumption of the WDS to calculate its pollution 

emission. Theoretically the resulted emission value is not equal to the total pollution 

emission of the real system. However, the calculated emission value by this method (by 

using marginal emission factors) can be used for comparing different operational 

scenarios. The difference between resulted emission values of scenarios shows change 

of the total emission of the real system due to change of the operational scenario. 

The third module calculates associated penalties of each solution (pump 

schedule). Based on the user request, the total penalty may include pump operation 
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penalty, tank level penalty, junction pressure penalty and velocity penalty. So it is possible 

for users to turn off a constraint and the associated penalty will not be calculated and will 

not affect the optimization process. For each time step, the penalty is calculated as a 

violation value of the parameter raised to a predefined factor. By default, the factor is two.  

This helps to amplify the importance of the deviation from the acceptable range as the 

deviation increases. For instance, if the acceptable range of tank level is from 1 to 5.5 

meter, and if the tank level goes up to 7 meters the violation can be calculated as |7 - 5.5| 

= 1.5 meter and the penalty is 1.52 = 2.25. If, at another time step, tank level is 0 meter 

the violation is |0 - 1| = 1 meter and penalty is 12 = 1. It can be seen that although the 

violation of the first case is 1,5 times more than the violation of the second case, the 

penalty of the first case is 2.25 times more that the second case. This way of using the 

power factor to increase penalty when the violation is large, help ensure that PEPSO will 

recognize unfeasible solutions. For instance, if there are 100 junctions in a system with 3 

meters excess pressure for each of them, this solution is physically more acceptable in 

respect to the same system that has pressure violation on just one junction, but the 

amount of violation is 200 meter. Although 100 × 3 = 300 meters violation is more than 1 

× 200 = 200 violation, but the 200 meters violation may cause pipe breakage, so the 

second scenario is not as feasible and acceptable. In this case raising the penalty to a 

power greater than one (e.g. two) let PEPSO see that 100 × 32 = 900 is way smaller than1 

× 2002 = 40000. 

Although penalty power factor of two is a default value of PEPSO, some simulation 

showed that sometimes the effect of the power factor of two is considerably severe, and 

1.5 may be a more reasonable value that may better guide PEPSO to discover more 

feasible solutions. 
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Penalties that are associated with low limit violations are treated differently than 

penalties that are associated with high limit violations. These are treated differently and 

stored separately because they have different implications, and different policies should 

be implemented to reduce them. For instance, if PEPSO faces a high penalty value that 

is associated with the excess pressure, it might need to turn some pumps off to reduce 

the pressure of the system. On the other hand, if the same amount of penalty is related 

to insufficient pressure, PEPSO might need to turn some pumps on to increase pressure 

and tackle the issue. 

PEPSO provides a flexible option for calculating penalties of strategic junctions 

and pipes that allows users to control the effect of violation of pressure or velocity of each 

component on the optimization process. For instance, In a WDS, controlling pressure of 

one junction might be more important than the others. In this case, users can increase 

pressure constraint importance multiplier of the desired junction to increase the effect of 

its penalty on the optimization process. As it was explained in section 2.2.1.5, these 

multipliers can be adjusted for each strategic junction and pipe and will be multiplied by 

calculated penalty of each junction or pipes before adding them up to calculate the total 

penalty. By default, these multipliers are 1.0, which means the violation of all strategic 

junction and pipes have the same effect on the optimization process. 

If pump operation shows some violation regarding the defined pump constraints 

(e.g. number of pump switches in a day), the total penalty value will be increased one 

unit. Most of the time other penalties like tank level or junction pressure penalties are 

more important than pump operation penalties. So small pump operation penalties will 

not affect the optimization process unless other penalties are negligible. 

. 
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2.2.2.5. Undesirability Index Calculator 

The undesirability Index calculator module is a very unique aspect of PEPSO that 

cannot be found in other pump operation optimization tools. This module calculates a 

value for each pump and at each time step that indicates if the pump status is desirable 

or not. A high absolute value of Undesirability Index (UI) shows that the status of the pump 

at that time step caused some problem (e.g. high pressure, low tank level). This pump 

status suggests that this pump schedule is a good candidate for modification to make the 

next iteration of pump schedule one step closer to the optimum pump schedule. 

The calculation of UI value of a pump schedule at a specific time step requires 

knowledge of the tank level penalties, junction pressure penalties, negative pressure 

warnings and flow, head or connectivity warnings of the pump at that time step. For 

instance, if junction pressure penalty shows insufficient pressure at a time step, 

increasing the probability of turning on pumps at that time step may cause to increase the 

pressure of water at the junction and reduce the pressure penalty. So a positive value will 

be added to the UI value of all pumps at that time step. Inversely, if a pump head warning 

shows that the pump cannot deliver required head at the time step, increasing the 

probability of turning off pumps at that time steps may reduce energy consumed. In this 

case, a negative value will be added to the UI value of the pump at that time step. 

Therefore, if the resulting UI value of a pump at a time step is a positive number, 

increasing the probability of turning on the pump at the time step may result in an 

improved pump schedule. Conversely, if the number is negative, increasing the 

probability of turning off the pump at the time step might be more fruitful. Finally, if the UI 

value is zero, it means that there is not any definite sign that a change status in the 

operation of that pump at that time step will result in an improved pump schedule. As it 
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was mentioned previously, the absolute magnitude of an UI value shows the magnitude 

of the probable positive effect of change of status of the pump operation on the 

optimization process. So larger absolute UI value indicates a high potential for 

improvement of pump schedule by changing the status of that particular pump. 

Figure 18 Up and down arrows on the algorithm, show operations that change UI 

value of a pump at a time step in a way that increase or decrease the probability of turning 

on the pump, respectively (or increase/decrease rotational speed in the case of variable 

speed pump). This algorithm is encountered in each time step of the PEPSO simulation 

to calculate UI values of each pump at all time steps. For instance for an optimization run 

during a 24 hour period with one hour time intervals, this process should be repeated 24 

times. 

The calculated UI of each pump at each time step will directly be used during the 

mutation step. However in the crossover step, we need to know total UI of all pumps at a 

time step. The Total Time Step Undesirability Index (TTSUI) is simply calculated by 

adding up UI values of all pump at the time step. For instance for optimizing a WDS with 

ten pumps during a 24 hour period with one hour time intervals, we can calculate 10 × 24 

= 240 UI values and 24 TTSUIs. 

2.2.2.6. Sorting 

PEPSO uses the non-dominated sorting method. In this method, at first, objective values 

of all solutions will be compared to find the number of times that other solutions dominated 

each solution. By definition, solution A dominates solution B if both of these conditions 

are true: 1) the solution A is no worse than B in all objectives and 2) the solution A is 

strictly better than B in at least one objective (Deb 2001). Mathematical definition of 

domination for a minimization problem has been presented by equation 6 (Narzisi 2008): 
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Figure 18- UI calculation algorithm of PEPSO 
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𝐴 ≼ 𝐵  𝑖𝑓𝑓 {
𝑓𝑖(𝐴) ≤ 𝑓𝑖(𝐵)    ∀𝑖 ∈ 1, … , 𝑀
∃𝑗 ∈ 1, … , 𝑀   𝑓𝑖(𝐴) < 𝑓𝑖(𝐵)

       Equation 6 

Where: A and B are two solutions, 

𝑓𝑖(𝐴) is value of 𝑖𝑡ℎ objective of solution A and 

𝑀 is number of objectives of the minimization problem 

Those solutions that have not been dominated by other solutions will be placed in the first 

Pareto frontier (Rank 1). Similarly, those solutions that are dominated just once will be 

placed in the second Pareto frontier (Rank 2), and so on. Figure 19 helps to visualize the 

idea of non-domination ranking for a two objective solution space. In this figure, “X1” and 

“X2” axis show values of two objectives of each solution that have been shown by different 

markers. For instance, “X1” and “X2” objective values of the solution “A” are 45 and 30, 

respectively. Comparing objective values of solution “A” and “B” suggest that “X1” 

objective of solution “B” is smaller than solution “A”. Also, the “X2” value of objective “A” 

is smaller than “B”. This problem is a minimization optimization problem with the utopia 

point of (0,0), So solution “A” is better than solution “B” in respect to “X2” objective but is 

worse than solution “B” in respect to “X1” objective. So none of these two solutions has 

an absolute advantage over the other, and neither dominates the other. Both solutions 

have been placed on the same Pareto frontier - as shown by the rectangular orange 

markers in Figure 19. However comparing solution “A” and “C” shows that Solution “A” is 

better than solution “C” on both objectives. So solution “C” is dominated by solution “A” 

and cannot be put on the same Pareto frontier as solutions “A” and “B”. 

After non-domination ranking and finding the rank of each solution based on its Pareto 

frontier rank, the crowding distance of solutions that are within the same Pareto frontier 

will be calculated. The value of the crowding distance is used to sort solutions within a 

Pareto frontier (those that have the same rank). By convention, crowding distance of 
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solutions that are located on edges of Pareto frontier is infinity. The first step in the 

calculation of crowding distance is the sorting (in ascending manner) of the solutions 

based on values of one objective. Then the solution with minimum objective value will be 

selected as the edge of the Pareto frontier, and its crowding distance will be infinity. The 

crowding distance of next solutions can be calculated by Equation 7 (Deb 2001). 

𝐶𝐷𝑖(𝑆𝑗) =
𝑓𝑖(𝑆𝑗+1)−𝑓𝑖(𝑆𝑗−1)

𝑓𝑖𝑚𝑖𝑛−𝑓𝑖𝑚𝑎𝑥

        Equation 7 

Where: 𝐶𝐷𝑖(𝑆𝑗) is crowding distance of 𝑗𝑡ℎ solution in the sorted Pareto frontier based on 𝑖𝑡ℎ 

objective 

𝑓𝑖(𝑆𝑗+1) and 𝑓𝑖(𝑆𝑗−1) are 𝑖𝑡ℎ objective values of a solution before and a solution after the 𝑗𝑡ℎ solution 

in the sorted Pareto frontier based on 𝑖𝑡ℎ objective 

𝑓𝑖𝑚𝑖𝑛
 and 𝑓𝑖𝑚𝑎𝑥

 are smallest and largest values of the 𝑖𝑡ℎ objective among solutions of the Pareto 

Frontier 

 

Figure 19- Non-domination ranking and crowding distance calculation 
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In the end, the same process will be repeated based on values of other objectives. The 

calculated crowding distance values of all objectives of a solution will be summed to 

provide the total crowding distance of the solution. 

Figure 19 provides further insight into the crowding distance calculation. Figure 19 shows 

solutions that have been categorized in four Pareto frontiers. Solutions of each Pareto 

frontier have been shown with the same color and same marker shape. Solutions of the 

first Pareto frontier are shown by blue circle markers. Solutions D and E are two edges of 

the first Pareto frontier with minimum X1 and X2 values respectively. By definition, 

crowding distance value of these two solutions is infinity. Crowding distance of other 

solutions of the first Pareto frontier can be calculated by Equation 7: 

Crowding Distance of Solution F = [(75-30) / (75-0)] + [(25-0) / (70-0)] = 0.957 

Crowding Distance of Solution G = [(20-10) / (75-0)] + [(50-40) / (70-0)] = 0.276 

As the crowding distance of solution F is larger than crowding distance of solution G, 

solution F will have a higher rank in respect to solution G among the solutions of the first 

Pareto frontier. After calculating the crowding distance values, solutions can be sorted 

initially based on the rank of their Pareto frontiers and subsequently based on their 

crowding distance within each Pareto frontier. By using this sorting method, all solutions 

of Figure 19 have been sorted and their rank are shown with two numbers that are 

separated by a dash (“-“). The first number shows Pareto frontier rank of each solution 

and the second number shows the rank of the solution among the same Pareto frontier. 

So Solution D and E from the edges of the first Pareto frontier have the highest rank in 

the whole population and solution H with the lowest crowding distance in the last Pareto 

frontier has the lowest rank. This sorting method helps the optimization algorithm to put 
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more value on solutions that have been dominated less and are located in less crowded 

(less explored) regions of the solution space or on the edges of Pareto frontiers. 

2.2.2.7. Sampling and Elitism 

PEPSO uses the roulette wheel sampling method to select solutions for crossover, 

mutation and to select elite solutions for the next generation (Deb 2001). It also uses the 

same method for selecting the part of a solution that should be changed during crossover 

or mutation processes. The sampling module receives an array of elements with their 

proportional importance (PI) and selects required samples with or without replacement. 

During elitism process when we want to select promising solutions and move them to the 

next generation, the above-mentioned array contains all solutions of the current 

generation, and their corresponding PIs are values that are calculated based on their non-

dominated ranks. By this method solutions with higher non-dominated ranks have higher 

chance to be selected and moved to the next generation. Each solution can be moved to 

the next solution just once. Therefore, repeating is not allowed, and here PEPSO uses a 

without replacement roulette wheel sampling method. In another situation like crossover 

and mutation steps, when PEPSO wants to find an undesirable portion of a solution and 

change it to create an improved solution, the above-mentioned array contains different 

portions of the solution, and their corresponding PI is the UI of each portion of the solution. 

Here, a portion of the solution with a large UI should have a higher chance to be selected 

for replacement.  

This example might help to clarify the selection process: assume there is an array 

of ten elements that are numbered from 1 to 10, and their PI values are equal. So we 

expect that all elements have the same chance of selection. However, before starting the 

random selection process, we need to create a cumulative PI vector. The cumulative PI 
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of each element can be created by adding PI of the element to PI of all the previous 

elements in the array. Accordingly, the first value in the cumulative PI vector is one, the 

second number is 1+1=2 and so on to the last cumulative PI value that is 10. Now let’s 

assume another scenario that the PI of each element is twice more than the previous 

element, the first value in the cumulative PI vector is one, the second number is 1 + 2 =3 

and so on to the last cumulative PI value that is 1 + 2 + 4 + 8 + 16 + 32 + 64 + 128 + 256 

+ 512 = 1023. For selecting an item, at first, a random number between 0 and the last 

value of the cumulative importance array will be generated. Index of the smallest 

cumulative importance value that is equal to or greater than the randomly generated value 

is the index of selected item. For instance, if the randomly generated value is 9, it means 

that in the first scenario when all items have the equal importance, the selected item is 

the 9th item (9<=9). However in the second scenario, it is the 5th item when the importance 

of each item is twice more than the previous item (9<=16). In the case of the sampling 

without replacement, effect of each selected item should be removed from the cumulative 

importance array, before selecting the next item. Figure 20 shows the process of sampling 

two sections from an array with seven elements (sections) with (left) and without (right) 

replacement by roulette wheel method. Based on Figure 20, the initial array has seven 

elements (colored sections), and cumulative PI of all elements are equal to 18. For 

selecting the first element, number 8 is generated randomly which leads to selecting the 

3rd element. For selecting the second element, number 11 generated randomly that 

correspond to section 5th and 6th in without replacement (right) and with replacement (left) 

scenarios respectively.  
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Figure 20- Sampling with (left) and without (right) replacement by roulette wheel method 

It should be noted that after the first selection, total cumulative PI of the without 

replacement scenario gets 3 unit shorter than the with replacement scenario (as the third 

element (with PI length of 3) was selected, took out and not replaced in the right scenario) 

Elitism process in PEPSO has two parts. After sorting solutions, a group of the 

solution with highest ranks will be selected directly as the first part of the elite population 

for the next generation. The second part of the elite population will be selected from the 

remaining solutions by using the roulette wheel sampling method and without 

replacement. The process of selecting the second group of elite solutions for the next 

generation is similar to the process of selecting solutions for crossover and mutation, 

which is explained in detail in the section 2.2.2.8. The size of the first group of elite 

solutions is user-defined. The second group of elite solutions has more variety in than the 

first group. Here the roulette wheel sampling method gives the solutions with low ranks in 

sorted population an opportunity to be selected as an elite solution. By default 20% of 

solutions of a population will be selected directly from the top of the sorted population and 

the rest will be selected by the roulette wheel method. 
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2.2.2.8. Crossover 

Crossover (also termed reproduction) is a GA operation which creates a new 

solution (child) by combining two or more selected solutions (parents). A standard 

crossover operator combines two parents by various techniques (e.g. single point, double 

point, and uniform) to form two children (Ting 2005). However, in PEPSO, a customized 

crossover technique has used that results in just one child. In this technique, at first, a 

pump schedule as the main parent will be selected. The more desirable solutions have a 

higher chance to be selected as the parent. Then one or multiple time blocks of the parent 

pump schedule that are not desirable will be selected to be replaced with potentially better 

time blocks of other solutions. When a time block of the parent pump schedule is selected 

for replacement, a better time block needed to be found to replace it. Therefore, the same 

time blocks of all available solutions will be ranked and by using the roulette wheel method 

a time block will be selected for replacement. Time blocks with a higher rank have a 

greater chance of selection to replace the undesirable time block of the parent pump 

schedule. By this method, we can expect that promising solutions will be selected and 

their undesirable time blocks will be replaced with better time blocks to form a more 

acceptable solution. 

The selection of parent solutions requires the ranking of all solutions according to 

the non-domination rank and crowding distance in each Pareto frontier (as explained in 

section 2.2.2.6). The rank of solutions is used to calculate the PI value of each solution. 

Solutions with the highest rank (on the edge of the first Pareto frontier) are the most 

important solutions, and solutions with the lowest rank (in a crowded section of the last 

Pareto frontier) are the least important solutions. PI values of solutions will eventually be 

used to calculate the cumulative PI vector that will be used for selecting parents using the 
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roulette wheel sampling method. However, before calculating the cumulative PI vector, 

PI of solutions should be adjusted based on 1) number of Negative Pressure Warnings 

(NPW) and 2) final tank level status of each solution. 

For adjusting PI value of the solutions, at first, PI of the solutions that have NPW 

will be reduced by dividing it by a number that is calculated based on the number of NPW 

of the solution. A higher number of NPW increase the size of the denominator and 

reduces the importance value. By default, the function that calculates denominator value, 

adjusted in a way that if all solutions in a population except one has maximum number of 

NPW, probability of selecting the solution without NPW is 20% of probability of selecting 

one solution from the group of all other solutions with maximum possible number of NPW 

(see Equation 8). When there is no NPW associated with the solution, the minimum value 

of the denominator is 1 and when the solution has the maximum number of NPW the 

denominator value is equal to 1+(20% of the size of the population). 

