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CHAPTER  1  INTRODUCTION 

Reliability Analysis  

 Uncertainties are unavoidable while dealing with various civil engineering 

problems. These uncertainties are often referred as random variables (RV) (non-

deterministic quantities) and are usually modeled and formulated using the concepts of 

probability and statistics. Reliability analysis is the study of effect of these uncertainties 

on the design and performance of a system.  In civil engineering, reliability is defined as 

the probability that the structure will serve within a specified limit or probability of 

occurrence of specified events; usually ‘failures’. In concept, a multidimensional 

integration of the joint probability density function (PDF) over the entire failure domain 

is conducted to determine the probability of failure. However, solving this 

multidimensional integral is a complex task.  

To avoid the aforementioned difficult task, researchers have developed various 

alternative techniques to determine the probability of failure. From past research, the 

structural reliability analysis techniques can be generally categorized into two groups; 

simulation methods and reliability index-based methods (β-based methods). Simulation 

methods are the oldest methods in reliability analysis and are based on randomly 

simulating a phenomenon and counting the occurrence of the event of interest (Nowak 

and Collins 2000). Monte Carlo Simulation (MCS) is the most popular and simplest 

simulation based method. MCS has the potential to solve complex physical as well as 

mathematical problems with high accuracy. Although potentially accurate and simple to 

implement, the computational cost of MCS while evaluating complex engineering 
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problems with low failure probability may be infeasibly high. To reduce the cost of MCS 

but maintain reasonable accuracy, numerous variance reduction techniques (VRT) were 

developed such as stratified sampling (Iman and Conover 1982), importance sampling 

(Rubinstein 1981; Engelund and Rackwitz 1993) and adaptive importance sampling (Wu 

1992; Karamchandani et al. 1989). However, stratified sampling techniques such as Latin 

Hypercube (Iman and Conover 1982) have not consistently shown significant reductions 

in computational costs, and for importance sampling methods they rely on identifying the 

most probable point of failure (MPP), may also fail to provide solutions for complex limit 

states. Various other simulation methods that do not rely upon the MPP have been 

proposed, such as subset simulation (Au and Beck 2001; Au et al. 2007), directional 

simulation (Ditlevsen and Bjerager 1988), and the modified conditional expectation 

methods (Eamon and Charumas 2011), among others.  However, many of these 

alternative methods have been rarely used in the technical literature. Rather than refine 

the reliability method, a response surface (RS) technique can be used to represent a 

computationally expensive limit state function with a simpler, analytical surrogate 

function (Gomes et al. 2004; Cheng et al. 2009).  Once formed, the response surface can 

be used to provide very fast reliability solutions.  However, these techniques often require 

high computational effort to develop accurate responses for highly non-linear or 

discontinuous limit state functions, a cost which may outweigh the saving gained with 

their use (Eamon and Charumas 2011). 

The other group of structural reliability analysis techniques, β-based methods, are 

analytical approximation techniques and uses the concept of reliability index, a surrogate 
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measure of probability of failure. Cornel (1969) developed the first beta-based method 

called the First Order Second Moment Method (FOSM). However, FOSM was only 

applicable to normal RVs and also yielded different results when the limit state function 

was re-written in different mathematical forms, the latter deficiency known as the 

‘invariance problem’. This issue was solved by Hasofer and Lind with the Advanced First 

Order, Second Moment Method (AFOSM) (Hasofer and Lind 1974).  Later, the First 

Order Reliability Method (FORM) was developed by Rackwitz and Fiessler in 1978 

which addressed the use of non-normal RVs. Although superior to FOSM and AFOSM in 

this regard, FORM still suffered inaccuracy problems for problems highly  non-linear in 

standard normal space. Fiessler (1979) and Breitung (1984) later addressed this issue by 

introducing a new method; the Second Order Reliability Method (SORM).  SORM 

differed with FORM by developing a curvilinear failure surface at the most probable 

point of failure (MPP) rather than the previous first order, or linear, fit.  However, SORM 

still remains an approximate representation of the actual failure boundary, and inaccurate 

assessment of failure probability may exist for highly nonlinear problems.  A 

fundamental problem with all of the aforementioned β-based methods is that they rely on 

identifying the MPP on the failure boundary. Although computationally efficient, these 

methods may provide poor solutions for problems nonlinear in standard normal space 

caused by the linearization of the limit state function at the MPP (Eamon et al. 2005, 

Melchers 1999; Chiralaksanakul and Mahadevan 2000, Haldar and Mahadevan 2000). 

Moreover, search algorithms sometimes cannot identify the MPP for complex problems 

that may be highly non-linear, discontinuous, or that have multiple ‘local’ MPPs on the 
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failure boundary (Eamon and Charumas 2011).  In such cases, the reliability-index based 

methods may fail to provide any solution. 

Other reliability analysis methods such as point estimation and point integration 

techniques (Rosenblueth, 1981 and Zhou, 1988) were also developed and cannot be 

categorized based on the above mentioned two groups. However, the results obtained 

through these methods may be highly unreliable. 

Motivation 

The current state-of-the-art in reliability analysis leaves a significant category of 

problems that are not readily approachable with the available methods described above. 

These problems are those of large computational costs and complex limit states for which 

the MPP cannot be identified accurately. For this class of problems, MCS as well as 

advanced simulation-based methods are often too computationally costly to apply. On the 

other hand, β-based methods lack sufficient accuracy or cannot be applied at all. 

Examples of these problems may include crash and impact analysis, metal forming, and 

structural systems defined by multiple member failures, etc. Three examples of such 

problems are described in Chapter III of this dissertation report. Currently, these 

problems are typically approached by greatly simplifying the response or the reliability 

analysis. However, such simplifications may lose critical model fidelity and suffer 

unacceptable inaccuracies in the reliability calculation (Rais-Rohani et al. 2010; Eamon 

2007; and Eamon and Rais-Rohani 2008). 

The motive behind this research is to address the aforementioned concerns and 

develop a new reliability approach specifically suited to accurately solve complex 
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problems of the type described above, with reasonably low computational effort.  As 

analyses of state-of-the art problems involving phenomenon such as blast response, 

impact and crash safety, and structural system behavior of advanced materials become 

increasingly complex and demand greater computational costs, similar advances in 

reliability analysis are needed to enable accurate probabilistic solutions of these 

problems. In this research, a new approach is proposed to achieve this and is referred to 

as 'Advanced Failure Sampling' (FS). The basic crude concept of this method was first 

introduced by Eamon and Charumas (2008). However, the method was found to be 

inconsistent with regard to accuracy and solution feasibility.  That is, although few 

problems could be efficiently solved, some problems could not, providing worse 

solutions than desired.  Moreover, for some problems, FS could provide no solution at all. 

However, no guidance is currently available in the literature to allow identification of 

these types of problems. This is a critical shortcoming as it significantly limits the 

practical usefulness of FS.  As noted earlier, the primary purpose of this research is to 

address this issue and develop an enhanced version of FS that provides viable, accurate, 

and efficient solutions to all problems. This research deeply explores three aspects of FS 

method; development of optimal algorithm for PDF construction of resistance samples, 

determination of the most efficient method to generate the resistance samples and 

validation of FS method. These three aspects and exploring various methods to obtain 

respective possible solutions are discussed and described in detail in Chapter III of this 

dissertation report. The method will be evaluated for various complex implicit and 

explicit limit states of structural reliability including those problems requiring finite 
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element analysis. Few of these problems are described above. The results obtained from 

the FS method shall then be compared to the results obtained from existing methods such 

as MCS, FORM, SORM etc. as discussed above. 

 This research report is composed of six chapters including this chapter: 

Chapter II: This chapter explains in details the general concepts of reliability index 

and reviews the available literature on reliability analysis techniques and their respective 

drawbacks.  

Chapter III: This chapter explains the method development of  Advanced Failure 

Sampling and its algorithm in detail. It also discusses the various techniques implemented 

to enhance the FS method. 

Chapter IV: This chapter presents a database of various complex limit state functions 

and practical engineering problems which will be evaluated using the FS method to test 

its effectiveness. 

Chapter V: This chapter presents the FS solutions for problems described in Chapter 

IV  and compares it with results obtained with currently available techniques.  

Chapter VI: This chapter gives a summary, conclusion and recommendations for use 

of the FS technique. 
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CHAPTER  2  LITERATURE REVIEW 

Review of Structural Reliability 

Structural reliability as a method can be defined as the assessment of the probability 

of occurrence of ‘failures’. Here failure could be any event specified by the analyst. In 

structural engineering the failure criterion is usually expressed in terms of a limit state; 

which is a boundary between the desired and undesired performance of a structure. The 

limit state boundary is often expressed in a mathematical form using random variables 

(RV) and is formed by setting the limit state function or performance function equal to 

zero.  

In structural reliability, the limit state can be expressed in different ways.  Some 

common ways include: 

1. Ultimate Limit States: This type of limit state usually describes a relation 

between resistance of a structure and the applied load. Following are a few 

examples: 

• Ultimate moment carrying capacity 

• Formation of plastic hinge 

• Compressive and tensile stress 

• Buckling 

• Rupture 

2. Serviceability Limit States: This type of limit state is usually expressed in 

terms of  the deformation of the structural components. For example: 

• Excessive Deflection 

• Excessive vibration 

• Cracking 

• Permanent Deformation 
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3. Fatigue Limit State: This limit state describes loss in strength due to loads 

repetitive in nature. Under fatigue the structure can develop cracks which may 

propagate until rupture. 

As mentioned above, the limit state is often expressed in the form of a mathematical 

expression using RVs. In structural reliability, these RVs are usually categorized as 

resistance RVs or load RVs and are symbolized as ‘R’ and ‘Q’ respectively. For a given 

failure mode, a common way of expressing a limit state function or a performance 

function; ‘g’ is as follows: 

 ���, �� = ��	
� − ��	
� (2.1) 

where xi and xj represent a vector of resistance and load random variables. The boundary 

between desired (safe) and undesired (failure) performance corresponds to a condition of 

g = 0. The structure is safe if g ≥ 0 and unsafe if g < 0. The probability of occurrence of 

an undesired performance is termed as probability of failure and is given as follows: 

 �� = ��� − �	 < 0� = ��� < 0� (2.2) 

 Since the limit state is a function of RVs R & Q, the probability of failure P(g < 

0) is obtained by conducting a multidimensional integral of the joint probability density 

function (PDF) of R and Q, fRQ(R,Q) over the entire failure domain. Following is the 

expression for the same: 

 �� = ���	 < 0� = � …��� ������, ������ (2.3) 

 Here fRQ(R,Q) is a joint PDF and has an arbitrary distribution whereas, g < 0 is 

the failure domain and may be irregular with a highly non-linear boundary. Hence, 

evaluation of this probability is often very difficult which leads us to the concept of 
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reliability index. Reliability index is a surrogate measure of probability of failure and can 

be determined through both simulation-based and β-based reliability analysis techniques. 

These techniques are discussed in detail in the following sections. 

Simulation Based Methods 

Simulation is based on the concept of numerically simulating a phenomenon and 

counting the occurrence of the event of interest. Most of the simulation based methods 

are based on MCS which discretizes the multidimensional integral by random sampling. 

The method is simple and straightforward and can be theoretically applied to any 

problem. However this method is computationally expensive while dealing with complex 

problems having low failure probability. MCS, Stratified Sampling (SS), Latin 

Hypercube Sampling (LHS), and Importance Sampling are a few examples of simulation-

based methods and are described in the following sub-sections. 

Monte Carlo Simulation (MCS) 

MCS is one the most basic and simplest simulation methods and is used for a wide 

variety of problems. Basically MCS discretizes the multidimensional integral by random 

sampling. It gives an approximate solution to equation (2.3). In MCS, ‘n’ independent 

samples of the vector of resistance and load random variables R(xi) and Q(xj) are 

generated from the joint PDF of fRQ(R,Q). During each sample run or simulation the limit 

state outcome g(R, Q) is recorded and if g(R,Q) < 0, a failure is recorded. The ratio of 

total number of failures to the total number of samples ‘n’ is used as the probability of 

failure pf estimate. The following is the stepwise procedure of MCS method. 
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1. Determine the limit state function and the number of RVs. 

2. Generate RV values for all RVs such that the probability of getting a particular 

value is proportional to the PDF of that RV. 

3. Insert the RV sampled values into the limit state and then evaluate the limit state. 

This typically completes one simulation for the given problem. 

4. Run a sufficient number of simulations i.e. repeat steps 1-3 a sufficient number of 

times. The greater the number of simulations, the higher the accuracy of the 

result. 

5. Traditionally, pf is directly calculated from the results as: 

 �� =	 1!	"#
$

%&  (2.4) 

where: 

n = total number of simulations 

Ii = Indicator function  

Ii = 1 if g < 0 (failure) 

Ii = 0 if g > 0 (survival) 

Reliability index β is obtained from pf  using the following transformation: 

 ' = 	−Φ)&���� (2.5) 

The aforementioned process clearly indicates that for low pf values, a large number of 

simulations is required. In the case of complex engineering problems this requires higher 

computational effort and cost. For example, consider a structural member with a typical 

reliability index β of 3.5, which corresponds to a failure probability pf of approximately 

0.233 × 10-3 (about 1 in 4000). If the problem is solved with traditional MCS using n 
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samples, the uncertainty in the solution, as measured by the coefficient of variation 

(COV) of the calculated pf, can be estimated with (Nowak and Collins 2000): 

 *+,���� = 	 �1 − ��!	�� ��.. (2.6) 

According to the above expression, to estimate a problem with β = 3.5 with an 

uncertainty in the solution no greater than 10% COV requires approximately 429,000 

simulations. If the analysis depends on a finite element analysis (FEA) for solution, and 

only requires 1 minute of CPU time per simulation, the reliability problem would require 

approximately 7150 CPU hours.  

In order to deal with this issue, variance reduction techniques (VRT) were 

introduced. These methods made adjustments to MCS in an attempt to decrease the 

number of simulations but retain the same level of accuracy i.e. reduce the variance in the 

solution. Importance sampling and Latin Hypercube Sampling are a few methods which 

fall under this family and are described below. 

Importance Sampling 

As noted earlier, if the pf is small, most of the MCS simulations do not fall in the 

failure domain. Importance sampling addressed this problem with increasing the number 

of failures by using a sampling distribution hX(x) having more probability content in the 

region g < 0. However, sampling in the failure region requires identifying the most 

probable point of failure (MPP). This is usually achieved by using the β-based reliability 

analysis techniques.  Figure 2.1 shows a schematic representation of the importance 
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sampling method. The failure probability computed using importance sampling can be 

described using the following expression: 

 �� =	 1!	"#�� ≤ 0� �0�	�ℎ0�	�
$

%& ℎ0�	� (2.7) 

where: 

I = Indicator function  

(x) = random sample taken from the distribution of h(x) 

fx(x) = PDF of sample x, based on the original RV parameters 

hx(x) = PDF of sample x, based on RV parameters of h(x) 

n = number of samples taken 

 

Figure 2.1 Comparison of typical outcomes using actual distribution fx(x) and IS sampling 

distribution hx(x) (Karamchandani 1987) 

gx(x) > 0 

gx(x) < 0 

gx(x) = 0 
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 Although IS uses the concept of locating the MPP using β-based techniques, the 

former method has an upper hand over the later since it avoids the linearization errors 

associated with the β-based techniques. This is because the pf is calculated based on 

simulation rather than direct β assessment. However, if the MPP cannot be located 

accurately, IS suffers with a poor solution. 

Stratified Sampling (SS) or Latin Hypercube Sampling (LHS) 

In SS or LHS, the RV range is divided in to a set number of intervals, and one value 

per interval is sampled per simulation, but the sampled intervals are not repeated. This 

forces all the interval ranges to be represented in the simulation such that the extreme 

values are also guaranteed to be sampled with the expectation of producing more failures. 

