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1 INTRODUCTION

Enormous progress towards ubiquitous DNA sequencing has brought a realm of excit-
ing applications within reach, including genomic analysis at single cell resolution. Single cell
genome sequencing holds great promise for various areas of biology including environmental
biology [12]. In particular, myriad unculturable environmental microorganisms have been
studied using single cell genome sequencing powered by high throughput DNA amplification
methods [13, 14, 15, 16, 17]. Since the majority of microbes to date are unculturable, single
cell sequencing has enabled significant progress in elucidating the genome sequences and

metabolic capabilities of these previously inaccessible microorganisms.

Multiple Displacement Amplification (MDA) is the preferred amplification method
for single cell sequencing, since it is an isothermal (without thermo cycling) process as
opposed to PCR [18, 19]. Compared to PCR-based amplification methods, it produces less

amplification coverage bias and error [20, 21, 22].

Although single cell sequencing methods have passed important milestones, such as
capturing > 90% of genes in a prokaryotic cell [1] or finishing and closing the genome of a
prokaryote using MDA [23], the quality and reliability of genome assemblies from single cells
lag behind those of sequencing methods from multi cells due to a bias arising from MDA.
The main factors that affect quality are uneven coverage depth and the absence of scattered
chunks of the genome in the final collection of reads. There is no known deterministic pattern
for the preferred amplified regions, and they are currently treated as the result of a random
process. Also, the outcome of MDA is widely variable ranging from total loss of the sample

and any information therein to nearly complete reconstruction of the genome. In this sense,
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an MDA-based single cell sequencing experiment is currently a gamble that can potentially

lead to the loss of the sample and sequencing expenses.

Recently, a new whole genome amplification method was demonstrated on individual
human cells, which is called Multiple-Annealing and Looping-Based Amplification Cycles
(MALBAC) [11, 24]. The MALBAC result with human genome demonstrates more uniform
than MDA result. Despite the improvements achieved by MALBAC, the bias of whole

genome amplification methods is far from the desirable [25].

We demonstrate in this work how to hedge against this risk through sequencing and
co-assembly of few single cells. Our method replaces a single cell deep sequencing experiment
with multiple single cell shallow sequencing experiments, allowing for the acquisition of

information about multiple single cells simultaneously.

1.1 Background

In this section, we briefly introduce the background about the genome assembly,

especially the assembly from a single cell dataset.

Genome or DNA is a long chain of 4 types of nucleic acids: adenine, thymine, cytosine,
guanine, which are represented by A, T, C, and G respectively. The first bacterial genome was
sequenced using conventional Sanger sequencing data in 1995 [26]. A decade later, in 2005,
a revolution happened in the field of genetics, by the emergence of the Next Generation
Sequencing (NGS) technology, which is also called High Throughput Sequencing (HTS)
technology. This technology has reduced the delivery time of bacterial genome sequences
from months (or years) to hours (or days) and for a much lower cost [27]. The outputs of
Next Generation Sequencing platforms, which are datasets of short sequencing reads with
high depth of coverage, are used by computational assembly tools as the input of the genome

assembly process.



1.1.1 De Nowvo Assembly

DNA is a long chain of 4 types of nucleic acids: adenine, thymine, cytosine, guanine,
which are represented by A, T, C, and G respectively. In other words, a genomic sequence is
shown by a string in the alphabet ¥ = {A, T, C, G}. A fundamental problem, called shortest
common superstring, is the problem of interest in genome assembly. The problem is defined
as: given a set of substrings S = {s1, $2,- - , S, } in alphabet X = {a;, as, -, an}, the goal
is determination of the shortest string that contains all substrings s; € S. It has been shown
that the problem is NP-complete even when we have only two alphabet characters, such as
{0,1} [28].

In the field of genomic:

The alphabet is the nucleic acids set {A, T, C, G}.

Substrings are the sequencing read dataset.

The shortest common sequence is the genome.

The problem of finding shortest common superstring is the assembly.

There are four main strategies that are used to find shortest common superstring as

the assembly result:
1. Greedy algorithm
2. Overlap/Layout/Consensus (OLC)
3. String graph
4. De Bruijn graph

The first two algorithms are not suitable for the data generated by Next Generation
Sequencing platforms, which are short reads with high coverage. String graph was proposed
as an alternative method for de Bruijn (which is currently the most applied method). These

algorithms are described briefly.



Greedy Algorithm

A simple solution for shortest common superstring problem is a naive greedy algorithm
which is generally used for Sanger data and is not suitable for short reads generated by Next
Generation Sequencing platforms. In each iteration of the greedy solution, two substrings
of the set are taken and the shortest string that contains both substring is calculated and
replaced with its parent substrings (the substrings are merged to generate a superstring with

the maximum overlap score). The final result is one long superstring left in the set [29].

Overlap/Layout /Consensus

Overlap-layout-consensus algorithm is another solution for shortest superstring prob-
lem, which is used by most established assemblers developed for Sanger technology. The
algorithm has three steps. In the first step, which is called overlap, every two reads are
compared to one another and the overlapping score is calculated. In the second step, an
overlap graph G is constructed in which the reads are represented by nodes and significant
overlaps between two reads are represented by an edge. Finally, the computed layout in the
second step is used to generate an assembled sequence in the consensus stage, whose goal is
finding a Hamiltonian path (a path that traverses all the nodes just once) in the graph. A

modified version can be used for paired end reads [30].

String Graph

String graph, another algorithm for genomic assembly was introduced by Myers [31] as
an alternative form of de Bruijn graph. The method is similar to Overlap/Layout/Consensus
strategy in which each read is represented by a node in the graph and an overlap between
them is demonstrated by an edge. The strategy relies on edge reduction: when node x and
y are connected by an edge; and also y and z are connected, if there is an edge between x

and z, it will be removed as a redundant transitive edge. Based on the statistical factors,



5

the edges in the graph are classified as 1-exact, 2-required, and 3-optional. To find
the shortest path (shortest common superstring), the graph is traversed while each exact
edge should be traversed exactly once; however, crossing required edges is allowed zero or

one time and optional edges can be crossed any number of times.

De Bruijn Graph

The most applied method for de novo assembly using short reads generated by High
Throughput Sequencing (Next Generation Sequencing) platforms is done by constructing a
de Bruijn graph [32, 33]. Each vertex of the graph represents a length-k subsequence, called
k-mer. A set of k-mers is generated for each sequencing read. Two neighbour k-mers (nodes)
are connected by an edge. After graph construction, each non-branching path is condensed
into one supernode whose sequence is the merged sequence of all the nodes in the path. Each
supernode is called a contig. The output of the assembly process using de Bruijn graph is

the set of generated contigs.

1.1.2 Single Cell Sequencing

Today, a variety of studies in medical and environmental sciences benefit from ge-
nomic analysis of bacteria. A staggeringly large portion of the genomic content in environ-
mental samples is comprised of sequences that have never been observed before. These un-
characterized sequences in diverse places ranging from oceans to human mucus are guessed to
be predominantly of bacterial or viral origin. This demonstrates the extent of the complexity
and ubiquity of bacterial genomes in our environment. Several projects including Human
Microbiome Project (HMP) and Earth Microbiome Project (EMP) [34] aim at cataloguing
microbial communities in various locations.

One significant requirement for bacterial genome analysis is the genome sequence,
which is aimed to be obtained via the genome assembly process. Genome assembly is the

procedure of extracting genome sequence using short subsequences generated from fragments
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of DNA. The first step of genome assembly is extracting the DNA and then breaking it into
several small fragments. Next, the fragments are sequenced in a specific size from both
sides; these sequences are called reads. Unfortunately, the genome assembly using the reads
generated from one single cell is not possible due to the lack of enough DNA material to
generate sufficient sequencing reads. The inadequate material for sequencing of one species at
a time is often the main limiting factor in those microbiome studies. Therefore, to sequence
the genome of a new bacterial species, we require a sample containing numerous identical

cells to extract enough DNA material, which is in the order of micrograms.

The conventional way consists in extracting a few bacterial cells and culturing them
separately. If a cell cultures successfully, then the resulting colony provides the required
amount of good quality DNA material. Unfortunately, the proportion of microbes that can

successfully be cultured in the lab is less than 1% [35].

Many bacterial cells cannot be cultured in the lab since they often require complex
symbiotic environments to grow. In the case of such uncultivable species, the only existing
method to proceed involves whole genome amplification a billion fold from femtograms to
micrograms. The technology of assembling one cell is called Single Cell Sequencing, which

is selected by Nature at the end of 2013 as its "Method of the Year” [36].

Amplification Methods

Different amplification methods have been proposed that provide enough DNA ma-
terial from very few cells or even a single cell: (1) PCR such as primer extension pre-
amplification (PEP) and degenerate oligonucleotide primed PCR (DOP) whose products are
usually short DNA fragments (less than 1 kbp), and (2) multiple displacement amplification
(MDA) which generates long DNA products (up to 100 kbp with an average length of 12 kbp)
[15, 13, 37]. MDA works using random primers and a special DNA polymerase called $29
with interesting characteristics. The enzyme ®29 is able to open up double stranded DNA

and continue its way without external thermal help if it encounters a double stranded region



7

Single Cell Genome Sequencing Workflow
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Figure 1.1: The workflow of single cell sequencing using Multiple Displacement Amplification (MDA)
technique is illustrated [10]

while it is synthesizing its complementary strand [35, 37]. This unique property of ®29 makes
MDA an isothermal reaction that does not suffer from the side effects of thermocycling such
as GC-bias as opposed to PCR. The workflow of single cell sequencing using MDA technique
is displayed in Fig 1.1. MDA provides a better coverage of the genome in comparison to
other methods and it generates a data with more uniform coverage, less amplification bias
by 3-4 orders of magnitude than previous PCR-based methods [38, 11], however, still some
parts of the genome are lost or poorly covered while some others are orders of magnitude
more abundant in the final product . In contrast, the datasets of cultured cells have uniform
coverage distributions.

Recently, a new amplification method has been proposed on individual human
genome, which is called multiple annealing and looping-based amplification cycles (MAL-
BAC) [11], which reports more uniform coverage on human genome (See Figure 1.2). MAL-
BAC coverage of the human genome has less bias than that of MDA. Nevertheless, am-

plification bias is still a challenge despite the improvements achieved by MALBAC [14].
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Figure 1.2: Lorenz curves of reads over the entirety of chromosome 1 (chrl) of a single cell from the SW480
cancer cell generated by MALBAC, MDA, and the bulk sample. A diagonal line indicates the perfectly
uniform coverage. The deviation from the diagonal indicates the coverage bias. All samples are sequenced
at 25x depth. [11]

Furthermore, sensitivity of MALBAC to background noise makes it not suitable for many
applications, such as de novo assembly [8]. More detailed study is required to address the
amplification bias reduction by this method [36]. Although MDA is not a perfect amplifica-

tion method, it is currently the method of choice because of its efficacy and lower coverage

bias in comparison to other currently used and thoroughly evaluated methods [35].

Computational Solution

Fortunately, a computational solution to overcome the MDA bias was proposed by
Chitsaz et al. [1] in 2011, which handles the un-even depth of coverage challenge. The
method is applied by all single cell sequencing tools such as SPAdes [5] and IDBA-UD
[9].