NPW Probability Reducer Denominator = 1 + (Population Size × 0.2 × (No. of NPW of solution / 

Maximum No. of NPW))        Equation 8 

After reducing PI of the solution based on the number of its NPWs, the status of 

final tank level of solution will be investigated. If final tank level is equal to or greater than 

the initial tank level, it is a desirable solution. However, if the final tank level is smaller 

than the initial solution, the amount of the tank level deficit will be calculated. Based on 

the calculated tank level deficit, PI of the solution will be reduced again. The formula and 

logic of calculating the tank level deficiency is similar to the calculation of the NPW 

Probability Reducer Denominator and appears in Equation 9. 

Tank Level Deficiency Probability Reducer Denominator = 1 + (Population Size × 0.2 × (Tank 

Level Deficiency of solution / Maximum Tank Level Deficiencies))   Equation 9 
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Accordingly, the effect of PI reduction of both NPW and tank level deficiency can 

be imposed on initial importance value of the solution by Equation 10. 

Adjusted Importance of the solution = Initial Importance of Solution / (NPW Probability Reducer × 

Tank Level Deficiency Probability Reducer)      Equation 10 

Larger values of the adjusted PI indicate that the solution has a higher rank in the 

non-dominated sorted population and has fewer NPWs and a less significant tank level 

deficiency. It means that in comparison to all solutions in the population, a solution with 

higher adjusted PI value is closer to the optimum solution and is feasible and desirable 

from the operation perspective. It makes the solution a good candidate to be parent and 

generator of the next generation of better solutions. The adjusted PI of solutions can be 

used to create the cumulative PI vector that will be used for selecting parents by roulette 

wheel technique with replacement. This means that a solution can be selected as a parent 

multiple times. 

The TTSUI will be used for selecting some candidate undesirable time blocks that 

need to be replaced to create a better child solution. This means that, at first, the TTSUI 

of all time steps of each solution is calculated. Then TTSUIs are used as PI values to 

create the cumulative PI vector. This new cumulative PI vector will be used in the roulette 

wheel method (without replacement) to select time blocks with high TTSUI that are good 

candidates for replacement. Sampling with the roulette wheel method without 

replacement prevents a time block of the selected pump schedule to be selected multiple 

times for the replacement. 

Finally, after selecting the parent and selecting those time blocks that are 

undesirable, it is necessary to select better time step from other solutions to replace the 

undesirable time blocks. For doing this, we need to compare the same time block of all 
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solutions and rank solutions for each time step separately. PEPSO ranks time steps by 

using a combined factor that includes the rank of the solution in population and value of 

TTSUI of the same time step of each solution. The reciprocal of the rank of a solution will 

be added to the reciprocal of the TTSUI multiplied with a factor (by default, 15) to calculate 

PI of each solution for the time step (see Equation 11). By this method, the calculated PI 

includes the effect of both the desirability of the time step (reciprocal of TTSUI) and the 

rank of the solution. This means that to consider a time step of a pump schedule as a 

promising time step, we need to make sure that 1) the desirability of the time step is high, 

and 2) it comes from a high-rank solution (that means the time step can lead to a good 

solution when combined with other time steps of a pump schedule). It should be noted 

that the multiplier of 15 for the desirability part of formula puts the main emphasis on the 

desirability instead of the solution rank. PI of each time step of each solution will be added 

to the PI of the same time block of other solutions to create the cumulative PI vector of 

the time block. This cumulative PI vector will be used for selecting the solution that has 

the most promising time step by using the roulette wheel technique with replacement. The 

time step of the selected promising solution will replace the undesirable time step of a 

parent to form a better child. 

PI of the Time Step of the Solution = (1 / Rank of the solution) + 15 × (1 / TTSUI) Equation 11 

By using this customized crossover technique, each parent generates one child 

that is mainly created from the one parent but may have some time blocks from other 

solutions. The focus of this crossover technique is on improving the solution condition by 

changing some time blocks of the pump schedule (columns), and it will not affect a row 

(the whole operation plan of a single pump) or a cell of pump schedule individually. 
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The number of parents involved in each iteration and number of time steps that 

need to be replaced can be defined by users. The first value that users define is the 

crossover percentage, which defines the percentage of the solution in the population 

which should be selected as parents. The second crossover parameter that users define 

is the crossover rate, which represents the percentage of the number of time steps of a 

solution that should be replaced with the similar time steps of other solutions. Both of 

these parameters can vary between 0 and 100%. By default, they are both set to 50%. 

This means that during each optimization iteration, by default, 50% of solutions will be 

selected as parents and 50% of time blocks of each selected parent will be replaced with 

promising time block of other solutions. It should be noted that if users want to input this 

numbers via the user interface they can use percentage values. However, inside the 

PEPSO, these percentages will be changed to a number between 0 to 1, and if users 

want to change them by editing the project file manually, they should convert percentages 

to a number between 0 to 1. 

2.2.2.9. Mutation 

Mutation is a GA operator that generates a new solution by changing (mutating) 

some parts of a selected solution. Similar to the crossover operator, the mutation operator 

of PEPSO uses the UI map to select that portion of a pump schedule that would benefit 

from alteration. The process of selecting solutions for mutation is the same as the process 

of selecting parents for the crossover process. 

After selecting the solution that should be mutated, absolute UI values of all cells 

of the selected pump schedule are used as PI values. This means that a cell of a pump 

schedule with high absolute UI value (high PI value) is a good candidate for mutation. PI 

values will be added to form the cumulative PI vector. Then the cumulative PI vector will 
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be used for sampling some cells with the roulette wheel technique without replacement. 

Cells that are selected for the mutation will have their value reversed (on to off; off to on) 

if the cell represents a constant speed pump. The value in mutated cells associated with 

a variable speed pump will be modified based on the UI value of the cell. This means that 

the mutation will change an “off” pump to “on”, and the relative speed will be selected 

randomly from a distribution of numbers between the minimum RRS and 1 (full speed). 

Likewise, if the pump is “on”, its relative speed will be increased randomly if the UI values 

are positive. If the pump is “on” and its UI value is negative, there is 50% chance to turn 

off the pump and 50% chance to reduce its RRS randomly. In any case, RRS should 

always be between minimum RRS and 1. 

The number of solutions that should be mutated can be defined by the user as a 

mutation percentage, representing the percent of the population that should be mutated. 

They also can define the mutation rate parameter, which represents the percentage of 

the cells of a selected pump schedule which should be mutated. Both of these parameters 

can be a number between 0 and 100% and by default are 5% and 10%. It means that 

during each optimization iteration, by default, 5% of the solutions will be selected for 

mutation and 10% of cells of each selected pump schedule will be mutated. Like the 

crossover parameters, users can adjust mutation parameters by inputting percentage 

values (between 0% and 100%) via the user interface but inside the PEPSO, these 

numbers will be converted to values between 0 and 1. 

2.2.2.10. Stopping Criteria 

At the end of each iteration, PEPSO checks the stopping criteria to determine if 

the iterative solution process should continue or if the current solution should be accepted 

and the post-optimization process begin. PEPSO includes five stopping criteria. Users 
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can define either: 1) the maximum time of optimization, 2) the maximum number of 

iterations, 3) the maximum number of solution evaluations, 4) a goal for each optimization 

objective and run the process until reaching those goals, or 5) the maximum number of 

stagnant iterations. For item 3), the number of solution evaluations can be calculated as:  

No. of Solution Evaluations = Population Size × (1 + No. of Iterations × (Crossover Percentage + 

Mutation Percentage))         Equation 12 

For item 5), the term “stagnant” relates to the change in the value of the objectives 

of the solution.  If the value of objectives of the best solution does not change more than 

a defined minimum value during an iteration, the iteration will be considered as a stagnant 

iteration. If multiple consecutive stagnant iterations occur, it means that the optimization 

process reached a local and potentially global optimum solution.  

It is possible to select one or a combination of the five stopping criteria. If more 

than one is selected, the optimization process will be stopped when the first criterion is 

satisfied. 

2.2.2.11. Best Solution Finder 

The best solution finder module of PEPSO is designed to select a single pump 

schedule as the best solution among a population of solutions. For selecting the best 

solution, three characteristics are considered. First of all, the best solution should be 

selected from solutions of the first Pareto frontier (those solutions that have not been 

dominated by any other solution). After that, the best solution should have the minimum 

combined objective value and an acceptable inadmissibility value. 

The combined objective value is a linear combination of values of three objectives, 

each of these objectives having been multiplied by the user-defined weighting factor for 

that objective.  It is important to note that the combined objective value is used solely to 
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choose the best solution from among a population of solutions. The objective weighting 

factors are not used to convert the multi-objective optimization problem to a single 

objective problem. Equation 13 shows the simple formula that is used for calculating the 

combined objective value. 

Combined Objective Value = Electricity Cost × Weighting Factor 1 + Pollution Emission × 

Weighting Factor 2 + Total Penalty × Weighting Factor 3    Equation 13 

By definition, the value of the inadmissibility of a solution indicates how well a 

solution satisfies the minimum requirements for an acceptable and practical solution. The 

calculation of inadmissibility is similar to the calculation of penalties. The inadmissibility 

will be calculated using constraints of pump operations, water levels in tanks, water 

pressure at strategic junctions and water velocity in strategic pipes. For water level in 

tanks, water pressure at strategic junctions and water velocity in strategic pipes, users 

can define hard constraint boundaries that are wider and stricter than the soft, desirable 

ranges that have been used for calculating penalties. If the water level in tanks, the 

pressure at strategic junctions or water velocity in strategic pipes exceeds these hard 

constraints, the solution cannot be considered as a fully acceptable solution. For each 

time block, when a violation of these hard constraints occurs, a unit value will be added 

to the tank level, junction pressure or velocity inadmissibility values of the solution. Note 

that the inadmissibility values of the strategic junction and pipes will be multiplied by the 

constraint importance multiplier. 

 For pump operation, users can also define a hard constraint for a maximum 

number of switches in a day, minimum start intervals or maximum length of pumping 

cycles. Similarly, if a pump operation of a solution violates one of these limits a unit value 

will be added to the pump operation inadmissibility of the solution. 
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Before adding up inadmissibility values of pump operation, the water level in tanks 

and water pressure and velocity, the effect of all of them should be normalized to ensure 

that each of the inadmissibility values has the same scaled effect on the best solution 

selection process. Inadmissibility of pumps will be divided by the number of pumps times 

three (for three types of pump operation constraint that can be defined in PEPSO). 

Inadmissibility of tanks will be divided by the number of tanks. Inadmissibility of water 

pressure and velocity will be divided by total pressure and velocity constraint importance 

multipliers, respectively. Total pressure and velocity constraint importance multipliers can 

be calculated by adding constraint importance multipliers of strategic junctions and pipes, 

respectively. After implementing these normalization operations, each inadmissibility 

value will have a maximum value of 1.0. Therefore, the total Inadmissibility of pump 

operations, tank levels, water pressure at strategic junctions and water velocity in 

strategic pipes of a solution will sum to a value of 4.0 in the worst case. 

Acceptable inadmissibility will be calculated based on the inadmissibility of the first 

Pareto frontier. Acceptable inadmissibility is the minimum inadmissibility among solution 

of the first Pareto frontier plus the inadmissibility tolerance value. By default, the 

inadmissibility tolerance is 10% of the difference between the minimum and maximum 

inadmissibility values of the solutions of the first Pareto frontier. This formulation allows 

PEPSO to select a solution with minimum inadmissibility, or select among solutions that 

may have a slightly larger value of inadmissibility (equal to inadmissibility tolerance) but 

low combined objective value. For instance, without considering the inadmissibility 

tolerance, a solution with high energy consumption and an inadmissibility value of zero 

might prevent another solution in the first Pareto frontier with lower energy consumption 

and a tank level violation at just one optimization time block from selection as the best 
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solution. Although the latter solution has a violation from hard tank level constraint that 

creates an inadmissibility value slightly above zero, its electricity cost might be 

considerably lower than the former solution. In such a case, even though its inadmissibility 

value is not zero, it may be a good candidate for the best solution. Equation 14 provides 

the formula for calculating the acceptable amount of inadmissibility of a solution. As it was 

mentioned, the default inadmissibility tolerance percentage is 10%. 

Acceptable Amount of Inadmissibility among Solutions of the First Pareto Frontier = Minimum 

Inadmissibility + Inadmissibility Tolerance Percentage × (Maximum Inadmissibility – Minimum 

Inadmissibility)         Equation 14 

2.2.3. Hydraulic Solver 

At the core of all the modeling, is the simulation of the hydraulic aspects of the 

WDS in order to determine the power demand and energy consumption of pumps, tank 

levels, water pressure at strategic junctions, water velocity in strategic pipes and finally 

warning messages of pump and system under a suggested pump schedule to evaluate 

the pump schedule and find ways to make that optimized. A WDS hydraulic simulator with 

extended period simulation (EPS) ability can provide all of this information. PEPSO uses 

two modeling approaches for this purpose. In the first approach, EPANET V2.0.12 toolkit 

(Rossman 1999) is used as a high-fidelity modeling tool. This toolkit lets us use the 

EPANET model of WDS, change its pump schedule and model it to get high accuracy 

results. The second approach is using a metamodel of WDS to model the hydraulic 

system faster than EPANET toolkit. The metamodeling technique that is implemented in 

PEPSO adopts an artificial neural network (ANN) to input pump schedule and other 

parameters into a trained ANN and receive the required result that normally was provided 

by EPANET toolkit. We expect increased the computational efficiency of hydraulic 

modeling by using a metamodel instead of a high fidelity model. However, it may reduce 
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the accuracy of the solution. So using ANN instead of EPANET might increase the speed 

of optimization but may decrease its accuracy. Each of these approaches is described in 

the following sections. 

2.2.3.1. EPANET Toolkit 

As introduced in Section 2.2.2.1, the EPANET file is initialized for optimization 

purpose during the pre-optimization phase. After initialization, each pump schedule of the 

initial population will be converted to a series of pump control commands that are readable 

for EPANET and will be added to the initialized EPANET file. This EPANET file will be 

used for hydraulic simulation with the toolkit. 

EPANET toolkit solves the hydraulic network time step by time step. If between 

two time steps, the state of the system changes in a way that affects the hydraulic results, 

EPANET will solve the hydraulic equations another time in between the two time steps. 

For instance, assume a hydraulic simulation uses an hourly time step, and it starts from 

hour 00:00. The toolkit solves hydraulic equations for time 00:00 at first. However, if there 

is a rule or control at 00:30 that changes the status of a pump or valve or even if a tank 

gets full or empty at 00:30, the toolkit solves the hydraulic equation at 00:30 also. It then 

continues to solve the equations at 01:00, 02:00, and so on. Usually, report intervals are 

defined by the reporting time step parameter of the EPANET file. However, we might see 

some additional intermediate reports that correspond to a change of state of the system 

between two hydraulic time steps that creates an additional intermediate time step as was 

explained above. During the PEPSO optimization process, we are mostly interested in 

hydraulic results at hydraulic time steps. However, there are components of the 

intermediate results that may be important to us. For instance, PEPSO stores the peak 

power demand at each time step for use in calculating the power demand cost. If peak 
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power demand at an intermediate report is higher than the peak power demand at the 

previous hydraulic time step report, peak power demand of the intermediate report will be 

stored as the peak power demand of the current optimization time step. Energy 

consumption during an optimization time step also is calculated as weighted average of 

energy consumption during all sub time intervals between two optimization time steps 

(weighted based on the length of each sub-time interval).  

EPANET toolkit reports power demand of each pump during the reporting time 

step. PEPSO retrieves these numbers and uses them to calculate the peak power 

demand and energy consumption of each meter at each optimization time step. Peak 

power demand of each meter can be calculated by adding power demand of all pumps 

that are connected to the meter at each reporting time step and selecting the largest 

power demand value during the intended optimization time step. It should be noted that 

if the reporting time step is smaller than the peak power demand calculation period (based 

on the electricity tariff) the average peak power demand of all reporting time steps during 

that peak power demand calculation period will be used. Multiplying power demand of all 

pumps that are connected to a meter by the reporting time step results in the energy 

consumption at the meter during the reporting time step. Adding these energy 

consumptions over the period of an optimization time step provides the energy 

consumption at that meter during that optimization time step. 

In addition to energy consumption and peak power demand of meters, PEPSO 

determines pump efficiencies during each optimization time step. PEPSO receives flow 

rate, head and power demand of pumps from the EPANET toolkit and uses these values 

to determine pump efficiencies. 
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Before starting the hydraulic simulation, PEPSO reads and stores the initial tank 

levels. Final tank level of each optimization time step will be obtained as the result of the 

hydraulic simulation. The water pressure at strategic junctions and water velocity in 

strategic pipes are also obtained as a result of the hydraulic simulation and stored by 

PEPSO. Finally, PEPSO reads the warning section of the EPANET toolkit hydraulic 

simulation report and determines if a pump has a Pump Head Warning (PHW) or a Pump 

Flow Warning (PFW) during an optimization time step. The presence or absence of these 

warnings is used in the calculation of UI values. Another pump warning that PEPSO may 

retrieve from the hydraulic simulation report is the Pump Disconnection Warning (PDW). 

In addition to the pump related warnings, for each optimization time step, PEPSO 

determines if the system has Negative Pressure Warning (NPW) or not. 

After hydraulic simulation with the EPANET toolkit, all the above-mentioned 

information is stored in the data structure of each solution. It will be used later for 

evaluating the solution and finding promising ways to use crossover and mutation to 

improve the solution. 

2.2.3.2. Training Set Generator 

Before using an ANN as a metamodel of WDS, it must be trained. For training an 

ANN, a training set that is comprised of a set of input values and their corresponding 

output values is needed. In the case of the WDS modeling, inputs are initial levels of 

tanks, the status of pumps, the speed of pumps (for variable speed pumps) and water 

demands. Required outputs of a model are final tank levels, peak power demand and 

energy consumption of pumps, water pressure at strategic junctions, water velocity in 

strategic pipes, PHW, PFW, and PCW of each pump and NPW of the system. As an 

approach to reduce the number of input values, the water demand multiplier of each 
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demand pattern can be considered as an input, rather than providing water demands at 

all junctions. This number can be multiplied by base demand at each junction to calculate 

demand of the junction. In this case, instead of inputting multiple values as the demand 

of multiple junctions, a single value is provided for each demand pattern. For instance, if 

all junctions of a WDS have the same water demand pattern, all demand inputs of an 

ANN can be replaced with a single demand multiplier. 

The training set creator module of PEPSO uses the EPANET input file of the WDS 

to create an ANN training set. Each ANN training point has two parts: 1) input part and 2) 

output part. A group of training points can form a training set which will be used for training 

an ANN. The training set creator module of PEPSO randomly changes initial tank levels, 

status and speed of pumps and demand multipliers and stores them as the input part of 

an ANN training point. Randomly generated input values will be used to initialize the 

EPANET model. After simulating the initialized EPANET model with the toolkit for a 

hydraulic time step, final results will be saved as output values of the same ANN training 

point. Repeating the process for several thousand times will form an ANN training set with 

thousands of training points. 