Hence pf can be calculated with fewer samples. The failure probability is then computed 

using the theorem of total probability as follows: 

 �� =		" 	[���
� 13

4

%& "#��	
�]67


%&  (2.8) 

where: 

P(Rj) = probability of region (interval) Rj 

Nj = number of simulation cycles performed in region Rj 

Ig = indicator function 

The following is the stepwise procedure explaining the SS method in detail: 

1. For each RV (xi) in the limit state function, divide the PDF into equal intervals, N. 

The sized of each interval is chosen in such a way that the probability of a value 



14 

 

 

falling in the interval is 1/N. These are the cumulative distribution function (CDF) 

values of the interval. 

2. Choose one standard normal CDF per interval to generate a random number. For a 

large number of intervals, usually the interval midpoint is selected. Use a proper 

conversion process to convert the standard normal CDF to basic RV space of the 

desired distribution. 

3. Repeat the above process for each RV, as per MCS. 

4. Evaluate the limit state based on the RV values in step 3. 

5. Repeat the entire process without repeating an interval for RV number assignment 

in step 2. 

6. Continue until all of the intervals are exhausted. When all intervals are exhausted, 

the results can be treated as those found from MCS. 

Markov Chain Monte Carlo (MCMC) 

Further research and developments were made to increase the efficiency of the crude 

MCS method, one of them being the MCMC approach. MCMC is an algorithm that 

obtains samples following the target distribution by generating samples from arbitrary 

probability distributions, based on a Markov chain designed to converge to the target 

distribution. Since samples after a large number of Markov chain steps converge to a 

stationary distribution, these samples can be regarded as almost independent samples 

from the target distribution (Furuta et al. 2010). 

A Markov chain is a stochastic process where we transition from one state to another 

state using a simple sequential procedure. The chain starts at some state x
(1)

 and uses a 

transition function p(x
(t)

|x
(t-1)

), to determine the next state, x
(2)

 conditional on the last state. 

Repeated iterations are conducted to create a sequence of states. Each such sequence of 
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states is called Markov Chain. The procedure of generating a sequence of T states from a 

Markov Chain is the following: 

1. Set t = 1 

2. Generate an initial value u, and set x
(t)

 = u 

3. Repeat 

t = t + 1 

Sample a new value u from the transition function p(x
(t)

|x
(t-1)

) 

Set x
(t)

 = u 

4. Continue until t = T 

 The local dependence of the Markov chain on its last state makes this chain 

‘Markov’ or ‘memoryless’. An important property of Markov Chain is that the starting 

state of the chain no longer affects the state of the chain after a sufficiently long sequence 

of transitions. At this point the chain is said to reach its steady state and the state reflects 

samples from it stationary distribution. The goal of MCMC is to design a Markov chain 

such that the stationary distribution of the chain is exactly the distribution that we are 

interesting in sampling from. This is called the target distribution. In other words, we 

would like the states sampled from some Markov chain to also be samples drawn from 

the target distribution. The idea is to use a method for setting up the transition function 

such that a convergence to the target distribution is achieved. Metropolis sampling, 

Metropolis-Hastings and Gibbs sampling are a few of the methods used to achieve the 

aforementioned goal.  
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Reliability Index-Based Techniques (β-based techniques) 

The β-based methods are analytical approximation techniques which uses the concept 

of reliability index (β); a substitute or a surrogate measure of probability of failure pf. 

These methods were developed by researchers in order to reduce the computational effort 

required by the simulation techniques to solve problems having low failure probability. 

Hasofer and Lind (1974) were the first to conceptualize the reliability index as the 

shortest distance from the origin of reduced random variables (RVs in standard normal 

space) to the failure boundary. A schematic representation of this concept is given in 

figure 2.2 and the mathematical expression for β is as shown in equation 2.9. 

 
' = 	 8� −	8�9:�; −	:�; 

(2.9) 

where: 

β = reliability index also measured as the inverse of coefficient of variation (COV) of the 

limit state function g = R -  Q 

µR & µQ = mean of resistance and load RVs 

σR & σQ = standard deviations of resistance and load RVs 
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Figure 2.2: β defined as the shortest distance in the space of reduced RVs 

For normally distributed RVs a relation between pf and β can be established using a 

standard normal transformation as follows: 

 �� = 	Φ	�−'� (2.10) 

First Order Reliability Method (FORM) 

As described earlier, equation 2.9 is only limited to normal RVs. Hence, to account 

non-normal RVs, researchers suggested adjustments. Rackwitz and Fiessler (1978) 

proposed to transform the non-normal RVs to “equivalent normal” RVs at the design 

point. The transformation of a non-normal RV ‘X’ to a normal RV ‘Y’ is done is such 

that a standard normal distribution will result in the same probability (CDF value) at the 

design point. 

Consider an independent non-normal RV Xi with mean (µx) and standard deviation 

(σx). Applying a first order expansion at the design point x*, the CDF; Fx(x) and PDF; 

β 

g = 0 

ZR 

ZQ 

FAILURE (R<Q) 

SAFE (R>Q) 

0 
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fx(x) of RV x can be described in terms of its equivalent normal mean 80< and standard 

deviation :0< as follows: 

 

 =0�	∗� = 	Φ�	∗ − 80<:0< � (2.11) 

 

 �0�	∗� = 	 1:0< ϕ�	∗ − 80<:0< � (2.12) 

Rearranging terms in equations 2.11 and 2.12 gives us the equivalent mean and standard 

deviation as follows: 

 80< =		∗ −	:0<[Φ)&�=0�	∗��] (2.13) 

Where :0< is given by following equation: 

 

:0< = 1�0�	∗� 	∅ A	∗ − 80<:0< B
= 	 1�0�	∗� 	ϕ[Φ)&�=0�	∗��] (2.14) 

 

In case of dependent RVs, they must be transformed to equivalent independent RVs 

using the Rosenblatt transformation. 

The Rackwitz-Fiessler algorithm for independent RVs is described as follows: 

1. Develop a limit state function g for the problem. 

2. Assume a trial design point. The design point is usually described in vector form 

{	
∗}. 

3. Compute equivalent normal means and standard deviations at the design point 

{	
∗} using equations 2.13 and 2.14, respectively. 
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4. Compute coordinates of the design point in normal space as given in equation 

2.15: 

 :0< = 	
∗ − 8C
<:C
<  (2.15) 

5. Compute the partial derivative of limit state in equivalent normal space 

 
D�D	
< = D�D	
0E∗ :0E<  (2.16) 

6. Compute new design point 

 

{G
H&∗ } = JK
1∑ A M�M0ENB;$
%&

O"P D�D	
< ∙ G
<R − ��S
<�$

%& T ∙ U D�D	
<VWX (2.17) 

7. Compute reliability index (β) 

 ' = 	Y"�G
H&∗ �;$

%&  (2.18) 

8. Compute updated design point in basic variable space 

 	
H&∗ =	8C
< +		:C
< ∙ G
H&∗  (2.19) 

9. Repeat steps 3 to 8 until the solution converges to either of β or G
∗ or g = 0. 

 Although computationally effective, FORM suffers with some drawbacks. For 

problems without linear limit states and all normal RVs, FORM produces approximate 

solutions only, which in some cases may be quite poor (Eamon et al. 2005, Charumas 

2008, Haldar and Mahadevan 2000). These inaccuracies occur because the limit state is 

linearized and this approximation may not accurately represent the true failure boundary 

(Melchers 1999; Haldar and Mahadevan 2000). Secondly, although MCS is applicable to 
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any reliability problem, regardless of complexity, this is not true of β-based methods. In 

case of ill-behaved, discontinuous and highly non-linear limit states or  limit states 

containing multiple ‘local’ MPPs, as in many problems requiring FEA solution,  the MPP 

search algorithm may fail completely resulting in no solution (Haldar and Mahadevan 

2000; Eamon and Charumas 2011). 

Second Order Reliability Method (SORM) 

 As explained in the earlier section, the linear approximation of the limit state 

surface in FORM leads to a lack of accuracy for non-linear and non-normal limit state 

functions. The development of second moment methods was aimed to improve the non-

linearity issue. The attempt has been to fit a parabolic, quadratic or higher order surface 

to the actual surface. The Second Order Reliability Method (SORM) is a method which 

approximates the limit state surface in standard normal space with a second order 

quadratic surface at the design point. A Taylor series expansion is usually used to achieve 

the approximation. 

 Breitung's (1984) version of SORM considers a parabolic approximation of the 

limit state surface and is a commonly followed second order reliability method. The 

following expression describes the probability of failure by SORM: 

                        �� = 	[�'\]�^�∏ �1 +	'\]�^ ∙ 	 à�)&/;$)&
%&                                       (2.20) 

 Here, the FORM result is used in the SORM failure probability calculation 

(Mitteau 1996). Kt is a Hessian of the limit state function expressed in matrix form. 

However, as seen in the expression above, the accuracy of SORM is highly dependent on 

the accuracy of FORM ('\]�^) to locate the MPP, which may result in an inaccurate 
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SORM solution if the MPP is not accurate itself or if the limit state boundary does not 

closely follow a parabolic shape. 

Response Surface Method (RS) or Surrogate Modeling 

 Response surface techniques represent a class of optimization methodologies that 

make use of surrogate modeling techniques to quickly find the local or global optima. 

Surrogate modeling techniques are of particular interest for engineering design when 

high-fidelity thus expensive analysis codes are used. These techniques are often termed 

‘metamodeling techniques’ . 

 Surrogate modeling techniques aim at regression and/or interpolation fitting of the 

response data at the specified training (observation) points that are selected using one of 

many designs of experiments (DOE) techniques. These training/observation points are 

chosen in such a way that their contribution towards failure probability is most important. 

The basic idea consists of using approximate simple functions at these training points and 

substitute the real limit state function with a response surface  which is usually expressed 

in a simple form or represented by an explicit expression, and results in a reduction in 

computational costs (Gomes and Awruch, 2004).  

 To develop the approximate functions and the fitting procedure, several response 

surface techniques such as polynomial response surface (PRS) approximations, 

multivariate adaptive regression splines, radial basis functions (RBF), Kriging, Gaussian 

process and neural networks (Acar and Rais-Rohani, 2009) have been implemented. Fang 

et al (2005) found that RBF gives accurate metamodels for highly non-linear responses 

whereas Simpson et al. (2001) found Kriging best for slightly non-linear responses in 
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high-dimensional space. Jin et al. (2001) suggested the use of PRS for slightly non-linear 

and noisy responses.  

 From the aforementioned studies it can be noted that a particular technique was 

found to be suitable only for specific type of problem. Due to insufficient information 

related to the relationship between the response and the input variables, it is extremely 

difficult to predict which metamodel is best for a specific response. Goel et al. (2007) 

further pointed out the uncertainties in the metamodel predictions due to its dependency 

on selected DOE type, the number of design points in the training data set and the form of 

response. Hence, Acar and Rais-Rohani (2009) suggested an alternative approach of 

using an ensemble of metamodels in a weighted-sum formulation. The resulting hybrid 

metamodel takes the advantage of the prediction ability of each individual stand-alone 

metamodel to enhance the accuracy of the response predictions.  
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CHAPTER  3  ADVANCED FAILURE SAMPLING METHOD 

Introduction to Advanced Failure Sampling Method 

As explained in the previous sections of the thesis report the accurate application of 

β-based reliability analysis techniques is limited to well-behaved limit state functions. 

For many highly complex, non-linear and ill-behaved limit states the β-based methods 

either produce approximate solutions or fail to produce any results. On the other hand, the 

application of available simulation based methods such as MCS to solve the 

aforementioned limit state functions often requires high computational effort. As an 

alternative solution approach to complex reliability problems, this research proposes the 

Failure Sampling (FS) approach.   

In general, the method uses conditional expectation to sample the complex (generally 

resistance) portion of the limit state function and estimate either its probability density 

function (PDF) or cumulative distribution function (CDF).  Additional data needed for 

solution of high reliability problems can then generated by extrapolation, where the 

original sample may be fit to a flexible, multi-parameter curve to extend the tail region.  

Clearly, the accuracy of this approach is a function of how well the PDF or CDF estimate 

and resulting curve fit are developed.  The following section describes the concept of the 

FS method along with its potential advantages over currently available reliability analysis 

techniques. 
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Summary of Advanced Failure Sampling Method 

As explained in Chapter I, the probability of failure pf of a limit state function g can 

be calculated by estimating a single-dimensional PDF of g and integrating the PDF over 

the failure region (i.e. where g < 0). Direct MCS can be used to generate the sample of g 

used to develop the PDF.  Of course, this approach will yield accurate results only when 

the PDF of g can be estimated accurately. However, for typical structural reliability 

problems, the large majority of the sample generated from MCS is far from the failure 

region, resulting in a problem for which it is difficult if not impossible to accurately 

integrate the failure region without a high number of simulations.  

 In the FS approach, the initial limit state function g(Xi), consisting of random 

variables Xi, is reformulated to a new limit state g*. g* is expressed in terms of a control 

random variable q, separated from the remaining random variables (RVs)  R(Xj). Setting  

g* to zero to represent the failure condition, the problem can be written as: 

 g* = R(Xj) - q  = 0                                                       (3.1) 

Where R(Xj) may be regarded as the "resistance" of g* while q is a "load" RV.  Here 

g* is mathematically equivalent to original limit state function g. Best results are usually 

obtained by selecting the RV with highest variation as the control variable, as its 

variation is then eliminated from subsequent simulation. However, there is no theoretical 

limitation in this regard, and q does not need to actually represent a load RV in the 

physical problem. However, q should be statistically independent of the remaining RVs 

Xj, as the current approach does not explicitly address the case where q is dependent with 

one or more of the remaining RVs, and solving such a problem with FS may introduce 
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error.   However, nearly all realistic reliability problems have at least some RVs that are 

independent; for example, in structural engineering, load and resistance RVs are 

practically always independent  Once equation 3.1 is formed, values for Xj are simulated 

by a method such as MCS.  Note these initial steps are shared with the conditional 

expectation (CE) method, which is fully described elsewhere (Ayyub and Chia 1992; 

Ayyub and Haldar 1984).  However, at this point, FS differs from CE.  Here, it can be 

seen from equation. 3.1 that for a particular set of simulated values R(xj), q = R(xj).  That 

is, if a value of q can be determined to satisfy equation 2.20 that value also equals a 

datum for the sample of resistance R(xj). Note for complex problems, this generally 

requires a non-linear solver to determine q.  A value for q is thus determined for each set 

of simulated values R(xj), thereby developing an equivalent, single-dimensional data 

sample for the potentially very complex, multi-variate R(xj). Once the data sample for 

R(xj) is generated, there is no need to evaluate the true response further (e.g. no need for 

further finite element analyses, if that is how the limit state function is evaluated), and the 

bulk of the computational effort for a complex problem ends.  Next, depending on the 

solution approach,  a PDF or CDF estimate of R(Xj) is developed, rather than directly 

using the data sample of R(Xj) to compute pf of g*. This additional step was found to 

significantly reduce variance in the solution.  Once the PDF or CDF estimate is formed, 

pf of g* (and thus of the original limit state function g(Xi)) can be found with a variety of 

methods, from direct integration over the region g<0 to curve-fitting approaches to 

represent the sample of R(xj) with an analytical distribution. If the latter approach is used, 

pf can be computed very quickly with any method, such as MCS, for example, as the 



26 

 

 

original, potentially complex function g* is now represented analytically (Eamon and 

Charumas 2011).  

Step-by-Step Procedure For Advanced Failure Sampling Method 

1. Choose a control RV, q, and reformulate g to g* as shown in equation 3.1.  

2.  Simulate values for the RVs in R(Xj) using a method such as Monte Carlo 

Simulation. 

3. Once a set of MCS samples is generated, the value of control RV q is then 

incremented up or down until g* = 0. Root finding algorithms such as the 

Newton Raphson or Bisection techniques may be used to find roots for non-

linear limit state functions.  