Today, the possibility of sequencing a species using one isolated cell is relying on
the experimental achievements [39, 40, 41] and the computational solution proposed by
Chitsaz et al. [1]. This solution is the main computational method to overcome the uneven
coverage generated by MDA as the dominant amplification technique in single cell sequencing

technology. As mentioned above, the major problem of sequencing using de Bruijn graph
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is related to branching and gaps. The problem is aggravated when some regions have low
coverage, which normally makes them indistinguishable from errors. There are two major
methods for eliminating errors from the graph. In one approach the graph is pruned by
elimination of k-mers with low multiplicity and then the maximal paths are extracted as
the output [42, 43]. Another method does the error removal process after the condensation
step. In this approach, the contigs that are formed by low-coverage k-mers are thrown away.
That is, the contigs with the coverage lower than the threshold are not considered in the
final result [44].

None of those solutions worked properly for unevenly covered genomes sequenced
by single cell sequencing methods. Velvet-SC [1] introduced an iterative approach that can
reduce the effect of uneven sequencing depth of coverage. Velvet-SC uses a variable threshold
for error removal, which starts from 1 and gradually increases into a specific cut-off value.
The cut-off is chosen based on the average depth of coverage. In each iteration, the condensed
graph is pruned by elimination of all the supernodes with the coverage less than the current
threshold. In each iteration, some branches are removed and the remaining supernodes can
be condensed further. Velvet-SC is followed by other single cell sequencing tools such as
SPAdes [5] and IDBA-UD [9]. The main achievement of the method is related to removing

errors while saving low-covered bases in the single cell datasets.

1.2 Related Works

To date, colored graph and co-assembly is employed in calling genomic structural
variations. Cortex [45] is the first assembly tool that uses the co-assembly approach in the
context of structural variation detection and genotyping. Since Cortex is designed to process
multi-cell datasets and use the information of known coverage distribution, the challenges
related to un-even depth of coverage and blackout regions, which are introduced by single
cell sequencing technology, are not noticed. Although, Cortex is the only assembly tool that

does co-assembly process using colored de Bruijn graph, there is another tool, Magnolya
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[46], that applied co-assembly approach in the purpose of detecting Copy Number Variation.
The colored graph employed by Magnolya works based on the Overlap/Layout/Consensus
method. Both Cortex and Magnolia use algorithms that require known coverage distribution

and cannot work with single cell datasets (whose average coverage is random).

On the other hand, some other tools have been developed to assemble single cell
datasets and handle their un-even depth of coverage characteristic. The first work, Velvet-
SC and E4+V-SC, was proposed by Chitsaz et al. [1] , which has been followed by other
single cell assembly tools (all employ de Bruijn graph) such as, SPAdes [5] and IDBA-UD
[9].

The assembler we employ in this work is HyDA [47], which is a modified version of
simple Velvet-SC, the first tool for single cell sequencing. Other single cell assembly tools
follow Velvet-SC and apply some further strategies to improve assembly their results. Each
new method employed by these state of art assemblers is a module that can be implemented
in other assembly tools (including HyDA). Using read error correction, iterative assembly
with variable k, aligning reads to the graph, and considering the information of paired end
reads are examples of further steps implemented in some state of art single cell sequencing
tools. We expect the incorporation of our colored assembly method into these state of art
assembly tools to improve their assembly result. Also, implementation of the method applied

by them is listed as future work to improve our algorithm.

1.3 Our Research Goals

In this section, we present the goals of this dissertation research. We summarize our
progress toward these goals.

The single cell sequencing field suffers from the bias generated in amplification stage,
which is an essential part of single cell sequencing process. The bias on the coverage of

single cell read dataset, is an important challenge, which can be mitigated by computational
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methods. One bias that has not been noticed by current computational solution is the
existence of blackout regions (which do not get coverage during the amplification process).
Even omitting one base of a gene breaks the sequence into two parts and the information
gets lost. To assemble a genome whose reference is unknown, we need to cover these blackout

regions as much as possible.

We propose an elegant solution to this problem that is the co-assembly a number
of single cell datasets and fill the gaps due to amplification bias for each dataset using the
information exist in other co-assembled datasets. We use the idea of colored de Bruijn
graph [45], which was proposed in a different context (for structural variation detection and
genotyping using multi-cell datasets), and designed our graph ( which notices the single
cell dataset characteristic) and implemented it in a tool, named HyDA: HyBrid De Novo

Assembler.

To have a high quality assembly, which covers most of the genome, using a number of
read dataset of identical cells is suggested. However, if only one of the dataset is of another
genome, the result is a chimeric assembly containing the information of another genome.
Obviously, identifying the outlier datasets is not possible when the reference genome is
unknown. Our algorithm assembles a number of guessed to be identical single cells together.
Meanwhile, it can detect the non-identical cells and eliminate the false sequences, which are

originated from the outlier datasets.

We modified our algorithm and extended HyDA to make it suitable for assembling
various genomes of phylogenetically close species simultaneously. Our algorithm can fill the
blackout regions of each genome using the information of other co-assembled genomes. Since
phylogenetically close species share many coding sequences, there is a high chance that a
blackout region in one genome is existent and covered in other co-assembled datasets. Our
algorithm also can compare each two co-assembled datasets based on their genomic similarity
and decide whether they are of the same reference genome, in which their assembly result

can be combined and counted as one genome assembly. In other words, besides detecting an
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outlier among some identical datasets, our algorithm can cluster the various co-assembled

datasets based on their genome.

Although colored de Bruijn graph can retrieve the blackout regions in single cell
datasets, it looses some contiguity information. Using the idea of iterative assembly, which
is employed by two state of art single cell assembly tools, SPAdes [5] and IDBA-UD [9], to
increase the contigs length, we designed and implemented the iterative co-assembly algorithm
and proposed an advance version of HyDA. Iterative co-assembly can generate a high quality

genome assembly with minimum missing bases and contiguity loss.

1.4 Organization

The rest of the document is organized as follows. In Chapter 2, we describe the basic
of genome co-assembly using colored de Bruijn graph and the implemented algorithm in our
assembly tool, HyDA. In chapter 3, we describe one application of co-assembly, which is the
de novo assembly of a genome from multiple single cells datasets. We also, provide the eval-
uation result of the experiments that have been done. In Chapter 4, we describe the ability
of HyDA to do synergistic assembly of various genomes of phylogenetically close species and
determine the relationship between any two co-assembled input datasets. In Chapter 5, we
present the advance version of HyDA, which works based on iterative assembly using various

k. Finally, in chapter 6, we conclude the report and propose the future works.
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2 COLORED DE BRUIJN GRAPH

2.1 Introduction

To address the problem of blackout regions in the single cell datasets, we employ the
idea of colored de Bruijn graph, an augmented and progressed version of de Bruijn graph
[32, 33]. Colored de Bruijn graph was proposed for genotyping and structural variation
detection for mammalian genomes by Cortex [45] in which the coverage is modelled as over-
dispersed Poisson distribution. Hence, the datasets of single cells, which have non-uniform
coverage with unknown distribution due to amplification bias, are not suitable candidates

for Cortex and its colored de Bruijn graph.

Colored de Bruijn graph is a modified version of normal de Bruijn graph [32, 33|,
which is the most applied method for de novo assembly using short reads generated by
High Throughput Sequencing platforms. Some well-known assembly tools using de Bruijn
graph are AbySS [48], Velvet [44], Euler-SR [42, 49], and AllPaths [50]. The assembly using
de Bruijn graph is done by employing a structure called k-mer. A k-mer is a k length
subsequence of a sequencing read whose sequence has k — 1 bases overlap to the previous
and next k-mer’s sequence, in which only the last base of a k-mer and last character of its
successor’s sequence are different. For each sequencing read of size [ bases, [ — k + 1 k-mers

are generated. Figure 2.1 displays the 3-mers of a sequencing read.

The graph is constructed using the k-mers, in which the graph vertices are the k-
mers and the edges between two nodes represent the adjacency of the corresponding k-mers.

Besides the sequence information, each node of the de Bruijn graph consists the coverage
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Read q GCTTAATTACAT
GCT
CTT
TTA
TAA
AAT
3-mers ATT
TTA
TAC
ACA
CAT

De Bruijn Graph -

Figure 2.1: The construction of de Bruijn graph for a given read with £ = 3 is illustrated. Ten 3-mers
are generated for the 12 character long sequencing read. Each 3-mer is represented by a node in the graph.
Two consecutive 3-mers are connected by a directed edge. A node can represent more than one loci if the
sequence of all representative 3-mers are equal (node TTA represents two loci).
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information of the sequence, which is the number that the sequence is appeared in input
sequencing reads (input dataset). Figure 2.1 illustrates the de Bruijn graph of a 12 bases
length sequencing read. In the first step, 10 3-mers are generated and then these 3-mers are
represented by the graph vertices. An edge is placed between any two consecutive 3-mers.
Note that the coverage value of node AAT is 2 since the subsequence AAT is appeared in the
read twice. Also, the in-degree and out-degree of this node are 2 since each of two 3-mers
AAT has its own neighbours and the adjutancy information of each should be noticed in the
de Bruijn graph by proper edges.

After graph construction, all the one-in-one-out nodes in each path are condensed to-
gether and generate a supernode (condensed node). These condensed nodes are the assembly
result, which are called contigs. The Sub-sequence repeats in the input dataset increase the
coverage of their corresponding k-mers and increment their incoming/outgoing degree. The
generated branches are the sides of one-in-one-out paths. Hence, having more repeats causes
more branches and consequently smaller contigs.

We propose colored de Bruijn graph for assembly of genome using single cell read
dataset with non-uniform coverage. The strength of the proposed method is related to the
fact that the assembly of each dataset is improved by using the information of the other
co-assembled datasets. Especially, the blackout regions dues to the amplification bias, as an
essential step in single cell sequencing, are recovered by the information exist in the other co-
assembled datasets. We modified the normal de Bruijn graph and implemented the colored
de Bruijn graph. In this Chapter, we present the colored de Bruijn graph and the stages of
the co-assembly process. Furthermore, we present the proposed the assembly tool, HyDA,

and its strategy for co-assembly process.

2.2 Coloring Reads and k-mers

The key concept of co-assembly method is to retain the information of each input

dataset in all stages of the process. The first step of the co-assembly is to assign a unique
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GCGAAGGTGACCCTCATGTTAAAGGGCGGATCCGTN

GCGAAGGTGACCCT
CGAAGGTGACCCTC
GAAGGTGACCCTCAT
AAGGTGACCCTCATG
AGGTGACCCTCATGT
GGTGACCCTCATGTT
GTGACCCTCATGTTA
TGACCCTCATGTTAA
GACCCTCATGTTAAA
ACCCTCATGTTAAAG

GATGACTCGTCATGGCGCACTCACACTCACACACGTC

GATGACTCGTCATGG
ATGACTCGTCATGGC
TGACTCGTCATGGCG
GACTCGTCATGGCGC
ACTCGTCATGGCGCAC
CTCGTCATGGCGCACTC
TCGTCATGGCGCACTCAC
CGTCATGGCGCACTCACA
GTCATGGCGCACTCACAC
TCATGGCGCACTCACACT

Figure 2.2: The key value in co-assembly process is the unique colors that are assigned to each read
datasets. All the objects originating from a colored dataset, such as reads and k-mers, are painted with the
same color as their source’s.

color to each dataset. This unique value is used to preserve the source of each information, i.e.
all the objects (such as reads and k-mers) originating from a colored dataset are colored by

its unique color value. Figure 2.2 illustrates two colored datasets whose reads and generated

k-mers from those reads are painted with the color of their origin dataset.
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(a) Colored de Bruijn graph

CGGA
CGG
GGA

CGG GGA ; AAT
(1x) (Ix)
(1x)

ACC CCA CAA
(1x) (1x) (1)

(b) After inserting k-mers

Figure 2.3: To insert the information of a new k-mer, the coloring information is not considered. That is,
if a node with the same sequence exists in the graph, a new node will not be generated and only the colored
coverage is added to the existing node. Otherwise, a new colored node is added to graph.