The most important part of creating a training set is generating a balanced 

distribution of random input values. For instance, if status and speed of pumps change 

randomly, in most cases, about half of pumps are on, and half of the pumps are off. In 

this case, the probability of generating a random input condition that 20% or 80% of the 

pumps are on is low. However, in a real WDS there are often times when, for example, 

20% or 80% of pumps are operating to satisfy the flow and pressure demands. Therefore, 

it is more practical to create a training set that is designed such that the number of training 

points with 20% or 80% pumps on (for example) is equal to the number of training points 
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with 50% pumps on. These two preferred and problematic distributions of the number of 

training points in an ANN training set with respect to the percentage of pumps which are 

“on” have been shown in graphs of Figure 21. For creating this graph, 10000 random 

pump schedule are created for a WDS with ten pumps. The horizontal axis shows the 

percentage of pumps that are “on” in the randomly generated pump schedule. The blue 

(high dot density) bars show the distribution of pump schedule when they are created by 

a complete random and problematic algorithm. The orange (low dot density) bars illustrate 

the distribution of pump schedules that generated randomly but by using a controlled 

algorithm which results in a more diverse group of randomly generated pump scheduled 

with respect to the number of pumps that are “on”. 

 

Figure 21- The preferred and problematic distribution of number of training points in an ANN 
training set with respect to the percentage of pumps which are ON 
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2.2.3.3. ANN Trainer 

The ANN trainer is a module of PEPSO, which uses the prepared training set to 

train an ANN for modeling the WDS hydraulically. PEPSO uses Fast Artificial Neural 

Network (FANN) libraries of code to create and train ANNs. FANN is a widely used free 

and open source library that was initially developed in C language in 2003 (Nissen 2003). 

A .Net wrapper is used that let PEPSO call FANN functions directly from VB.NET 

environment. ANN trainer module of PEPSO has two parts. The first part creates an ANN 

structure and the second part trains it. By using FANN library, PEPSO can create a 

standard, shortcut or sparse structure for the ANN. In a standard structure, each layer 

has connections to the next layer, while in a shortcut structure, a neuron can be connected 

to neurons of all the later layers. A sparse structure allows neural networks that are not 

fully connected. Activation (transfer) functions of hidden and output layers of ANN can be 

selected from a list of functions that are introduced in Table 5. 

Table 5- Available activation (transfer) functions of hidden and output layers of ANN 

Name Description 

Sigmoid Special case of logistic function with range of 0 to 1 

Sigmoid Symmetric Hyperbolic tangent function with range of -1 to 1 

Sigmoid Stepwise Stepwise linear approximation of sigmoid function 

Linear Linear function 

Linear Piece Bounded linear function 

Sin Symmetric Periodic sine function 

Cos Symmetric Periodic cosine function 

Gaussian Gaussian curve function 

Gaussian Symmetric Symmetric type of Gaussian function 

Elliot Fast sigmoid-like function defined by David Elliott 

Elliot Symmetric Fast sigmoid symmetric-like function defined by David Elliott 

The FANN library provides two training stop functions: Mean Squared Error (MSE) 

and Bit. MSE is a common type of stop function of ANN training process for function fitting. 

The Bit stop function can be used for training of the binary classification ANNs. FANN 

also can calculate training error using two linear and hyperbolic tangent functions. 
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Tangent hyperbolic function aggressively selects outputs that differ considerably from 

target values. 

By using the FANN library, PEPSO can train ANNs with standard and cascade 

methods. In the standard method, the number and size of ANN layers must be defined 

by the user. In the cascade method, the trainer automatically adds layers to the ANN 

structure one by one to reach to an optimum structure. ANN trainer module is also able 

to train the network with three different algorithms. The incremental algorithm is a 

standard backpropagation method where weights are updated after each training. This 

means the weights will be updated many times during a single epoch. The batch algorithm 

is similar to the incremental algorithm, but all weights will be updated at once during an 

epoch (at the end of calculating MSE of the entire training set). It is also possible to use 

the Rprop and Quickprop algorithm for training. Although these advanced batch training 

algorithms can be more efficient than the standard incremental and batch algorithm, they 

have more parameters that need to be adjusted. 

The FANN library enables PEPSO to use these many different options for training 

the ANN. However, most of them are not familiar options for WDS operators, and 

designers and PEPSO do not rely on the user to select the ANN training options. Instead, 

if a user selects the ANN metamodel instead of EPANET hydraulic model, all the related 

options will be selected automatically by PEPSO. 

By default, PEPSO uses the standard structure with one hidden layer for ANN 

training of WDSs. Using the sigmoid symmetric and linear activation functions for hidden 

and output layers are suggested in the case of training ANN for function fitting. For training 

ANNs for classification problem, the sigmoid and linear activation functions work better 

(Kriesel 2007). Training ANN for warning message simulation that provides binary output 
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(true and false: for existence or absence of warning message at a time step) is a 

classification problem, so the Sigmoid and linear functions are the default activation 

function of ANN trainer of PEPSO. However, training ANN for calculating final tank level, 

power demands of pumps, junction pressures, and velocities are function fitting type of 

problems. Accordingly, the sigmoid symmetric and linear activation functions have been 

used as default activation function of ANN trainer of PEPSO. For this ANN, the MSE 

functions are used as default stopping function of ANN trainer. The Bit function is used 

as the default stopping function of the ANN trainer for warning messages. By default, the 

batch algorithm with the back propagation training method is used for training all ANNs. 

It is important to know that when PEPSO trains an ANN, it trains a metamodel that 

receives inputs as an initial condition of the system at the start of an optimization time 

step and provides outputs that are the hydraulic result of the system at the end of the 

optimization time step. So for each time step metamodel should be used to provide 

outputs, and this process should be repeated to model the WDS during the whole 

optimization period. For instance, for an optimization run during a 24 hour period with one 

hour time intervals, ANN should be used 24 times. 

2.2.3.4. ANN User 

After training a metamodel, the ANN user module of PEPSO uses it to replace the 

EPANET model. Trained ANN works like the EPANET toolkit and reports results for each 

optimization time step. Tank level output of ANN for the previous time step is the tank 

level input of the current time step. Tank level inputs of the Initial time step are the initial 

tank levels of the system. This consecutive usage of ANN may cause some cumulative 

error for tank level at the end of simulation duration. 

2.2.4. Output Reporter 
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PEPSO provides different types of outputs. It includes formatted text outputs (*.txt), 

graphs (*.fig, *.jpg) and optimized EPANET input file (*.inp). Final EPANET input file 

includes the optimized pump schedule and can be used directly in EPANET software to 

consider the effect of the optimized pump schedule on a different part of the WDS. All of 

these different types of outputs are explained in the following sections.  

2.2.4.1. Text Output Creator 

This module of PEPSO receives a population and reports almost everything about 

the solutions of the population in the form of a formatted text file. Although users can 

select the level of details that they want to have in the text report, by default, it includes 

all details that have been listed in Table 6. Most of the information in the text report are 

formatted in a tabular form with tab delimiters that make it easy to read information directly 

from the text report or to copy and paste it into an Excel file or even read it with other 

software for further process or archiving. 

Table 6- Sections of the text report of PEPSO 

Section 
name 

Frequency 
of report 

Content 
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Main project information (name, location, files) 

Electricity meter data (pump list, tariff, and pollution emission scenarios) 

Constraint (pumps, tanks, strategic junction and pipes) 

Optimization options (objectives, stopping criteria, algorithm) 

Initial pump schedules 

Reporting options (text and graphics) 
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Population summary schedule (objective values of all solutions) 

UI summary of population (UI of all solutions at each time step) 
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Optimization trend summary (average of populations and best solution) 

Final population summary schedule (objective values of all solutions) 

Final UI summary of population (UI of all solutions at each time step) 

Detailed results of final solutions (pump schedule, UI table, pump flow, 
head and connection warning, pump operation statistics report, pump 

penalty, electricity cost, power demand table, tank level table, tank 
penalty table, strategic junctions pressure table, strategic pipes velocity 
table, strategic junction and pipe penalty tables and negative pressure 

warning table) 
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2.2.4.2. Plotter 

In addition to the detailed text report, PEPSO can provide results in graphical 

format. PEPSO reports the selected pump schedule in a graphical format as shown in 

Figure 22. Pump schedule graph indicates working cycles of the pump by colorful 

horizontal bars. The horizontal axis of this graph shows the optimization period. The 

vertical axis shows the name of the pumps. For instance, Figure 22 shows pump schedule 

of 13 pumps of a WDS during a 24 hour period of optimization. Each row of the graph 

shows operation plan of a pump. For constant speed pumps, the duration of time that the 

pump is on is indicated by a colored line. For variable speed pumps, the RRS of the 

pumps are noted on the colorful bars (see pump PMP-9 and PMP-544 of Figure 22). 

 

Figure 22- Graphical representation of the best pump schedule 

PEPSO can display optimization trend graphs for the best solution and average of 

the population (see Figure 23). Each graph shows the trend of minimization of different 

objectives. For objectives like total penalty or electricity cost that are calculated from 
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different values, values of the components can also be plotted. For instance, users can 

select the display of optimization trend of energy consumption cost and power demand 

cost component of the electricity cost. They also can see trends of pump operation 

penalties, penalty of water level in tanks, penalty of water pressure at strategic junctions 

and penalty of water velocity in strategic pipes that ultimately form the total penalty. 

Trends of objective values of the best solution of each population are plotted on the left 

side, and trends of the average of objective values of solutions of a population are plotted 

on the right side (see Figure 23).  

 

Figure 23- Optimization trend of objectives of the best solution (left) and average of population 
(right) 

The horizontal axis of each graph shows iterations of optimization and the vertical 

axis shows the objective values. Users can select a linear or logarithmic scale for the 

vertical axis. This feature might be useful for investigating results of the WDS which 
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initially has a considerable amount of penalty but after successive generations have much 

smaller penalty values. 

Finally, PEPSO can be used to display each population in the solution space using 

a three-dimensional Pareto frontier graph, as shown in Figure 24. The 3D plot is 

generated by an implemented MATLAB library inside the plotter module of PEPSO. This 

plot is customizable and has a user-friendly interface that allows users to rotate, zoom 

and pan. Via the reporting options form of PEPSO, users can define the objective value 

that is displayed on each axis. It also is possible to change scale of each axis to 

logarithmic scale. A logarithmic scale works well in displaying penalty values that are 

calculated using a power penalty function. As shown in Figure 24, a group of solutions 

(dots) that are in the same Pareto frontier are separated from other solutions by color 

coding. The legend of this plot defines the color coding (colored gradient bar on the right 

side of plot). 

2.3. Test Cases and Optimization Tests Setup 

The test plan and scenarios that are designed to evaluate efficiency and accuracy 

of PEPSO are explained in part 2.3.1. Following that, the characteristics of WDSs that 

are used as test cases are described. 

2.3.1. Testing Plan and Scenarios 

In this study, PEPSO tested with two approaches. At first, different functionalities 

of PEPSO are tested and the result of the optimization process in different scenarios 

compared with a base scenario. In the second approach, PEPSO results compared with 

some other available methods including the famous Darwin Scheduler component of 

WaterGEMS software. 
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As it was mentioned, in the first approach a base case scenario was used as a 

reference point of comparison. In this scenario, it was aimed to reduce electricity cost and 

the total penalty of a WDS. The electricity cost objective is total power demand cost and 

energy consumption cost based on a time variant tariff. The total penalty objective 

composed of penalties that are associated with the water level violation in tanks and water 

pressure violation at strategic junctions.  

 

Figure 24- 2D (top) and 3D (bottom) views of Pareto frontier plot of PEPSO 



140 

 

The EPANET hydraulic solver is used for optimizing the base scenario. Seven 

more scenarios are defined to evaluate different functionalities of PEPSO. These 

scenarios are described in Table 7. First row is related to the base scenario (Sc1) and in 

all other rows, one cell is shaded that show one component of the base scenario which 

is changed to create a new scenario. In the second Scenario (Sc2), in addition to 

electricity cost and total penalty, pollution emission is optimized. This scenario is using all 

features of PEPSO to reduce both electricity cost and pollution emission of the system 

while satisfying required pressure and flow requirements.  

Table 7- Scenarios that are used for testing different functionalities of PEPSO 

Scenario 
Hydraulic 

model 
solver 

UI calculation 

Energy 
consumption 
cost / power 
demand cost 

Electricity 
cost / 

pollution 
emission 

Pump operation / 
water level in tank 

/ pressure at 
junction penalties 

Sc1- Base (EPANET solver, with 
electricity cost & total penalties 
optimization & without pollution 

emission optimization) 

EPANET Yes 
Time-

dependent / 
Yes 

Yes / No Yes / Yes / Yes 

Sc2- All objectives (electricity cost, 
pollution emission, total penalty 

optimization) 
EPANET Yes 

Time-
dependent / 

Yes 
Yes / Yes Yes / Yes / Yes 

Sc3- Just total penalty optimization 
(without electricity cost & pollution 

emission optimization) 
EPANET Yes 

Time-
dependent / 

Yes 
No / No Yes / Yes / Yes 

Sc4- With pollution emission & total 
penalty optimization & without 

electricity cost optimization 
EPANET Yes 

Time-
dependent / 

Yes 
No / Yes Yes / Yes / Yes 

Sc5- Without using UI calculation EPANET No 
Time-

dependent / 
Yes 

Yes / No Yes / Yes / Yes 

Sc6- Just pressure penalties (without 
tank penalties) 

EPANET Yes 
Time-

dependent / 
Yes 

Yes / No Yes / No / Yes 

Sc7- Energy usage optimization 
instead of electricity cost optimization 

EPANET Yes Constant / No Yes / No Yes / Yes / Yes 

Sc8- ANN solver instead of EPANET 
solver 

ANN Yes 
Time-

dependent / 
Yes 

Yes / No Yes / Yes / Yes 
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The total penalty is the only objective that is optimized in the third scenario (Sc3). 

In this scenario pollution emission and electricity cost are calculated but not optimized. In 

some extent, this scenario shows the common operational condition of WDSs that 

reducing electricity cost and pollution emission is not the first priority of operators, and 

they focus on satisfying required pressure and flow of the system. The emphasis of the 

fourth scenario (Sc4) is on reducing pollution emission.  

In the fifth scenario (Sc5), UI calculation module of PEPSO is deactivated to 

evaluate the effect of this unique feature of PEPSO on optimization efficiency and 

accuracy. 

Accordingly, in this scenario electricity cost is calculated but not optimized and just 

pollution emission and total penalty are optimized. In the sixth scenario (Sc6) the effect 

of penalties of water level violation in tanks on optimization process is investigated. In 

contrast with the base scenario, in this scenario tank levels are not controlled and 

penalized. In the seventh scenario (Sc7) amount of energy usage (kWh) is optimized 

instead of electricity cost ($). In this scenario energy consumption charge does not 

change at different time and peak power demand doesn’t increase total electricity cost. 

So the only factor that changes electricity cost of the system is the total amount of energy 

consumption (kWh) which should be optimized. Finally, in the last scenario (Sc8), instead 

of EPANET solver, ANN, model and solver are used to investigating the effect of using 

ANN model on increasing speed of optimization process. 

Each of these scenarios repeated five times and descriptive statistics measures of 

the results are used to compare scenarios and report the findings. At first, the average of 

the results of all runs of a scenario is calculated and reported. In addition, to average 

values, unbiased estimation of the standard deviations, standard errors of the mean and 
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relative standard errors of the mean are calculated and used to show the accuracy of the 

results; Osborn 2006). By definition standard error of mean (SEM) shows how the 

calculated mean of a sample is likely to differ from the real mean of the population (Vogt 

and Johnson 2011). Here, the unbiased estimation of the standard deviation of a sample 

is used in the Equation 15 to calculate the SEM. Then the relative SEM is calculated and 

reported as a percentage by dividing the calculated SEM by mean value. 

𝑆𝐸𝑀 =  
𝑠

√𝑛
           Equation 15 

Where,  

𝑆𝐸𝑀 is standard error of mean, 

𝑠 is the sample-based estimation of the standard deviation of the population 

𝑛 is size of the sample  

In addition to the SEM calculation, optimized pump schedules of similar 

optimization runs of a scenario were compared to check accuracy and consistency of 

PEPSO results. In this comparison, the status of each pump at each time block of a pump 

schedule is compared with the status of the same pump at the same time block of other 

pump schedules to see if repeating the same optimization scenario is generating similar 

results or not. After comparing pairs of pump schedules cell by cell, average index of 

similarity is reported for each scenario. This index can be a percentage between 0% to 

100%. A 100% value means that repeating the optimization process of one scenario 

always resulted in the same optimized pump schedule and 0% mean that result of 

different repetition looks completely random and dissimilar. 

Comparing the result of PEPSO optimization with another available optimization is 

the second approach that is taken for testing PEPSO. Besides PEPSO, Darwin Scheduler 

(DS) component of WaterGEMS software used as the other pump schedule optimization 

tool for this test. The same Monroe WDS model that was used for the previous set of test 
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is used for this test too. Optimization scenario of this test is similar to the base scenario 

of previous test and optimization scenario that is used for comparing the older version 

PEPSO with DS and Markov Decision Process (MDP) in previous studies 

(Alighalehbabakhani, Abkenar et al. 2014). DS cannot use LEEM report or other sources 

of data to calculate time-dependent pollution emission of the system. Therefore, pollution 

emission is not included in the scenario of this test. Minimum and maximum physical limits 

of water elevation in tanks considered as hard constraints and the soft constraint on 

desired water level in the tank are not used in this test. The water pressure constraint at 

strategic junction and pump operation constraints of the base scenario of the previous 

tests are used for this test too. The fast, messy Genetic Algorithm of DS is used as the 

optimizer algorithm that its parameters are listed in Table 8. It is important to note that 

from different stopping criteria the maximum trial number is the first one that will be met 

in this tests. This number is equal to the number of solution evaluation of the PEPSO. So 

by this way, we make sure that both tools have the same amount of solution evaluation 

chance to find the optimum solution. Most of other parameters that are listed in Table 8 

are default values of DS. The same optimization algorithm options and reporting options 

that were used for the base scenario of the previous test is used for this test too. DS 

algorithm uses a random seed value to randomize initial condition of optimization process 

a different random value is used for each optimization run of DS to enable it to start the 

optimization process from different areas of the solution space (similar to PEPSO) 

After optimizing the WDS with both PEPSO and DS, results are compared and 

discussed to evaluate the accuracy, speed, and usability of these two tools. DS is a well 

know commercial tool in the market for optimizing operation of pumps in WDS but it is not 

able to optimize time and location dependent pollution emission of WDS. So the 
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optimization scenario that is defined for this test is aiming to reduce the electricity cost 

while the water level in the tank and water pressure at the strategic junction are within the 

defined ranges. The results of optimization with PEPSO (V2.0) and DS (V8i, series 6) are 

investigated and required time for optimization, total electricity cost, the amount of water 

level violation in tanks and water pressure violation at strategic junctions are compared. 