4. A sufficient number of simulations are conducted by repeating steps 2 and 3.  

5. A PDF of the resistance sample is estimated, or a known distribution is fit to 

the resistance points directly, to represent the data with an analytical PDF or 

CDF.  The latter approach has the advantage of extending the tail of the 

distribution beyond that available from the original sample. 

6. Once a PDF of R(xj) is estimated or a curve is fit to the resistance samples,  

the problem is reduced to a 2 RV equivalent form per. Equation 3.1, where 

any preferred reliability method can be used to calculate pf with very low 

computational effort. These methods are discussed in detail in chapter three of 

this report. 
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Advantages and Limitations of Advanced Failure Sampling Method 

 In summary, the FS approach offers the following advantages: 

1. As there is no reliance on the MPP, complex problems for which the MPP 

cannot be located, and thus which are unsolvable by methods such as FORM, 

SORM, and importance sampling approaches, can be addressed.   

2. For many complex, moderate reliability (i.e. reliability index from 3-5) 

problems that are poorly solved or unapproachable with many other methods, 

computational effort is low, often on the order of 1000 simulations, for reasonably 

accurate solutions.   

3. The method is mathematically simple and straightforward to implement. 

Some important limitations to the method are: 

1. The control variable q should be independent of the remaining RVs. As 

noted earlier, for almost all practical structural reliability problems, some RVs are 

uncorrelated, so this criteria is readily met.  However, solution accuracy may be 

reduced if a correlated RV is indeed considered for q. 

2. A nonlinear root finder is typically required.  The efficiency of the root 

finder will affect the efficiency of the solution, as this effects how many calls are 

required to the finite element code to evaluate the true response of R(xj). 

3. Although theoretically unlimited, some choices of q may be practically 

limited by the physical nature of the problem. That is, a q could be chosen that 

requires values to set g*=0 that are beyond the realm of physical possibility for a 

particular problem.   
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4. The method is intended for complex problems for which reliability-index 

based methods provide no or poor solutions, and for which other simulation 

methods require an infeasibly large computational effort.  For other problem 

types, other methods are generally more efficient. 

Development of Enhanced Advanced Failure Sampling Method 

Development of Optimal Algorithm for PDF Construction 

 Construction of the PDF estimate of resistance samples R(xj) is a critical step in 

the FS process, as the pf estimate directly depends on R(xj).  Therefore, several 

alternative methods were investigated to determine accuracy and efficiency. These are the 

interval method, the curve-fit method and the design optimization method. The details of 

these approaches are given in the following sub-sections.  

Interval Method 

 This method was proposed in the original implementation of FS (Eamon and 

Charumas 2011). In this approach, a raw PDF of system resistance is developed. Once 

the PDF estimate is obtained, the most straightforward way to calculate pf is by numerical 

integration (NI) of the well-known expression: 

   �� = c =�d)d �	��e�	��	 (3.2) 

In equation 3.2, FR(x) refers to the estimated CDF of R(xj).  It is obtained directly 

from the estimated PDF by numerical integration of: 

   =��	� = 	c �e�	��	0)d  (3.3) 
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Note this is not the CDF of the original data sample found in steps 3 and 4 of the 

algorithm above, but the CDF of the PDF estimate, which generally contains many fewer 

points. The PDF is usually constructed by dividing the data into equally spaced intervals, 

counting the number of data in each interval, then normalizing the values such that the 

PDF has a total area of 1.0. For instance, assume the PDF was estimated by dividing 

1000 resistance data into 50 intervals. A 50-point CDF estimate is then obtained by 

numerically integrating the PDF using equation 3.3. For FS, it was reported that an 

interval size of 50 for a resistance sample size of 1000 has generally resulted in accurate 

solutions. However, this selection was somewhat arbitrary, and changing the interval size 

affects the PDF and thus the accuracy of the solution.  

Moreover, the interval size may be subject to change as the size of the resistance 

sample R(xj) is increased or decreased. Although not directly related to FS, some 

guidance is available in the literature for selecting an interval size relative to sample size 

in general. For example, an estimate given by Ayyub and McCuen (2003) is: 

   f = 	1 + 3.3log	�!� (3.4) 

where: 

i = number of intervals 

n = number of data 

 However, empirical approaches such as those described in equation 3.4 are not 

effective in many cases. Using the above expression, for a resistance sample size of 1000, 

the required interval size is 11, which was found to poorly work in the case of FS, where 
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an interval size of 50 was observed to have most accurate results for 1000 data. Hence, 

this research aims to determine the optimum interval size for the FS method.  

Curve-Fit Method 

Rather than using NI, an analytical distribution can be fit to the resistance samples. 

This alternative approach is considered with an objective to by-pass the difficulty of 

determining the interval size. The advantage of fitting an analytical distribution to the 

data is twofold;  

1. Since an analytical distribution provides a continuous function, the tail of the 

distribution can be extended beyond that available from the original sample. This 

helps in capturing the lower range values of resistance data needed to calculate 

very low pf. On the other hand, with the interval approach, the lower range value 

of resistance is limited to the value captured in the last discrete interval.  

2. If the resistance sample is fit to an analytical curve, probability of failure can be 

calculated quickly using any reliability method such as MCS, FORM etc. with no 

need for numerical integration. 

Generalized Lambda Distribution (GLD) 

 The Generalized Lambda Distribution (GLD) is a four parameter distribution that 

can be applied to various reliability analysis problems and is known for its high 

flexibility. It can accurately fit many of the common statistical distributions such as 

Normal, Lognormal, Weibull, and others (Karian and Dudewicz 2010). The GLD is 

defined by it four parameters λ1, λ2, λ3 and λ4. The parameters λ1 and λ2 are location and 
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scale parameters, respectively, while λ3 and λ4 represent skewness and kurtosis. The 

estimation of the GLD parameters is not straightforward as this process has no closed-

form solution, as discussed below.  In this study, the method of moments has been used 

to estimate the parameters of the GLD.  In the method of moments, the first four central 

moments of the GLD; the mean, variance, skewness and kurtosis, are matched with the 

sample moments about the mean value. The first four central moments of GLD are given 

as follows (Karian and Dudewicz 2010): 

 

 µ = λ1 + A / λ2         (3.5) 

 

 σ
2
 = (B - A

2
) / λ2

2
        (3.6) 

 

 µ3 = (C - 3AB + 2A
3
) / λ2

3
       (3.7) 

 

 µ4 = (D - 4AC + 6A
2
B - 3A

4
) / λ2

4
      (3.8) 

 

 where:  

 

 A = 
&�&	H	kl�	 - &�&	H	km�	          (3.9) 

 

 B = 
&�&	H	;kl�	 - &�&	H	;km�	 - 2β(1+ λ3, 1+ λ4)     (3.10) 

 



32 

 

 

 C = 
&�&	H	lkl�	 - &�&	H	lkm�	 - 3β(1+2 λ3, 1+ λ4) + 3β(1+ λ3, 1+2 λ4)  (3.11) 

 

 D = 
&�&	H	mkl�	 - &�&	H	mkm�	 - 4β(1+3 λ3, 1+ λ4) + 6β(1+2 λ3, 1+2 λ4)  (3.12) 

  - 4β(1+ λ3, 1+3 λ4) 

  

In the above equations, β represents the beta function. 

 To fit the GLD to the resistance sample data, the GLD moments are equated to the 

first four sample moments about the mean in order to obtain the estimated moments of 

the GLD. Sample coefficients of skewness and kurtosis are obtained as follows: 

 

 α
*

3 = m3 / (m2)
3/2

        (3.13) 

 

 α
*

4 = m4 / (m2)
2
        (3.14) 

where m2, m3 and m4 are the second, third and fourth sample moments about the mean 

respectively. Then, λ3 and λ4 can be obtained by solving the following two simultaneous 

equations: 

 

 α
*

3 = α3 (λ3, λ4)         (3.15) 

 

 α
*

4 = α4 (λ3, λ4)         (3.16) 

 

where α3 and α4 are the coefficients of skewness and kurtosis of the GLD, given as: 
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 α3 = µ3 / σ
3
         (3.17) 

 

 α4 = µ4 / σ
4
         (3.18) 

 The solutions for the above simultaneous equations can be found by using a 

Sequential Quadratic Programming (SQP) optimization scheme and minimizing the 

constrained function. The objective function is: 

 

 min: f ( λ ,λ ) = {α
*

3  - α3 (λ3, λ4)}
2
 + {α

*
4  - α4 (λ3, λ4)}

2
   (3.19) 

 

 The above equation is subjected to the constraint: λ3λ4 > -1/4.  The outcome of the 

minimization produces λ3 and λ4.  The remaining parameters λ1 and λ2 can then be 

obtained from: 

 

 λ2 = ±[( B - A
2
) / m2 ]

1/2
       (3.20) 

 

 λ1 = m1 - A / λ2         (3.21) 

 In this subtask, the GLD is used with MCS to calculate the probability of failure. 

Hence for generating the resistance samples, the following percentile function is used: 

 

 Y = λ1 + [u
λ3

 - (1 - u)
λ4

 ] / λ2 ;    where  0≤u≤1    (3.22) 
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 The important criteria to achieve good results with the GLD is to maintain the 

smallest possible difference between α
*

3 and α3 as well as α
*
4 and α4.  Appendix C 

presents the results for the GLD approach for various limit states considered. 

Extended Generalized Lambda Distribution (EGLD) 

 Using the GLD, the (α
2

3, α4) space is confined within the relationship: 1.8(α
*2

3 + 

1) < α
*

4 < 1.8 α
*2

3 +15, potentially limiting the GLD’s effectiveness on some limit states.  

The upper restriction on α
*

4 may be overcome with additional computational effort. 

However, the lower restriction is imposed to prevent numerical difficulties with the 

solution.  To address the lower limit problem (i.e. for α
*

4 < 1.8(α
*2

3 + 1)), another curve 

fit approach using the Extended Generalized Lambda Distribution (EGLD) method is 

explored. Figure 1. shows the (α
2

3, α4) space covered by GLD & EGLD. 

 The EGLD method addresses the limitation of the GLD method to provide curve 

fits in the region 1+ α
*2

3 < α
*

4 <1.8(α
*2

3 + 1). The EGLD is defined by its four parameters 

β1, β2, β3 and β4. Unlike the GLD, the EGLD is defined by its PDF and is given as 

follows (Dudewicz and Karian 1996): 

��	� = �0)	op�qr�opHos	)0�qto�orH&,otH&�os�qruqtup�                                                 (3.23) 

 where '& <  x < '& +	'; 

 Similar to the GLD, the unknown parameters of EGLD are determined using the 

method of moments. The mean, variance, skewness and kurtosis of EGLD are defined as 

follows: 

 v& = '& + os		�orH&�ws                      (3.24) 
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 v; = oss�orH&��otH&�xssxr                      (3.25) 

 vl = ;�ot)or�ywrxty�orH&��otH&�                     (3.26) 

 

 vm = lxr�wsorotH	lors	H	.orH	lotsH	.otH	m�xtxz�orH&��otH&�                   (3.27) 

 where Bi = 'l +	'm + 	f. 
 It can be observed from the above equations that the skewness and kurtosis of 

EGLD are defined in terms of 'l and 'm only. Hence, by equating the sample skewness 

and kurtosis with that of the EGLD leads us to two simultaneous equations as follows: 

 α
*

3 = α3 (β3, β4)                     (3.28) 

 α
*

4 = α4 (β3, β4)                     (3.29) 

'l and 'm	values can then be determined by using a SQP optimization method applied to 

the following minimization function: 

 min: f ( λ ,λ ) = {α
*

3  - α3 (β3, β4)}
2
 + {α

*
4  - α4 (β3, β4)}

2
                (3.30) 

 Unlike the GLD, the EGLD minimization function is not a constrained function; 

i.e. the β3 and β4 values are unconstrained. Once the β3 and β4 values are determined, the 

β1 and β2 values can be obtained as follows: 

 '; = �'l + 'm + 2�9�orHotHl�|s∗�orH&��otH&�                   (3.31) 

 '& = v&∗ − 9 os�orH&��orHotH;�                     (3.32) 

 Once the unknown parameters of the EGLD system are determined, the EGLD 

random variables can be generated using the following relation: 
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 } = '& +	';S                      (3.33) 

 Here Y is a EGLD random variable with parameters '&, ';, 'l and 'm	and X is a 

beta random variable with parameters  'l and 'm.  These generated values of EGLD are 

then used with MCS to determine the probability of failure or the reliability index ('�. 

 

Figure 3.1. (α23, α4) Space Covered by the GLD and EGLD (GBD) (Acar et al. 

2008). 

Johnsons Distribution (JSD) 

 The Johnson’s system of distribution consists of a family of distributions and has 

the flexibility of covering a wide variety of shapes. JSD is based on three possible 

transformations of a normal random variable, plus an identity transformation. The ‘SB’ 

transformation represents a bounded JSD, the ‘SL’ transformation represents a semi-

bounded JSD, and the ‘SU’ transformation represents the unbounded JSD. The SB, SL 

and SU transformation can be represented as follows: 

														X = 	γ + 	δ ∙ Γ A�	)	�		�� B	                                                                                   (3.34)                       
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where Z is a standard normal random variable; Γ denotes the transformation function; γ 

and δ are shape parameters; ξ is the location parameter; and λj is the scale parameter. The 

‘SN’ transformation is the identity transformation and represents a normal Johnson 

distribution. Although various methods to determine the parameters of JSD are available, 

the method of moments, method of percentiles, and method of quantile estimators are 

most popular. In this research, the method of quantile estimators was used to determine 

the parameters. If X follows a Johnsons distribution and } = 	C)�	� , then the PDFs of the 

respective transformations can be described as follows: 

SB Family: 

���� = 	 �√;� 	× 	 &[� �&)��� ] × exp �− &; �� + �. �! � �&)���;�		                                            (3.35) 

SL Family: 

���� = 	 �√;� 	× 	 &[�] × exp �− &; [� + �. �!���];�			                                                        (3.36) 

SU Family: 

���� = 	 �√;� 	× 	 &[y�sH&]× exp �− &; �� + �. �!�� + y�; + 1��;�	                               (3.37) 

 Once the parameters and the type of JSD family is determined, a resistance 

sample is generated using the inverse function given by eq. 3.38.  At this point, the limit 

state is completely analytically defined and any reliability method can be used to estimate 

failure probabilty with minimal computational effort.  In this task, MCS was used to 

calculate the probability of failure. 
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S = 	ξ +	�)& ��)�� �                                                                                                      (3.38) 

Generalized Extreme Variation Distribution (GEV) 

 The GEV distribution combines three simpler distributions into a single form, 

allowing a continuous range of possible shapes that includes the three component 

distributions. Similar to the extreme value distribution, the GEV is often used to model 

the smallest or largest values among a large set of independent, identically distributed 

random values.  It is a three parameter distribution defined by a location parameter µ, a 

scale parameter σ, and a shape parameter k; where k must take a value other than zero. 

The PDF of the GEV is given as: 

� = 	 &� exp P−�1 +   �0)¡�� �¢p£ RP�1 +   �0)¡�� �)&)p£R                                                (3.39) 

 The parameters of the GEV distribution were determined using standard library 

functions given in Matlab (2012b). 

Design Optimization Method  

 The numerical integration method and the curve fit methods have their own 

limitations in yielding good results for all types of structural reliability problems. Further, 

it was observed that each of the curve fit methods explained earlier may only work for 

certain types of problems. In order to obtain consistently superior results, a hybrid 

method that uses a technique from design optimization to combine the features of the 

interval method as well as each of the curve-fit approaches for optimal PDF construction 

is studied in this research. The aim of this task is to develop a consistent method to form 
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the PDF such that the failure probability is estimated with maximum accuracy and 

minimum variance for any problem type. The mechanism that will be used to combine 

these PDFs is an optimized ensemble technique (Acar and Rais-Rohani 2009). 