To add the red 3-mer CGG to the graph (a), the graph structure is examined. Since no node in the graph
has the sequence of CGG, a new node is added to the graph with the sequence CGG and the red coverage 1.
On the other hand, inserting the information of the 3-mer GGA does not change the structure of the graph
since a node with the same sequence is already present in the graph. Only the colored coverage information
is inserted. Adding these new red 3-mers converts graph (a) to graph (b).
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2.3 Graph Construction

The structure of the colored de Bruijn graph is pretty similar to the normal de Bruijn
graph except that its k-mer structure contains an extra object to keep the coloring informa-
tion. To import a new k-mer to the normal de Bruijn graph, first the existence of a similar
k-mer (node) is checked. If a k-mer with the same sequence already exists in the graph, no
new k-mer (node) is generated and only the multiplicity value of the existing node increases.
The multiplicity value of a k-mer (node) indicates the number of sub-regions in the genome
with the same sequence as the k-mer. The process of importing a new colored k-mer to the
colored de Bruijn graph is similar to the normal one in which the a new node is added to
the graph if a node with the same sequence does not exist in the graph. That is, adding a
new node in the colored de Bruijn graph is only dependent on the structure of the graph
and the coloring information is not considered. To add the information of the new colored
k-mer to the existing node, the colored multiplicity increases once. On the other hand, in
the absence of the similar k-mer, a new node is added to the graph with information of
the imported k-mers (all the colored multiplicity are zero except for the color of imported
k-mer). The procedure of adding a new k-mer to the colored de Bruijn graph is illustrated

in Figure 2.3.

2.4 Colored De Bruijn Graph Condensation

After importing all the colored k-mers, the graph is constructed. The next step is to
condense the graph as much as possible. Any two following nodes can be merge together if the
edge between them is the only outgoing edge of the predecessor node and the only incoming
edge to the successor node. Hence, all the one-in one-out connected nodes in a chain (path)
are condensed into a supernode, called a contig [44], whose sequence is the merged sequence
of the path and its coverage is the average coverage of the condensed nodes. Figure 2.4, is a

toy example of the condensation result of a colored de Bruijn graph constructed from a red
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Figure 2.4: Colored de Bruijn graph condensation stage is presented. The colored coverage of the condensed
node is the average of the colored coverage of all the nodes in the path.

and a green dataset. The key factor in the condensation process is to ignore the coloring
information. The only noticed coloring information is for the average coverage calculation.
When a part of the region in a colored dataset is blackout due to the amplification bias, the
region is broken down and its k-mer path is disconnected (generates 2 sub-graph). However,
if the region is fully covered in the another co-assembled dataset the blackout k-mers are
imported to the graph, which affix the broken region (See Figure 2.5.a). This shows how a
low coverage regions are rescued in co-assembly process. In the case of real variation (with

sufficient coverage), two uni-colored path is generated (See Figure 2.5.b).

2.5 Iterative Error Removal

The contigs obtained by the primary condensation should be purified in error correc-
tion stage. That is, the contigs whose average coverage is less than a threshold is removed
from the final result. When the coverage of a dataset is pretty uniform for all bases, one
threshold and one error correction round is sufficient. However, a single threshold does not

work for a dataset with un-even depth of coverage and it is highly possible that a valuable
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Figure 2.5: Two sample colored de Bruijn graphs with colors red and blue. Nodes are k-mers and edges
represent k + l-mers. A colored bar shows multiplicity of the k-mer in the corresponding colored input
dataset. Each box is an output contig, and the color of a box shows non-zero colored average coverage,
which is shown on the right hand side of the contig in (a). our co-assembly algorithm (a) rescues a poorly
covered region of the genome in one color when it is well covered in the other, and (b) allows pairwise
comparison of colored assemblies through revealing all of their shared and exclusive pieces of sequence.
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(b) De Bruijn graph after normal error removal step with cut-off 5
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(c) De Bruijn graph after single cell error removal step with cut-off 5

Figure 2.6: The difference between normal error removal approach and the method used in single cell
assembly is illustrated. Consider that cut-off equals to 5. Two supernodes in the graph (a) have a coverage
less than the cut-off. In normal error removal stage (b), both supernodes are removed and the remained graph
is considered as the output. In the error removal method used in single cell assembly, the cut-off gradually
increases and after each error removal iteration, the graph is recondensed. The graph (c) illustrates the
graph after single cell error removal method: after the second iteration, in which the node with the average
coverage less than 2 is removed, the graph is condensed. Since the remaining nodes have the average coverage
greater than the cut-off, all the nodes are saved. That is, the sequence CGAAATC is rescued.
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information with low coverage is ignored (see figure 2.6). Therefore, multiple thresholds and
a number of error correction processes are needed for single cell datasets since the amplifi-
cation bias makes the coverage of each base a random value from zero to a very high value.
The iterative error removal method with variable threshold was introduced by Velvet-SC [1],
a modified version of Velvet [44] for single cell datasets. Like other single cell assembly tools,
our error correction process for single cell co-assembly follows Velvet-SC [1] and it is done
in an iterative procedure. In each iteration, the contigs with the coverage lower than the
cut-off threshold are removed; the graph is recondensed; and the cut-off is increased once. It
should be noticed that in co-assembly process a contig should be trimmed based on an array
of coverage. One simple solution is to peak the maximum value of the array and remove the
contigs whose maximum colored coverage is less than the cut-off threshold. However, the
bias of this strategy is high in the case that each input read dataset has different depth of
coverage. A normalization cut-off strategy can overcome the bias due to various depth of
coverage of each co-assembled dataset. That is, instead of a single cut-off value in each round,
we calculate an array of cut-off in which each component of the cut-off array is assigned to
one dataset (i.e. we generate colored cut-off). A contig whose each colored coverage is less

than its corresponding colored cut-off is removed from the graph.

2.6 Implementation

We implemented our proposed colored de Bruijn graph and co-assembly method in a
co-assembly tool, called HyDA: Hybrid De novo Assembly tool. HyDA can be categorized
as a single cell assembly tool, which follows Velvet-SC [1] to address the uneven depth of

coverage as the major problem in single cell sequencing technology.
HyDA does the assembly process in three separate stages:

1. Import: In this stage, the reads coming from various files are labelled and stored in

one file. The file employed by the next stage as the input.
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2. Assemble-unitig: The processes of k-mer generation, indexing, and de Bruijn graph
construction are done in this stage. A new structure, called unitig, is introduced by
HyDA. Unitigs are sub-contigs, that are condensed one-in one-out chains of k-mers,
used by assemble-finish as the input.
3. Assemble-finish: The graph constructed in assemble-unitig stage is imported and

after error removal and total graph condensation, the final contigs are exported in one

FASTA file as the assembly result.

2.6.1 Import

HyDA gets all the reads from various files at once and annotates them based on their
source library (file). Both FASTQ and FASTA format are accepted by HyDA. All the inputs
are introduced in a single command. The annotated reads from various FASTA or/and
FASTQ files are pre-processed and and stored in a single FASTA file, which is used for the
other stages of the co-assembly process by HyDA. The reads without enough information
(such as small reads and reads with many unknown bases) are not imported to the final
FASTA file. The coloring process is not done in this phase and the reads are annotated
only by their origin file, not the colored dataset. Coloring the reads are done in the next

step.

2.6.2 Assemble-unitig

The second part of HyDA is called assemble-unitig. This stage asks the user to
define some variables and provide some information. The user should define the number
of colored datasets (which is a compile time constant M AXCOLORS) and specify every
imported library belongs to which color. A simple config file that assigns a color to each
imported library is required. If the config file is not defined, HyDA considers all the libraries
as one unicolor dataset and all other colored datasets will be empty. Also, If the user does

not specify the number of colors, the assembly will be done based on only one color.
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Indexing Colored k-mers

To keep the information of co-assembled input datasets, a unique color number up to
a compile time constant M AXCOLORS is assigned to each input dataset. In the first step
of the algorithm, the reads are imported to one file and the datasets and their color numbers

are defined by the user in a config file.

The algorithm uses a hashed collection of splay trees to store de Bruijn graph. The
k-mers (for k up to compile time M AXK) and their associated information, which include
colored multiplicity, internal flags, and in/out edges, are represented in the vertices of the
tree. A space in the 2 bit compressed form and 8 bits (one byte) are needed for a k-mer and
its in and out edges. First 4 bits are dedicated to incoming edges and the rest are for outgoing
edges and each of them represents the extremal left /right nucleotide of the connected k-mer.
Since space efficiency is a bottleneck for de Bruijn graph algorithms, we use an array with
relative pointers for storing splay trees. A k-mer and its reverse complement (in the case of

double stranded data) are considered as a single entry, which saves space.

Condensation of the De Bruijn Graph

A chain of one-in-one-out nodes in the de Bruijn graph can be condensed and re-
placed with a new structure called unitig, which is an augmented vertex with the equivalent
sequence. A unitig can be extended until a branch prevents further augmentation. The
maximal length unitigs are called contigs. The condensation process in HyDA is done in
two steps. In the first step, which is done by assemble-unitig, random one-in-one-out k-mers
are selected and extended as long as possible into unitigs. The unitigs and the remaining
k-mers, which are considered as single k-mer unitigs are stored in one file. In the next step,

which is done in assemble-finish, the unitigs are condensed into contigs.

The condensation process is done only based on the graph structure; the coloring

information does not influence that process. That is, a chain of one-in-one-out k-mers are
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condensed even when the k-mers are not connected in one colored dataset. (see Figure 2.5).
This strategy is useful when single cell MDA datasets are co-assembled since a blackout

region due to amplification bias in one dataset that is covered in another is rescued.

Memory Footprint Reduction

By implementing a novel technique for partitioning de Bruijn graph into multiple
slides, we reduced the peak memory requirement. The key idea is consideration of adjacency
information and trying to store k-mers of a contig in one slice. We employ the idea of the

minimizer that was introduced for space efficiency in seed and extend method [51].

Let spax be the number of slices that the graph is partitioned into. Let w be the

minimizer m-mer of k-mer x in which m < k. The k-mer & is stored in the slice number

s(k) = h(w) mod Spax, (2.1)

in which A is an arbitrary uniform hash function. Obviously, the minimizer of adjacent
k-mers are mostly identical, which causes minimum slice change along a contig. The slicing
approach in HyDA, is implemented in assemble-unitig. The m should be large enough to
prevent large number of slice changing. However, even in the case of choosing suitable m
it is possible that adjacent k-mers are stored in different slices. HyDA is implemented with
m = 8 based on the observation of having a tradeoff between slice-contiguity and partition

balance for both bacterial and mammalian genome assembly.

2.6.3 Assemble-finish

The final stage of the assembly in HyDA is called assemble-finish. Error removal
and re-condensation procedure is done in this stage. The maximum cut-off value, which is

provided by user in the command line, is used to prune the graph in an iterative process.
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Iterative Error Removal

HyDA uses the iterative low coverage contig removal strategy that was introduced by
Velvet-SC [1]. To address the un-even coverage generated by MDA bias, a variable coverage
cut-off which starts from 1 and gradually increases in each iteration, is used to eliminate
low coverage contigs. Before next round, the graph is re-condensed which, generates merged
contigs with new average coverage. The maximum cut-off, which is used in the last round is
chosen based on the read dataset average coverage. Obviously, when various read datasets
with different average coverage are co-assembled, each dataset should be trimmed by its
own cut-off value. Hence, HyDA uses a normalization strategy in its iterative error removal
stage. The maximum cut-off for each co-assembled dataset is determined based on its average
coverage. In each iteration, a series of colored cut-off is calculated and these contigs whose
colored coverage is less than the colored cut-off are eliminated. More precisely, a contig
that is normally covered in one co-assembled dataset and not covered well in other datasets
is rescued. This is how HyDA can retrieve the blackout regions in one cell by using the

information of that region in other datasets.