Table 8- Optimization parameters that are used for DS optimization runs 

Parameter Value 

Objective Minimizing energy cost 

Optimization algorithm Fast messy genetic algorithm 

Population size 100 

Elite Population size 10 

Number of crossover points 5 

Probability of crossover 95% 

Probability of mutation 1.5% 

Probability of creeping mutation 0.1% 

Probability of creeping down 65% 

Probability of cut 1% 

Probability of splice 90% 

Probability of elite mate 0.5% 

Probability of tournament winner 95% 

Maximum generation 100 

Maximum eras 10 

Maximum trials 16600 

Maximum non-improvement generations 200 

Pressure penalty factor 1 

Velocity penalty factor 1 

Pump starts penalty factor 10 

Tank final level penalty factor 10 

Tank high/low-level penalty factor 1 

Minimum relative speed change of variable speed pumps 1% 

 

For doing all the above-mentioned tests a computer system with these 

specifications is used: Lenovo ThinkPad W520 with Intel Core i7-2820QM 2.3GHz, 8MB 

cache CPU, 8GB DDR3 RAM, 7200 RPM SATA HDD and NVIDIA Quadro 2000M w/2GB 

DDR3 GPU 

This computer system is selected for conducting the test because it is a common 

type of computer system that can be found in engineering offices for designing or 
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operating WDS. So result that is obtained by this computer can be obtained in a practical 

situation in an ordinary design or operation office in water industry section. In the result 

chapter, CPU time and real time of different optimization runs that are conducted with this 

computer are reported. CPU time is the amount of time that CPU spent on a processing 

instructions of a section of code of PEPSO and calculated by multiplying real time of 

completing the process by average CPU usage percentage at that period. 

2.3.2. Test Cases 

Two WDS models are used in this research for evaluating PEPSO. The first one is 

WDS of the city of Monroe, Michigan. This WDS consist of over 450 (km) of distribution 

lines which range in size from 50 to 910 (mm). There is 11 constant speed pump in the 

main pump station that is connected to a reservoir as the only source of water of the 

system. Also, two variable speed booster pump are installed in the second pump station. 

Nominal power of these pumps range from 36 to 220 (kW) Figure 25 displays a model 

schematic of WDS of Monroe. 

Ground level has a mild slope from North West toward South East. The minimum 

and maximum elevation of the demand points of the system are 174.5 and 201.8 (m) 

respectively. Three elevated tanks are located in different spots of the WDS and their total 

water storage capacity is 3974 (m3) (11% of the daily water demand). For filling the 

elevated tanks, in addition to the required dynamic head of the system, pumps need to 

provide enough pressure to overcome 60 (m) of static head. WDS of the city of Monroe 

serves about 8000 customers, and its water demand is 36500 (m3/day). The minimum 

and maximum hourly demand multipliers of the system are 0.67 and 1.19 respectively. 
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Figure 25- Model schematic WDS of Monroe 

EPANET hydraulic model of WDS of Monroe that is used in this study has 1531 

junctions, 1945 pipes, 11 constant speed pumps, two variable speed pumps, one 

reservoir, three tanks, and one 24 hour water demand pattern with one hour time step. 

The hydraulic simulation period of the model is also 24 hour with a one-hour time step 

EPANET model of WDS of Monroe was used for both groups of tests. It is used for 

evaluating different functionalities of PEPSO by testing eight different scenarios. It also is 

optimized by both PEPSO and DS for comparing these two tools. Table 9 and  
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Table 10 presents a constraint on the water level in tanks and water pressure at 

strategic junctions that was used in all optimization scenarios. As it is shown in  

Table 10 constraint importance multipliers of all four strategic junctions are one 

that indicates to the same importance level for water pressure violation at all strategic 

junctions 

Table 9- Constraints on water level in tanks of the Monroe WDS 

Tank 
ID 

Elevation 
(m) 

Water 
Capacity 

(m3) 

Minimum 
Allowed Water 

Level (m) 

Minimum 
Desired Water 

Level (m) 

Maximum 
Desired Water 

Level (m) 

Maximum 
Allowed Water 

Level (m) 

T-2 217.09 965 0.15 1.56 8.12 9.53 

T-3 225.78 956 0.15 1.41 7.28 8.53 

T-5 235.31 2053 0.30 1.78 8.66 10.13 

 

Table 10- Constraints on water pressure at strategic junctions of the Monroe WDS 

Strategic 
Junctions ID 

Minimum 
Allowed 

Pressure (psi) 

Minimum 
Desired 

Pressure (psi) 

Maximum 
Desired 

Pressure (psi) 

Maximum 
Allowed 

Pressure (psi) 

Constraint 
Importance 
Multiplier 

J-6 0 42 52 284 1 

J-27 0 31 45 284 1 

J-131 0 28 42 284 1 

J-514 0 42 55 284 1 

 

The minimum relative rotational speed of all variable speed pumps is 60%. The 

maximum allowed a number of pump switches in a day is 24 and the minimum duration 

of time between pump shut-down and start-up is 15 minutes. The maximum allowed a 

continuous period of operation for the pump is 24 hours. 

Electricity tariff includes the energy consumption charge and power demand 

charge. The energy consumption charge for on-peak hours (11:00 to 18:59) is 0.04408 

($/kWh) and for off-peak hours (19:00 to 10:59) is 0.04108 ($/kWh). For Scenario Sc7 

that energy consumption charge is constant throughout the day, off-peak rate is used for 

the whole 24 hour period. The power demand charge is 14.34 ($/kW) that should be 
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multiplied by the 30 minutes peak power demand during 30 days period to calculate the 

power demand cost. So considering the similar peak power demand for all days of a 

month, daily power demand charge is 0.48 ($/kW). Each one of the main and booster 

pump stations has an electricity meter and based on their location; they receive a CO2 

emission factor report from LEEM server that is presented in Table 11. This emission 

factor data are used as an offline source of emission data for all test scenarios. Except 

special cases that definition of a test scenario required to change the optimization option, 

it was tried to keep optimization options of all the test scenarios the same. Different 

parameters that are used as optimization options of the WDS of Monroe are listed in Table 

11. 

The skeletonized version of the Richmond WDS is used as the second test case 

in this study (van Zyl 2001). This WDS has over 22.69 (km) of distribution lines which 

range in size from 76 to 300 (mm). There is seven constant speed pump in six pump 

stations. The main pump station has two pumps that are connected to a reservoir as the 

only source of water. Each one of other five booster pump stations has only one pump. 

Nominal power of these pumps ranges from 3 to 60 (kW). Like Monroe city, ground level 

of Richmond has a slope from North West toward South East. The minimum and 

maximum elevation of the demand points are 60 and 242 (m) respectively. Figure 26 

displays a model schematic of this WDS. 

There are 6 water tanks in the system with total water storage capacity of 2598 

(m3) (66% of the daily demand). For filling tanks and answering water demands, in 

addition to the required pressure at demand point and dynamic head loss, pumps need 

to provide enough pressure to overcome 199 (m) of static head. The water demand of 

system is 3921 (m3/day). Richmond WDS has only one demand pattern. 
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Table 11- Emission factor values that are used for all optimization scenarios of WDS of Monroe 

Time CO2 Emission Factor (kg/MWh) 

00:00 767.771 

01:00 738.324 

02:00 702.904 

03:00 702.904 

04:00 702.904 

05:00 767.771 

06:00 781.469 

07:00 808.212 

08:00 764.333 

09:00 719.768 

10:00 719.768 

11:00 695.334 

12:00 662.793 

13:00 630.703 

14:00 630.531 

15:00 628.591 

16:00 628.882 

17:00 666.549 

18:00 693.607 

19:00 665.274 

20:00 730.766 

21:00 790.628 

22:00 808.212 

23:00 780.477 

 

Table 12- Optimization options of test scenarios 

Parameter Value 

Optimization Duration (hr) 24 

Optimization Time Step (min) 60 

Maximum Number of Iterations 300 

Maximum Number of Solution Evaluations 16600 

Maximum Optimization Time (min) 500 

Minimum Optimization Rate 1% During 100 Iterations 

Electricity Cost Goal ($) 0 

Pollution Emission Goal (kg) 0 

Total Penalty Goal 0 

Population Size 100 

Percentage of Elite Solution 20% 

Crossover Percentage 50% 

Crossover Rate 50% 

Mutation Percentage 5% 



150 

 

Mutation Rate 10% 

 

Figure 26- Model schematic WDS of Monroe 

The skeletonized version of hydraulic model of the Richmond WDS has 41 

junctions, 44 pipes, seven constant speed pumps, one reservoir, six tanks, and one 24 

hour water demand pattern. The minimum and maximum hourly demand multipliers of 

the system are 0.39 and 1.53 respectively. The hydraulic simulation period of the model 

is also 24 hour with one hour time step. This EPANET model was used for evaluating 

different functionalities of PEPSO and has not been used for comparing PEPSO with DS. 

Table 13 and Table 14 presents constraints on the water level in tanks and water pressure 

at strategic junctions that was used in all optimization scenarios. It is shown in Table 14 

constraint importance multipliers of all 10 strategic junctions are one that indicates to the 

same importance level for water pressure violation at all strategic junctions 

Table 13- Constraints on water level in tanks of the Monroe WDS 

Tank 
ID 

Elevation 
(m) 

Water Capacity 
(m3) 

Min. Allowed 
Water Level (m) 

Min. Desired 
Water Level (m) 

Max. Desired 
Water Level (m) 

Max. Allowed 
Water Level (m) 

A 184.13 68.42 0.00 0.30 1.70 2.00 

B 216.00 1461.69 0.00 0.50 2.86 3.37 

C 258.90 230.75 0.00 0.32 1.79 2.11 

D 241.18 679.87 0.00 0.55 3.10 3.65 

E 203.01 135.21 0.00 0.44 2.29 2.69 
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F 235.71 22.29 0.00 0.33 1.86 2.19 

Table 14- Constraints on water pressure at strategic junctions of the Monroe WDS 

Strategic 
Junctions ID 

Min. Allowed 
Pressure (psi) 

Min. Desired 
Pressure (psi) 

Max. Desired 
Pressure (psi) 

Max.  Allowed 
Pressure (psi) 

Constraint 
Importance Multiplier 

42 0 20 140 200 1 

1302 0 0 100 200 1 

10 0 0 100 200 1 

312 0 0 100 200 1 

325 0 0 100 200 1 

701 0 0 100 200 1 

745 0 20 100 200 1 

249 0 20 100 200 1 

753 0 20 100 200 1 

637 0 20 140 200 1 

Similar to pump operation constraints of the WDS of Monroe, the maximum 

allowed number of pump switches in a day is 24 and the minimum duration of time 

between pump shut-down, and start-up is 15 minutes. The maximum allowed a 

continuous period of operation for the pump is 24 hours.  

Each pump station of the Richmond WDS has a unique electricity tariff that just 

include the energy consumption charge (there is no power demand charge in Richmond 

WDS). On-peak hours of all tariffs start from 07:00 and end by 24:00. The energy 

consumption charge of all pumps is shown in Table 15. For Scenario Sc7 that energy 

consumption charge is constant throughout the day, off-peak rate is used for the whole 

24 hour period. The same CO2 emission factors that are presented in Table 12 and used 

for WDS of Monroe are used for Richmond WDS too. Except the maximum number of 

iterations and mutation percentage, all other optimization options of the WDS of Monroe 

that is listed in Table 11 are used for Richmond WDS optimization scenarios. Mutation 

percentage of Richmond WDS scenarios is 10%. Accordingly to keep the maximum 

number of solution evaluations of Richmond scenarios similar to scenarios of Monroe 
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(16600 solution evaluation), 275 iterations used as the maximum number of iteration of 

the Richmond scenarios. 

Table 15- Energy consumption charge of pumps of the Richmond WDS 

Pump ID On-Peak Rate ($/kWh) Off-Peak Rate ($/kWh) 

1A 0.0679 0.0241 

2A 0.0679 0.0241 

3B 0.0754 0.0241 

4C 0.1234 0.0246 

5D 0.0987 0.0246 

6E 0.1122 0.0246 

7F 0.1194 0.0244 

 

Finally, it should be noted that in these tests emission factors just change in time, 

and we did not include any special variation for emission factors. However, as it was 

mentioned previously, emission factors that are reported by LEEM may vary due to 

change in location of energy consumption. We assumed that the area that is covered by 

both Monroe and Richmond WDS were not wide enough to change emission factor values 

based on the location of energy consumption. However, one can use PEPSO to optimize 

a WDS that its pump stations are far from each other. In this case, PEPSO can take 

advantage of the change in emission factors at different locations and find better solution 

by shifting location of energy consumption from one pump station to another one. 
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CHAPTER 3 RESULTS AND DISCUSSIONS 

3.1. Optimization Results 

It was described in Section 2.3.1 that eight scenarios were used to evaluate 

different functionalities of PEPSO. Section 3.1.1 presents the result of these scenarios 

that have been tested on both Monroe and Richmond WDSs. Although PEPSO reports 

the result of the best solution and average result of all solutions of the final Pareto frontier, 

this section only presents results of the best solution of each optimization simulation. 

Section 0 shows obtained results from the comparison tests of PEPSO and DS. The result 

of PEPSO that is used in this section is also the best solution of each optimization run. 

3.1.1.  Results of PEPSO Functionality Evaluation Tests 

Table 16 is used for reporting the result of all individual tests of all scenarios that 

have been conducted on Monroe WDS model. The name of each test is formed from two 

parts. The first part shows the name of the scenario and the second part shows the 

identical code of each test. These two parts are separated by a dash. Input data and 

optimization options and criteria of all different test of a scenario were the same. This 

table reports optimization results including, total electricity cost and its components, CO2 

emission, total penalty and its components. 

In general CPU time of each optimization run of the Monroe WDS with the Lenovo 

ThinkPad W520 workstation (see Section 2.3.1 for specifications) are 1245±34 seconds 

(real time 02:14:44±00:03:43). This time for optimizing the skeletonized version of 

Richmond WDS is 287±13 seconds (real time 00:35:38±00:01:36). 

Table 17 shows results of functionality evaluation tests on Richmond WDS. 
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Table 16- Results of PEPSO functionality evaluation tests on Monroe WDS 

Test 
Name 

Electricity 
Cost ($) 

Energy 
Consumption 

Cost ($) 

Power 
Demand 
Cost ($) 

CO2 
Emission 

(kg) 

Total 
Penalty 

Water Level 
Penalty at 

Tank 

Pressure 
Penalty at 
Junction 

Sc1-1 377.1 209.7 167.4 3534.1 26.5 26.1 0.4 

Sc1-2 359.1 216.4 142.7 3663.9 29.2 29.2 0.0 

Sc1-3 379.2 213.9 165.3 3617.6 25.5 25.3 0.2 

Sc1-4 368.7 215.6 153.1 3625.3 27.8 27.7 0.1 

Sc1-5 345.9 203.2 142.6 3474.8 195.9 33.0 162.9 

Sc2-1 368.1 204.2 163.9 3429.6 25.3 24.7 0.7 

Sc2-2 360.5 209.1 151.4 3553.1 27.5 25.3 2.2 

Sc2-3 372.6 215.8 156.8 3632.4 25.9 25.9 0.1 

Sc2-4 344.9 211.7 133.2 3589.9 29.6 29.6 0.0 

Sc2-5 363.9 213.6 150.3 3597.5 29.5 29.5 0.0 

Sc3-1 370.3 218.2 152.2 3688.4 26.1 26.0 0.1 

Sc3-2 362.6 213.0 149.6 3621.1 26.9 26.9 0.0 

Sc3-3 367.2 214.1 153.1 3632.9 25.3 24.1 1.1 

Sc3-4 360.3 214.4 146.0 3630.9 23.6 23.5 0.1 

Sc3-5 363.8 216.2 147.6 3692.1 23.1 23.1 0.0 

Sc4-1 375.7 214.1 161.6 3625.2 24.6 24.5 0.1 

Sc4-2 346.3 206.7 139.7 3501.5 29.5 29.0 0.5 

Sc4-3 387.1 217.8 169.4 3678.3 25.0 25.0 0.0 

Sc4-4 360.0 211.1 148.9 3568.4 27.4 27.4 0.0 

Sc4-5 367.0 214.9 152.1 3645.7 27.5 27.1 0.3 

Sc5-1 317.9 192.9 124.9 3263.6 31.0 29.1 1.9 

Sc5-2 333.4 198.0 135.3 3381.2 88.1 36.2 51.9 

Sc5-3 339.5 205.6 133.9 3481.9 29.5 28.6 1.0 

Sc5-4 336.1 200.5 135.6 3396.0 49.5 45.6 3.9 

Sc5-5 336.1 211.0 125.1 3589.9 32.0 32.0 0.0 

Sc6-1 261.4 142.9 118.5 2408.9 1227.1 150.6 1076.5 

Sc6-2 253.6 140.2 113.4 2371.8 1767.0 155.8 1611.2 

Sc6-3 273.4 148.8 124.6 2515.0 615.7 149.1 466.7 

Sc6-4 282.5 155.8 126.7 2637.7 717.5 148.4 569.1 

Sc6-5 293.2 157.6 135.6 2653.6 570.3 143.0 427.3 

Sc7-1 205.5 205.5 0.0 3538.0 28.0 28.0 0.0 

Sc7-2 203.0 203.0 0.0 3519.7 22.5 22.4 0.2 

Sc7-3 217.3 217.3 0.0 3778.7 23.8 23.7 0.0 

Sc7-4 206.7 206.7 0.0 3600.4 27.5 26.6 0.9 

Sc7-5 198.2 198.2 0.0 3421.2 35.6 31.7 3.9 
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Table 17- Results of PEPSO functionality evaluation tests on Richmond WDS 

Test 
Name 

Electricity 
Cost ($) 

Energy 
Consumption 

Cost ($) 

Power 
Demand 
Cost ($) 

CO2 
Emission 

(kg) 