 The optimized ensemble technique was originally developed for response surface 

construction. The purpose of the response surface is to save computational effort for 

repetitive analyses by representing a complex response function, such as that found from 

FEA, with a surrogate analytical function, or a metamodel, which is ‘fit’ to the true 

response. It is known that certain metamodels best fit certain response characteristics. For 

example, Fang et al. (2005) and Rais-Rohani, et al. (2006) found that radial basis 

functions give accurate metamodels for highly nonlinear responses; Simpson et al. (2001) 

found Kriging to be most suitable for slightly nonlinear responses in high dimension 

spaces; and Jin et al. (2001) found polynomial surfaces work well for noisy responses. 

However, complex responses are often characterized in multiple ways; for example, a 

response that is both highly nonlinear as well as noisy. For these cases, it would be 

desirable to take advantage of the predictive capability of various metamodelling 

approaches. Therefore, in the ensemble approach, not one, but multiple metamodels are 

constructed for a problem (Bishop 1995; Zerpa et al. 2005; Goel et al. 2007; Acar and 

Rais-Rohani 2008). Here, a unique ensemble of metamodels is developed for a specific 

problem by representing the final metamodel as a weighted sum of two or more stand-

alone metamodels, each separately fitted to the same response. The resulting hybrid 

metamodel takes advantage of the prediction ability of each individual stand-alone 

metamodel to enhance the accuracy of response predictions. Generally, the weight factors 
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were chosen based on trial and error or engineering judgment (Goel et al. 2007). 

However, with the optimized ensemble approach, the weight factors are chosen based on 

design optimization. This was found to provide results of greatest consistency and 

accuracy (Acar and Rais Rohani 2009). In this research, the optimized ensemble 

technique is extended beyond response surface development and used for optimum PDF 

construction for FS. The concept is to form an ensemble of all the PDFs generated by NI 

as well as various curve-fit methods. The ensemble is constructed in such a way that all 

the stand-alone PDFs obtained from NI, JSD, GLD, GEV, and any other curve fit or PDF 

construction method desired, are assigned weight factors depending upon their individual 

accuracy. Using a weighted sum formulation, an ensemble of PDFs is thus formulated as 

follows: 

��¤�	� = 	"¥
�	��
�	�6

%& 																																																																																																							�3.40� 

 Where fRE is the final ensemble PDF developed from N stand-alone PDFs fi(x). In 

the current research; four stand-alone PDFs, each obtained from NI, JSD, GEV and GLD 

were considered.Wi(x)is the weight factor of ith stand-alone PDF and x is the vector of 

independent input variables.The weight factors are subjected to following constraint. 

"¥
�	� = 16

%& 																																																																																																																									�3.41� 

 The weight factors are determined by an optimization process where the 

difference between the true PDF and the stand-alone PDFs is minimized. For this 
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research, the Sequential Quadratic Programming (SQP) optimization technique is used. 

Although the development of a "true" PDF for minimization is impossible, as PDF 

construction depends on the interval size used,  a true CDF of x input variables is 

available and can be expressed as follows: 

=��	
� = §1 + !																																																																																																																							�3.42� 
where FR(xi) is the CDF value for datum s. Hence, the above given equation (3.40) can be 

written in terms of CDF as: 

=�¤�	� = 	"¥
�	�=
�	�6

%& 																																																																																																						�3.43� 

where FRE is the final ensemble CDF of N stand-alone CDFs Fi(x). Here the error metric 

between the true CDF and ensemble CDF is measured using the generalized mean square 

error (GMSE) and is given as: 

	¨©ª« = 	 13"��¬6
¬%& − �
¬�;																																																																																																			�3.44� 

where yk is the true CDF and yi
k
 are the ensemble CDF values. Hence the final 

optimization problem has the following form: 

min­< = «��{=�¤ �¥
, �
¬�	¬�� ��	¬�,   = 1 ∈ 3								§. ¯.						 ∑ ¥
�	� = 16
%& 							�3.45�	 
where Err{} is the GMSE error metric and measures the accuracy of the ensemble CDF. 

A MATLAB program was developed for the ensemble optimization process described 

above. The distribution functions obtained from GLD, JSD and GEV were considered to 
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form an ensemble. The ensemble was formed by solving equation (3.45) using fmincon, a 

function optimizer of MATLAB. The  lower bound of the optimzer was specified as zero 

whereas the upper bound was set to one. The weights obtained for respective curves were 

then used to determine the probability of failure using traditioanl MCS as follows: 

1. Fit each curve (GLD, JSD and GEV) to the resistance R(xj) data. 

2. Determine the weight factors for each curve-fit method using the ensemble 

technique described above. 

3. Generate a uniform RV, and using the appropriate curve parameters and 

coefficients, transform the uniform RV into three different basic random 

values (one each for GLD, JSD, and GEV) to represent resistance 'R' . 

4. Multiply each random value of 'R' obtained in step 3, with the respective 

weights obtained from step 2. 

5. Sum the weighted 'R' values from step 4 to obtain a single RV value for 

resistance 'R'.  Note that this RV is now a hybrid value that represents some 

combination of the different distributions considered.  

6. Repeat steps 2 -5 to generate additional resistance data as needed; this was 

typically limited to a sample size of 1000. 

Efficient Method to Generate R(Xi) Samples 

 MCS is a non-MPP (most probable point of failure) based simulation technique 

and is an integral part of the FS process. MCS was used to generate the raw resistance 

sample in the preliminary steps of FS, as well as for calculating the probability of failure 

when FS was coupled with the curve-fit techniques (See Appendix A). However, the use 
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of MCS within FS represents the most  computationally expensive option. Some 

significant reductions in computational effort can be achieved with the use of variance 

reduction techniques such as stratified and importance sampling. However, these 

techniques are often associated with difficulties or inefficiencies for some types of 

complex problems (Eamon and Charumas 2011; Eamon et al. 2005). In particular, 

methods which rely on identifying MPP such as importance sampling may fail to provide 

any solution for a complex reliability problem, and thus re-introduce the very problem 

that FS was formulated to solve.  Hence, an alternative non-MPP based simulation 

approach, the Markov Chain Monte Carlo (MCMC) Method, was considered for 

integration with FS for resistance sample generation. The objective was to further 

enhance the computational efficiency of the FS method. A description of MCMC and its 

integration with FS is described below. 

Markov Chain Monte Carlo (MCMC)  

 MCMC is "memory-less" process that generates dependent samples that have the 

same limiting distribution as that of the RV of interest. The process ensures to cover the 

entire reliability space as sampling is conducted from all parts of the distribution 

including the tail regions (Steyvers 2011). This improves the efficiency and the accuracy 

of the simulation process.  

 A Markov chain is a sequential procedure where the next realized value of a RV 

depends only on the previous realized value; that is, a sequence of RV values x0 , x1 … is 

generated such that a value in the chain xt+1 is a function of the previous value in the 

chain xt, where t> 0. Here x is the specific realization of a RV (state) at iteration ‘t’. The 
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process starts with generating an initial value ‘u’ for the RV, also referred as the starting 

state x(t). The next RV realization x(t+1) in the sequence is generated using a transition 

function or transition kernel; p(x(t)|x(t-1)).  The process is repeated to have a total of T 

sequences. The local dependency of the next value on its previous value makes this chain 

memory-less. Using this chain, samples are generated from an arbitrary distribution until 

convergence is obtained to a target distribution (Furuta, Miyake and Tsukiyama 2010). 

The following algorithm briefly describes the generation of a sequence from a Markov 

chain (Steyvers 2011): 

1. Set t = 1 

2. Generate an initial value u, and set x(t) = u 

3. Repeat: 

t = t + 1 

Sample a new value u from the transition function p(x(t)|x(t-1)) 

Set x(t) = u 

4. Continue until t = T 

 After a sufficient number of sequences of transitions, the state of the chain is no 

longer dependent on the initial state and the Markov Chain is said to reach a steady state. 

At this point the stochastic Markov Chain is said to be stationary and the samples of the 

chain reflect the target distribution.  The objective of MCMC is to achieve a stationary 

distribution which is similar to the target distribution. Various sampling techniques such 

as Metropolis-Hastings, Gibbs, Slice, as well as others, are methods that can be used to 
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allow convergence to the target distribution.  Metropolis-Hastings sampling is considered 

in this research, as described below. 

Metropolis Hastings Sampling 

 As mentioned above, the goal of MCMC is to achieve a stationary distribution 

which is similar to the target distribution; i.e. to sample the RVs from the Markov chain 

in such a way that the samples also represent the target distribution. Let the density of the 

target distribution be denoted as p(x) such that −∞ < 	 < ∞.  Say the current state (RV 

value) of the chain is x. A new candidate point y is generated using the conditional 

probability density ���|	�. This conditional probability density is referred to as the 

proposal distribution. The proposed new candidate point is either accepted or rejected 

using the following acceptance probability (α). 

 

v = min P1, ������	|����	����|	��R																																																																																														�3.46� 
 

 The decision of acceptance or rejection is determined by generating a value u 

from a uniform distribution (Steyvers 2011). The proposal is accepted if ·	 ≤ 	v and the 

new candidate point becomes y
t
 = y. However, if ·	 ≥ v, the proposal is rejected and the 

new candidate point remains the same as the old state, y
t
 = y

t-1
. This procedure is repeated 

until a steady state is obtained. The procedure is as follows (beginning with  t = 0): 

1. Initialize the chain by generating an initial value x. 

2. Generate a candidate point y from ���|	�. 
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3. Generate u a uniform random variate. 

4. Calculate the acceptance probability v = min	�1, ¹���e�0|��¹�0�e��|0��� 

5. If ·	 ≤ 	v, accept the proposal and set y
t
 = y; otherwise set y

t
 = y

t-1
. 

6. Set t = t + 1 and repeat the process from steps 3 through 6. 
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CHAPTER  4  VALIDATION AND VERIFICATION 

 To evaluate the effectiveness of FS method, a database of test problems is 

assembled and solved considering the various alternative approaches discussed earlier in 

Chapter 3. In order to study the effectiveness of FS method and  facilitate comparisons of 

accuracy and efficiency, these problems are solved with a selection of other applicable 

reliability techniques mentioned earlier in literature review. The database includes 

existing benchmark reliability problems as well as a series of more realistic, complex 

problems representative of engineering practice. Benchmark reliability problems found in 

the literature include those suggested by Engelund and Rackwitz (1993), Robinson and 

Atcitty (1999), Pandey and Sarkar (2002), Eamon et al (2005), and Au et al. (2007). 

These problems include: very highly nonlinear problems; problems with multiple 

reliability indices; series and parallel systems; and noisy limit states. Eamon et al (2005) 

suggested a matrix of 22 test problems that systematically altered important parameters 

including: limit state linearity, RV distribution type, RV COV, number of RVs, 

correlation, and target failure probability. These existing analytical problems are useful 

for comparison as they demand minimal computational effort and are easily replicated 

and verified by other researchers. Moreover, as analytical problem formulation is easily 

controlled by adjusting parameters, they can also be used to catch specific areas of 

concern (for example, if the reliability method has particular difficulty with correlation, 

or high COV problems). Any problems identified may require appropriate adjustment in 

the FS process. 
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 Herein, FS is also validated on several practical engineering problems which are 

computationally complex and costly. The problems selected for the validation of FS were 

based on following three important characteristics:  

1. Sufficient computational complexity representative of realistic computational 

mechanics problems in engineering practice. 

2. Moderately low failure probability.  

3. An unidentifiable MPP.  

 An important issue related to the aforementioned nature of problems is how to 

determine the exact solution for comparison to FS. In such cases direct simulation 

methods which are independent of MPP, are the only viable solution for determining the 

exact solution. Here failure probability must be limited to a reasonable lower level such 

that computational costs are feasible (much lower failure probabilities can be explored 

with problems that are analytically constructed, above).  

 This chapter is divided into two major category of problems. The first includes 

series of problems of numerical nature. These are the problems where the limit state 

function has an analytical expression. These include the benchmark analytical problems  

described above. The second category deals with realistic engineering problems requiring 

FEA code. These are practical engineering problems of complex nature with low failure 

probability and unidentifiable MPP. 
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Limit State Functions Considered for Numerical Problems 

General Limit State Function 

 To evaluate the effectiveness of the methods used to implement FS and develop 

recommendations for the Advanced FS approach, various problems were considered for 

solution.  The first series of these is represented by a matrix of general analytical limit 

state functions. Specific parametric variations included: number of random variables 

(RVs), where 2, 5, and 15 RVs were considered; RV variance, where each random 

variable case considered two different coefficients of variation, 5% and 35%; distribution 

type, where normal, lognormal and extreme Type I were considered;  linearity, where 

linear, moderately nonlinear, and highly nonlinear limit states were considered; and target 

reliability index, where ‘high’ and ‘low’ values were considered.   Here, reliability 

indices falling in the range of 2 - 5 were considered ‘high’, whereas indices between 0.3 - 

2 were considered ‘low’.  These combinations resulted in a total of 96 different general 

limit state functions which were evaluated. These benchmark limit state functions are 

taken from Eamon et al (2005). Figure 4.1 describes a flow chart for developing the 

different cases of the general limit state function. 

The general form of the limit state function under study was as follows: 

� =  "�
$

%& − 	º"»
	m¥
«
#


¬

%& 																																																																																																						 �4.1� 
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 The above function describes the limit state function of a uniformly loaded beam 

in terms of its deflection. The general cases considered, in terms on number of RVs and 

linearity, are as follows, with RV values in boldface: 

 

 

2 RV linear case 

� =  ¼½ −	º»m«# ¾½																																																																																																																						�4.2� 
5 RV linear case 

� =  �¼½ + ¼¿� −	º»m«# �¾ÀÁ½ +¾ÁÁ½ +	¾ÁÁ¿	�																																																																�4.3� 
 

  Figure 4.1. Flowchart for the General Limit State Functions
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15 RV linear case 

� =  �¼½ + ¼¿ +	¼Â + ¼Ã	 +	¼Ä� −	 ÅÆt¤Ç �¾ÀÁ½ +¾ÁÁ½ +	¾ÀÁ¿ +	¾ÁÁ¿ +	¾ÀÁÂ +
	¾ÁÁÂ +	¾ÀÁÃ +	¾ÁÁÃ +	¾ÀÁÄ +	¾ÁÁÄ	�																																																																												�4.4�  
2 RV Non-linear case 

� =  ¼½ −	º¥«# ÁÃ																																																																																																																							�4.5� 
5 RV non-linear case 

� =  ¼½ − 	º ¾ÁÃÈÉ 																																																																																																																						�4.6� 
15 RV non-linear case: 

� =  �¼½ +	¼¿ +	¼Â� − 	º P¾½Á½ÃÈ½É½ +	¾¿Á¿ÃÈ¿É¿ +	¾ÂÁÂÃÈÂÉÂR																																																			�4.7� 
 The values in Table 4.1. have been used either as the mean value if a RV, or a 

constant value if a non-RV, of the parameter in question, depending on the case type:  

Parameter Value 

C 5/384 

L 6.1 (m) 

E 2 x 108 (kPa) 

I 6.452 x 10-4 (m
4
) 

W 73600 (N/m) 

WÌÍ 19300 (N/m) 

WÍÍ 54300 (N/m) 

  Table 4.1. Parameters for General Limit State Functions
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Special Limit State Functions 

Series System 

 A series of 6 elements subjected to load Q is considered in this problem. The 

resistance of each element is considered to be independent. Since it is a series system, 

failure of the system occurs with failure of any one element in the series. For this 

problem, both resistance and load RV were considered as lognormally distributed with 

the resistance RVs having a mean of 10.0 and coefficient of variation (COV) of 0.10 and 

the load RV with a mean of 6.0 and COV of 0.10. Figure 4.2 shows a PDF estimate of the 

system resistance of the series system. 