Contig Sets

The output of the iterative error removal stage is a mixture of contigs of all co-

assembled datasets.

The contigs are presented in a FASTA file, in which the information of each colored
dataset is provided. The format of the contig representation in the output is illustrated in

Figure 2.7. The three contig types, which are illustrated in Figure 2.7 are:
e Full-covered Contig: a contig that is covered in all co-assembled datasets (Figure 2.7-a).
e semi-colored Contig: a contigs that is covered in all co-assembled datasets except one
(Figure 2.7-b).

e Uni-color Contig: a contig that existent in only one dataset (Figure 2.7-c).
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>CONTIG_29|COVO0_10]| |COV3_11.9|COV4_12.1|COV5_2.9|LENGTH_50|
AAGCCTTGGGGCTATTAACGGCCGGTAGCGTTTTAGCCCGAATGGCCTAG

(a) A full-covered contig

>CONTIG_29|COVO0_7.8| |COV3_10.9|COV4_0|COV5_12.9|LENGTH_50|
TTGCCAAGCCGCAAAATTCGGCCGGTAGCGCCCCAGCCCGAATTTCCACA

(b) A contig which is not covered in only one dataset

>CONTIG_31|COVO0_0| |COV3_0|COV4_22.5|COV5_0O|LENGTH_50|
ATCAACAGCCGATCTAGGCCCGCGGTAGCGAACCAGAAAGACTGACCGAA

(¢) A uni-colored contig
Figure 2.7: An example of a contig of the co-assembly of 5 colored input dataset. (a) a full-colored contig,
which is covered in all co-assembled datasets. (b) a contig that is covered in all all input datasets except
dataset 4. (c¢) a uni-colored contig, which is existent only in dataset 4.
The number and length of contigs of each type are important for analysis of the co-
assembly result and detecting the outlier datasets, which will be explained more in Chapter

3. Also, to cluster the contigs based on their reference genome, the information of all colored

coverage for each contig is an essential value. It is explained more in Chapter 4.

2.7 Summary

In this section we present our co-assembly algorithm based on the colored de Bruijn
graph, which was previously proposed for genotyping and structural variation detection by
Cortex [45]. In contrary to Coretex, our proposed colored de Bruijn graph considers the
uneven coverage characteristic of single cell datasets by pruning the graph using an iterative
error removal method, which was introduced by Velvet-SC [1]. Our algorithm also can
retrieve the blackout regions of one datasets with the information of other co-assembled
dataset. We present the proposed tool, HyDA (Hybrid De novo Assembler), and explain its

various parts and stages related to co-assembly process.
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3 ASSEMBLY OF A GENOME FROM MULTIPLE SINGLE
CELLS

3.1 Introduction

In contrary of read dataset of cultivated cells, which have uniform coverage, single cell
read data sets have highly variable coverage [52, 53] an even some regions do not get coverage
at all (see Figure 3.1), which poses serious challenges for downstream applications such as de
novo assembly. A number of single cell assemblers including EULER+Velvet-SC [1], SPAdes
[5], and IDBA-UD [9] have been developed to mitigate the adverse effects of non-uniform
coverage and maximize the transfer of sequencing information into the final assembly. These
efforts have been successful, and the existing single cell assemblers are able to extract nearly
all of the information contained in the input data set. However, the vast majority of single
cell data sets do not encompass the entire genome. We report that combining multiple data
sets from the same species significantly improves the final assembly by filling genome gaps
(Table 5.1). The challenge presented by this method is to avoid chimeric assemblies due to
the outlier dataset in the combined sample since the final assembly includes the information

of all datasets (both identical datasets and outliers).

The ideal solution consists in co-assembly of multiple data sets without mixing ex-
plicitly the reads so that individual assemblies can benefit from the synergy without suffer-
ing from chimerism. We propose and implement this solution using the colored de Bruijn
graph[45]. After co-assembly process we analyse the result and verify the similarity of the

co-assembled datasets. In the case of outlier existent, the final result is purified to generate
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a high quality non-chimeric genome assembly. The algorithm is implemented in a tool called

HyDA (Hybrid De novo Assembler).

3.2 Similarity Check and Pruning the Assembly Result

After the co-assembly process on multiple single cell datasets, which are assumed to
be identical, the result need to be analysed and purified. To avoid chimeric result, it is
necessary to use only the information of identical cells. Hence, after the co-assembly done,
the next step is to verify that all the co-assembled cells are identical.

The format of the contig representation in the output is illustrated in Figure 2.7.
There are three contig types that are important for clustering process and analysis of the
co-assembly result:

e Uni-color Contig, which is existent only in dataset
e Full-covered Contig, which is covered in all co-assembled datasets.
e semi-colored Contig, which covered in all all input datasets except one dataset

As explained, each contig contains the information of its coverage for each colored
dataset. If one of the co-assembled datasets belongs to another species, the majority of its
contigs will be outlier. Also, the non-identical cell is the source of many contigs, which are
not present in the identical cells. That is, if the majority of the contigs are not covered in all
co-assembled datasets, the assumption that all the co-assembled cells are identical is wrong
(most of the contigs that are aligned to the identical cells are not covered in the outlier
datasets and majority of the outlier contigs are not present in the datasets of identical cells).
When the cell equality test fails, the outlier datasets should be identified and their contigs
should be eliminated from the assembly result.

Let S = {s1, 52,53,...,5,} be aset of n single cells that are assumed to be identical.
Let G = {g1,92,93,---,9m} be the set of contigs generated by HyDA when it co-assembles
single cells of set S. Let A; = {aj1,aj2, - ,ajn}, 1 <j < m, be the set of colored average

coverage of contig j. Contig g; is called full-colored if:
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(a) Genome coverage in normal multicell E. coli
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(b) Genome coverage in single cell E. coli lane 1

Figure 3.1: Genome coverage for both (a) single cell E. coli lane 1, and (b) normal multicell E. coli. Both
have an average coverage of ~ 600x. The coverage for all bases in the multi-cell case is uniform. On the
other hand, the MDA bias in the single cell case causes some bases to have high coverage and some bases to
be covered poorly or not covered at all, which are called blackout bases (represented in green regions). The
data is reported in [1].
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Va;; € Aj:a; >0
1<i<nand1<j57<m
Contig g; is called uni-colored of color m if:
Jdajr, € Aj {a;, >01H0<k<n;1<j<m
Vaj € Aj:{i # kja;; =010<k<n;0<i<n;1<j<m

Assume s; is the single cell that incorrectly assumed to be identical to the other single

cells, i.e. it is in fact of another species. In this case, the majority of contigs covered in s;

dataset are uni-colored contigs of color 7.

After co-assembly, the number of full-colored contigs are calculated, which should be
a high percentage of total contig in the case that all the co-assembled cells are identical.
If a significant number of contigs are not full-colored, all the co-assembled colored datasets
are examined for detecting the outlier cell, which is of another reference genome. For each
dataset, the number of contigs covered in the dataset are considered and the ratio of uni-
colored to total contigs are calculated. The high ratio indicates the fact that the dataset
is not identical to other datasets. Then all uni-colored contigs of the outlier dataset are
removed from the assembly result and the remaining contigs which are purely originated

from the interested species are proposed as the assembly result.

3.3 Materials and Experiments

Genomes amplified from single cells exhibit highly non-uniform genome coverage and
multiple gaps, which are called blackout regions [1]. For the evaluation of such coverage
characteristics in this study, we used amplified DNA originating from two single Escherichia
coli cells as well as from one single Staphylococcus aureus cell [1]. Although these amplified
DNAs were quality checked for preselected genomic loci using quantitative PCR [52], they
still did not cover the entire genome (Table 5.1, Figure 3.1). One single E. coli cell was se-

quenced in four technical replicate lanes (1-4) and the other was sequenced in three technical
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Data set No. of blackouts | Mean length | N50 | Total (%)
lane 1 04 1220 5558 | 84K (1.8%)
lane 6 50 193 518 | 5K (0.1%)

lanes 1 and 6 0 0 0 0 (0.0%)

S. aureus 2 95 83 | 143 (0.0%)

Replicates of E. coli lane 1:
lane 2 91 1183 4700 | 77K (1.7%)
lane 3 92 1159 5842 | TTK (1.7%)
lane 4 88 1225 6156 | 76K (1.7%)
Replicates of E. coli lane 6:
lane 7 63 153 456 | 5K (0.1%)
lane 8 61 185 573 | 6K (0.1%)

Table 3.1: The number, mean length, N50, and total size (percentage) of blackout regions in the E. coli
and S. aureus data sets [1] as explained. All lanes are E. coli except the one marked S. aureus.

replicate lanes (6-8) each with a sequencing depth of 600 per lane. The single S. aureus cell
was sequenced in two technical replicate lanes each with a sequencing depth of 1,800. All

nine lanes were sequenced on Illumina GAIIx platform in paired 2100 bps read mode.

3.3.1 Coverage Characteristics of Single Cell Read Datasets.

The coverage bias in technical replicates is almost identical, which suggests that the
vast majority of bias is caused by MDA. The coverage bias, particularly of the blackout
regions, do not always occur at the same genomic loci for different cells of the same genome
[1]. Blackout regions in E. coli lanes 1 and 6 sequenced from two independently amplified
single cells make up 1.8% and 0.1% of the genome respectively, but there are no common
blackout regions between these two data sets (Table 5.1). This means that combining the
two data sets could fill all gaps and yield a complete genome, which is the property that

HyDA exploits with colored co-assembly.

3.3.2 Various Scenarios

To display the strength of co-assembly method, we ran 5 different experiments using

above data (see Figure 3.2). All the following datasets are assembled with k& = 55:
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Figure 3.2: The five assembly scenarios: (i) single cell assembly of E. coli lane 1; (ii) mixed monochromatic
assembly of E. coli lanes 1-4 and 6-8, technical replicates of two biologically replicate single cells; (iii)
multichromatic co-assembly of E. coli lanes 1-4 and 6-8; (iv) mixed monochromatic assembly of non-identical
cells: E. coli lanes 1-4 and 6-8 and S. aureus lanes 7 and 8; (v) multichromatic co-assembly of non-identical
cells: E. coli lanes 1-4 and 6-8 and S. aureus lanes 7,8, each assigned a unique color

e Single cell assembly of Lane 1: we used the E+V-SC single cell assembly of E. coli
Lane 1 of [1].

e Mixed assembly of 7 E. coli lanes: we concatenated the reads in the 7 E. coli lanes
and assembled the resulting aggregated dataset with HyDA.

e Colored assembly of 7 E. coli lanes: we assigned a unique color to each of the 7 datasets

and assembled them with HyDA using cut-off 100.

e Mixed (uni-colored) assembly of 7 E. coli lanes and 2 S. aureus lanes: we concatenated
the reads in all those lanes and assembled the resulting aggregated dataset with HyDA.

We used a coverage cut-off of 400.
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e Colored assembly of 7 E. coli lanes and 2 S. aureus lanes: we assigned a unique color to
each of the 9 datasets and assembled them with HyDA. We used a coverage cut-off of
100. We then extracted F. coli contigs from the final assembly based on their coverage

in the 7 . coli colors.