Total 
Penalty 

Water Level 
Penalty at 

Tank 

Pressure 
Penalty at 
Junction 

Sc1-1 92.9 92.9 0.0 1098.9 6.6 6.6 0.0 

Sc1-2 91.2 91.2 0.0 1067.7 6.6 6.6 0.0 

Sc1-3 92.2 92.2 0.0 1085.6 6.6 6.6 0.0 

Sc1-4 92.3 92.3 0.0 1079.0 7.1 7.1 0.0 

Sc1-5 92.0 92.0 0.0 1097.3 6.4 6.4 0.0 

Sc2-1 81.2 81.2 0.0 941.9 95.8 5.4 90.3 

Sc2-2 74.9 74.9 0.0 879.7 127.8 5.6 122.3 

Sc2-3 65.4 65.4 0.0 795.3 216.2 5.8 210.4 

Sc2-4 91.2 91.2 0.0 1099.3 7.3 7.3 0.0 

Sc2-5 66.3 66.3 0.0 809.2 215.9 5.5 210.4 

Sc3-1 95.1 95.1 0.0 1111.7 6.1 6.1 0.0 

Sc3-2 94.2 94.2 0.0 1102.3 6.3 6.3 0.0 

Sc3-3 92.5 92.5 0.0 1093.7 6.4 6.4 0.0 

Sc3-4 92.1 92.1 0.0 1092.7 6.5 6.5 0.0 

Sc3-5 95.1 95.1 0.0 1098.0 6.1 6.1 0.0 

Sc4-1 50.6 50.6 0.0 544.8 434.4 5.4 429.0 

Sc4-2 57.9 57.9 0.0 697.1 340.0 5.5 334.5 

Sc4-3 62.7 62.7 0.0 737.2 275.8 5.6 270.1 

Sc4-4 51.0 51.0 0.0 678.5 367.2 5.8 361.4 

Sc4-5 63.2 63.2 0.0 731.2 276.9 5.4 271.4 

Sc5-1 88.0 88.0 0.0 1079.4 7.1 7.1 0.0 

Sc5-2 91.0 91.0 0.0 1091.3 6.6 6.6 0.0 

Sc5-3 91.3 91.3 0.0 1084.7 6.8 6.8 0.0 

Sc5-4 92.0 92.0 0.0 1122.9 6.5 6.5 0.0 

Sc5-5 93.1 93.1 0.0 1082.8 6.2 6.2 0.0 

Sc6-1 87.2 87.2 0.0 1086.8 8.8 8.8 0.0 

Sc6-2 86.5 86.5 0.0 1049.8 8.0 8.0 0.0 

Sc6-3 86.6 86.6 0.0 1055.0 8.5 8.5 0.0 

Sc6-4 86.3 86.3 0.0 1047.4 8.5 8.5 0.0 

Sc6-5 87.6 87.6 0.0 1071.9 11.1 11.1 0.0 

Sc7-1 119.9 119.9 0.0 1080.2 6.1 6.1 0.0 

Sc7-2 119.0 119.0 0.0 1082.3 6.2 6.1 0.1 

Sc7-3 123.3 123.3 0.0 1111.6 6.1 6.1 0.0 

Sc7-4 112.6 112.6 0.0 1030.5 6.6 6.5 0.2 

Sc7-5 111.8 111.8 0.0 1025.1 8.6 8.0 0.6 

 

In Section2.3.1 it was mentioned that in the last test scenario (Sc8), EPANET 

hydraulic solver replaced with the ANN trainer module of PEPSO to use the ANN-

based metamodel instead of high fidelity EPANET hydraulic model during the 
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optimization process. Results of this test were not satisfactory. The tests on both Monroe 

and Richmond WDSs showed that although PEPSO was able to train an ANN and use 

that instead of a high fidelity hydraulic model, the accuracy of trained ANN was not 

enough for optimization purpose. Accordingly using the trained ANN as hydraulic solver 

did not help the optimization algorithm to get closer to the global optimum point. In 

addition to the fact that the trained ANN was not accurate enough, the ANN training 

process was a time-consuming and complicated process. PEPSO II uses multiple ANN 

for modeling WDS. Each ANN trained based on a set of inputs that includes initial water 

level in tanks, status, and speed of pumps and the water demand multiplier. Each ANN 

returns just one output (e.g. final level of a tank or power demand of a pump). Although 

theoretically it is possible to train an ANN that can provide multiple outputs we used an 

ANN for each required output to increase the accuracy of the results and simplify the 

training process. Therefore, number of required trained ANN for each WDS is calculated 

with Equation 16: 

No. of required ANNs = n + No. of pumps + No. of strategic junctions +

 No. of strategic pipes + (No. of pumps × m)      Equation 16 

Where, 

n is equal to 1 (for negative pressure warning) 

m is equal to 6 (3 for pump flow, head and power demand, 3 for flow, head and 

connection warning of pumps) 

Based on Equation 16, 86 and 59 ANNs need to be trained for Monroe and 

Richmond WDSs respectively. For training each ANN of Monroe WDS, a training set with 

17 inputs and one output and 10000 training points created. Each training point was a set 
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of inputs before a time block and one output after one time step. For training each ANN 

of Skeletonized Richmond WDS, a training set with 14 inputs and one output and 10000 

training points, created. With the Lenovo ThinkPad W520 workstation (see Section 2.3.1 

for more specification) CPU time of creating a training set with 10000 training point for 

Monroe and skeletonized version of Richmond WDSs are 50 and 18 (their real time are 

623 and 223 seconds) respectively. CPU time of training all required ANN of these two 

WDS with the above-mentioned computer are 10.2 and 2.2 minutes (their real time are 

81.5 and 17.5 minutes) respectively.  

Although training of ANNs needed a considerable amount of time, after training 

them for one optimization run, the same ANNs could be used for other optimization 

runs.  The biggest problem about training an ANN is adjusting its training parameters. 

Different variables need to be adjusted before training an ANN, and all of them affects the 

quality of results of the trained ANN. We realized that there was not any defined way to 

select the proper set of ANN training parameter for a specific WDS. So various 

combinations of possible values of parameters were used for training ANN and the best 

set of parameters that result in more accurate ANN selected for each specific WDS. 

For the ANNs that were providing final water level in tanks, pressure at junctions 

and flow, head and power demand of pumps MSE stop function was used. However for 

the ANNs that were determining if pumps have flow, head and connection warning or if 

the system has negative pressure warning, Bit stop function was used. The result of the 

first group of ANNs were real numbers but the result of the second group of ANN was 

binary values. The linear error function was used for training all ANNS. Some ANN were 

trained better with sigmoid symmetric activation function for both hidden and output 



158 

 

layers. However, other were trained better with sigmoid symmetric activation function for 

hidden layer and linear activation function for the output layer. All ANNs were designed 

with shortcut structure and trained by the standard method and incremental algorithm 

(see section 2.2.3.3 for more information). Other ANN training option that was used for 

training all ANN are listed in Table 18. 

Table 18- Parameter of training ANN with FANN library 

Parameter Value 

Maximum epochs 1000 

Minimum weight -0.5 

Maximum weight 0.5 

Hidden layer activation steepness 0.05 

Output layer activation steepness 0.05 

Learning rate 0.01 

Maximum acceptable error 0.001 

Input to hidden layer ratio 2 

 

After training ANN and using them instead of EPANET solver, it was observed that the 

optimization process gets 6.96 and 2.01 times faster for Monroe and Richmond WDSs 

respectively. However, it faced a problem when optimization progressed, and PEPSO 

started to search for the optimum solution in undiscovered regions of the solution space. 

As initially trained ANNs were not trained for providing accurate hydraulic results for newly 

discovered areas of the solution space, they could not provide accurate results and it 

prevented PEPSO to get closer to the optimum solution. Although the results of 

optimization tests with ANN metamodel was not satisfactory, this results made it possible 

to create a list of suggestion that can be investigated in further studies to get closer to 

using ANN metamodel and speeding up the optimization process while accuracy is not 

sacrificed. 
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3.1.2. Results of PEPSO and DS Comparison Tests 

The results of all PEPSO and DS comparison tests are displayed in Table 19. 

Before comparing this results, the best pump schedule that is reported by PEPSO at the 

end of optimization process and the final result of DS used to create two scenarios in 

WaterGEMS software. By this method, the same software was used for hydraulic 

simulation of the WDS based on all proposed optimum pump schedules and the same 

method of reporting result was used for obtaining required values for comparisons. 

Therefore, all results that are presented in Table 19 are outputs of WaterGEMS after 

running the hydraulic model by optimized pump schedule of PEPSO and DS. Optimization 

options of DS let us define a random seed to randomize initial point of the optimization 

process. If we use the same random seed for all optimization runs, we will always get the 

same results. Therefore, in these tests different random seed were used. Like PEPSO, it 

gives DS a possibility of starting optimization from different areas of the solution space. 

Table 19- Results of PEPSO and DS comparison tests 

Test 
Name 

Energy 
Consumption 

(kWh) 

On-peak Energy 
Consumption 

(kWh) 

Off-peak Energy 
Consumption 

(kWh) 

Peak Power 
Demand 

(kW) 

Power 
Demand 
Cost ($) 

Pressure 
Penalty at 
Junction 

PEPSO 1 6810.3 2609.8 4200.5 418.5 199.8 0.00 

PEPSO 2 6662.5 2266.9 4395.6 349.1 166.6 0.00 

PEPSO 3 6475.5 2374.1 4101.4 385.4 184.0 0.04 

PEPSO 4 6144.4 2222.7 3921.7 400.4 191.1 0.00 

PEPSO 5 6309.2 2464.4 3844.8 410.7 196.0 0.07 

DS 1 7049.9 2359.7 4690.2 500.5 238.9 196.8 

DS 2 7049.9 2359.7 4690.2 500.5 238.9 196.8 

DS 3 7049.9 2359.7 4690.2 500.5 238.9 196.8 

DS 4 7702.0 3035.1 4666.9 599.3 286.1 203.0 

DS 5 7797.9 2868.7 4929.2 731.8 349.3 229.2 
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3.2. Analysis and Discussions 

3.2.1. Analyzing PEPSO Functionality Evaluation Tests Results On 

Monroe WDS 

The effect of change of stored water in tanks during operation period on total 

electricity usage of a system is an important factor that needs to be considered before 

comparing results. Assuming that energy consumption (kWh) of two proposed pump 

schedules are the same, but in the first one final volume of stored water in tanks is higher 

than the initial volume of stored water and in the other one the initial and final volume of 

stored water are equal. In this scenario, the first pump schedule is better that the second 

one in respect to the net energy consumption. Net energy consumption is total energy 

consumption of the system considering the stored or drained energy of the system due 

to change in volume of stored water in elevated tanks. When final level of water in a tank 

is higher than the initial level, it shows water accumulation in the elevated tank that can 

be comprehended as energy accumulation in the system. Vice versa, draining water from 

an elevated tank is equal to draining energy from the system. Accordingly, to be fair while 

comparing energy consumption of two optimization scenarios, we should take into 

account the amount of energy accumulation or draining of tanks. For calculating 

accumulated or drained energy, at first, we need to calculate the change in volume of 

stored water in elevated tanks. Then the average Energy Intensity (EI) of the system 

should be calculated. EI is the average amount of energy needed to transport water from 

source to demand points per unit of volume of water (kWh/m3). Multiplying the volume 

change of stored water (m3) by EI (kWh/m3) gives the amount of accumulated energy in 

the system or drained energy from the system. Note that the negative volume change 
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(less volume of the final stored water in respect to the initial volume) results in negative 

energy values that show energy draining. Subtracting the calculated energy change from 

the total energy consumption of the system will result in the net energy consumption of 

the system. Therefore, draining tanks during an operation cycle, increases the net energy 

consumption of the system. The value of energy change due to change in volume of 

stored water can be multiplied by average energy consumption charge to calculate energy 

consumption cost change of the system. Subtracting this cost change from the total 

energy consumption cost provides the net energy consumption cost. The average energy 

consumption charge is a weighted average of on-peak and off-peak energy consumption 

charges based on the length of on-peak and off-peak periods of an electricity tariff. The 

similar method can be used for calculating change in pollution emission due to change in 

volume of stored water and then use it to calculate the net pollution emission of the 

system. It should be noted that as it was explained in section 2.2.2.4 , the net pollution 

emission does not show the total pollution emission of the real system. However, it can 

be used to calculate the change in total pollution emission of the system due to different 

scenarios. 

The second to fifth columns of Table 20 (from left) present raw electricity related 

reports of PEPSO for different scenarios. The ninth column shows the percentage of 

change of the total stored water in elevated tanks of the system. The last four columns 

show net energy consumptions (kWh), net energy consumption costs ($), net electricity 

costs ($) and net CO2 emission of the system. Instead of using raw electricity related 

results of PEPSO, values of these last three columns are used for comparing results of 

different scenarios. 
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Table 20- Electricity consumption results of PEPSO functionality evaluation tests on Monroe 
WDS 
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Sc1-1 3048.0 1915.5 350.3 4963.5 -6% 4994.8 211.0 378.4 3556.4 

Sc1-2 3371.9 1767.8 298.49 5139.7 4% 5116.1 215.4 358.1 3647.1 

Sc1-3 3285.1 1791.8 345.75 5076.9 0% 5074.9 213.8 379.1 3616.2 

Sc1-4 3180.2 1927.2 320 5107.4 -6% 5143.5 217.1 370.2 3651.0 

Sc1-5 3231.6 1599.0 298.39 4830.6 -8% 4873.3 205.0 347.7 3505.5 

Sc2-1 2805.6 2017.9 342.84 4823.5 -5% 4851.1 205.4 369.3 3449.2 

Sc2-2 3162.4 1797.2 316.17 4959.6 8% 4914.1 207.2 358.6 3520.5 

Sc2-3 3173.5 1937.4 327.99 5110.9 12% 5042.4 212.9 369.7 3583.8 

Sc2-4 3255.3 1767.9 277.85 5023.2 9% 4971.6 209.5 342.7 3553.0 

Sc2-5 3017.1 2034.3 314.39 5051.4 6% 5016.6 212.1 362.4 3572.8 

Sc3-1 3410.5 1771.2 317.85 5181.7 15% 5097.8 214.6 366.8 3628.7 

Sc3-2 3187.7 1860.9 312.91 5048.6 11% 4990.2 210.5 360.1 3579.2 

Sc3-3 3281.7 1798.2 320.36 5080.0 9% 5029.0 211.9 365.1 3596.4 

Sc3-4 3206.3 1875.5 305.36 5081.8 -1% 5088.9 214.7 360.6 3636.0 

Sc3-5 3397.5 1739.2 308.72 5136.7 6% 5104.2 214.9 362.4 3668.7 

Sc4-1 3200.5 1874.0 337.12 5074.5 6% 5042.3 212.7 374.3 3602.2 

Sc4-2 3091.5 1807.5 291.98 4899.0 -11% 4958.3 209.2 348.8 3543.9 

Sc4-3 3242.5 1918.1 353.42 5160.6 3% 5144.2 217.1 386.4 3666.6 

Sc4-4 3112.0 1888.4 311.09 5000.4 13% 4931.6 208.2 357.1 3519.3 

Sc4-5 3259.1 1838.6 318.23 5097.7 14% 5021.5 211.7 363.8 3591.2 

Sc5-1 2937.8 1639.4 261.38 4577.2 -26% 4709.7 198.5 323.5 3358.0 

Sc5-2 3225.4 1486.1 283.13 4711.5 -16% 4795.0 201.5 336.9 3441.2 

Sc5-3 3106.8 1768.7 280.17 4875.5 -13% 4944.0 208.5 342.4 3530.8 

Sc5-4 3060.5 1696.1 282.52 4756.6 -9% 4805.5 202.6 338.2 3430.9 

Sc5-5 3281.9 1727.6 261.74 5009.5 -7% 5045.7 212.5 337.6 3615.8 

Sc6-1 2090.1 1294.5 247.8 3384.6 -35% 3521.4 148.7 267.2 2506.3 

Sc6-2 2094.4 1228.1 237.32 3322.4 -39% 3469.1 146.4 259.8 2476.5 

Sc6-3 2177.3 1346.7 260.61 3524.0 -37% 3672.6 155.1 279.7 2621.0 

Sc6-4 2335.8 1357.1 264.7 3692.8 -35% 3840.9 162.0 288.7 2743.5 

Sc6-5 2326.2 1407.8 280.03 3734.0 -31% 3865.0 163.1 298.7 2746.7 

Sc7-1 3093.9 1909.0 345.09 5002.9 -10% 5055.8 207.7 207.7 3575.4 

Sc7-2 3169.5 1771.3 379.8 4940.8 -1% 4947.4 203.2 203.2 3524.4 

Sc7-3 3280.4 2009.0 373.61 5289.3 7% 5247.6 215.6 215.6 3748.9 

Sc7-4 3125.2 1906.1 317.82 5031.3 6% 5000.9 205.4 205.4 3578.6 

Sc7-5 2901.0 1922.8 353.68 4823.8 -14% 4901.1 201.3 201.3 3476.1 
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The process of calculating average and SEM of results of all similar tests of a 

scenario was described in Section 2.3.1. The average net electricity cost values of all 

scenarios are displayed in Figure 27. The SEM values are showed as error bars on top 

of each column. Figure 28 and Figure 29 also demonstrate the average and SEM of net 

CO2 emission and total penalty values of all scenarios. 

 

Figure 27- Net electricity cost of PEPSO functionality evaluation tests on Monroe WDS 

At the first look, it seems that SEMs of net electricity cost (Figure 27) and CO2 

emission (Figure 28) data are relatively low, but SEMs of total penalties (Figure 29) are 

higher than other objectives. However, it should be noted that water level and pressure 

violations are raised to the power of 1.5 to calculate penalties which mean, a slight change 

in violation may result in a considerable change in the penalty so it is expected to see 

higher variation and larger SEM for a penalty with respect to two other objectives. 
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Figure 28- Net CO2 emission of PEPSO functionality evaluation tests on Monroe WDS  
(calculated based on marginal emission factors) 

  

Figure 29- Total penalty of PEPSO functionality evaluation tests on Monroe WDS 
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5041±46 (kWh) energy consumption of the system, about 36% is consumed during on-

peak hours. Electricity cost of scenarios Sc2, Sc3 and Sc4, are very close to results of 

Sc1 optimization runs. Which indicates, in this test case, if WDS get optimized based on 

one objective (e.g. penalty) all other objectives will also be optimized in some extent. As 

reducing energy consumption in most cases will cause reduction of CO2 emission this 

direct relation between electricity cost objective and CO2 emission objective is 

predictable. But reducing penalty and reducing energy usage are not always aligned. 

Taking a closer look at detailed results of this test case showed that most of the penalties 

of Sc1 tests are related to high tank level violation. Therefore, it is understandable that in 

this specific case, reducing energy usage can reduce the total penalty. Accordingly 

optimizing based on all three objectives (Sc2) results in almost the similar to Sc1 optimum 

solution, with a similar amount of electricity cost. 