 

The limit state function is expressed as: 

 g = min(Ri) – Q            (4.8) 
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   Figure 4.2 System Resistance of Series System
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 The same limit state function was evaluated considering an extreme Type I 

distribution for resistance and load RVs. The mean load Q in this case was considered to 

be 1.5 with COV of 0.1.  

Parallel System 

 For this problem, a system of 6 parallel elements was considered with resistance 

of each element independent and normally distributed with mean of 10 and COV of 0.10. 

The system is subjected to a load RV which was considered to be normally distributed 

with COV of 0.10.  However, the mean load was varied from 40 to 70 in increments of 

10 to produce various alternative functions.    

 

The limit state function is expressed as follows: 

 g = max(Ri) - Q/6           (4.9) 
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      Figure 4.3 System Resistance of Parallel System
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 The problem was reconsidered where all RVs were taken as lognormal and 

extreme I. However, for the lognormal case the mean load Q was taken as 45 and for the 

extreme I case the mean load was considered as 40. 

Minimum Function 

 This is similar to the series system (1) and is expressed as the minimum of several 

sub-functions given by following expressions: 

� = min��&, �;, �l�																																																																																																																�4.10�                                        
where: 

�& =		& + 2	; + 2	m +		. − 5	Î																																																																									�4.11� �; =		& + 2	; + 	m +		. − 5	Î																																																																												�4.12� �l =		; + 2	l + 	m +		. − 5	Î																																																																												�4.13� 
 RVs x1 – x4 are lognormal whereas x5 and x6 are extreme Type I. The means and 

standard deviations for RVs x1 – x4 are 60 and 6, respectively, while x5 and x6 have means 

of 20 and 25 and corresponding standard deviations of 6.0 and 7.5.  

Maximum Function 

 This limit state function is similar to the parallel system (2) and is expressed as 

the maximum of several sub-functions given by the following expressions: 

� = max��&, �;, �l,�m�																																																																																																								�4.14� 
where: 

�& =	2.677 − 	·& − ·;																																																																																												�4.15�                          
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�; =	2.500 − 	·; − ·l																																																																																								�4.16� �l =	2.323 − 	·l − ·m																																																																																								�4.17� �m =	2.250 − 	·m − ·.																																																																																									�4.18� 
All ui are standard normal random variables.   

Multiple Reliability Indices 

 This hyperbolic limit state function has two reliability indices, and is given as: 

� =		&	; − 146.14																																																																																																															�4.19� 
where x1 and x2 are normal RVs having mean values of 78064.4 and 0.0104, with 

corresponding standard deviations of 11709.7 and 0.00156, respectively.  

Circular Limit State 

 This is a two-dimensional limit state function (Figure 4.4) and is expressed by the 

equation given below. If solved using a reliability index-based method such as FORM, 

the problem has multiple (infinite) reliability indices as all points on the circle represent 

an equally shortest distance from the boundary of the limit state to the origin (assuming 

normal RVs).  The limit state function is given as: 

� = 	 �; −	"Ò
;;

%& 																																																																																																																						�4.20� 

Here zi are standard normal and independent RVs whereas r represents the radius 

of the circular limit state function and is taken as a known quantity. For this problem, r is 

taken as 4 and z1 or z2 can be selected as the control variable as: 
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Ò&Ó = 	9�; − Ò;;																																																																																																																					�4.21� 
 Here, MCS or MCMC are used to randomly assign values to z2, where Ò&Ó  

represents the system resistance sample and z1 is the control variable.  The reformulated 

limit state function can be expressed as: 

�Ô = 	 Ò&Ó − Ò&																																																																																																																														�4.22� 
The exact solution can be computed from the chi-square distribution as:  

�� = 1 −	Õ$��;�																																																																																																																					�4.23� 
where χn represents a chi-square distribution with n degrees of freedom. 

 Here, z1 and z2 are considered to be standard normal and independent whereas the 

radius r was varied from 4 to 8. For the FS method, z1 was considered as a control 

random variable. The limit state function was reconsidered where all RVs were taken as 

lognormal and extreme I distributions. For the lognormal case the means and standard 

deviations of RVs were considered as 0.01 and 1.0 respectively, while for the extreme I 

case the means were considered to be 0 and the standard deviations 0.7. In both the 

lognormal and extreme type I case, the radius was considered as 6.0. 

 

 

 

 

 

  Figure 4.4 Shape of Circular Limit State Function 
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Analytical I-Beam 

 An analytical I-beam is subjected to a concentrated load as shown in Figure 4.5. 

This problem is taken from Acar et al. (2010). The limit state function is expressed in 

terms of bending stress as follows: 

} = 	:4Ö0 − ª																																																																																																																												�4.24� 
where: 

:4Ö0 =	�×�» − ×��2»# 																																																																																																	�4.25� 
 

# = 	 Ø��l − �Ø� − ¯Ù��� − 2 �̄�l12 																																																																											�4.26� 
 

 

All RVs are normally distributed, with statistical parameters shown in Table 4.2.  S was 

considered as the control variable, and the limit state function was reformulated as 

follows: 

�Ô = 	ªÚ − ª																																																																																																																					�4.27� 
 

 

        Figure 4.5. I-beam Cross-section and Loading
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RVs Mean Standard 

Deviation 

P 6070 and 14000 200 and 460.6 

L 120 6 

a 72 6 

S 17000 4760 

d 2.3 1/24 

bf 2.3 1/24 

tw 0.16 1/48 

tf 0.16 1/48 

Noisy Limit State Function 

 The following limit state was considered as a noisy limit state with a fluctuating 

failure boundary: 

 g = x1 + 2x2 + 2x3 + x4 - 5x5 - 5x6 + 0.001 ∑ §f!100	fÎ
%& 																															�4.28� 
 All xi were considered as lognormal. RVs x1 through x4 have means 120 and 

standard deviations of 12; RV x5 has a mean of 50 with standard deviation of 15, and RV 

x6 has a mean of 40 with standard deviation of 12. 

 

   Table 4.2. Statistical Parameters for I-beam
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Realistic Practical Engineering Problems 

10 Bar Nonlinear Static Truss 

 

 

Figure 4.6 10 Bar Non-Linear State Truss 

 This problem is taken from Eamon et al; (2011) and Charumas (2008).  Figure 4.6 

shows a 10 bar, nonlinear static truss subjected to a load P.  The complexity of the 

problem is such that a closed-form, analytical solution is unavailable.  Thus, a 

commercial FEA code, ABAQUS (Version 6.11-2), was used to evaluate the limit state 

function.  The limit state function for this particular problem was expressed in two 

different ways; in terms of displacement and in terms of stress.  For the displacement 

limit state, only three RVs were considered for the problem by assuming similar material 

properties for all members. The material assumed was steel, with a bilinear stress-strain 

curve and an elastic modulus of elasticity E of 29,000 ksi.  The yield stress (σy) was 

considered to be the same for all members, and hence is given as a single RV, with a 

mean of 50 ksi and COV of 0.10.  The modulus of elasticity after yield i.e. post-yield 
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modulus (E2) was given a mean of 1200 ksi and COV of 0.25.  The load value P was 

varied from 45 to 55 kips, with a COV of 0.10. The failure condition was considered to 

be when the displacement under the point of application of load P exceeded 1.5 inches.  

Hence, the limit state function can be expressed as follows: 

 g = 1.5 - D(σy, E2, P)         (4.29)                                                                                                 

 All RVs are taken as normally distributed.  Load P was considered to be the 

control variable.  The modified limit state function was then solved for the condition g* = 

0 using the bisection method.  Although the limit state function was evaluated with a 

resistance sample size of 1000, the actual number of function calls exceeded 1000 

because the iterative process of the root finding method makes multiple function calls to 

satisfy g* = 0.  The tolerance for error was taken as 0.01.  

 Further, to evaluate the FS method under more complex conditions, the limit state 

function was reformulated in terms of stress. In this case, the geometric and material 

properties were not considered the same for the entire structure.  Rather, each member of 

the truss was given three independent RVs, thus increasing the number of RVs in the 

problem from 3 to 31.  Additional RVs include the cross-sectional area A  of each 

member, with a mean of 2 sq. in, and COV of 0.05.  The mean and COV of yield stress σy 

and post yield modulus E2 were kept the same as described in the displacement limit state 

function. However, these RVs were considered independent for each member in the 

structure. Mean load P was varied from 50 to 65 kips with COV of 0.1.  It was again 

considered to be the control variable.  The failure criteria was defined as the state when 
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the stress in member 1 reaches its yield value.  The limit state function can be described 

as: 

g = σy1 - σ1(P, σyj, E2i, Ai) for i = 1 to 10, j = 2 to 10                                                    (4.30) 

Steel Frame Structure 

 

Figure 4.7 Steel Frame Structure 

 This problem considers a small structure representing a bay of a larger building, 

with dimensions 24 ft by 24 ft in plan and 48 ft high.  It is a four-story steel frame, with 

concrete floor slabs and four interior shear walls, as shown in Figure 4.7. Note that it is 

idealized and not meant to model an actual structure.  Beams and columns of the structure 

are modeled with line elements and assigned W14X22 steel section properties. The floor 

slabs and shear walls were modeled as shell elements, with slab thickness of 12 inches. A 

bilinear stress-strain model for steel was used, with RVs taken as modulus of elasticity of 
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steel, Es, with mean of 29000 ksi and COV of 0.1; and post-yield modulus of elasticity of 

steel, Et, with mean of 1200 ksi and COV of 0.1.  Additional RVs are modulus of 

elasticity of concrete, Ec, with mean of 3500 ksi and COV of 0.1; and a uniform pressure 

load applied to the floor slabs, which was taken as the control variable, with mean of 70 

and 90 psi, depending on target reliability index considered, with COV of 0.1. The failure 

criterion is defined as the state where displacement at any point on the fourth floor slab 

exceeds 2 inches.  The limit state function is given as: 

g = 2 - D(Es,Et, Ec, P)                                                                                                   (4.31) 

 All RVs were taken as normally distributed.  The limit state function was 

evaluated using a commercial FEA code (ABAQUS).  

Metal Automotive Structure 

 The model used for this validation problem was the Federal Highway 

Administrations (FHWA) 'Bogie' model (available on the National Crash Analysis Center 

(NCAC) website).  This is a FEA model of  a surrogate vehicle this is used for the full 

scale crash test of highway appurtenances. The physical structure is used to simulate the 

impact dynamics of a small vehicle and can be configured with different noses to 

represent alternate crash scenarios (Eskandarian et al. 1997).  A schematic sketch of the 

test vehicle is shown in Figures 4.8 and 4.9, while the material properties used in the 

model are shown in Table 4.3. 
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The crash scenario analyzed with the Bogie model is a small car impacting a rigid pole.  

Here, the simulated nose structure is considered for low speed impacts (32 km/hr). 

Figures 4.8 and 4.9 show the model before a representative impact.   

 

 

Figure 4.8 Schematic of FHWA Bogie Model (Eskandarian et al 1997) 

Table 4.3. Material Properties (RVs) for Bogie (Eskandarian et al 1997) 

Type & 

Number of 

Elements 

Parts Young's 

Modulus (MPa) 

Poisson's 

Ratio 

Density 

(kg/mm
3
) 

Yeild 

Stress 

(MPa) 

Beam (126) Structural Beams 20 x 10
4
 0.3 0.785x10

-5
 207 

Shell (384) Steel Plates 20 x 10
4
 0.3 0.785x10

-5
 207 

Steel Hub 20 x 10
4
 0.3 0.785x10

-5
 207 

Rubber Tire 2.46 x 10
3
 0.323 0.106x10

-5
 24.77 

Solid (1286) Instruments Box 1.25 x 10
4
 0.33 0.785x10

-5
 207 
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Figure 4.9 Schematic of FHWA Bogie Model (Eskandarian et al 1997) 

Marine Structure 

 A submarine sail structure with length, width and height of 100 ft x 20 ft x 20 ft, 

respectively, is considered for analysis (Figure 4.10).  This structure is composed of a 

thick outer composite shell reinforced with stiffeners, and taken from Eamon et al. 

(2008).  The structure is divided in to four main components; the crown, transition 

region, main skin, and the base joint. The crown is made of a thick layer of steel, whereas 

the transition and main skin regions are made of bi-directional glass reinforced polymer 

(GRP). The sail is subjected to a critical waveslab load. To support the waveslab load, the 

composite skin is stiffened by four longitudinal and eight transverse stiffeners. The FEA 

model was originally modeled in MD Nastran by Eamon et al (2008). For the purpose of 

this research, however, the model was remeshed and solved in ABAQUS 6.11. The 

original model was composed of steel and GRP composite with linear elastic properties. 
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 However, as a linear-elastic material, it was gauged insufficiently nonlinear with 

regard to response, and thus for this study, the entire sail structure was remodeled with 

steel assuming a bilinear stress strain curve, with mean elastic modulus E of 29,000 ksi 

with a COV of 0.1. The yield stress (σy) was considered the same for the crown, main 

skin, and the stiffeners and hence was assumed to be a single RV with mean of 50 ksi and 

COV 0.1. Similarly, the post-yield modulus (E2) was considered to have a mean of 1200 

ksi and COV of 0.25.  The transient waveslab caused by an ocean wave striking the sail 

on one side was modeled as an equivalent static uniform load on the side of the sail.   

 

Figure 4.10 Mesh of Marine Sail Structure 

Masonry Building Structure 

 This problem represents the response of an exterior masonry infill wall exposed to 

blast. This problem is highly non-linear with large strain and large displacements that 

include arbitrary element contact and material disintegration under very high strain rates. 

Although originally solved by Eamon et al. (2007) in DYNA3D, for this study, the model 

was remeshed and solved using ABAQUS 6.11.  Here, the CMU walls were considered 
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to be fully filled with grout. The walls are composed of 15 rows of standard 8x8x16 

nominal CMUs producing a wall height/thickness aspect ratio of 15:1. The wall behaves 

similarly to a plane-strain condition and hence is modeled using unit length stack of 

CMU blocks. The topmost and the bottommost blocks are modeled as fixed ends 

representing a condition of a floor above and beneath. Previous work on this problem 

demonstrated that CMU interconnectivity and contact parameters along joint lines govern 

over individual block deformations. Therefore, except for the end CMU blocks which rest 

against the supports, the interior blocks were modeled using a single element each. 

However, the end blocks were modeled using a finer mesh, which was required to 

accurately model the progressive material crushing that occurs where the wall contacts 

the floor and ceiling, caused by the outward rotation of the wall. The coefficient of 

friction between the CMU surfaces was taken as 0.50. Material properties were taken 

from Eamon et al. (2007). Blast load was applied as a dynamic load as a time varying, 

uniform pressure over the entire wall as shown in Figure 4.11. The load curve is idealized 

by four piece-wise linear functions, two positive and two negative. Four RVs are used to 

describe the load curve and the respective values are shown in Table 4.4. The RV 

variation originates from three primary sources; expected standoff distance, charge 

weight, and the variation in the explosive material itself. For the purpose of reliability 

analysis, pressure is expressed as a load RV while mortar joint strength, block-block joint 

friction, upper block-frame friction and lower block-frame friction are considered as 

resistance RVs, and are given in Table 4.5. However, the mortar joint strength and block-

block joint friction are considered RVs for only the (generally) three most-critical center 
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CMU blocks. The limit state is written in terms of a critical debris velocity which may 

cause serious injuries to building occupants. The critical debris velocity, V for this 

problem was taken as 11.5 m/s (37.72 ft/s).  Figure 4.12 shows the FEA model 

undeformed CMU wall.  