3.4 Co-assembly of E. coli And S. aureus Mitigates the Effect Of

Dropout Regions

As mentioned above, the ideal solution to assemble a genome from single cells consists
in co-assembly of multiple data sets without mixing explicitly the reads so that individual
assemblies can benefit from the the information retained in all inputs while avoid chimeric
result due to the information of outlier datasets. The 5 Scenarios explained above were

experienced and compared to display the advantages of using co-assembly method.

3.4.1 Detecting Outlier

The proposed method of assembling a genome from multiple single cells has two stages:
(1) co-assembling the datasets (which is presented in previous Chapter), and (2) detecting
the outlier datasets, which are of another species, and cleanse the assembly result from those
outlier contigs (if exist). In the second stage (after the assembly), first, the identity of every
pair of co-assembled datasets is assessed by calculating the ratio of fully-colored contigs to
the total contigs. A high ratio verifies that all the co-assembled datasets are identical. In
contrary, low ratio indicates that there is at least one co-assembled dataset that is of another
species.

As displayed in Table 3.2 94% of contigs in the assembly of 7 E. coli lanes (Figure
3.2-iii) exist in all the datasets; while only 5% of the contigs in the assembly of 7 E. coli
lanes and 2 S. aureus lanes (Figure 3.2-v) are fully-colored. In this case, all the lanes are

examined and the outlier dataset is detected by calculating the number of their uni-colored
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Total | Fully-Colored | Ratio
Identical 2124 1999 94 %
no-identical | 3784 201 5%

Table 3.2: The number of total contigs and fully-colored contigs (the contigs that are present in all co-
assembled datasets) are displayed for two co-assembly experiments. (1) the assembly using 7 E. coli lanes
(identical cells assembly), and (2) the assembly using 7 E. coli lanes and 2 S. aureus lanes (non-identical
cells assembly).

In the identical cells assembly, most of the contigs are existent in all datasets. On the other hand, the
majority of the contigs in non-identical cells assembly are not fully-colored.

contigs (a dataset with large number of unicolor contigs is an outlier). In the experiment we
have done, the contigs are clustered into two sets: (1) contigs that are present only in E. coli
lanes, which are 1922 contigs and (2) contigs that are present only in S. aureus lanes, which

are 1654 contigs. Hence, only the contigs of datasets 1-7 (FE. coli lanes) are saved and the

contigs of datasets 8, 9 (5. aureus lanes) are thrown away.

3.4.2 Evaluation Factors

To evaluate the quality of an assembly, many factors can be analyzed. Some of
them can be calculated only in presence of the reference genome, while some others are
more general and do not need the reference genome information. The most applied factors

are:
e Total bases: total size of the generated contigs as the assembly result.

e Missing bases: total size of the reference regions that are not covered in the assembly
result.

e Extra bases: total size of the assembly regions that are not aligned to the reference
genome.

e N50: the contigs larger than which cover half of the assembly size. Although the N50
is an average type factor similar to a mean or median, longer contigs have a greater

weight.
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e NGH0: the contigs larger than which cover half of the reference genome size. In other
words, NG50 is similar to N50, only it considers the genome size instead of the assembly
size.

e Corrected N50: N50 of maximal contiguous pieces of corrected contigs that align to
the reference genome. The definition of corrected contigs are different for various
evaluation tools. For example, GAGE [2] considers those contigs that align to the
reference genome without > 5 bp indels.

If the sequence of a reference genome is available, various assembly error factors can
be examined:

e SNP: or Single Nucleotide Polymorphism is the mutation of one base.

Indel: short insertion or deletion.

Relocation: the relocation of a contig within a chromosome.

Translocation: the relocation of a contig between chromosomes.

Inversion: reversed region of the true genome as part of a contig.

3.4.3 Evaluating the Quality of Colored Co-assembly of

E. colr

We used GAGE [2] which is a standard assembly evaluation tool to compare the 4
assemblies described above and the E+V-SC single cell assembly of E. coli Lane 1 in [1]. The
results are presented in Table 3.3. It is clear from Table 3.3 that when we assemble a few
identical cells the result is more accurate than the assembly of just one cell. The first column
of Table 3.3 shows the evaluation results of an E. coli assembly using just one uncultivated
cell. That assembly has 281,060 missing reference bases (about 6.06%), while another E. coli
assembly using multiple identical cells has just 1,289 missing reference bases (about 0.03%)
shown in the second column. Also, when some identical cells are used in assembly, other

important factors such as SNPs, indels, and other variations improve significantly. Our
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E+V-SC HyDA
Lane 1 Identical Non-Identical
Single Cell Mixed Colored Mixed Colored
Assembly Size 4,570,583 || 5,272,627 | 5,240,693 || 8,274,855 | 5,281,487
Missing Ref Bases | 281,060 1,289 2,114 1,289 2,114
Missing Ref (%) 6.06% 0.03% 0.05% 0.03% 0.05%
Extra Bases 279,721 659,982 615,808 || 3,662,149 | 656,771
Extra (%) 6.12% 12.59% 11.75% 44.26% 12.44%
N50 32,485 34,040 27,562 29,823 26,903
NG5H0 32,051 39,340 32,051 54,505 32,051
Corrected N50 30,094 37,682 31,445 37,682 31,445

Table 3.3: Comparison of GAGE [2] evaluation results for E. coli assemblies obtained from a single cell with
E+V-SC (Lane 1 of [1]) and multiple identical (Lanes 1-4 and 6-8 of [1]) and non-identical cells (Lanes 1-4
and 6-8 plus two lanes of S. aureus in [1]) with HyDA in mixed and colored mode. GAGE’s corrected N50 is
the N50 of maximal contiguous pieces of contigs that align to E. coli K-12 reference genome without > 5 bp
indels [2]. E. coli contigs are extracted from the colored assembly of non-identical cells in a post-processing
step based on their coverage in E. coli colors. Extra bases are due to contaminants, and that is why the
number of extra bases in multi-cell assemblies is higher than that in single cell one [1]. The best results are
shown in bold face. NG50 is the size of the contig the contigs larger than which cover half of the genome
size [3]. All contigs are considered in all assemblies, particularly ultrashort single k-mer ones.

results show that the single cell assembly has 100 SNPs and 34 indels < 5 bps, whereas

multi-cell assembly has only 5 SNPs and 6 indels < 5 bps (see Table 3.4).

Mixed and colored assemblies have roughly similar characteristics. The second column
of Table 3.3 represents the characteristics of mixed assembly when HyDA assembled a pool
of 7 E. coli lanes coming from 2 biological replicates with cut-off 400. The third column
is the colored assembly of the same dataset with cut-off 100. Both assemblies are missing
less than 0.05% of reference genome bases and containing about 12% extra bases that are
shown to be contaminants [1]. The only noticeable difference between the two assemblies is
their N50, NG50, and corrected N50 [2, 3]. The N50 of the mixed assembly is 34,040 and its
corrected N50 is 37,682, while the N50 and corrected N50 of the colored assembly are about

6 kbps less, at 27,562 and 31,445 respectively.

Although assembly of E. coli and S. aureus datasets contains many unaligned contigs,

the evaluation error factors such as SNP and Indel are the same as the assembly of identical
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E+V-SC HyDA
Single Cell | Mixed | Colored
SNPs 100 5 5
Indels < 5 bp 34 8 6
Indels > 5 bp 4 4
Inversions 0 0
Relocations 4 2 3

Table 3.4: Comparison between various types of error generated in an assembly of one single cell by E4+V-
SC and HyDA in mixed and colored modes. For both mixed and colored assembly, using the data of 7
identical E. coli single cells and 9 single cell of E. coli and S. aureus generates the same errors.

datasets. Also, the mixed and colored assembly do not show any difference in term of the

number of errors. Table 3.4 demonstrates that both methods generate 5 SNPs, 6-8 indels <

5 bps, 4 indels > 5 bps, 2-3 relocations, and zero inversions.

The only noticeable weakness of colored assembly is the size of contigs. The reason
is that low multiplicity k-mers are iteratively eliminated. The multiplicity of a k-mer in the
mixed dataset is the number of its occurrences in all reads from all cells, but the colored
multiplicity of a k-mer is an array that keeps the multiplicity of each color separately. The
maximum over all colors is computed for determining low coverage contigs in the colored
case, whereas the mixed coverage is the sum of the colored coverage. That is why the cut-
offs are different for the colored and mixed assemblies. This slight difference causes a mild

difference in the N50 and NG50 of mixed and colored assemblies.

The colored assembly using 7 E. coli lanes and 2 S. aureus lanes coming from 2
uncultivated E. coli and one uncultivated S. aureus cells contained 3,784 contigs. The
coverage in both §. aureus colors of 2,130 contigs was zero while most of their F. coli colors
had positive coverage. On the other hand, the coverage in F. coli colors of 1,862 contigs was
zero while both S. aureus colors had positive coverage. The final assembly of 7 E. coli and 2
S. aureus lanes with colored de Bruijn graph, when S. aureus contigs were eliminated, was
similar to the colored assembly of 7 E. coli lanes; see Table 3.3. Provided that the input

species are sufficiently different and MDA reactions cover a high portion of the genomes, we
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can easily find identical cells by clustering contigs. Performing the same experiment on more
than 2 species is left as future work as it requires more data.

As mentioned above, the advantage of colored de Bruijn graph becomes clear when a
combination of non-identical cells is assembled. The last two columns of Table 3.3 represent
the results of the mixed and the FE. coli portion of the colored assembly of 7 E. coli and 2
S. aureus lanes. The mixed assembly covers the reference genome very well and just misses
1,289 bps of 4,639,675 bases (about 0.03%) of E. coli genome, but it contains 3,662,149
extra bases (about 44%) corresponding to S. aureus genome and contaminants. On the
other hand, the E. coli portion of the colored assembly misses only 2,114 bps (about 0.05%)
while it contains nearly one sixth extra bases (526,119 bps) which are only contaminant
[1].

The only weakness of the co-assembly method is related to the problem of contiguity
loss. True genomic variation in the identical cells generates branches in the colored de
Bruijn graph, which makes contigs shorter. The comparison between contigs generated by

co-assembly and normal method is illustrated in Figure 3.3.

3.5 Summary

In this chapter, we present the challenge of assembling a genome using multiple single
cell datasets and our proposed solution to this problem. Due to the blackout regions, we need
a number of identical cells of a genome to have a high quality assembly. Unfortunately, the
assembly result will be chimeric if even one of the inputs is not identical. We proposed our
elegant solution based on co-assembly using colored de Bruijn graph. Since the co-assembly
result retains the information of each input dataset individually, we can verify whether the
input datasets are identical. In the case of outlier existent, our algorithm can detect the
non-identical datasets and eliminate their associated data. Hence, our algorithm can recover
the genome with small number of missing bases while avoids chimeric result. We provide 5

experimented scenarios’ result to display the strength of co-assembly method.
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Figure 3.3: Comparison of contigs generated by mixed versus colored assembly for single cell E. coli. (a)
contigs are those presented in Table 3.3 and are sorted from largest to smallest. The y axis shows the
cumulative length. (b) a magnified portion of the plot in (a).
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4 INEFFICIENT SYNERGISTIC SINGLE CELL GENOME AS-
SEMBLY

4.1 Introduction

Co-assembly of bacterial genome using multiple single cell generates a high quality
result since it combines the information of all identical datasets and trims the errors infor-
mation that are due to the outlier information. The errors are not detectable by normal
assembly since the normal assembly result is based on the information of a mixture of all

single cell datasets, including identical and outlier ones.