Similar to electricity cost results, CO2 emission results of optimized solutions of 

Sc1, Sc2, Sc3 and Sc4 scenarios are relatively close. However CO2 emission of scenario 

Sc2 and Sc4 that consider pollution emission as an optimization objective is slightly lower 

than Sc1 and Sc3 scenarios. It is interesting that when both electricity cost and CO2 

emission optimized at the same time (Sc2), highest reduction in CO2 emission obtained 

(48 to 123 (kg/day) less than pollution emission of the system when is not optimized based 

on these two objectives). Assuming that the average emission reduction for the system 

is possible throughout a year, we can see that this small difference in emission can lead 

to 31.2 ton reduction of CO2 emission of Monroe WDS per year. 

The amount of CO2 emission is a function of both energy consumption (kWh) and 

time variant emission factor (kg/kWh). Therefore optimizing both electricity cost and CO2 
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emission at the same time (Sc2) can have amplified effect on reducing CO2 emission by 

reducing the total energy consumption and shifting it to the times with lower emission 

factors. Accordingly, the test results showed that optimizing the system based on both 

energy consumption and CO2 emission (Sc2) can reduce the daily CO2 emission by 

1.4±1.3% in respect to CO2 emission of Sc4 scenario that is optimized based on CO2 

emission (not electricity cost). This result indicates that, although theoretically optimizing 

based on only CO2 emission should show us a solution with the minimum weight of 

emitted CO2, but in practice, optimizing based on multiple objectives that amplify the effect 

of each other may result in finding better solutions in limited duration of optimization. 

In general, total penalty values of most scenarios (except Sc4) are low. However 

when Monroe WDS optimized just based on penalties (Sc3), the total penalty value is 

10±7% lower than the total penalty of Sc2 scenario which optimizes all three objectives. 

Comparing results of the optimization without using UI calculation (Sc5) with the 

base scenario (Sc1) showed that the electricity cost of Sc5 scenario is 8.5±2.3% lower 

than the base scenario (Sc1). At first, this result suggests that using UI calculation 

reduced the effectiveness of PEPSO and results in solutions with higher energy 

consumption. However, more investigation revealed that during the whole operation 

period, stored volume of water in tanks and pressure of strategic junctions in Sc5 solutions 

are in average 5.6% and 1.9% lower than Sc1 results. In addition, solutions of Sc1 

scenario in average have less than 2 warnings about pumps that cannot deliver head, but 

Sc5 results in average have about 4 and 1 warnings about pumps that cannot deliver 

head and flow respectively. The final volume of stored water in tanks for the Sc5 scenario 

is 10.9±5.3% lower than final volume of stored water in the Sc1 scenario.  
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Figure 30 displays pattern of water level in tanks (top) and water pressure at 

strategic junctions (bottom) of typical results of Sc1 (left) and Sc5 (right) scenarios. It can 

be seen than Sc3 solutions tends to drain tanks more than Sc1 solutions and water 

pressure at strategic junctions in Sc5 solutions are slightly lower than the pressure of Sc1 

solutions. The UI module of PEPSO calculates UI values to help PEPSO to find better 

solutions that are more practical and cause less warning message during simulation with 

EPANET. Effect of this module on optimization of Monroe WDS is preventing to drain 

tanks and keeping water pressure at the strategic junction in the acceptable range but not 

very close to the minimum limits. This effect might be more desirable for operators that 

want to stay on the safe side and prevent to operate the system in an extreme way that 

reduces electricity cost but is sensitive to potential changes in demands. 

All of these show that although electricity cost of Sc5 result is lower than Sc1 but 

results of Sc1 scenario are more safe and practical and can better satisfy operation needs 

of the system. So in this test case, calculating UI helped PEPSO to find more practical 

optimized solutions. The required CPU time of optimizing Sc1 scenario of the Monroe 

WDS with the Lenovo ThinkPad W520 workstation (see Section 2.3.1 for more 

specification) was 1152±97 seconds (real time 02:04:41±00:10:32). While turning off the 

UI calculator module (Sc5) reduce this CPU time to 1357±69 seconds (real time 

02:26:53±00:07:26). So optimizing with UI can in average increase the optimization time 

of Monroe WDS by 8.9% but it increase the quality of the final solution. 

It was explained in the section 2.3.1 that water level constraint in the tank was 

removed from the Sc6 optimization runs. Results of this optimization run showed that 

giving PEPSO the possibility of operating pumps without tank level constraints, reduces 
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electricity cost and CO2 emission of the system by 24±2.4% and 27.2±2.0%. Despite the 

fact that removing water level constraints reduces electricity cost and CO2 emission, it 

considerably increased water level violation of tanks and water pressure violation at 

strategic junctions. In most of the scenarios, PEPSO was successful to find near-optimum 

solutions with relatively low amount of water level and pressure violations. 

 

Figure 30- Pattern of water level in tanks (top) and water pressure at strategic junctions 
(bottom) of typical results of Sc1 (left) and Sc5 (right) optimization scenarios of Monroe 

WDS 
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However, in Sc6 scenario pressure at junctions has considerable fluctuation that 

caused considerable low and high-pressure penalties. The tank level penalty of Sc6 

scenario is more than four times of tank level penalty of Sc1 scenario Comparing time 

patterns of water level in tanks and water pressure at junctions of Sc6 (Figure 31), and 

Sc1 (Figure 30) can clearly show this difference. 

  

Figure 31- Pattern of water level in tanks (left) and water pressure at strategic junctions 
(right) of typical results of Sc6 optimization scenario of Monroe WDS 
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reduction in the volume of stored water in tanks. Stored water loss of Sc6 scenario is 

more drastic than all other scenarios and it can be directly related to the tank level control. 

In all the optimization scenarios that are discussed up to this point, a time of use 

electricity tariff was used for calculating the electricity consumption cost. However for Sc7 

optimization runs, a constant energy consumption cost is used for the whole operation 

period, and peak power demand charge was removed from the electricity tariff. Results 

of this test on Monroe WDS showed that having a flat rate electricity tariff, in average, can 

lead to 9.7% increase in peak power demand (kW) while the total consumed energy (kWh) 

is almost unchanged. Although the total energy consumption in both Sc1 and Sc7 

scenarios are almost unchanged, 2.1% of the total energy consumption in Sc7 scenario 

shifted from off-peak hours to on-peak hours. These results confirms that power demand 

charge and time of use electricity tariffs will force PEPSO to find optimized solution with 

more energy consumption during off-peak times and with shaved peak power demand. 

Repeating the same scenario with flat rate energy tariff but including the peak power 

demand charge led to an optimized solution with the peak power demand equal to the 

base scenario (Sc1) but 1.7% more energy consumption during on-peak hours. Even in 

this case, that power demand charge was not removed from the electricity tariff, 1.7% 

energy consumption shifting from off-peak hours to on-peak hours is observed. Therefore, 

it can be confirm that most of the energy consumption shift in the Sc7 scenario were 

because of flat electricity charge not removing the power demand charge. The time of 

use energy tariff can be considered as a limiting factor that forces PEPSO to find solutions 

which consume more energy during off-peak hours. 
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3.2.2. Analyzing PEPSO Functionality Evaluation Tests Results On 

Richmond WDS 

The same process that was done on results of Monroe test is done on the result 

of Richmond test to calculate Net energy consumption and CO2 emission. The calculated 

net values are reported in Table 21. 

Based on the optimum result of base scenario (Sc1), the daily net electricity cost 

of the Richmond skeletonized WDS is $111.4±$2.5. In average 68% of energy is 

consumed during on-peak hours. The total penalty of the optimum solution is almost 

negligible (6.6±0.1) and in most case are related to high water level violation of tank E. 

Water level in this tank almost always stays above the desired tank level and slightly 

below the maximum allowed level. Although this might show a sign of some excess 

energy consumption in the system, but from an operational point of view, it will not cause 

serious concerns like those cases that tanks are empty. 

Figure 32 displays net electricity cost of the optimum solutions of different 

scenarios of Richmond WDS optimization test. The error bars on top of column show 

SEM of each column. Similarly, Figure 33 and Figure 34 presents net CO2 emission and 

total penalty values of these tests. 

From these graphs it can be grasped that SEMs of net electricity cost (Figure 32), 

CO2 emission (Figure 33) and total penalty (Figure 34) of Richmond test in most scenarios 

except Sc2 and Sc4 are relatively low. Both Sc2 and Sc4 scenarios consider CO2 

emission reduction as one of their optimization objectives. For explaining these relatively 

high SEM values, we need to take a closer look at all solutions in the final Pareto frontier 

of these optimization runs. 
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Table 21- Electricity consumption results of PEPSO functionality evaluation tests on Richmond 
WDS 
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Sc1-1 502.5 1032.2 135.7 1534.7 -21% 1852.2 112.1 112.1 1326.3 

Sc1-2 468.1 1024.8 136.2 1492.9 -15% 1709.6 104.5 104.5 1222.7 

Sc1-3 496.0 1026.1 135.8 1522.1 -23% 1890.5 114.5 114.5 1348.4 

Sc1-4 479.8 1031.5 135.5 1511.3 -16% 1749.9 106.8 106.8 1249.3 

Sc1-5 513.9 1018.4 136.0 1532.3 -27% 1983.7 119.1 119.1 1420.5 

Sc2-1 441.7 886.9 136.1 1328.6 -20% 1586.7 97.0 97.0 1124.8 

Sc2-2 440.2 813.3 136.4 1253.5 -24% 1559.3 93.2 93.2 1094.3 

Sc2-3 453.0 668.4 136.5 1121.4 -33% 1547.6 90.3 90.3 1097.6 

Sc2-4 524.0 1012.5 136.3 1536.4 -19% 1832.0 108.7 108.7 1310.8 

Sc2-5 468.3 670.7 136.6 1139.0 -37% 1646.8 95.8 95.8 1170.1 

Sc3-1 503.0 1050.4 136.2 1553.4 -24% 1935.3 118.5 118.5 1385.0 

Sc3-2 497.6 1045.0 135.9 1542.5 -19% 1832.7 111.9 111.9 1309.7 

Sc3-3 505.2 1026.4 135.5 1531.6 -21% 1856.5 112.1 112.1 1325.8 

Sc3-4 503.6 1026.4 135.7 1529.9 -21% 1845.8 111.2 111.2 1318.3 

Sc3-5 476.4 1057.9 135.8 1534.3 -19% 1821.3 112.9 112.9 1303.3 

Sc4-1 288.6 495.0 137.5 783.6 -53% 1398.6 90.3 90.3 972.3 

Sc4-2 414.0 572.9 137.7 986.9 -53% 1753.9 102.9 102.9 1238.8 

Sc4-3 397.7 637.8 136.9 1035.5 -38% 1522.1 92.1 92.1 1083.6 

Sc4-4 479.0 460.5 169.1 939.5 -45% 1498.9 81.3 81.3 1082.5 

Sc4-5 405.1 639.7 136.7 1044.9 -37% 1516.4 91.8 91.8 1061.3 

Sc5-1 523.4 984.4 135.9 1507.7 -23% 1871.7 109.3 109.3 1340.0 

Sc5-2 509.8 1013.2 135.7 1522.9 -22% 1854.6 110.9 110.9 1329.0 

Sc5-3 490.4 1020.7 135.4 1511.1 -22% 1840.2 111.2 111.2 1320.8 

Sc5-4 555.1 1013.5 169.4 1568.5 -26% 1997.9 117.2 117.2 1430.3 

Sc5-5 479.1 1038.5 136.0 1517.6 -19% 1809.1 111.0 111.0 1290.8 

Sc6-1 540.3 972.5 136.1 1512.8 -28% 1968.6 113.5 113.5 1414.3 

Sc6-2 492.0 976.6 135.0 1468.6 -19% 1740.6 102.5 102.5 1244.2 

Sc6-3 490.6 977.6 135.9 1468.2 -18% 1727.7 101.9 101.9 1241.5 

Sc6-4 491.4 974.0 136.1 1465.4 -20% 1765.2 103.9 103.9 1261.7 

Sc6-5 515.4 980.4 136.0 1495.7 -23% 1848.8 108.2 108.2 1325.0 

Sc7-1 455.5 1057.3 135.8 1512.8 -15% 1727.8 136.9 136.9 1233.8 

Sc7-2 467.9 1049.6 168.2 1517.5 -7% 1610.8 126.3 126.3 1148.8 

Sc7-3 481.2 1070.3 169.0 1551.5 -17% 1812.0 144.0 144.0 1298.2 

Sc7-4 396.6 1050.3 133.9 1446.9 -11% 1590.0 123.7 123.7 1132.4 

Sc7-5 422.9 1017.2 135.6 1440.0 -10% 1566.9 121.6 121.6 1115.4 

 



173 

 

 

Figure 32- Net electricity cost of PEPSO functionality evaluation tests of Richmond WDS 

  

Figure 33- Net CO2 emission of PEPSO functionality evaluation tests of Richmond WDS  
(calculated based on marginal emission factors) 
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Figure 34- Total penalty of PEPSO functionality evaluation tests of Richmond WDS 
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in Sc2 and Sc4 scenarios, considering the CO2 emission as one objective, and including 

it in the process of selecting the best solution, changes the final result. In this scenarios 

low CO2 emission of the second group of solutions encourages PEPSO to select and 

report solution from this group as the optimum solution. This will happen more frequently 

in case of Sc4 scenario which electricity cost is not an objective and happen less 

frequently when all three objectives are evaluated (Sc2). This is explaining the high 

variation in the result of Sc2 and Sc4 scenarios that are showed as high SEMs. The 

average decrease in volume of stored water in Sc2 and Sc4 scenarios are 27% and 45% 

respectively. While the average decrease in volume of store water in the tank of other 

scenarios are 12% to 22%. 

The above explanation can clarify the main reason of seeing relatively low energy 

consumption cost, CO2 emission, and considerably high total penalty values in Sc2 and 

Sc4 scenarios with respect to the results of other scenarios. The net electricity cost of 

Sc2 and Sc4 are 30.7±5.5% and 17.7±4.7% lower than Sc1 respectively. Similarly, net 

CO2 emission of Sc2 and Sc4 are 29.8±5.7% and 17.2±5.2% less than Sc1 respectively. 

As the results of Monroe tests, here it can be observed that optimizing based on both 

electricity cost and CO2 emission has an amplifying effect on reduction of both objectives. 

The total penalty of Sc2 scenario is 133±37 while the total penalty of Sc4 scenario is 

339±28. Higher penalty value and lower variation of results of Sc4 scenario can be 

explained by the fact that solution with low energy consumption and high penalty value 

are more frequent in the Sc4 scenario. Therefore, in an average solution of Sc4 are more 

uniform and with higher penalty values. 
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In the fifth scenario (Sc3) Richmond WDS optimized just based on the total 

penalty. In this case, net electricity cost and CO2 emission are in average 1.7% and 1.1% 

higher than the base scenario (Sc1) respectively. This increase in energy consumption in 

Sc3 scenario let PEPSO find a solution with 5.7% lower penalty in respect to Sc1. 

The hydraulic model of the skeletonized version of Richmond WDS was simpler 

that Monroe WDS. So, in this case, optimizing with or without UI calculation did not 

considerably changed the results. Results of both Sc1 and Sc5 scenarios are close in 

respect to total penalty, electricity cost and number of warnings. It seems that UI 

calculation helped a little bit to find solutions with slightly lower (2.2%±1.6%) CO2 

emission. But it should be considered that calculating UI is additional computation load 

on the optimization process. 

Optimizing pump operation of Richmond WDS without water level constraints for 

tanks (Sc6), in average reduces the net electricity cost and CO2 emission by 4.8% and 

1.2% respectively. However, this increases the total penalty by 35.1%. The water 

pressure penalty at a junction in both Sc6 and Sc1 scenarios was zero, so the above-

mentioned increase in total penalty was only related to increasing in water level penalty 

of tanks. 

It was discussed previously that the electricity tariffs of Richmond WDS do not 

have power demand charge, so the whole electricity cost in this system is related to the 

time-dependent energy consumption charge. However in the Sc7 scenario, constant off-

peak energy consumption charge was applied to all hours of the day. This flat rate 

electricity tariff in average reduced 3% of total energy consumption (kWh) from off-peak 

hours and added half of that to the on-peak hours. By this change, the remaining 1.5% of 
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energy is saved. Previously, due to using a time of use electricity tariff, PEPSO needed 

to shift energy usage to reduce electricity cost of the system. This shift of energy usage 

caused some head losses during filling and draining tanks. By using the flat rate electricity 

tariff, energy was consumed at the time that it was needed which reduced 1.5% of the 

total energy consumption due to eliminating unnecessary head loss. It is interesting to 

see that flat rate tariff gives PEPSO more flexibility to find a solution that satisfies required 

volume of stored water at the end of the operation. The solutions of the base scenario 

(Sc1) drained 21.6±2.1% of stored volume of water in tanks, but Sc7 solution just drained 

12.0±1.7% of this volume. 

3.2.3. Analyzing PEPSO and DS Comparison Test Results 

In Section 3.2.1 it was discussed that to have a fair comparison between results of 

two optimization test, reported energy consumption should be adjusted to take into 

account the effect of changes in the volume of stored water during the operation period. 

Results of PEPSO and DS runs also adjusted by this method and presented in Table 22. 

Results of PEPSO and DS comparison tests that are presented in both Table 19 

and Table 22 show that solutions that PEPSO and DS provided for the same problem are 

different in various aspects. For instance, electricity consumption and peak power 

demand of PEPSO solution are lower than DS while PEPSO solutions tend to drain tanks, 

but DS solutions tend to fill tanks. 

The patterns of water level in tanks of Figure 35 indicates that DS tends to increase 

water levels in tanks at the end of operation period to meet the initial water level and even 

go beyond that. This can increase accumulated power demand at pump station due to 

turning on multiple pumps at the same time which increases peak power demand of the 
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system for the whole electricity billing period and can considerably increase electricity 

cost of the system. However, PEPSO tries to keep water levels balanced during the 

optimization period and prevent power demand accumulation. Looking at typical peak 

power demand pattern of DS and PEPSO solutions (Figure 36) helps to see clearly this 

effect. 