  

Figure 4.11 Load Curve Random Variables Figure 4.12 FEA Model of Section of CMU  

     

Table 4.4. Load & Resistance RVs 

Random Variable (RV) Mean COV 

Zero Pressure Time (zt) 2.16 0.13 

Peak Pressure (pp) 1518 0.24 

Low Pressure (lp) -25.3 0.18 

Low Pressure time (lt) 3.73 0.13 

Mortar Joint Strength 1.73 0.24 

Block-block joint friction 0.5 0.11 

Upper block-frame friction 0.65 0.11 

Lower block-frame friction 0.65 0.11 
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CHAPTER  5  RESULTS AND DISCUSSION 

 This chapter presents the results obtained from the various FS implementations 

explored and some other reliability analysis techniques by solving the analytical and 

realistic engineering problems discussed in Chapter 4. However, in order to facilitate a 

comparison between numerical integration and the different curve fit techniques, it is 

necessary to explore the effect on number of intervals on the accuracy of NI itself. Hence, 

the first section of this chapter discusses the effect of interval size on the accuracy of the 

NI method and thereby on FS. The second section presents the results obtained from the 

analytical functions whereas the third section discusses the realistic engineering problems 

and the results obtained from the same. The fourth and last section discusses the results 

obtained by implementing MCMC method to generate R(Xi) sample instead of crude 

MCS. 

Effect of Interval Size on Accuracy of FS Method  

 As explained in Chapter 3, the simplest way to calculate pf is expressed as 

follows: 

   �� = c =�d)d �	��e�	��	 (5.1) 

 �� = "=�6

%& ��
� ×	�e��
� × dq (5.2)  

   

 The above expression is evaluated using numerical integration (NI). This 

evaluation requires that the PDF of the resistance samples is determined; an evaluation 

that is conducted with the interval method.  Here, the resistance samples are divided into 
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specific intervals and then the number of data points that fall into each interval is 

counted, and the results normalized to produce the PDF.  However, the accuracy of the 

PDF estimate depends on the number of intervals. As the number of intervals are 

changed, the resulting PDF changes, which in turn affects the calculated probability of 

failure. 

 Hence, the various limit state functions (general and special limit state functions) 

described in Chapter 4 were evaluated considering different interval sizes in order to 

determine the optimum number of intervals for developing the PDF of resistance. The 

PDF of resistance was constructed by varying the number of intervals from 5, 10, 50, 

100, and 500.  In each case, the number of resistance samples R(xi) was kept at 1000. 

Probability of failure was then calculated using eq. (5.2) for each case and compared with 

the exact solution obtained from direct Monte Carlo Simulation (MCS). Figures 5.1 and 

5.2 show the results for  selected limit state functions.  It was observed that 50 intervals 

for 1000 resistance samples R(xi) provided consistently good results for most limit state 

functions. Also, it was found for relatively linear limit state functions and for those with 

few random variables, an insignificant difference in percentage error was observed when 

interval size was changed from 50 to 500.  However, with an increase in the number of 

random variables and for highly non-linear limit state functions, the error in probability 

of failure significantly increased as interval size deviated from 50.  Figures 5.3 and 5.4 

show the error from constructing the PDF using 10 and 50 intervals for a 5 RV non-linear 

problem, while Figures 5.5 and 5.6 show the difference from using 10 and 50 intervals 

for constructing the PDF. These figures clearly indicate that a change in interval size can 
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significantly affect the probability of failure estimation. It was also observed that a small 

change in the interval size did not produce large differences in the results. For example; 

changing interval size from 50 to 60 had an insignificant impact on the precision of 

results. 

Results of the interval method for all limit state functions considered are 

presented in the next section.  In this section, for all limit state function evaluations using 

the NI method, 1000 resistance samples and 50 intervals were considered for PDF 

construction. The NI method produced good results for most of the high and low 

reliability index cases.  In a few cases, it was observed that the NI method produced high 

reliability indices for RVs with a lognormal distribution.   It was also observed in some 

cases that NI failed to produce results where the RVs had 5% COV with either normal or 

lognormal distributions, usually for the cases with high reliability index.  Moreover, error 

generally increases or the method fails to produce results where the function has high 

target reliability index and is highly non-linear with 15 RVs.  
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Figure 5.1 Number of Intervals vs Error for General Limit State Functions 

 

Figure 5.2 Number of Intervals vs Error for Special Limit State Functions 
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Figure 5.3. PDF of 10 Intervals for a 5 RV Non-Linear Problem  

 

Figure 5.4. PDF of 50 Intervals for a 5 RV Non-Linear Problem  
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Figure 5.5. PDF of 10 Intervals for Parallel System 

 

Figure 5.6. PDF of 50 Intervals for Parallel System 
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General Limit State Function 

 As explained in Chapter 4, the general limit state function comprised of 96 

different variations which consider the effect of number of RVs, COV, type of 

distribution and target reliability index on the accuracy of the FS implementation 

approaches. All cases were evaluated using the NI, GLD, JSD, GEV and ensemble 

methods. Results are measured in terms of accuracy and precision, where accuracy is the 

mean value of the ratio of computed reliability index to the exact value for the specific 

case under consideration. Here the exact value for low to moderate target reliability 

indices is determined from 1 x 10
6
 MCS simulations. However, for high target reliability 

index cases the exact value is determined from 1 x 10
9
 MCS simulations. Precision is 

used to measure the degree of consistency of results, and is determined by calculating the 

COV of accuracy, based on five evaluations of each problem. Figures 5.7 - 5.12 show the 

effect of number of RVs, degree of non-linearity, and RV distribution type on the 

different implementation methods. 

Effect of FS Implementation Methods On Accuracy and Precision  

 Table 5.1 presents the results obtained from various FS implementation methods 

described in Chapter 3. It can be observed that the GLD method provides good results for 

low reliability indices.  For high reliability levels, however, the GLD tends to either fail 

or produce unstable results. Also, it can be observed that the GLD provided good results 

for almost all of the extreme Type I distribution limit states.   It was also observed in 

some cases that the GLD failed to produce results where the RVs had 5% COV with 

either normal or lognormal distributions. These are usually the cases with high reliability 
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index.  Moreover, error generally increases or the method fails to produce results where 

the function has high target reliability index and is highly non-linear with 15 RVs.  For 

the functions with low target reliability indices, the GLD produced good results 

irrespective of the non-linearity and number of RVs. 

 The EGLD method was unable to provide good fits for limit states with a high 

reliability index. One of the reasons that the EGLD method provides poor or no results in 

some cases is due to the (α
2

3, α4) space covered by the EGLD.  It was observed that 

computations become numerically difficult when the (α
2

3, α4) values within the EGLD 

region gets close to the boundaries.  It was also observed that as α4 approaches the value 

of α4  = 3 + 2 α
2

3,  which is the upper boundary of the EGLD region, determination of 

EGLD parameters becomes difficult numerically.  However, as α4 approaches the upper 

boundary, it also gets closer to the GLD region and hence the GLD provides good results 

in these cases and EGLD is most likely to fail. The results shown in Table 5.2 are for 

cases where the EGLD was able to fit to the resistance samples for the general limit state 

function. Figures 5.7 and 5.8 show the comparison of the EGLD fit with that of the raw 

PDF obtained from the resistance sample.  
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Limit State 

RV 

distribution COV Target β 

Beta 

NI GLD JSD GEV Ensemble MCS 

2 RV Linear Normal 

0.05 Low 

4.520 Fail 4.264 Fail 4.463 4.360 

  Lognormal 3.380 Fail 4.265 Fail 4.265 4.420 

  Extreme 1.002 0.859 0.872 0.874 0.989 1.009 

2 RV Linear Normal 

0.35 Low 

1.422 0.625 0.626 0.614 0.634 0.620 

  Lognormal 2.410 0.640 0.662 0.644 0.665 0.650 

  Extreme 1.002 Fail 0.974 0.995 0.989 0.990 

2 RV Non-

Linear Normal 
0.05 Low 

2.293 2.315 2.284 2.196 2.164 2.279 

  Lognormal Fail 2.144 2.273 2.159 2.236 2.190 

  Extreme 1.089 0.917 0.919 0.913 0.894 1.024 

2 RV Non-

Linear Normal 
0.35 Low 

0.686 0.285 0.284 0.276 0.284 0.283 

  Lognormal 2.078 0.434 0.431 0.445 0.428 0.440 

  Extreme 0.973 0.812 0.840 0.816 0.875 0.987 

5 RV Linear Normal 

0.05 Low 

3.105 2.929 2.947 3.079 2.959 2.953 

  Lognormal 1.212 NF* 4.108 Fail 4.108 4.021 

  Extreme 3.699 NF* 3.719 Fail 3.695 3.763 

5 RV Linear Normal 

0.35 Low 

0.884 0.884 0.920 0.882 0.967 0.941 

  Lognormal 3.300 0.880 0.997 0.985 0.987 0.977 

  Extreme 0.960 0.839 0.934 0.905 0.964 0.951 

5 RV Non-

Linear Normal 
0.05 Low 

1.770 2.090 2.079 2.142 2.064 2.072 

  Lognormal 0.616 2.040 2.035 2.084 2.002 2.023 

  Extreme 1.042 0.843 0.923 0.836 0.923 1.056 

Table 5.1. Reliability Indices for General Limit State Function using NI, GLD, JSD, 

GEV& Ensemble Approach 
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Limit State 

RV 

distribution COV 

Target 

β 

Beta 

NI GLD JSD GEV Ensemble MCS 

5 RV Non-

Linear Normal 
0.35 Low 

Fail Fail 0.349 0.382 0.385 0.397 

  Lognormal 1.718 0.379 0.369 0.376 0.366 0.372 

  Extreme 0.905 Fail 0.986 1.036 1.050 0.991 

15 RV 

Linear Normal 
0.05 Low 

3.505 NF* 3.432 Fail 3.484 3.751 

  Lognormal 1.056 NF* 3.599 Fail 3.616 3.838 

  Extreme 0.898 0.912 0.884 0.782 0.886 0.892 

15 RV 

Linear Normal 
0.35 Low 

2.351 1.049 1.075 0.982 0.982 0.968 

  Lognormal 0.636 1.017 0.988 1.003 0.985 0.980 

  Extreme 0.914 0.955 0.938 0.824 0.967 0.929 

15 RV Non-

Linear Normal 
0.05 Low 

2.117 Fail 3.089 3.325 3.115 3.162 

  Lognormal 0.710 Fail 2.727 3.105 2.999 3.058 

  Extreme 0.785 0.790 0.759 0.755 0.792 0.811 

15 RV Non-

Linear Normal 
0.35 Low 

Fail Fail 1.762 0.415 1.757 1.801 

  Lognormal Fail Fail 1.717 0.903 1.686 1.7896 

  Extreme 0.414 Fail 0.364 0.187 0.382 0.361 

 

 

 

Table 5.1.a Reliability Indices for General Limit State Function using NI, GLD, JSD, 

GEV& Ensemble Approach (Continued) 
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Limit State 

RV 

distribution COV 

Target 

β 

Beta 

NI GLD JSD GEV Ensemble MCS 

2 RV Linear Normal 

0.05 High 

3.135 Fail 3.349 Fail 3.453 3.695 

  Lognormal Fail 3.540 4.105 Fail 4.405 4.052 

  Extreme 3.016 2.863 2.878 2.799 2.916 3.030 

2 RV Linear Normal 

0.35 High 

1.370 1.381 1.317 1.360 1.378 1.377 

  Lognormal 1.610 Fail 1.530 1.543 1.534 1.576 

  Extreme 3.005 2.972 2.929 2.565 2.982 2.965 

2 RV Non-

Linear Normal 
0.05 High 

3.532 Fail 3.719 Fail 3.664 3.791 

  Lognormal 1.155 0.816 0.816 0.820 0.800 0.799 

  Extreme 3.140 2.968 3.036 2.911 2.949 3.032 

2 RV Non-

Linear Normal 
0.35 High 

1.160 Fail 0.664 0.653 0.656 0.675 

  Lognormal 2.147 0.807 0.801 0.809 0.803 0.799 

  Extreme 2.968 2.911 2.948 2.770 2.862 2.994 

5 RV Linear Normal 

0.05 High 

2.666 3.432 3.195 3.432 3.441 3.375 

  Lognormal 1.380 Fail 3.927 Fail 3.927 4.222 

  Extreme 6.461 2.929 2.628 3.012 2.898 2.872 

5 RV Linear Normal 

0.35 High 

0.287 1.697 1.731 1.804 1.731 1.745 

  Lognormal 1.932 1.908 1.955 2.042 1.936 1.964 

  Extreme 2.900 2.044 2.018 2.049 1.899 1.972 

5 RV Non-

Linear Normal 
0.05 High 

3.333 Fail 3.121 3.432 3.262 3.274 

  Lognormal 0.743 3.719 3.846 3.629 3.778 3.916 

  Extreme 2.819 2.968 3.062 2.894 2.986 3.067 

Table 5.1.b Reliability Indices for General Limit State Function using NI, GLD, JSD, 

GEV& Ensemble Approach (Continued) 
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Limit State 

RV 

distribution COV 

Target 

β 

Beta 

NI GLD JSD GEV Ensemble MCS 

5 RV Non-

Linear Normal 
0.35 High 

Fail Fail 0.866 0.835 0.855 0.819 

  Lognormal * * 1.009 0.981 0.949 0.939 

  Extreme Fail 2.911 3.090 2.948 2.948 3.003 

15 RV 

Linear Normal 
0.05 High 

2.050 3.346 NF* 3.540 3.540 3.534 

  Lognormal 0.816 3.186 3.090 3.290 3.182 3.162 

  Extreme 0.884 NF* 1.006 0.939 0.950 0.892 

15 RV 

Linear Normal 
0.35 High 

0.940 2.335 2.416 2.524 2.352 2.501 

  Lognormal 1.933 2.896 2.527 2.848 2.882 2.802 

  Extreme 0.934 0.910 0.898 0.934 0.901 0.929 

15 RV Non-

Linear Normal 
0.05 High 

Fail Fail 1.776 1.798 1.792 1.766 

  Lognormal Fail Fail 1.871 1.739 1.743 1.739 

  Extreme Fail NF* 2.590 2.457 2.601 2.639 

15 RV Non-

Linear Normal 
0.35 High 

Fail Fail 0.276 0.161 0.270 0.266 

  Lognormal Fail Fail 0.401 0.212 0.386 0.390 

  Extreme Fail Fail 1.943 1.103 1.943 1.976 

 

 

 

 

Table 5.1.c Reliability Indices for General Limit State Function using NI, GLD, JSD, 

GEV& Ensemble Approach (Continued) 
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Limit State RV distribution COV Reliability Index (Beta) 

      GLD EGLD MCS 

2 RV Linear Normal 

0.35 

0.625 0.545 0.620 

  Lognormal 0.640 Fail 0.650 

  Extreme Fail 1.710 0.990 

2 RV Non-Linear Normal 

0.05 

2.315 1.480 2.279 

  Lognormal 2.144 1.603 2.190 

  Extreme 0.917 Fail 1.024 

5 RV Linear Normal 

0.35 

0.884 0.423 0.941 

  Lognormal 0.880 Fail 0.977 

  Extreme 0.839 Fail 0.951 

5 RV Non-Linear Normal 

0.05 

Fail 3.092 3.274 

  Lognormal 3.719 3.068 3.916 

  Extreme 2.968 Fail 3.067 

 

 

Figure 5.7 Comparison of EGLD PDF and Raw PDF of a 2 RV Normal Function 
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 Table 5.2.  EGLD Results for Selected General Limit State Functions
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Figure 5.8 Comparison of EGLD PDF and Raw PDF of a 5 RV Lognormal Function 

 From the results presented in Table 5.1 it can be observed that the FS method 

coupled with JSD produced the most accurate and precise results. Surprisingly, the cases 

where JSD yielded the least accuracy and precision were linear limit state functions.  