The advantages of using colored de Bruijn graph and co-assembly is related in: 1-
determining the similarity between the co-assembled datasets and 2- retrieving the blackout
regions of the genome due to the ampliation bias. In the case of having multiple assumed to be
identical single cell datasets, co-assembly detects the outliers and removes their information
from final result. Also, it can retrieve the blackout regions in one dataset when it is covered

in another dataset.

The application of the co-assembly is not restricted to the situation that we have
a number of identical datasets. Both advantages of co-assembly are also exhibited when
we have a number of single cells from various phylogenetically close species. By using co-
assembly, we can find the similarity between each two co-assembled datasets. Also, a blackout
region in each input dataset can be retrieved in the case that the region belongs to a coding
sequence (or gene) that is existent and covered in one of the other co-assembled datasets.

Since the input datasets are from phylogenetically close species, many genes are common
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between their genome and the blackout regions of one dataset are covered in at least one of

the other inputs with a high probability.

In this chapter we explain the modification has been done on the colored de Bruijn
graph and co-assembly process to make it more suitable for co-assembling some phylogenet-
ically close species. Also, we present our proposed method to check the similarity between
them using a variable, ExclusivityRatio. Finally, to show the advantages of co-assembly
of such species, we run the modified method (which is implemented in HyDA v.1.2) on the
MDA datasets of 10 single cells from three dominant but uncultured bacterial members of
a methanogenic consortium [54, 55|, belonging to the families Syntrophacea and Anaerolin-

eaceae.

4.2 Sensitivity of Co-assembly Result

The result of the genome assembly process is the collection of maximal sequences
(contigs) obtained by the final de Bruijn graph condensation after error removal process.
There is a contig set for each colored input dataset, which contains all the contigs with
positive coverage for corresponding color. Categorizing the contigs based on positive coverage
value works fine when some identical cells are co-assembled. However, this naive method
dose not work properly when a number of single cell of different species (especially, when
they are of the reference genomes from phylogenetically close families) are co-assembled. We

modified our algorithm by using a new parameter e.
Let C be the set of all the contigs after error removal:
C={ci,co,++ ,cn}
Let A;(c;) denote the average coverage of contig ¢; in color j, for 1 < i < n and
1 <j<m. Picke>0andlet C; = {c; € C| Aj(c;) > €} C C be the set of contigs for
each color j that are written in an individual FASTA file. The parameter € determines the

tradeoff between specificity and sensitivity.
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Color A | Color B | Decision | Figure
High High | Different | 4.1-(a)
High Low subset | 4.1-(c)
Low High subset | 4.1-(c)
Low Low Similar | 4.1-(b)

Table 4.1: Making decision about the relationship between two co-assembled color is based on ezclusivity
ratio. Exclusivity ratio of color A with respect to color B is exclusive contigs of A divided to its common
contigs with B

We use € = 0 in previous chapter (HyDA v.1.1), but a non-zero € is needed for co-
assembling dataset of various species. Even when identical datasets are co-assembled, a

positive € value increases the quality of result if there are erroneous or contaminant k-mers

in one color which also occur in the true genomic sequence of another color.

4.3 Quantification of Similarities and Differences Between Col-

ored Datasets.

One advantages of co-assembly method is that it can determine the relationship be-
tween the genome of the co-assembled datasets. Input datasets can be clustered based on
the similarity between their assemblies. For a pair of color A and B, we call the contigs
that belong to both the colored datasets shared and those contigs that belong to color A
but not to color B ezxclusive of color A with respect to color B. Let E4(B) denotes the
exclusivity ratio of color A with respect to color B, as the ratio of the size of exclusive color
A contigs to the total assembly size of color A. This factor helps us make decision about
the relationship between two colors. Having a very high/or low number of common contigs
makes the similarity decision easy (see Table 4.1 and Figure 4.1). On the other hand, there
is grey area in which we cannot make sure that whether two colored datasets are of the same
reference genome.

The exclusivity ratio for the co-assembly experiment explained in previous chapter
is calculated in Table 4.3. The exclusivity ratio for both E. coli lanes in the pair E. coli

lane 1-lane 6 (Pair 1 in Table 4.3) is not more than 0.5%, while that ratio for both E. coli
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(a) (b)

(c)

Figure 4.1: The relationship between 2 co-assembled genome can be determined by calculating the common
and exclusive contigs of the co-assembled results. (a) displays the assembly of various genomes. (b) displays
the assembly of similar genome. (c¢) displays the assembly of two genomes in which one is the subset of the

other.

Pair of Data Sets Pair 1 H Pair 2 H Pair 3
E. coli lane 1 E. coli lane 6 S. aureus E. coli lane 1
Total (bps) 5,228,480 5,240,302 3,366,622 5,228,480
Shared (bps) 5,210,548 335,648 336,184
Exclusive (bps) 179,32 29,754 || 4,904,654 | 3,030,974 || 3,030,438 4,892,296
Exclusivity Ratio* 0.003 0.005 0.9359 0.9003 0.9001 0.9357

Table 4.2: * Exclusivity Ratio = Exclusive / Total.

Table 4.3: Pairwise relationships between three co-assembled data sets, F. coli lanes 1 and 6 and S. aureus
lane 7, in a co-assembly of E. coli lanes 1-4, 6-8 and S. aureus lanes 7, 8. Total is the total size of those
contigs that have non-zero coverage in the corresponding color. Shared is the size of those contigs that have
non-zero coverage in both colors. Exclusive is the size of those contigs that have non-zero coverage in the
corresponding color and zero coverage in the other color in the pair.
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and S. aureus in the two other pairs is more than 90%. This large margin between the
exclusivity ratio for identical cells and that for non-identical cells is expected in this case, as

E. coli and S. aureus are sufficiently divergent species and the genome coverage was enough

for both.

4.4 Materials

To display the strength of co-assembling of various genomes from close families, we
used the MDA lane of single cells from three dominant but uncultured bacterial members of
a methanogenic consortium [54, 55|, belonging to the families Syntrophacea and Anaerolin-
eaceae. Here we explain how the MDA datasets are prepared. The assembly result of each
dataset by HyDA is compared with its assembly by two other state of art single cell assembly

tools.

4.4.1 Media and Cultivation of the Methanogenic Alkane-

Degrading Community.

The microbial community was enriched from sediment from a hydrocarbon-
contaminated ditch in Bremen, Germany [55]. The consortium was propagated in the labo-
ratory in anoxic medium containing 0.3 g NH,Cl, 0.5 g MgSO, ¢7H>0, 2.5 g NaHCO3, 0.5 g
KyHPO,, 0.05 g KBr, 0.02 g H3BO3, 0.02 g KI, 0.003 g Nay,WO,02H,0, 0.002 g NiCl,e6H50,
trace elements and trace minerals as previously described [55]. The medium was sparged
with a mixture of No/COy (80:20 v/v) and the pH was adjusted to 7.0. After autoclav-
ing, anoxic CaCly (final concentration 0.25 g/L) and filter-sterilized vitamin solution [55]
were added. Cells were supplemented with anoxic hexadecane as previously described [54].

Bottles were degassed as necessary to relieve over-pressurization.
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4.4.2 Single cell Sorting, MDA, and Genomes Sequencing.

Individual cells from the alkane-degrading consortium were obtained by staining
(SYTO-9 DNA stain) and sorting of single cells by FACS [54]. Single cells were lysed as pre-
viously described and the genomic DNA of individual cells was amplified using whole-genome
multiple displacement amplification (MDA) [56]. Amplified genomic DNA was screened for
Smithella-specific 16S rDNA gene sequences. Six amplified Smithella genomes were selected
for Next Generation Sequencing. The MDA amplified genomes were prepared for Illumina
sequencing using the Nextera kit, version 1 (Illumina) using the Nextera protocol (ver. June
2010) and high molecular weight buffer. Libraries with an average insert size of 400 bp were
created for these samples and sequenced using an Illumina Genome Analyzer IIx. 34 bp
paired-end reads were generated for K05 (20.9 million reads), C04 (23.3 million reads), F02
(26.9 million reads), and A17 (22.2 million reads). 58 bp single-end reads were generated for
MEB10 (41.3 million reads), MEKO03 (54.1 million reads), and MEL13 (18.0 million reads).
36bp paired-end reads were generated for F16 (11.0 million reads), K04 (27.2 million reads),

and K19 (22.9 million reads).

4.5 De novo Single Cell Co-assembly of Members of an Alkane-

degrading Methanogenic Consortium.

The genomes of 10 cells from three dominant but uncultured bacterial members of
a methanogenic consortium [54, 55], belonging to the families Syntrophacea and Anaerolin-
eaceae were sequenced from their amplified single cell whole DNAs: six cells belonging to
Smithella, two cells belonging to Anaerolinea, and two cells belonging to Syntrophus. Sin-
gle cells were isolated from the consortium by fluorescence-activated cell sorting, and the
genomes of individual cells were amplified using MDA. MDA products were sequenced using
an [llumina GAIIx with 34, 36, or 58 base pair reads. In total, 10 data sets, one per cell,

were obtained. The 10 data sets were co-assembled with HyDA in a ten-color setup, and
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Anaerolinea

Al7 | FO02

Total | 54,237 1,278,742

HyDA N50 | 2,935 8,461

Total | 260,386 | 1,352,341

HyDA-Colored N50 350 $.201

Total | 169,413 | 1,698,195

SFAdes N50 1,187 5,944

Total | 144,512 | 1,441,353

IDBA-UD N50 2,894 8,756

Smithella
FI6 | K04 | KI9 | MEBIO | MEKO03 | MELI3
DA Total | 604,769 | 449,148 | 371,311 | 1,182,622 | 1,666,233 | 1,150681
y N50 8,303 9,959 5,416 5,718 6,167 7,315
HuDA-Colored | T0t1 | 1,323,536 [ 720,188 | 840,236 | 1,569,709 | 1,945,701 | 1,590,259
y N50 6,088 5,239 7,295 5,887 5,952 6,977
SPAdes Total | 982,263 | 618,500 | 653,866 | 1,514,813 | 1,960,722 | 1,415,399
N50 5,366 9,332 3,834 8,861 11,372 10,475
IDBApD | Total [ 927,009 | 56,6327 | 613,399 [ 127,742 | 1,746,656 | 1,35L465
N50 3,163 3,178 5,751 6,851 8,209 1,0253
Syntrophus

Cod | KOs

Total | 252,402 | 502,469

HyDA N50 | 5,578 4,963

Total | 465,091 | 1,265,548

HyDA-Colored | 1,928 3,782

Total | 390,923 | 869,586

SPAdes N50 | 4,234 3,128

Total | 318,914 | 804,313

IDBA-UD N50 | 4,706 5,618

Table 4.4: Quast [4] analysis of 10 cells from Anaerolinea, Smithella, and Syntrophus single cell data sets
assembled with HyDA (individual assembly), HyDA (10-color co-assembly), SPAdes [5], and IDBA-UD. All
statistics are based on contigs of size > 100 bp. Only those HyDA contigs that have a coverage of at least
1 in the corresponding color are considered. Coverage cut-off was chosen to be 24 for all HyDA assemblies
(-c=24). Total is the total assembly size and N50 is the assembly N50 (the size of the contig, the contigs
larger than which cover half of the assembly size).