Table 22- Adjusted electricity consumption results of PEPSO and DS comparison tests 

Test Name 
Stored 
Volume 
Change 

Net Energy 
Consumption 

(kWh) 

Net Energy 
Consumption 

Cost ($) 

Power 
Demand 
Cost ($) 

Net 
Electricity 
Cost ($) 

PEPSO 1 1% 6818.4 286.4 199.8 486.14 

PEPSO 2 -3% 6643.0 281.1 166.6 447.69 

PEPSO 3 -12% 6406.9 276.2 184.0 460.16 

PEPSO 4 -15% 6060.9 262.8 191.1 453.91 

PEPSO 5 -6% 6272.4 267.6 196.0 463.60 

DS 1 7% 7091.3 296.0 238.9 534.9 

DS 2 7% 7091.3 296.0 238.9 534.9 

DS 3 7% 7091.3 296.0 238.9 534.9 

DS 4 45% 7976.6 286.2 286.1 572.2 

DS 5 22% 7941.5 323.6 349.3 672.9 

 

Average, SEM and relative SEM of results of PEPSO and DS comparison test are 

calculated and shown in Table 23. It can be seen that SEM of PEPSO results is less than 

DS in almost all cases, which refers to more consistency in PEPSO results. The net 

energy consumption, peak power demand and electricity cost of all PEPSO runs are lower 

than DS results. One good point about the DS optimum pump schedules is that the 

volume of stored water in tanks at the end of the operation period of solutions of DS is 

always higher than the initially stored volume of water. For the PEPSO test in some cases 

the volume of stored water increased slightly but in most cases we can see 12% to 38% 

decrease in volume of stored water during a day.  
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Figure 35- Pattern of water level in tanks of typical results of PEPSO (left) and DS (right) 
optimization runs of Monroe WDS 

  

Figure 36- Pattern of power demand of typical results of PEPSO (left) and DS (right) 
optimization runs of Monroe WDS 
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electricity cost of the Monroe WDS based on DS results is 23.3±7.1% higher than results 

of PEPSO. 

Table 23- Statistical analysis of results of PEPSO and DS comparison test 

Parameter 

Net 
Energy 

Use 
(kWh) 

Net 
Energy 

Use 
Cost 

On-peak 
Energy 

Use 
(kWh) 

Off-peak 
Energy 

Use 
(kWh) 

Peak 
Power 

Demand 
(kW) 

Power 
Demand 

Cost 

Stored 
Volume 
Chang

e 

Pressure 
Penalty at 
Junction 

Net 
Electricity 

Cost 

P
E

P
S

O
 Mean 6640.3 $274.8 2387.6 4092.8 392.8 $187.5 -0.1 0.02 $462.3 

SEM 125.6 $4.1 65.5 92.6 11.5 $5.5 0.03 0.01 $6.2 

Relative 
SEM 

2.0% 1.5% 2.7% 2.3% 2.9% 2.9% -39.1% 60.9% 1.3% 

D
S

 

Mean 7438.4 $299.5 2596.6 4733.3 566.5 $270.4 0.2 204.5 $569.9 

SEM 199.9 $5.9 138.6 46.2 42.8 $20.4 0.1 5.9 $25.1 

Relative 
SEM 

2.7% 2.0% 5.3% 1.0% 7.6% 7.6% 40.1% 2.9% 4.4% 

 

The left pair of columns in Figure 37 displays daily electricity cost of Monroe WDS 

after optimizing by PEPSO and DS. The small error bar on top of each column shows its 

SEM. Electricity cost of the system combined from the power demand cost and energy 

consumption cost. So these components are shown by the two pairs of columns on the 

right side of Figure 37.it is clear that most of the difference between net electricity cost of 

PEPSO and DS solution are related to the power demand cost. So important effect of 

peak demand shaving in the operation of WDS and reducing electricity cost of systems 

in obvious here. 

The left pair of columns of Figure 38 displays the net energy consumption of both 

solutions of PEPOS and DS. As Figure 37, error bars on this chart show SEM values. 

Both on-peak and off-peak component of energy consumption are shown separately by 

two pairs of columns on the right side of Figure 38. This bar chart indicates that on-peak 

energy consumption of the system in PEPSO solution is slightly less than DS solution. 
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However off-peak energy consumption of the system based on optimum pump schedule 

of PEPSO is 15.7±3.7% lower than DS. 

 

Figure 37- Electricity, power demand and energy costs of solutions of the PEPSO and DS 
comparison tests on Monroe WDS 

 

Figure 38- Net, on-peak and off-peak energy consumption of solution of the PEPSO and DS 
comparison test on Monroe WDS 
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Figure 39 displays a typical optimized pump schedule of Monroe WDS with 

PEPSO (top) and DS (bottom). Numbers on a cell of the pump schedules show the 

relative rotational speed of two variable speed pumps in percentage. We know that some 

elevated demand points of the Monroe WDS need the help of the booster pump station 

to receive water. So at each time, at least one of the two variable speed pumps in the 

booster pump station should work. Figure 39 shows that PEPSO addressed this need 

better that DS. At all times, there is, at least, one of two variable speed pump is ON and 

just in 5 hours both pumps are working. 

Optimized pump schedule of PEPSO 
         Hour 
Pump  

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

E-2 0 1 0 1 1 1 1 1 0 0 1 1 1 1 1 1 0 1 0 1 0 0 0 0 0 

E-3 0 0 0 0 0 1 0 0 0 1 0 1 0 0 1 0 0 0 0 1 0 0 1 1 0 

E-4 0 1 1 0 1 1 0 0 0 1 0 1 0 0 0 1 0 1 1 0 1 0 1 0 0 

E-5 0 0 0 0 1 0 0 1 1 0 0 1 0 0 0 0 1 1 0 1 0 1 0 0 0 

E-6 1 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 

E-7 0 1 0 0 1 0 0 0 0 1 1 0 0 0 1 1 0 1 0 0 0 1 0 0 0 

W-8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 

W-9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

W-10 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 

W-11 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

W-12 0 0 1 0 0 0 1 1 1 1 0 0 0 0 1 1 0 0 0 1 0 1 1 0 0 

PMP-9 97 81 80 89 0 94 74 0 92 0 82 0 96 86 92 0 0 0 93 0 0 0 82 0 97 

PMP-544 0 69 84 0 96 0 0 99 0 95 0 71 77 87 92 86 80 99 0 80 83 65 0 64 0 

Optimized pump schedule of DS 
         Hour 
Pump  

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

E-2                          

E-3                          

E-4                          

E-5                          

E-6                          

E-7                          

W-8                          

W-9                          

W-10                          

W-11                          

W-12                          

PMP-9 0 99 77 00 77 75 91 0 93 82 0 0 67 83 0 96 74 70 67 78 92 97 87 76 0% 

PMP-544 65 75 0 0 70 74 70 96 93 85 74 72 0 0 76 0 67 91 73 80 82 99 98 93 65 

 
Figure 39- Typical optimized pump schedule of Monroe WDS, PEPSO (top) and DS (bottom) 

Initially number of pump switches in both PEPSO and DS was limited to 24. This 

can be considered as practically no constraint on pump switches. As in 24 hours period 
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with one-hour time step, it is possible to have 12 pump starts. Despite the fact that number 

pump switches were not constrained, in an average number of pump switches for PEPSO 

and DS are about 5 and 4 times per day respectively. 

It shows that even without having a constraint on pump switches it is rare to have 

an optimized pump schedule with a considerably high number of pump starts. Pumps 

PMP-544 and PMP-9 are in the same pump station and has the same characteristic 

curves. So when one of them is on we can simply turn the other one and turn of the first 

pump and see the same flow and head out of pump station. Pumps E-3, E-4, and E-5 and 

pumps W-10, W-11 and W-12 also can be grouped in the same way. Accordingly, we can 

edit optimized pump schedules of Figure 39 and make them simpler.  

Optimized pump schedule of PEPSO 
      Hour 
Pump 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

E-2                          

E-3                          

E-4                          

E-5                          

E-6                          

E-7                          

W-8                          

W-9                          

W-10                          

W-11                          

W-12                          

PMP-9 97 81 80 89 96 94 74 99 92 95 82 71 96 86 92 86 80 99 93 80 83 65 82 64 97 

PMP-544 0 69 84 0 0 0 0 0 0 0 0 0 77 87 92 0 0 0 0 0 0 0 0 0 0 

Optimized pump schedule of DS 
      Hour 
Pump 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

E-2                          

E-3                          

E-4                          

E-5                          

E-6                          

E-7                          

W-8                          

W-9                          

W-10                          

W-11                          

W-12                          

PMP-9 65 99 77 0 77 75 91 96 93 82 74 72 67 83 76 96 74 70 67 78 92 97 87 76 65 

PMP-544 0 75 0 0 70 74 70 0 93 85 0 0 0 0 0 0 67 91 73 80 82 99 98 93 0 

 
Figure 40- Polished optimized pump schedule of Monroe WDS, PEPSO (top) and DS (bottom) 
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In each group, we do not turn on the second or third pump unless the first pump is 

on. Polished pump schedules of Figure 39 are displayed in Figure 40. Here we can see 

that the average number of pump switches of results of PEPSO and DS dropped to less 

than 4. 

A solution evaluation is hydraulically simulating a WDS based on a proposed pump 

schedule and evaluating its results. Required CPU time for one solution evaluation of the 

Monroe WDS by a Lenovo ThinkPad W520 workstation (see section 2.3.1 for its 

specifications) is recorded for both PEPSO and DS optimizations. In average, CPU time 

of each solution evaluation by PEPSO and DS are 0.052 and 0.100 seconds (their real 

time are 0.416 and 0.796 seconds) respectively. This result shows that speed of PEPSO 

in solution evaluation in average is about two times more than DS. Also, the number of 

iteration that each of them needs to find an acceptable near optimum solution can change 

total required the time of optimization. 

Optimization objectives trend graph of PEPSO that is displayed in Figure 41 (top) 

is a useful component of this tool. It lets the user see the optimization trend and decide 

what the optimum number of iteration is for reaching to an acceptable result in a limited 

amount of time. The horizontal axis shows a number of iteration and solution evaluation; 

the left vertical axis shows net electricity cost ($) and the right vertical axis shows total 

penalties. It can be seen that PEPSO rapidly reduces values of both objectives (especially 

the total penalty). Almost after 200 iterations, it can report an optimized solution 

comparable with DS final solution after 1000 iterations. It shows that it is possible to run 

PEPSO with a considerably lower number of iterations and in a shorter period of time get 

a near optimum solution that is practically acceptable. This optimum number of iterations 
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changes based on the complexity of the problem and different options for optimization. 

DS do not report the result of intermediate iteration in a tabular or graphical format. 

Therefore, it is hard for DS users to decide about the optimum number of iteration for 

optimizing their WDSs. 

 

Figure 41- A typical optimization trend of optimization run of Monroe WDS with PEPSO 
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CHAPTER 4 CONCLUSION AND FUTURE STUDIES 

Based on the test result that explained and analyzed in chapter 3 and based on 

experience that gained while developing PEPSO findings of this study are concluded in 

the following section, and some suggestion for further researches in this area are 

provided. 

4.1. Conclusion 

One of the main goals of this study was the development of software that can 

effectively optimize pump operation of WDSs to reduce the associated electricity cost and 

pollution emission. This tool should be able to provide a user-friendly environment and 

give the user an ability to optimize medium and large size WDS under different scenarios. 

The second version of PEPSO, which is introduced in section 2.2 has a graphical user 

interface which is designed by considering different factors including clarity, concision, 

familiarity, responsiveness, efficiency, consistency, aesthetic and forgiveness (for more 

details see Section 2.2.1). All the seven forms and multiple tabs of PEPSO designed 

based on a set of logic that let the user input data efficiently and accurately. Default 

options of PEPSO enable less technical users to run a simple optimization simulation 

without dealing with adjusting numerous options. However, users can edit any part of 

input and define various options to create a customized optimization run. 

Via, the electricity form users, can define detailed electricity tariff for each pump 

including time of use energy consumption charge ($/kWh) and power demand charge 

($/kW). Pollution emission form lets the user select desired pollution or combination of 

pollutions for optimization. PEPSO can connect to the LEEM server or use offline reports 

to get emission factors (kg/kWh) that are required for pollution emission optimization. 
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Different tabs of the constraint form let users define different types of hard and soft 

constraints on pumps, tanks, junction and pipe of WDS. Various optimization option 

including different stopping criteria, exploration and exploitation rates, initial conditions, 

etc. can be defined via the optimization option form. The user also can select any 

combination of objectives for optimization. Finally, the Report form provides a wide range 

of reports that user can see and save in the format of text (tabular data) and/or 2D and 

3D graphics (charts and plots). All of these features can be accessed through the 

graphical user interface or can be defined and edited directly on the PEPSO project file 

by using a simple text editor. 

The modular structure of PEPSO and unique functions and procedure that is 

defined for this tool are even more interesting than the user-friendly interface. The 

modular structure of PEPSO, which organize its 18 thousands lines of code, can make it 

more useful and powerful tool for researchers, WDS designers, and operators. Modular 

structure also makes it easier to add and remove components of PEPSO and make it 

more editable and upgradable in future. PEPSO has 17 main modules including but not 

limited to, EPANET hydraulic solver, ANN training set creator and trainer, ANN hydraulic 

solver, objective calculator, UI calculator, NSGA II, best solution finder, text reporter and 

plotter. PEPSO uses a customized version of the non-dominated sort genetic algorithm II 

to find at first Pareto frontier of solutions and then select the best one as the optimum 

pump schedule of the WDS. PEPSO can use both EPANET toolkit for hydraulically 

stimulating the WDS or train and use an ANN instead of EPANET model. UI and 

inadmissibility calculator modules are a unique part of this tool that enables it to find 

promising ways of combining and changing solution to improve them and get closer to 
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the global optimum solution ( see Sections 2.2.2.5 and 2.2.2.11). Using UI to guide 

mutation, crossover and elitism steps of the GA to generate feasible solutions and find 

the optimum solution faster is an approach that can be used in other optimization effort 

beyond the WDS operation optimization. 

PEPSO tested with different scenarios and compared with DS, which is one of the 

most famous commercial tools in this field. These tests have been done on the detailed 

hydraulic model of Monroe WDS and skeletonized version of Richmond WDS model. 

Results of test with eight optimization scenarios on Monroe WDS showed that: 

 PEPSO was able to optimize the detailed model of Monroe WDS effectively with 

13 pumps in about 2 hours with a computer system that can be found in typical 

WDS design or operation center (see Section 2.3.1 for more details). 

 Optimizing based on electricity cost and CO2 emission can reduce CO2 emission 

of the system by 1.3 to 3.4%. 

 Optimizing based on these two objectives at the same time is more effective that 

optimizing based on only the CO2 emission. An optimized system based on all 

objectives generate 1.4±1.3% less CO2 emission in comparison with the same 

system that is solely optimized based on the pollution emission. 

 In general, total penalties of an optimized solution of all scenarios of Monroe WDS 

were low. However, Optimizing based on just penalty (Sc3 scenario) reduced the 

total penalty by 10±7% with respect to the scenario of optimizing all objectives 

(Sc2). 
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 Calculating UI values helped PEPSO to find more practical optimized solutions 

with fewer EPANET warnings and less tank draining. However, UI calculation in 

average increased required time of optimization by 8.9%. 

 Scenario Sc6 is optimized Monroe WDS without tank level constraints. Water level 

penalty of tanks of Sc6 scenario is more than 4 times of the water level penalties 

of the base scenario (Sc1). Although removing the tank level constraints reduced 

about one-fourth of the energy consumption cost and CO2 emission but it was 

concluded that it considerably increases water level and water pressure penalties 

and led to impractical and unacceptable solutions. 

 From the Sc6 tests, it was also concluded that trying to balance tank level at the 

end of operation period is not solely enough for preventing draining of tanks and 

water level constraints on tanks helps to balance the final water level in tanks 

effectively. 

 Time of use electricity tariff forces PEPSO to shift 1.7% of energy consumption 

from on-peak hours to off-peak hours to reduce energy consumption cost. 

Including power demand charge in electricity tariff also in average shaves 9.7% of 

the peak power demand of the system. 

The similar scenarios were tested on a skeletonized hydraulic model of 

Richmond WDS. Result of these test showed that: 

 PEPSO was able to optimize effectively skeletonized model of Richmond WDS 

with seven pumps in about half an hours with a computer system that can be found 

in typical WDS design or operation center ( see Section 2.3.1 for more details) 
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 PEPSO is able to find a solution with very low penalty and in some cases zero 

pressure penalty for this system. 

 In those scenarios that CO2 emission was an objective of optimization (Sc2 and 

Sc4 scenarios) considering pollution emission reduction as an objective of the 

optimization process pushes the Pareto frontier toward solutions with lower energy 

consumption and higher penalty value. In this solution, we can see the 

considerable low water level and pressure violation. In these solutions, tanks will 

be drained during the operation period. 

 Optimization just based on the total penalty slightly increases the energy usage of 

the system that causes 5.8% reduction in total penalty. 

 Like Monroe WDS, optimizing without tank level constraints reduces the electricity 

cost and CO2 emission. However, it considerably (35.1%) increases water level 

penalty of tanks 

 Using a flat rate energy consumption charge instead of the time of use tariff 

enables PEPSO to consume energy at the time of high demand. This eliminated 

the need to storing more water during off-peak hours that was causing energy 

losses. By this method, PEPSO reduced the total energy consumption of the 

system by 1.5% and reduced tank draining by about 10%. 

Finally, comparison test between PEPSO and DS on Monroe WDS showed 

that: 

 Electricity consumption and peak power demand of PEPSO solution are lower than 

DS while PEPSO solutions tend to drain tanks, but DS solutions tend to fill tanks. 
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 PEPSO is considerably better than DS in peak power demand shaving. Peak 

power demand of PEPSO solutions is 44.2±15.1 lower than DS solutions. 

 Even without constrained number of pump switches in a day, both PEPSO and DS 

in average started pumps about 4 to 5 times in a day. 

 PEPSO is about two times faster than DS in completing a solution evaluation of 

Monroe WDS. In addition, PEPSO is able to reach to an acceptable near optimum 

solution with less number of solution evaluation. 

4.2. Future Research 

In Section 4.1 it was concluded that in a reasonable amount of time, PEPSO is 

able to optimize and provide logical results for a medium size WDS model with 13 pumps 

and thousands of system components under different scenarios. It also was mentioned 

that this tool in many aspects can provide better results in comparison to famous 

commercial optimization tools in the market. However during the PEPSO development 

and testing process, it was realized that there are other potential techniques that can be 

used to improve speed and accuracy of PEPSO. Some of these ideas are listed here: 

 Adding batch run and sweeping option to PEPSO modules for finding the best set 

of optimization and ANN trainer parameter for a WDS. This can help to find the 

optimum options of PEPSO for each problem and adjust them automatically 

without involving the user. 

 Considering the change of binary coding to trigger based coding to reduce size of 

solution space and making the optimization process faster and less computation 

intensive 
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 Store all network and optimization input and output data of PEPSO into a database 

that make storing processing and retrieving data more efficient. 

 Adjusting optimization parameter like mutation and crossover rate on the fly and 

based on the different phase of optimization. 