However, these limit states were those corresponding to 15 RVs and high beta values. On 

the other hand, although GEV did not generally produce highly accurate results, it did 

produce consistent results. It was also found that GEV failed to produce any results for 

high beta values. Further, for most of the low beta value cases having normal and 

lognormal distributions, GEV produced poor results. This can be seen in Figures 5.13 and 

5.14 where GEV resulted in low accuracy and high precision for low beta and normal 

distribution cases.  It was observed that for almost all the cases with lognormal RVs, NI 

produced poor results, although it produced good results for almost all of the special limit 

states considered. Further, the precision of NI was degraded with nonlinear problems. 
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However, no specific pattern in the results was observed for GLD, although it produced 

poor or no results for the 15 RV non-linear limit states. 

 

 

Figure 5.9  Effect of Linearity on Accuracy of FS Method 

 

Figure 5.10  Effect of Linearity on Precision of FS Method 
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Figure 5.11 Effect of Number of RVs on Accuracy of FS Method 

 

Figure 5.12 Effect of Number of RVs on Precision of FS Method 
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Figure 5.13 Effect of Normality on Accuracy of FS Method 

 

Figure 5.14 Effect of Normality on Precision of FS Method 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

NI GLD JSD GEV

A
c
c
u

ra
c

y

FS Method

Normal (Low Beta)

Non-normal (Low Beta)

Normal (High Beta)

Non-normal (High Beta)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

NI GLD JSD GEV

P
re

c
is

io
n

FS Method

Normal (Low Beta)

Non-normal (Low Beta)

Normal (High Beta)

Non-normal (High Beta)



85 

 

 

Effect of Ensemble Implementation Method On Accuracy and Precision of FS 

 All the limit states described Chapter 4 were evaluated using the optimized 

ensemble technique. Results are presented in Table 5.1. It was observed that the 

application of the ensemble technique reduced the  percent error in some cases, while in 

other few cases there was an insignificant difference observed between the stand-alone 

methods and the ensemble results. There were a few cases where the ensemble technique 

produced poor results. However, these were the cases where the error estimate from all 

the stand-alone methods was high and the ensemble could not produce significant 

improvement. For cases where only one stand-alone method produced acceptable results 

and the remaining methods either failed or produced high error estimates, it was observed 

that ensemble produced the same results as the most-accurate stand-alone method. This is 

because, during the optimization process, the highest weight factor is alloted to the stand-

alone method which produced a CDF closest to the true CDF. However, no specific 

pattern was observed for the cases where the ensemble method failed to show significant 

improvement as compared to stand-alone methods. Figures 5.15 and 5.16 show a 

comparison between the CDF obtained from the ensemble method and other stand-alone 

methods. 
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Figure 5.15 Ensemble of CDFs for a 5 RV Linear Limit State 

 

Figure 5.16 Ensemble of CDFs for a 5 RV Non-Linear Limit State 
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Special Limit State Functions 

Series System 

 For this case, 'Q' was considered as the control variable for the FS method. The 

exact solution was obtained using 1x10
6
 MCS samples.  The results shown in Table 5.3 

indicate that NI failed to provide results for both lognormal and extreme I cases. JSD and 

GEV produced good results for the lognormal case but produced higher errors for the 

extreme I case.  However, GLD provided good results for both cases. MCS with 1000 

calls to the limit state produced no failures. 

Table 5.3. Series System 

 all RVs are: Lognormal Extreme I 

 Method no. of calls β %err β %err 

Exact solution  3.13 -- 3.05 -- 

MCS 1000 N.F.* -- N.F.* -- 

NI 1000 Fail -- Fail -- 

GLD 1000 3.27 4.5 3.20 4.9 

JSD 1000 3.15 0.8 3.30 7.5 

GEV 1000 2.95 5.8 3.31 7.8 

       *No failures. 
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Parallel System 

 Similar to the series system, Q was considered as the control variable.  The exact 

solution was obtained using 1x10
6
 MCS samples. It was observed that FS provided good 

results for all low beta values. The GLD and GEV methods failed to provide any results 

for the lognormal case. However, for the extreme I RV case, the GLD and the numerical 

integration method produced close results to the exact solution whereas GEV failed to fit 

the resistance samples.  JSD provided good results for the lognormal RV case and failed 

in the extreme I RV case.  For the normal RV case with a load value Q of 40 kips, only 

NI provided results, whereas all other methods failed to produce results. 

 

mean load:  Q = 70 Q = 60 Q = 50 Q = 40 

 method no. calls β %err β %err β %err β %err 

Exact Solution  -0.320 - 1.06 - 2.88 - 5.26 - 

NI 1000 -0.321 0.09 1.04 2.0 2.85 1.1 5.36 1.9 

MCS 1000 -0.362 13 1.01 5.0 2.65 7.9 N.F. -- 

GLD 1000 -0.320 0.0 1.02 3.7 2.91 1.0 Fail -- 

JSD 1000 -0.327 0.02 1.05 0.9 2.88 0.0 Fail -- 

GEV 1000 -0.325 0.01 1.08 1.8 2.83 1.7 Fail -- 

 

 

 

   Table 5.4. Parallel System with Normal RVs
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 RVs: Lognormal Extreme I 

 method no. of calls β %err β %err 

Exact Solution  3.53 - 3.57 -- 

MCS 1000 N.F. -- N.F. -- 

NI 1000 3.56 -0.8 3.40 0.8 

GLD 1000 Fail -- 3.49 2.2 

JSD 1000 3.55 0.28 Fail -- 

GEV 1000 Fail -- Fail -- 

Minimum Function 

 Method no. of calls β %err 

Exact solution  2.28 -- 

FORM -- 2.33 2.15 

MCS 1000 2.65 14.0 

NI 1000 2.20 3.73 

GLD 1000 2.27 0.31 

JSD 1000 2.32 1.63 

GEV 1000 2.42 5.42 

Ensemble 1000 2.26 0.52 

  

  Table 5.5. Parallel System with Lognormal and Extreme I RVs

    Table 5.6. Minimum Function 
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The results shown in Table 5.6 indicate that MCS failed to provide results with 

acceptable accuracy, while NI, JSD and GLD produced good results with low errors. 

However, GEV provided slightly high error. The ensemble of all FS methods proved to 

produce results of highest accuracy. 

Maximum Function 

 The exact solution was obtained using 1x10
6
 MCS samples. As shown in Table 

5.7, FORM, GLD and GEV failed to provide any results, and MCS could not produce 

any failures. Here the ensemble produced results close to that of JSD. This can be 

attributed to the optimization of weights where JSD received the highest weight factor, 

and hence the ensemble approach provided almost the same result as JSD. 

 Method no. of calls β %err 

Exact solution  3.53 -- 

FORM -- Fail -- 

MCS 1000 N.F* -- 

NI 1000 3.66 3.66 

GLD 1000 Fail -- 

JSD 1000 3.46 1.95 

GEV 1000 Fail -- 

Ensemble 1000 3.44 0.49 

 

    Table 5.7. Maximum Function
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Multiple Reliability Indexes 

 FORM, GLD and GEV were unable to produce any results for this problem, and 

MCS was not able to produce any failures, as shown in Table 5.8. However, NI and JSD 

produced reasonable results, as did the ensemble approach. 

 Method no. of calls β %err 

Exact solution  3.57 -- 

FORM -- Fail -- 

MCS 1000 N.F* -- 

NI 1000 3.68 2.99 

GLD 1000 Fail -- 

JSD 1000 3.38 4.98 

GEV 1000 Fail -- 

Ensemble 1000 3.43 3.78 

 

Circular Limit State  

 As shown in Tables 5.9 and 5.10, for the circular limit state function, the 

reliability indices for all cases were somewhat high. NI was the only method which 

produced results close to the exact solutions. JSD and the ensemble approach provided 

results only for the first case. In case where RVs were considered non-normal, it was 

observed that the ensemble approach further increased the accuracy of the results. 

 

    Table 5.8. Multiple Reliability Indices
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 radius: 4 5 6 7 8 

 method no. calls Β %err β %err β %err β %err β %err 

Exact Solution  3.40 -- 4.48 -- 5.54 -- 6.58 -- 7.62 -- 

MCS 1000 N.F. -- N.F. -- N.F. -- N.F. -- N.F. -- 

NI 1000 3.38 0.7 4.53 1.3 5.56 0.4 6.60 0.3 7.57 0.7 

GLD 1000 Fail -- Fail -- Fail -- Fail -- Fail -- 

JSD 1000 3.53 3.7 Fail -- Fail -- Fail -- Fail -- 

GEV 1000 Fail -- Fail -- Fail -- Fail -- Fail -- 

Ensemble 1000 3.46 1.73 Fail -- Fail -- Fail -- Fail -- 

 

   Table 5.9. Circular Limit State with Normal RVs 

   Table 5.10. Circular Limit State with Non-Normal RVs 

 RVs: Lognormal Extreme I 

 method no. of calls β %err β %err 

Exact Solution  3.42 -- 3.29 -- 

MCS 1000 N.F. -- N.F. -- 

NI 1000 3.44 0.6 3.42 3.9 

GLD 1000 Fail -- Fail -- 

JSD 1000 3.67 6.8 3.21 2.4 

GEV 1000 3.33 2.7 Fail -- 

Ensemble 1000 3.51 2.56 3.35 1.79 
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Analytical I-Beam  

 In this problem, all RVs were considered to be normal and independent, and P 

was considered as the control variable. The exact solution was obtained using 1x10
6
 MCS 

samples. For the P control variable cases, it was observed that all methods provided good 

results for case 1 (P = 6070). However, for case 2 (P = 14000), as shown in Table 5.11, 

only NI, JSD and the ensemble approach were able to produce satisfactory results.   

 mean load P: 6070 14000 

 method no. of calls β %err β %err 

Exact Solution  1.16 -- 3.61 -- 

MCS 1000 1.17 0.8 N.F. -- 

NI 1000 1.24 6.4 3.60 0.3 

GLD 1000 1.06 8.6 Fail -- 

JSD 1000 1.15 0.8 3.42 5.2 

GEV 1000 1.16 0 Fail -- 

Ensemble 1000 1.16 0 3.46 4.15 

 

 To further examine the effectiveness of GLD, the problem was re-examined with 

S taken as the control variable.  Here, results were similar to the P control variable case, 

as shown in Table 5.12. The mean value of S was taken as 170000. 

 

 

   Table 5.11.  Beam with Stress Limit State Functions
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method 

no. of 

calls β % err 

Exact Solution  1.16 - 

NI  1000 1.21 4.31 

GLD  1000 1.12 3.44 

 

Noisy Limit State 

 In this problem, it was desired to further examine the effectiveness of GLD.  

Here, the x6 RV was considered as the control variable, with mean value of 40.  As shown 

in Table 5.13, NI provided good results for this limit state function, while GLD provided 

slightly high error. The exact solution was taken from 1x10
6
 MCS samples.  

 

Method 

No. of 

Calls Beta % Error 

Exact Solution   1x10
6
 2.25 - 

NI  1000 2.22 1.33 

GLD  1000 2.39 6.22 

 

 

 

  Table 5.12. Stress Limit State with 'S' as Control Variable

    Table 5.13. Noisy Limit State
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Realistic Practical Engineering Problems 

10 Bar Nonlinear Static Truss 

 The exact solution was obtained from 1 x 10
5
 MCS samples, which required 

approximately 400 CPU hours. These hours were shared between two processors.  Tables 

5.17 and 5.18 show the results obtained for the displacement and stress limit state 

functions, respectively. For the FS method, the number of function calls was restricted to 

1000, whereas for a comparison FORM solution, this restriction was not applicable.  

 nominal CPU mean P=65 mean P=60 mean P=50 

method no. of calls time β %err β %err β %err 

Exact Solution   1.554 - 2.25 -- 3.59 -- 

FORM 150 2 hrs 1.370 11.8 1.96 12.9 3.12 13.1 

MCS 1000 4 hrs N.F. -- N.F. -- N.F. -- 

NI 1000 5 hrs 1.44 7.33 2.18 3.11 2.57 28.4 

GLD 1000 5 hrs 1.53 1.37 2.19 2.67 Fail -- 

JSD 1000 5 hrs 1.59 2.14 2.28 1.05 3.61 0.41 

GEV 1000 5 hrs 1.56 0.64 2.34 3.85 Fail -- 

 

 In the tables, it can be observed that the FS method provided good results for 

almost all cases. GEV performed well for low and moderate beta values but failed to 

produce results for the high beta case.  In the high beta cases (' = 3.59 and 3.79), for the 

displacement and stress limit states, the error due to NI (28.4% and 16.3%) exceeded an 

 Table 5.17. Displacement Limit State Function of Non-linear Static Truss
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assumed acceptable limit of 5%.  FORM either resulted in high errors or failed to provide 

any results, indicating that this problem is particularly suited for the FS method, as 

reliability-index reliability methods are unsuitable here.  Moreover, for the given number 

of function calls, MCS could not provide a solution.  FS paired with JSD provided good 

results in all cases. Overall, FS provided good results with errors generally within 

reasonable limits.  

 nominal CPU mean P = 55 mean P = 45 

Method no. of calls time β %err  β %err 

Exact Solution   1.78 -- 3.79 -- 

FORM 150 2 hrs Fail -- Fail -- 

MCS 1000 4 hrs N.F. -- N.F. -- 

NI 1000 5 hrs 1.86 4.30 3.17 16.3 

GLD 1000 5 hrs 1.79 0.83 Fail -- 

JSD 1000 5 hrs 1.75 1.46 3.82 0.78 

GEV 1000 5 hrs 1.73 2.76 Fail -- 

 

Steel Frame Structure 

All RVs were considered normally distributed. The limit state function was evaluated 

using ABAQUS (Version 6.11-2).  Pressure load was considered to be the control 

variable. Approximately 600 CPU hours were required for 1x10
5
 MCS samples to 

  Table 5.18.  Stress Limit State Function of Non-linear Static Truss
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evaluate the exact solution. Results are shown in Table 5.19.  For the lower beta case 

(1.803), all FS implementation methods, as well as FORM and MCS, produced results 

with reasonable error.  However, for the higher beta case (3.26) only GLD and JSD were 

able to fit to the resistance sample, with JSD providing reasonable results of less than 4% 

error.  As FORM and MCS were unable to produce solutions, this problem is also clearly 

suited for the FS approach. 

 

 Nominal CPU mean P = 70 mean P = 90 

method no. of calls time β %err  β %err 

Exact Solution   1.803 -- 3.26 -- 

FORM 150 3 hrs 1.86 3.27 Fail -- 

MCS 1000 6 hrs 1.82 0.93 N.F. -- 

NI 1000 5 hrs 1.84 2.01 Fail -- 

GLD 1000 5 hrs 1.89 4.85 3.52 7.38 

JSD 1000 5 hrs 1.76 2.55 3.14 3.68 

GEV 1000 5 hrs 1.82 0.44 Fail -- 

Metal Automotive Structure 

As mentioned earlier the crash scenario analyzed with the Bogie model is a small car 

impacting a rigid pole.  Here, the simulated nose structure is considered for low speed 

impacts (32 km/hr). For the reliability analysis, failure is in terms of material failure in 

the honeycomb nose structure. Specifically, failure was defined as an event where the 

    Table 5.19.  Steel Frame Structure
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stress in any element of the honeycomb nose structure exceeded its yield stress. 

Alternatively, failure can be defined in terms of deformation of the nose structure. 

Figures 5.17, 5.18 and 5.19 show the model before and after a representative impact. All 

RVs were considered normally distributed.  The crash analysis was conducted with LS-

Dyna and LS-Prepost Version 4.1. Young's modulus was considered as the control 

variable.  As shown in Table 5.20, MCS was unable to record any failures, while FORM 

was also unable to generate any results.  The NI and GLD implementation approaches of 

FS were found to have higher errors than JSD, which was found to have reasonably small 

error.  