48

Colored HyDA
improvement versus
Individual | Best Result 2
HyDA % %
Anaerolinea Al7 380 53
F02 5 -19
F16 119 35
K04 60 17
. K19 126 29
Smithella MEBI0 5 1
MEKO03 16 -0.7
MEL13 38 12
C04 85 19
Syntrophus K05 53 16

Table 4.5: Improvement of colored HyDA in comparison with individual HyDA and the best single cell
assembler

to exhibit the advantage of the co-assembly method, each data set was assembled individ-
ually by HyDA. Individual assemblies created by SPAdes [5] and IDBA-UD were used as
comparison. The QUAST [4] length statistics of the resulting assemblies (>= 100 bp con-
tigs) are compared in Table 4.4 and Figure . The comparison between individual-assembly
and co-assembly by HyDA demonstrates that co-assembly rescues on average 101.4% more
total base pairs for all 10 cells (Table 4.5). Although HyDA does not use advanced as-
sembly features such as variable k-mer sizes and paired read information, it can assemble
3.6% to 54% more total base pairs than both SPAdes and IDBA-UD do in all cells except
two cases: Anaerolinea F02 and Smithella MEKO3 (Tables 4.4, 4.5). When all contigs are
considered, HyDA co-assemblies of Anaerolinea F02 and Smithella MEKO03 are 11% smaller
and 41% larger than their SPAdes counterparts, respectively. Smithella MEKO03 input reads
are longer (58 bp) than the reads in some of the other data sets; therefore, the Smithella
MEKO03 assembly contains many short contigs and suffers because of the small k-mer size

(k=25) dictated by the shorter reads.
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Figure 4.2: QUAST comparison plots for HyDA, SPAdes [5], and IDBA-UD assemblies of Anaerolinea
A17, F02, Smithella F16, K04, K19, MEB10, MEK03, MEL13, and Syntrophus C04, K05.
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Anaerolinea Smithella Syntrophus
A17 | F02 [[ F16 | K04 | K19 [ MEB10 | MEKO03 | MEL13 || C04 | K05

Anaerolinea A17 0 24 87 | 95 | 96 80 82 86 22 19
F02 7 0 96 | 98 | 99 71 68 72 12 5

F16 96 96 0 73 | 73 37 22 38 96 55

K04 97 97 49 0 67 42 25 45 97 73

Smithella K19 98 98 54 | 68 0 35 32 32 98 55
MEBI10 | 96 96 74 | 48 | 69 0 24 39 95 57

MEKO03 | 97 97 73 | b4 | T4 38 0 37 96 58

MEL13 | 97 97 76 | 51 | 68 39 22 0 97 59

Syntrophus C04 44 39 8 | 96 | 97 85 86 90 0 64
K05 7 75 54 | 76 | 75 45 41 49 73 0

Table 4.6: The exclusivity ratio (%) of row with respect to column for the 10 cells from Anaerolinea,
Smithella, and Syntrophus single cell data sets co-assembled using 10 colors with Squeezambler [6], a tool
in the HyDA package. Only the contigs of coverage at least 1 in the corresponding color are considered.
Coverage cut-off was chosen to be 24 for all HyDA assemblies (-c=24).

4.6 Extensive Analysis of 10 Assemblies from Single Uncultured

Bacterial Cells

Analysis of exclusivity of the dataset information revealed that the six Smithella
cells clustered into a consistent group as their exclusivity ratios with respect to the two
Anaerolinea and two Syntrophus cells are almost identical (Table 4.6). It is important to
note that Anaerolinea A17 and Syntrophus C04 assemblies are relatively short, meaning the
exclusivity ratios must be interpreted with caution. Although Syntrophus KO05s exclusivity
signature with respect to the six Smithella cells is indistinguishable from the six Smithella
signatures with respect to themselves, the exclusivity ratios of Syntrophus K05 with respect
to the two Anaerolinea cells and Syntrophus C04 differentiates Syntrophus K05 from the six
Smithella cells. Slight differences between the Syntrophus C04 and K05 exclusivity signatures

are not surprising because of the existence of potential intraspecies variations.
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4.7 Annotation of the Anaerolinea, Smithella, and Syntrophus As-

semblies

To assess the quality of co-assemblies with HyDA, IDBA-UD, and SPAdes, we used
the RAST [7] server to predict the coding sequences and subsystems present in each assem-
bly. The HyDA assemblies are superior to those of SPAdes and IDBA-UD in terms of the
number of coding sequences and captured subsystems for one Anaerolinea, four Smithella,
and both Syntrophus assemblies (Table 4.7). For Smithella MEB10 and MEKO03, the HyDA
assembly closely follows the SPAdes assembly, which provides the largest annotation (Table
4.7). For Smithella F16 and Syntrophus K05, HyDA assemblies contain significantly more
coding sequences (33% and 39% respectively) and cover more subsystems (29% and 57%

respectively) in comparison to the best of SPAdes and IDBA-UD assemblies.

To confirm the accuracy of the assemblies, the closest related species to each assem-
bly was computed by the RAST server. For the HyDA, SPAdes, and IDBA-UD Anaero-
linea F02 assemblies, the closest species was Anaerolinea thermophila UNI-1 (GenomelD
926569.3) (no closest genomes data found for Anaerolinea A17 by the RAST server). For
the HyDA, SPAdes, and IDBA-UD Smithella and Syntrophus assemblies, the closest species
is Syntrophus aciditrophicus SB (GenomelDs 56780.10 and 56780.15). Note that Syntro-
phus aciditrophicus SB is the closest finished genome to the Smithella family. This verifies
that co-assembly does not create chimeric assemblies, otherwise we would see Syntrophus
aciditrophicus SB among close neighbors of the Anaerolinea assemblies and/or Anaerolinea
thermophila UNI-1 among close neighbors of the Smithella and Syntrophus assemblies by
HyDA.
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HyDA-Colored Spades IDBA-UD
coding | subsystem | coding | subsystem | coding | subsystem
sequence sequence sequence

Anaerolinea A17 212 8 146 9 132 7
F02 1,283 122 1,653 153 1,375 121

F16 1,197 117 899 91 866 89

K04 659 89 559 75 508 66

Smithella K19 757 82 581 54 D72 o7
MEB10 1,491 151 1,504 156 1,297 138
MEKO03 1,856 180 1,955 200 1,178 170
MEL13 | 1,535 165 1,435 154 1,384 148

Syntrophus Co4 416 48 375 49 320 36
K05 1,216 121 873 68 854 7

Table 4.7: Summary of coding sequences and subsystems predicted by the RAST server [7] for HyDA,
IDBA-UD, and SPAdes [5] assemblies of the three alkane-degrading bacterial genomes.

4.8 Colored co-assembly of some amplified DNA of single E. coli

cells by MALBAC purifies chimeric contigs.

For years, MDA has been used as the dominant whole genome amplification method
for single cell sequencing. Recently, Multiple-Annealing and Looping-Based Amplification
Cycles (MALBAC) was introduced, which entails more uniform coverage [11, 24][12, 13].
However, experiments indicate that MALBAC is more sensitive to background contami-
nation, which leads to generation of large portions of contaminant reads [8]. Our results
indicate that assembly of single cell genomes amplified by MALBAC have low quality due to

high errors which cause a large number of unaligned contigs and also low assembly contiguity

(see Tables 4.9).

We used the genomes of 5 E. coli cells, which were sequenced from their single-cell
whole DNAs amplified by MALBAC. The resulting amplicons were sequenced on the MiSeq
platform in the 2250 bp read mode [8]. Our experiments on the sequencing read data sets of
5 E. coli cells indicates that our co-assembly method mitigates the effect of bias generated by
MALBAC the same way it abates the MDA bias by retrieving the blackout regions in each

co-assembled data set using the information existent in other co-assembled data sets(Table



57

Mumber of overlapping bases >k

True read = .
o s Error (unaligned read)
A
¥ Il
7

— 7 CellA
Genome
Cell B

Aligned reads

Individual assembly

Cell A

Cell B

Co-assembly

Error (low coverage)

Bi-color

Bi-color o un
—_——— ———— / _—————— T ——— .

- -

_——— = — =

Uni-color

Figure 4.3: co-assembly avoids chimeric contigs generated by noisy data sets. As it is shown for Cell A, the
overlap between true reads and error in the vicinity of a blackout region constructs a chain of one-in-one-out
nodes in the de Bruijn graph, which is condensed into a chimeric contig. When the blackout region is fully
covered in Cell B, the co-assembly process avoids the chimeric contig by separating the erroneous portion at
a colored branch.

4.8). Furthermore, using this data, we report the ability of co-assembly method to reduce

the number of chimeric contigs in noisy data sets such as MALBAC single cell data sets
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Missing Bases Improvement %
Individual Colored
Cell 1 | 2,360,062 (50.87%) | 1,528,887 (32.95%) 36 %
Cell 2 | 3,569,097 (76.93%) | 2,747,676 (59.22%) 22 %
Cell 3 | 702,942 (15.15%) 513,803 (11.07%) 27 %
Cell 4 | 1,391,317 (29.99%) | 815,105 (17.57%) 41 %
Cell 5 | 964,833 (20.80%) 605,526 (13.05%) 35 %

Table 4.8: Co-assembly can retrieve more bases for each data set than its individual assembly. The
evaluation is done by GAGE [2] for assembly of E. coli cells 1-5 [8] using HyDA.

(Table 4.9).

In noisy data sets, many reads have overlap with erroneous reads that causes chimeric
contigs. In the vicinity of blackout regions, the overlapping true reads and errors construct
a chain of one-in-one-out k-mers, which are condensed into a chimeric contig. Although the
coverage of error k-mers is low, the coverage of generated chimeric contig is high enough
(average of correct high coverage and low error coverage) to survive in the error removal
stage. When a blackout region is fully covered in another data set, co-assembly breaks down
chimeric contigs due to a branching in the colored de Bruijn graph caused by correct k-mers
of the blackout region. Therefore, the error part is separated and then removed in the error
removal stage due to its low coverage. The final result for both data set is a pure contig
without a gap. Figure 4.3 displays the advantage of using co-assembly method in term of

avoiding chimeric contigs when noisy datasets are used for genome assembly.

4.9 Summary

We demonstrated the power of genome co-assembly of multiple single cell data sets
through significant improvement of the assembly quality in terms of predicted functional
elements and length statistics. Co-assemblies without any effort to scaffold or close gaps
contain significantly more protein coding genes, subsystems, base pairs, and generally longer
contigs compared to individual assemblies by the same algorithm as well as the state-of-the-

art single cell assemblers (SPAdes [5] and IDBA-UD). The new algorithm is also able to avoid
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Cell 1 HyDA: Individual | HyDA: Colored SPAdes IDBA-UD
Genome Fraction 47.53 65.175 71.2 60.405
Unaligned bases 44,646,888 55,461,729 155,914,937 | 72,213,995

Unaligned (%) 94.94 93.7 97.68 97.72
Misassemblies 7 2 50 94
N50 316 246 323 591

NG5H0 841 703 1,477 1,806

LG50 2,267 2,744 1,247 1,014

LGA50 6,368 7,500 2,390 1,991

Cell 1
Cell 2 HyDA: Individual | HyDA: Colored SPAdes IDBA-UD
Genome Fraction 21.476 39.475 48.457 34.263
Unaligned bases 51,370,608 69,705,649 226,346,470 91,371,598
Unaligned (%) 98.01 96.96 98.95 98.28
Misassemblies 17 1 58 83
N50 293 245 302 530
NG5H0 835 715 1,468 1,811
LG50 2,275 2,719 1,255 893
LGA50 Not provided Not provided | Not provided | Not provided
Cell 2
Cell 3 HyDA: Individual | HyDA: Colored SPAdes IDBA-UD
Genome Fraction 82.41 85.138 90.153 87.424
Unaligned bases 105,001,905 107,105,806 260,637,410 | 124,303,766
Unaligned (%) 95.42 95.17 97.82 96.72
Misassemblies 12 2 25 133