 Using multithreading structure to do the optimization calculation in parallel (e.g. 

EPANET hydraulic simulation, initial training of ANNs and their re-trainings, etc.) 

In addition to the changes that can make PEPSO faster and more accurate, there 

are other capabilities that can be added to PEPSO to increase its usability. Here is a list 

of some of these capabilities that can make PEPSO a more powerful WDS operation 

optimization tool: 

 Adding more tank level control like desired water level in the tank at the specific 

time of day 

 Adding an option to connect pumps to specific tank, strategic junction or pipes to 

be able to adjust the tank level, pressure or velocity of network components 

effectively 

 Add an option to do the above-mentioned task automatically and find the effect of 

status of pumps of the network on different component of the network (i.e. tanks, 

junctions, pipes) 

 Adding an ability PEPSO for training and using time series ANNs. These type of 

ANNs can be more accurate for simulating tank level and pressure at junctions. 

 Adding clustering tool that can find the area of the water network that the water 

pressure at their junctions are completely related and can be presented with a 

representative junction. This tool can help to select strategic junctions 
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automatically and define desired and allowed water pressure range based on 

requirements of the system. 

 Considering effect of valves in optimization and add a component to PEPSO which 

optimizes valve operation parallel to pump operation 

 Add a pump comparison tool to categorize pumps and find the similar pumps that 

can make the final solution polishing step more efficient. It helps to report more 

practical near optimum solution. 

 Add an option to adjust the operation of each pump at a time block based on the 

operation of the same pump at some previous and next time blocks. This may help 

to have simpler optimized pump schedule with less number of utilized pumps and 

less number of pump starts 

 Although the penalty calculation concept is used for water level, pressure and 

velocity constraints, the same method can be used for water quality constraints. In 

this case, PEPSO can find an optimum pump schedule that reduces water age 

(especially by draining and filling tanks). Therefore,  the possibility of adding a 

quality constraint to PEPSO and evaluating its effectiveness can be investigated 

in future studies. 

Although the second version of PEPSO which is developed in this study is more 

user-friendly than the initial version but there are other options that can be added to 

PEPSO to make it even more appealing for users. Adding these options to PEPSO or 

other similar tools can make them a good choice for both research purposes and 

operation optimization of real WDS. The below list shows some of our suggestion to 

improve the interface of PEPSO: 



194 

 

 Providing more graphing and reporting options like reporting result in the format of 

Excel files. Adding more interactive graphs, optimization graph evolvement video, 

etc. 

 Adding more flexible and sophisticated tools for selecting the final optimum 

solution among the solutions of the final Pareto frontier. This can be used as an 

automatic alternative to expert judgment for selecting the best solution from the 

final Pareto frontier 

 Increase forgiveness of software by double checking user inputs, suggesting a 

possible correction or changing them automatically to prevent fatal errors. 

 Adding more accessible and on-demand help and examples for the user while 

adjusting optimization parameters and inputting data. Also providing more detailed 

explanation of outputs and possible ways for interpreting them. 

 Finally, our search for finding a suitable benchmark test case showed that there is not 

a perfect benchmark model which can be used for testing tools like PEPSO. As it was 

explained in Section 0, a lot of models that are used by researchers are very simple 

or even does not have a pump. Another network that has pumps are mostly used for 

design optimization problems and does not have required characteristics for testing 

an operation optimization tools. For instance, most of these WDS models do not have 

variable speed pumps, time of use electricity rate or enough elevated storage capacity 

for shifting energy consumption. Accordingly a considerable number of researches 

that have been done on operation optimization of pumps used a simplified WDS model 

or a WDS that is not available for public use and cannot be used for comparing results 

of different tools and methods. Therefore, developing a benchmark test case for 
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comparing WDS operation optimization tools seems necessary for future researches 

in this field. Here are some basic suggestions for a benchmark water distribution 

system that can be used as a benchmark model of this type of research: 

 The test case should have more than 10 constant and variable speed pumps 

 There should be multiple pump station and multiple sources of water with different 

characteristics 

 The model should have some elevated tanks, and their storage capacity should be 

realistic and comparable to daily demand. Demand point should have more than 

one demand pattern. Network topography should have both flat and steep area. 

 The network should have both loop and branch structure. Also having some 

isolated flow of pressure zones provide more flexibility for testing. 

 The network should have some values with defined characteristic curves. 

 Some similar pumps should be located in the same pump station. 

 Pumps should have different operation range. All pumps should have realistic 

head-flow and efficiency-flow curves.  

 The network should have booster pump station. Some pump station should have 

parallel and series structure.  

 There should be at least pump station with more than one electricity meter 

 Electricity tariff should have 24 hours, 7 days, monthly and annual pattern. There 

should be both time of use and flat rate electricity tariffs. All of them should have 

peak power demand charge. The difference between on-peak and off-peak 

electricity rates should be realistic but considerable. 
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 Latitude and longitude of pumps should be defined, and a default emission factor 

report should be prepared. The emission factor report should cover emission of a 

different source of energy during hours of a day. 

Definitely, testing PEPSO with a suitable test case and using test cases with more diverse 

topology and hydraulic conditions will help to have more accurate and clearer picture of 

potentials of this tool. It also will help to find better paths of improvements. 
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APPENDIX A 

Glossary 

Average Energy Consumption Charge: The weighted average of on-peak and 

off-peak energy consumption charge based on the length of on-peak and off-peak periods 

of an electricity tariff. 

Constraint Importance Multiplier: Is a user-defined factor which will be multiplied 

by calculated penalty value that is corresponding to a component of the WDS to increase 

or decrease its effect on the total penalty value of a solution. For instance is water 

pressures at two strategic junctions of a WDS show the same amount of violation but 

constraint importance multiplier of the first junction is two times more than the second 

junction, penalty value that is associated with pressure violation of the first junction is 

twice more that penalty value of the second junction 

CPU time: is the amount of time that CPU spent on a processing instructions of a 

section of code of PEPSO and calculated by multiplying real time of completing the 

process by average CPU usage percentage at that period. 

Emission Factor (Emission Rate): a number with the pollution weight over 

energy consumption dimension (e.g. lb/kWh) that if multiplied by energy consumption 

results in pollution emission associated with energy consumption 

Energy Consumption Charge: Is cost of consuming one unit of energy (e.g. 

$/kWh). Multiplying energy consumption charge by the amount of consumed energy by a 

pump results in total energy consumption cost of the pump. 

Energy Intensity (EI): The average amount of energy needed to transport water 

from source to demand points per unit of water volume (kWh/m3) 
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EPANET input file: is a *.inp file that has all information of the hydraulic model of 

a WDS. PEPSO needs this file to optimize a WDS. For more information, please refer to 

EPANET user manual (Rossman 2000). 

Exploitation: Fine tuning good solution to improve their quality and get closer to 

the optimum point or visiting surrounding area of the current solution to find a slightly 

better solution that is located around them. The crossover operator of GA is mostly used 

for exploitation process (ˇCrepinˇSEK, Liu et al. 2011). 

Exploration: Searching for new solutions by visiting new areas of the solution 

space that have not been discovered. It helps algorithm to prevent getting stuck in a local 

optimum and increase the chance of finding the global optimum in non-convex problems. 

The mutation operator of GA can be used to help exploration process (ˇCrepinˇSEK, Liu 

et al. 2011). 

External Cost: An external cost arises when the social or economic activities of 

one group of persons have an impact on another group and when that impact is not fully 

accounted, or compensated for, by the first group. For instance, the external cost of 

electricity can arise from environmental footprint of generating energy (e.g. air pollution 

of burning coal in coal power plants) which is not included in electricity price 

LEEM report file: Is a comma separated value (*.CSV) file which has emission 

factors of the current, past and future times of the requested location. Durations of data 

in the past and future that are reported depend on the location and time of the query. For 

instance LEEM 2.5 is able to report between 6 to 37 hours of emission factor prediction 

based on latitude and longitude of the query. 
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Net Energy Consumption: The total energy consumption of the system 

considering the effect of accumulating or draining energy based on a change in volume 

of stored water in elevated tanks of the system. 

Optimized EPANET file: is the final output of optimization process of PEPSO in 

the form of a *.inp file which is similar the initial EPANET input file but its pump control 

section is filled based on the pump schedule of the optimum solution of PEPSO 

Optimum Solution: usually a local optimum and occasionally a global optimum 

solution of an optimization problem. In this specific case, the optimum solution is an 

optimum pump schedule that satisfies the hard and soft constraint of the problem (e.g. 

tank level controls, pressure limits, etc.) and minimizes the other objectives (e.g. 

electricity cost, pollution emission,etc.). 

Pareto Frontier: Pareto frontier is a set of Pareto optimal solutions that are better 

than other solutions with respect to all objectives but cannot dominate each other in 

respect to all different objectives. All solutions that are members of a Pareto frontier are 

better that other solutions in respect to at least one objective value. 

Peak Power Demand: peak power demand of an electricity meter can be 

calculated as a maximum power demand of the electricity meter during a defined billing 

period (e.g. one month) that is measured in a defined time intervals (e.g. 30 minutes 

intervals). For calculating peak power demand of an electricity meter at a time block, 

required power of all pumps that are connected to the electricity meter at that time block 

will be added up. 

Penalty: a numeric value that is calculated based on the amount of violation from 

a defined constraint. For instance, if maximum allowed pressure of a junction is 25 meter 
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of water head, a junction pressure equal to 30 meter shows 5 meter violation and when 

the violation raised to the power of 1.5 (or any other defined arbitrary number as a penalty 

power) final amount of pressure violation penalty is 51.5=11.18 

Population: collection of a group of solutions 

Power Demand Charge: Is cost of demanding one unit of power (e.g. $/kW). 

Multiplying power demand charge by the peak power demand of a pump results in total 

peak power demand cost of the pump. 

Project file: Is a file that is created by PEPSO based on project definition which is 

provided by the user via the user interface. This file can be manually edited by text editors. 

The project file has required information for running an optimization simulation by PEPSO 

and includes, electricity tariffs, electricity meter data, pollution emission scenarios, 

optimization options, reporting options, initial population, WDS component constraints, 

etc. 

Proportional Importance (PI): A value that shows the importance of an element 

with respect to other elements of an array. An element with higher PI has a higher chance 

to be selected by the roulette wheel sampling method. 

Relative Rotational Speed: Rotational speed of a variable speed pump with 

respect to its maximum rotational speed. It can be a number between 0 to 100% which 

100% is maximum rotational speed of the variable speed pump 

Solution: a pump operation schedule that define on or off status of fix speed 

pumps and rotational speed of variable speed pumps 

Solution Space: The solution space of pump operation optimization problem is a 

collection of all possible combination of the operational status of pumps of a system. For 
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instance solution space of a pair of constant speed pump and variable speed pump that 

the variable speed pump can work at 0%, 75% and 100% of its nominal rotational speed 

is: [(off,0%),(off,75%),(off,100%),(on,0%),(on,75%),(on,100%)] 

Strategic Junction / Strategic Pipe: strategic junction or pipe is an important 

component of a WDS which can act as an indicator of the status of surrounding 

component or the whole WDS. It means that for instance, by adjusting the pressure of a 

strategic junction within the desired range, we can make sure that pressures of other 

surrounding junction or even all junction in WDS are within acceptable range. 

Training Set: a set of input and output values for training an ANN. After training 

ANN, it is expected to give inputs to ANN and receive outputs within an acceptable range 

of error. 

Undesirability Index (UI): an arbitrary value that shows how far a pump schedule 

is from the ideal condition. UI can have positive, negative or zero value. Zero UI is an 

ideal condition. In an ideal condition, pump schedule does not have any NPW, PHW, 

PFW, TLP, JPP. Each cell of a pump schedule can have an UI value 
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APPENDIX B 

PEPSO Data Structures 

PEPSO uses the optimization structure to input & output data of an optimization 

run. The following diagrams show the optimization structure and all its sub-structures. 

Each item that is numbered has been expanded later. 

Address of the Project Folder

Address of the EPANET Model

Address of the Text Output

Max Constraints Table

Address of the ANN Training Set

Optimization Start Time

Unit System

1

List of Electricity Meter2

         EPANET Water Network Model3

Pump Constraints4

Tank Constraints5

        Strategic Junction Constraints6

         Strategic Pipe Constraints7

List of Pumps

List of Tanks

List of Strategic Junctions

List of Strategic Pipes

List of Demand Patterns

     Optimization Options8

Reporting Options9

Initial Population10

    Final Pareto Frontier10

 

Note

Latitude

Longitude

Electricity Tariff

Name2

Pump Index

Note

LEEM Connection

LEEM Address

Emission Factor Table

Name14

        Emission Scenario14

EPANET Flow UnitNode Count

Junction Count

Tank Count

Start Clock Time

Reservoir Count

Link Count

Pipe Count

Pump Count

Check Valve Count

Other Valve Count

1st Junction Index

1st Tank Index

1st Reservoir Index

1st Pipe Index

1st Pump Index

1st Check Valve Index

1st Other Valve Index

3

Name

Note

Pump Specification Table

4

Name

Note

Tank Specification Table

5

Name

Note

Junction Specification Table

6

Name

Note

Pipe Specification Table

7
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Note

Name10

        List of Solution(s)12

Statistics11

Duration

Time Step

Number of Time Blocks

Objectives Table

Name8

Penalty Calculation Power

Population Size

Elite Percentage

Crossover Percentage

Crossover Rate

Name13        Optimization Algorithm13

Mutation Percentage

Mutation Rate

Penalty Upper Bound
Minimum Undesirability

Hydraulic Simulator

Stopping Criteria Table

Max Iteration

Max Solution Evaluation

Max Time

Min Optimization Rate

Goals Table

 

Pump Schedule Graph Save Flag

EPANET Optimized Model Address

Text Report Flag

Optimization Inputs Section

Graphical Report FlagIteration Summary Section

EPANET Optimized Model Flag

Pump Schedule Section

Flow Warning Section

Head Warning Section

Connection Warning Section

Tank Level Section

Tank Penalty Section

Junction Pressure Section

Junction Penalty Section

Pipe Velocity Section

Pipe Penalty Section

Negative Pressure Warning Section

9

Pump Operation Section

Electricity Bill Section

Power Demand Section

Pollution Emission Section

Pump Operation Penalty Section

Pump Schedule Graph Show Flag

Pump Schedule Graph Update Rate

Optimization Trend Graph Save Flag

Optimization Trend Graph Show Flag

Optimization Trend Graph Update Rate

Optimization Trend Graph Log Scale

Pareto Frontier Graph Save Flag

Pareto Frontier Graph Show Flag

Pareto frontier Graph Update Rate

Pareto frontier Graph X Axis Label

Pareto frontier Graph X Axis Log Scale

Pareto frontier Graph Y Axis Label

Pareto frontier Graph Y Axis Log Scale

Pareto frontier Graph Z Axis Label

Pareto frontier Graph Z Axis Log Scale
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New Crossovered Solution Count

Solution Evaluation Counter

Best Solution Index

Iteration Counter

11

Best Solution Energy Usage Cost

Best Solution Electricity Cost

Best Solution Pollution Emission

Best Solution Total Penalty

Best Solution Pump Penalties

Best Solution Tank Penalties

Best Solution Power Demand Cost

Best Solution Pipe Penalties

Best Solution Junction Penalties

Population Average Energy Usage Cost

Population Average Electricity Cost

Population Average Pollution Emission

Population Average Total Penalty

Population Average Pump Penalties

Population Average Tank Penalties

Population Average Power Demand Cost

Population Average Pipe Penalties

Population Average Junction Penalties

New Mutated Solution Count

Best Solution Combined Obective

Best Solution Inadmissibility

Population Average Combined Objective

Population Average Inadmissibility

 

Dominate Count

Rank

Pump Schedule

Tank Level Table

Previous Position

Power Demand Table

Inadmissibility Table

Pump Efficiency Table

Strategic Junction Pressure Table

Strategic Pipe Velocity Table

Tank Penalty Table

Negative Pressure Warning Table

Pump Operation Table

Pump Operation Penalty Table

Peak Power Demand Table

Electricity Bill Table

Pollution Emission Table

Total Penalty

12

Strategic Junction Penalty Table

Strategic Pipe Penalty Table

Pump Flow Warning Table

Pump Head Warning Table

Pump Connection Warning Table

Crowding Distance

Undesirability Table

Roulette Wheel Table

Desirability Calculation Flag
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ABSTRACT 

ENHANCED PUMP SCHEDULE OPTIMIZATION FOR LARGE WATER DISTRIBUTION 
NETWORKS TO MAXIMIZE ENVIRONMENTAL AND ECONOMIC BENEFITS 

by 

S. MOHSEN SADATIYAN A. 

May 2016 

Advisor: Dr. Carol J. Miller 

Major: Civil & Environmental Engineering 

Degree: Doctor of Philosophy 

For more than four decades researchers tried to develop optimization method and 

tools to reduce electricity consumption of pump stations of water distribution systems. 

Based on this ongoing research trend, about a decade ago, some commercial pump 

operation optimization software introduced to the market. Using metaheuristic and 

evolutionary techniques (e.g. Genetic Algorithm) make some commercial and research 

tools able to optimize the electricity cost of small water distribution systems (WDS). Still 

reducing the environmental footprint of these systems and dealing with large and 

complicated water distribution system is a challenge. 

In this study, we aimed to develop a multiobjective optimization tool (PEPSO) for 

reducing electricity cost and pollution emission (associated with energy consumption) of 

pump stations of WDSs. PEPSO designed to have a user-friendly graphical interface 

besides the state of art internal functions and procedures that lets users define and run 

customized optimization scenarios for even medium and large size WDSs. A customized 

version of non-dominated sorting genetic algorithm II is used as the core optimizer 

algorithm. EPANET toolkit is used as the hydraulic solver of PEPSO. In addition to the 
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EPANET toolkit, a module is developed for training and using an artificial neural network 

instead of the high fidelity hydraulic model to speed up the optimization process. A unique 

measure that is called “Undesirability” is also introduced and used to help PEPSO in 

finding the promising path of optimization and making sure that the final results are 

desirable and practical. 

PEPSO is tested for optimizing the detailed hydraulic model of WDS of Monroe 

city, MI, USA and skeletonized hydraulic model of WDS of Richmond, UK. The various 

features of PEPSO are tested under 8 different scenarios, and its results are compared 

with results of Darwin Scheduler (a well-known commercial software in this field). The test 

results showed that in a reasonable amount of time, PEPSO is able to optimize and 

provide logical results for a medium size WDS model with 13 pumps and thousands of 

system components under different scenarios. It also is concluded that this tool in many 

aspects can provide better results in comparison with the famous commercial optimization 

tool in the market. 
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