Method Implementation 

Methods 

Function 

Calls 

Beta % error 

Exact  10
8
 2.82 - 

FS_MCS 

NI 

1000 

3.08 8.44 

GLD 2.66 5.67 

JSD 2.72 3.55 

GEV Fail - 

MCS  1000 N.F.** - 

FORM HL-RF* - Fail - 

*Hasofer Lind – Rackwitz Fiessler     **N.F. – No Failures 

  Table 5.20. Results for Metal Automotive Structure Problem
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Figure 5.17. Bogie Model Before and After Impact 

 

 

Figure 5.18. Bogie Nose Structure Before and After Impact 
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Figure 5.19. Enlarged Section of Nose Before and After Impact 
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Marine Structure 

 The resistance RVs considered for this problem were steel material properties 

whereas the waveslab load was considered as the load RV for this problem. All RVs are 

assumed to have normal distributions. The limit state is expressed in terms of strain, and 

in exceeded when the tensile strain in any of the stiffeners exceeds an  allowable value, or 

if the strain in steel crown reaches an allowable Von Mises strain εstmax (Rais-Rohani et al 

2006). The problem is solved using FS, MCS & FORM with 1 x 10
9
 MCS samples 

producing the exact solution. As seen from results in Table 11, FORM failed to produce 

any results whereas MCS with 1000 function calls failed to generate any failures. 

However, FS produce reasonably accurate results with most of its implementation 

methods. 

Method Implementation 

Methods 

Function 

Calls 

Beta % error 

Exact  10
9
 3.03 - 

FS_MCS 

NI 

1000 

3.22 5.90 

GLD 3.14 3.50 

JSD 3.20 5.31 

GEV Fail - 

MCS Standalone 1000 N.F.** - 

FORM HL-RF* - Fail - 

*Hasofer Lind – Rackwitz Fiessler   **N.F. – No Failures 

    Table 5.21. Results for Marine Structure
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Figure 5.20 Stresses in Marine Sail Structure 

Masonry Building Structure 

Figure 5.21 shows two alternative modes of deformation (out of many possible, 

depending on the realized values of the RVs in the simulation)  at a selected instant of 

time in the analysis.  All RVs were considered normally distributed. The limit state 

function was evaluated using ABAQUS (Version 6.11-2). Peak pressure load was 

considered as the control variable. The exact solution was computed using 1 x 10
9
 MCS 

samples.  The problem was evaluated using FORM, MCS and FS. Results are given in 

Table 5.22.  As shown in the table, MCS with 1000 function calls was unable to record 

any failure, while FORM failed to produce acceptably accurate results. On the other 

hand, FS coupled with JSD and NI produced reasonably accurate results. 
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Method Implementation 

Methods 

Function 

Calls 

Beta % error 

Exact  10
9
 3.16 - 

FS_MCS 

NI 

1000 

3.23 2.17 

GLD Fail - 

JSD 3.30 4.24 

GEV Fail - 

MCS Standalone 1000 N.F.** - 

FORM HL-RF* - 1.98 37.34 

*Hasofer Lind – Rackwitz Fiessler  **N.F. – No Failures 

 

  

Figure 5.21 Alternative Failed States 

 

  Table 5.22. Results for Masonry Building Structure Problem
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Effect of MCMC On Generation of R(Xi) Samples 

 The MCMC method is explored in lieu of crude MCS to generate the resistance 

sample R(Xi). The objective is to make an attempt to further reduce the number of data 

(below 1000) to reduce computational costs. 

 A selection of the limit state functions described in Chapter 4 were solved using 

the FS-MCMC approach. These results are presented in the following tables that compare 

the computational effort required by FS-MCS, FS-MCMC, and traditional simulation 

methods, as well as beta-based methods. 

Circular Limit State Function 

 The limit state function is described in detail in Chapter 4. The problem is solved 

using crude MCS, MCMC, FORM and the FS method. The problem is solved with the 

FS method twice; once by generating resistance samples using MCS, and again by 

MCMC. Further, two sample sizes of resistance for FS were considered. In the first case, 

1000 resistance data were generated, while in the second case, the sample size was 

decreased until an acceptable level of accuracy (taken as a maximum error in reliability 

index of 5%) was unachievable. The results are given in Tables 5.23 and 5.24. It can be 

observed that the GLD was the only distribution which could not be fit to the resistance 

samples, and use of 1000 resistance data using MCS and MCMC produced good results 

for most of the FS implementation techniques. It was also found that, using MCMC, the 

resistance sample size could be reduced to 700 without significant loss of accuracy.  On 

the other hand, FORM produced relatively high errors whereas MCS and MCMC, when 
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used as standalone methods and evaluated for the same number of function calls as of FS, 

were unable to record any failures. 

Method Implementation 

Methods 

Function 

Calls 

Beta % error 

Exact - - 3.401 - 

MCS Standalone 10
6
 3.412 0.335 

MCMC Standalone 10
6
 3.412 0.335 

FS_MCS 

NI 

1000 

3.377 0.706 

GLD Fail - 

JSD 3.284 3.440 

GEV 3.574 5.074 

FS_MCMC 

NI 

1000 

3.503 3.014 

GLD Fail - 

JSD 3.450 1.446 

GEV 3.560 4.680 

MCS Standalone 1000 N.F.* - 

MCMC Standalone 1000 N.F.* - 

FORM HL-RF** 24 4.000 17.61 

*No Failures     **Hasofer Lind – Rackwitz Fiessler 

 

 

   Table 5.23. Results for Circular Limit State Function 
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Method Implementation 

Methods 

Function 

Calls 

Beta % error 

Exact - - 3.401 - 

FS_MCS 

NI 

700 

2.856 16.024 

GLD Fail - 

JSD 3.652 7.386 

GEV 3.724 9.500 

FS_MCMC 

NI 

700 

3.270 3.845 

GLD Fail - 

JSD 3.515 3.346 

GEV 3.762 10.614 

MCS Standalone 700 N.F.* - 

MCMC Standalone 700 N.F.* - 

FORM HL-RF** 24 4.000 17.61 

*No Failures   **Hasofer Lind – Rackwitz Fiessler 

Analytical I-Beam 

 This problem is described in Chapter 4. Similar to the circular limit state, this 

problem was evaluated using FS, FORM, MCS and MCMC. The results considering two 

different mean load levels (P), to vary the reliability index, are shown in Tables 5.25 and 

5.26.  The exact solutions were obtained from 10
6
 and 10

9 
crude MCS samples for each 

case, respectively.  For the lower reliability index case (Table 5.25), it can be seen that FS 

   Table 5.24. Results for Circular Limit State Function 
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with MCMC produced nearly equivalent or higher accuracy while using fewer resistance 

data as compared to FS with crude MCS.  Further, it was observed that using JSD to 

implement FS produced the most accurate results for both MCS and MCMC. For the 

higher reliability index case however, consistent and accurate results were obtained only 

from FS coupled with JSD, and some cases of FS with NI.  Moreover, higher accuracy 

was obtained by using MCMC with FS as compared to using MCS.  Further, when the 

number of function calls was decreased from 1000 to 700, it was observed that FS 

coupled with MCMC and JSD were the only case producing results of acceptable 

accuracy. The standalone crude MCS and MCMC methods failed to produce any results 

when allowed to run for the same number of function calls as FS, whereas FORM 

produced results of unacceptable accuracy as well. 

Method Implementation Methods Function Calls Beta % error 

Exact  10
6
 1.131 - 

FS_MCS 

NI 

1000 

1.139 0.219 

GLD 1.072 5.212 

JSD 1.088 3.802 

GEV 1.083 4.244 

FS_MCMC 

NI 

700 

1.091 3.534 

GLD 1.101 2.652 

JSD 1.127 0.354 

GEV 1.080 4.509 

MCS Standalone 1000 1.039 8.134 

MCMC Standalone 1000 1.042 7.869 

FORM HL-RF* 50 1.045 7.604 

  Table 5.25. Results for Simple I-beam with P (6070, 200)
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Method Implementation 

Methods 

Function 

Calls 

Beta % error 

Exact  10
9
 3.644 - 

FS_MCS 

NI 

1000 

3.840 5.384 

GLD Fail - 

JSD 3.694 1.394 

GEV Fail - 

FS_MCMC 

NI 

1000 

3.582 1.701 

GLD N.F.** - 

JSD 3.652 0.225 

GEV Fail - 

FS_MCS 

NI 

700 

3.149 13.584 

JSD 3.238 11.142 

FS_MCMC 

NI 

700 

3.352 8.013 

JSD 3.808 4.503 

MCS Standalone 1000 N.F.** - 

MCMC Standalone 1000 N.F.** - 

FORM HL-RF* 483 7.591 108.28 

*Hasofer Lind – Rackwitz Fiessler    **N.F. – No Failures 

  

  Table 5.26. Results for Simple I-beam with P (14000, 460.6)
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CHAPTER  6  CONCLUSIONS AND RECOMMENDATIONS  

 In this research, the Advanced Failure Sampling method was developed.  It was 

found superior to the FS approach and useful for complex, computationally demanding 

reliability problems for which traditional methods may provide unacceptably inaccurate 

or unfeasibly computationally costly solutions.  

Summary and Conclusion 

 This research was divided in to two major tasks, method development and method 

validation. The development task focused on formulating the Advanced FS Method.  In 

this task, optimal algorithm for probability density function (PDF) construction from 

sampled resistance (R(x)) data, in terms of selection of interval size was determined.  A 

thorough examination of over 96 different limit state functions found that an interval size 

of 50 for 1000 resistance samples consistently provided good results with highest 

accuracy, and is recommended for use in the Advanced FS Method.  

 Next, in addition to this numerical integration approach, an alternative procedure 

for determining probability of failure by using analytical curve fits was further 

developed. The distributions considered were the Generalized Lambda Distribution 

(GLD), the Extended Generalized Lambda Distribution (EGLD), Johnsons Distribution 

(JSD) and the Generalized Extreme Value Distribution (GEV).  It was found that the FS 

method coupled with JSD produced the most accurate and consistent results for most of 

the analytical limit state functions considered. Some additional findings of interest are as 

follows. Although JSD was generally the most accurate and precise, for limit state 

functions having 15 random variables (RV) and a high reliability index (β), JSD 
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produced low precision results. GEV failed to produce any results for high reliability 

cases, and for 15 RV, highly non-linear cases with low target reliability indices, it 

produced low precision results.  GLD failed to produce results for the high reliability 

cases, but there was no specific pattern for the accuracy or precision of the results 

obtained for the remaining test cases.  The NI method produced poor results for most of 

the lognormal distributions, and its precision was somewhat degraded.  In summary, the 

JSD implementation is generally most effective, but not in all cases. Further, a 

procedure to develop an optimal probability density function (PDF) of the resistance 

sample for the Advanced FS Method using a design ensemble optimization technique was 

explored. This approach uses an ensemble of PDFs obtained from NI and the curve fit 

methods in order to find their respective optimized weight factors. The PDFs along with 

their respective weight factors were then combined to construct the optimal PDF. It was 

observed that the optimized ensemble further reduced the lowest effective error (obtained 

from finding the minimum of errors due to JSD, GLD & GEV) in most cases, and was 

found to be more effective than the use of a single curve alone. In a few cases, an 

insignificant difference was observed between the lowest effective error and the error 

obtained from ensemble technique.  In summary, the optimal ensemble approach as 

developed is recommended for use in the Enhanced FS approach. 

 Further, the integration of MCMC within FS was explored, with the intent to 

further reduce the computational effort required. In general, it was observed that the FS 

method with different curve fitting techniques coupled with MCMC provided accurate 

and consistent results with the least computational effort over the alternative approaches.  
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It was also observed that the resistance part of the limit state function was better 

represented by the MCMC technique as compared to MCS in the FS approach.  In 

general, the use of MCMC is recommended over MCS in the Advanced FS Method. 

 In summary, the Advanced FS Method involves: 1) general use of a 50-interval 

PDF for a sample size of 1000; 2) the optimal ensemble approach for construction of the 

PDF of the resistance sample, and; 3) the use of MCMC to sample resistance. 

 Task 2 of this research involved model validation.  In this task, various complex 

problems involving FEA were considered for evaluation of the limit state function.  

These problems included a nonlinear truss, a nonlinear steel frame structure, a metal 

automotive structure, a composite marine structure, and a masonry building structure, 

based on existing complex engineering problems in the literature.  The latter three 

problems were most complex, and computationally expensive.  For the steel frame and 

metal automotive structure problems, results indicated that the JSD approach resulted in 

lowest error between 3-4%, while traditional methods (FORM, MCS) could provide no 

solutions for the same computational effort.  For the marine structure, the GLD approach 

gave best results at 3.5% error, with NI and JSD provided solutions with 5-6% error, 

while traditional methods (FORM, MCS) could provide no solutions with the same 

computational effort.  For the masonry wall problem, NI and JSD provided solutions with 

1000 simulations at 2-4% error, while MCS provided no solutions and FORM resulted in 

37% error.  Therefore, it is concluded that the FS approach and the general 

recommendation to use JSD was successfully validated for the complex engineering 

problems considered.  
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Recommendations for Future Research 

 The following areas of investigation are recommended for further development of 

the FS method: 

1. Explore possible integration of subset simulation with the Advanced FS Method 

for R(Xi) sample generation and determine if the sample size can further be 

reduced while maintaining accuracy. 

2. Investigate inclusion of additional methods in the optimized ensemble to develop 

PDF of resistance such as a response surface technique. 

3. In an effort to further reduce computational effort, explore and integrate the use of 

more advanced root finding methods to solve for the value of the control variable 

during resistance sample generation for implicit nonlinear limit state functions. 

4. Determine the optimal number of intervals for different resistance sample sizes. 
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 Accurate probabilistic analysis of complex engineering problems with reasonable 

computational effort is a popular area of research in structural reliability analysis.  For 

probabilistically complex problems such as those involving nonlinear FE analysis; 

traditional simulation methods often require unfeasibly great computational effort, while 

low-cost reliability index approaches may lack sufficient accuracy. This dissertation 

report addresses this issue by developing a simulation-based method referred to as 

Advanced Failure Sampling (FS).       

 In this research, the Advanced FS Method is developed with an objective to solve 

complex structural reliability problems with reasonable computational effort. In order to 

achieve this, a thorough evaluation of this method is conducted. This research report 

suggests and explores various techniques needed to implement to transform the existing 

FS method into a complete, robust algorithm for reliability analysis; the Enhanced FS 

approach. These enhancements include: developing an optimal algorithm for construction 

of probability density function (PDF) of resistance samples; determining a more efficient 
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way to simulate the resistance samples; and determining the optimal interval size for a 

typical resistance sample size of 1000. The process of developing an optimal algorithm 

for constructing a PDF estimate of the resistance sampls included exploring the use of 

various curve-fit methods and developing an optimized ensemble technique to maximize 

accuracy of the failure probability calculation. The Markov Chain Monte Carlo method 

was investigated with an aim to further reduce the computational effort of FS.  Moreover, 

to evaluate the effectiveness of these suggestions, a database of test problems is described 

and presented in this report. These problems are solved with the FS method using the 

different techniques suggested above to guide and validate formulation of the Enhanced 

FS approach. The test problems include a wide variety of limit states that were designed 

to consider different parameters of interest such as: number of random variables (RVs); 

degree of nonlinearity; level of variance; and type of RV probability distribution. The 

method was also validated further for complex realistic engineering problems requiring 

finite element analysis. The results obtained from the research indicate that significantly 

better results for a wide variety of problems can be obtained when FS is implemented 

with a curve fit technique using the JSD distribution; in the Enhanced FS approach, rather 

than the NI and GLD methods as originally implemented in FS. It was found that the 

Advanced FS Method has the capabilities of producing accurate and efficient results for 

complex, computationally demanding reliability problems for which traditional methods 

may provide unacceptably inaccurate or unfeasibly computationally costly solutions.  
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