N50 291 269 287 680

NG5H0 946 900 1,861 3,478

LG50 2,096 2,196 991 462

LGA50 4,423 5,802 2,010 535

Cell 3
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Cell HyDA: Individual | HyDA: Colored SPAdes IDBA-UD
Genome Fraction 68.313 79.72 84.665 78.146
Unaligned bases 52,236,468 63,613,878 168,613,345 | 79,390,396

Unaligned (%) 93.54 93.03 97.36 95.56
Misassemblies 7 2 30 95
N50 328 251 361 618
NG50 929 739 1,812 2,330
LG50 2,064 2,633 969 707
LGA50 3,524 6,115 1,549 916
Cell 4

Cell HyDA: Individual | HyDA: Colored SPAdes IDBA-UD
Genome Fraction 77.521 83.974 88.484 84.306
Unaligned bases 48,072,495 58,321,699 154,999,418 | 74,215,898

Unaligned (%) 92.01 91.96 96.88 94.91

Misassemblies 7 2 25 129

N50 327 247 347 611

NG50 931 724 1,742 2,715

LG50 2,012 2,681 972 573

LGAS50 3,096 5,827 1,460 657
Cell 5

Table 4.9: The assembly results of single-cell MALBAC data sets are not reliable due to high number of
chimeric contigs. Also, more than 90% of the contigs are error and are not aligned to their target genome.
Furthermore, the low N50 and NG50 indicates lack of contiguity information. This evaluation is done by
QUAST for assembly of E. coli cells 1-5 datasets as reported previously [8] using HyDA (individual and
colored), IDBA-UD, and SPAdes [5]. All statistics are based on contigs of size > 100 bp.

chimeric assemblies by detecting and separating shared and exclusive pieces of sequence for
input data sets. This suggests that in lieu of single cell assembly, which can lead to failure
and loss of the sample or significantly increase sequencing expenses, the co-assembly method
can hedge against that risk. Our single cell co-assembler HyDA proved the usefulness of
the co-assembly concept and permitted the study of three bacteria. The improved assembly
gave insight into the metabolic capability of these microorganisms thereby proving a new tool
for the study of uncultured microorganisms. Thus, the co-assembler can readily be applied
to study genomic content and the metabolic capability of microorganisms and increase our

knowledge of the function of cells related to environmental processes as well as human health

and disease. The colored de Bruijn graph uses a single k-mer size for all input data sets,
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HyDA SPAdes IDBA-UD
Individual | Colored | Iterative | Single k
Cell 1 98.36 8.17 291.59 325.68 236.18
Cell 2 134.58 7.7 417.8 431.96 325.22
Cell 3 40.88 11.09 171.56 154.81 89.12
Cell 4 70.17 9.14 207.70 228.09 159.66
Cell 5 52.85 10.32 154.58 178.95 117.29
Number of Mismatches per 100 kbp
HyDA SPAdes IDBA-UD
Individual | Colored | Iterative | Single k
Cell 1 12.02 0.56 33.6 35.85 30.37
Cell 2 15.35 0.49 42.18 45.57 35.92
Cell 3 5.07 1.24 16.69 16.47 12.15
Cell 4 7.98 0.92 22.71 25.67 19.20
Cell 5 6.73 0.95 17.66 21.00 16.0

Number of indels per 100 kbp

Table 4.10: Number of error per 100 kbp: Co-assembly purifies the chimeric contigs of noisy data sets and
decreases the error rate. The evaluation is done by QUAST [4] for assembly of E. coli cells 1-5 [8] using
HyDA (individual and colored) and IDBA-UD and SPAdes [5]. To indicates that the high error is not due
to the iterative algorithm, the result of SPAdes assembly with single k = 55 is included. All statistics are
based on contigs of size > 100 bp.

which has to be chosen based on the minimum read length across all data sets. For instance,
Smithella MEKO03 input reads are longer (58 bp) than the reads in some of the other data
sets, while the Smithella MEK(3 assembly contains many short contigs because of the small
k-mer size (k=25) dictated by the shorter reads. This minor disadvantage can be remedied

by using advanced assembly features such as variable k-mer size, which also can recover more

contiguity information even in the case of similar length for all input read sequences.



62

5 ITERATIVE ASSEMBLY USING VARIABLE K

5.1 Introduction

Today, de Bruijn graph approach is adopted by many de novo assembly tools to
sequence a genome using short reads generated by next generation sequencing platforms
[50, 49, 32, 44]. Each vertex of a de Bruijn graph represents a unique subsequence of a
specific length k, which is called k-mer. Existing an edge from vertex a to vertex b indicates
that only the first character of @ and the last character of b are different and hence the rest
of k — 1 characters of their sequence are identical. That is, connected vertices in the graph
are consecutive in a read and also each read is represented by a path of k — 1 vertices. After
the graph construction stage, the errors (nodes with low coverage value) are eliminated and
the pruned graph is condensed to conclude the assembly process. The final result of the

assembly process is a set of condensed nodes, which are called contigs.
Some important challenges of assembly using de Bruijn graph are [43]:
e errors and contamination, which generate incorrect k-mers.

e low covered or blackout regions, which break the graph into some disconnected sub-
graphs; especially when the £ is large.
e repeated regions, which introduce branches; especially when the k is small.
The assembly process is extremely sensitive to the value k. To have a high quality
assembly result, k should be chosen carefully. When a small £ is used, many k-mers are
overlapped with large number of regions along genome and this repetitious regions make

many branches in the de Bruijn graph, and consequently generate short contigs. Therefore,
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the final result is a set of short contigs, which does not contain much contiguity information.

The evaluation factors such as N50 and largest contigs of such assembly are poor.

However, increasing k does not necessarily improve the quality of assembly since the
number of gaps (especially in the low covered regions) grows when the graph is constructed
with a high value of k. In this case, many consecutive regions of the genome are disconnected

in the graph due to the lack of overlap between their representing k-mers.

To have a high quality assembly result that preserves the contiguity information, the
k value should be chosen intently. An alternative method of assembling a genome using a
single efficient k is an iterative assembly using number of different k. This type of assembly
can benefit from the advantages of both small and large k. In each round of this method,
the assembly is re-done by an increasing k. The short contigs generated in the an iteration
with small k, fill the gaps between longer contigs generated by larger k£ in the next round and
concatenate them. Hence, the assembly result contains the contiguity information obtained
by both small and large k. The method is used in some single cell assembly tools such as

SPAdes [5] and IDBA-UD [9].

5.2 Variable k£ Graphs

Iterative assembly with variable k outperforms an assembly method that uses a con-
stant k in the term of contiguity information [5, 9]. In each round of a simple iterative
assembly process, the contigs generated in previous round are added to the primary se-
quencing read dataset and the the augmented dataset (consisting of the sequencing read and

the contigs of previous round) is assembled using a new k.

Besides adapting the method to the colored de Bruijn graph, we introduce a new
structure to use as the information holder to help each iteration to benefit from previous
one. In each iteration, HyDA combines the read dataset and the result of previous round,

then, assembles the extended dataset with the new parameters assigned to current round
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(such as k and cut-off). The assembly information of each round used in the next iteration
are the information stored in a novel structure called extended contig. A colored extended
contig is the longest path of contigs of corresponding color without any ambiguity. Figure 5.1
illustrates the construction of colored extended contigs. The graph for each colored dataset
is extracted and then the extended contigs are built for each extracted uni-colored graph.
The nodes with one incoming/outgoing edge are covered in extended contig sets once, while
nodes with more than one incoming/outgoing edge appear in a number of extended contigs

(see Figure 5.1).

Figure 5.1-a represents a colored de Bruijn graph, which contains the nodes of red
and blue datasets. Uni-colored nodes are displayed in their own color and bi-colored node
are illustrated in black. Figure 5.1-b represents the red de Bruijn graph inside the graph
(a), which is a de Bruijn graph considering only the red nodes. Neglecting blue nodes
removes a branch and generates a long one-in-one-out red path. Figure 5.1-c¢ displays the
extended paths of the graph (b). Extended contigs are the condensed nodes of the extended
paths, which are AAGTCGAGGCTCTAGAGAG, AAGTCGA, CGAAGCTATAGGA, and
CGAAGCCTAAGGA. The contig CGAAGC appears in 3 extended contigs.

Each colored read dataset is aggregated to its own extended contig set and re-
assembled with a new k in the next iteration. To have a more accurate and sensitive assembly,
each round has its k also its own € and cut-off. Hence, HyDA accepts different parameters for
each round. In fact each assembly round in HyDA is dependent to previous ones only by the
number of colors and the generated extended contigs. Algorithm 2 is the pseudo-code of each
assembly iteration and Algorithm 1 is the pseudo-code of the whole iterative co-assembly

method.
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AAGTCGA  CGAG _——
GAGGCT __""'-——-—_..: TAGA  AGAG

GCTTTAG

AGCTATAGG

AGGA

AGCCTAAGEG

(a) A colred de Bruijn graph of color blue and red. The bi-colored nodes are represented in
black

AGCCTAAGG

(b) The red de Bruijn graph extracted from graph (a)

(c) Extended paths from graph (b)

Figure 5.1: The procedure of generating extended contigs, from a bi-colored graph is illustrated (a) rep-
resents a bi-colored (red and blue) de Bruijn graph,Uni-colored nodes are displayed in their own color and
bi-colored node are illustrated in black. (b) represents the extracted red de Bruijn graph. (c) displays the
extended paths (extended contigs) of the red graph (b).
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Algorithm 1 :Pseudo-code for iterative assembly using variable & by HyDA

function ITERATIVE-CO-ASSEMBLY (kset, cset, R)
Initialize ExtendedContig to empty sets of size MAXCOLORS.
for <o =1... NumberofIterations:> do
ExtendedContig < ITERATION(ksetli], ci], R, ExtendedContig)
end for
return ContigSet
end function

Algorithm 2 Pseudo-code for assembly for each iteration by HyDA

function ITERATION(k, ¢, R, ExtendedContig)
for<i=1... MAXCOLORS:> do
R[i] = R[i] U ExtendedContigli]
Graph <~ CONTRUCTGRAPH(k, R)
ExtendedContig <+ CONDENSEGRAPH(k, Graph)
end for
return FExtendedContig
end function

5.3 Results

5.3.1 Datasets

The single cell datasets we used are the ones published by [1]. They are one S. aureus

and two E. coli isolated single cells; their genomes were extracted and amplified indepen-

dently with MDA. Each amplified DNA was sequenced a number of times (the amplified

DNA of S. aureus was sequenced in 2 lanes of Illumina GAIIx with an average coverage

of ~ 1800x per lane; the resulting amplified DNA of first and second E. coli cells were

sequenced in 4 and 3 lanes of [llumina GAIIx in 100 bp long reads with an average coverage

of ~ 600x per lane respectively). Therefore, we have 9 lanes of genomic MDA sequenced

from two E. coli biological replicates and one S. aureus in which the average coverage of

each S. aureus lane is three times that of each E. coli lane.
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Data set | No. of blackouts | Mean length | N50 Total (%)
lane 1 94 1220 5,558 | 84K (1.8%)
lane 2 91 1183 4,700 | 77K (1.7%)
lane 3 92 1159 5,842 | 77K (1.7%)
lane 4 88 1225 6,156 | 76K (1.7%)
lane 6 50 193 518 | 5K (0.1%)
lane 7 63 153 456 | 5K (0.1%)
lane 8 61 185 573 | 6K (0.1%)

All lanes 0 0 0 0 (0.0%)

Table 5.1: The number, mean length, N50, and total size (percentage) of blackout regions in the E. coli
datasets reported previously [1].

5.3.2 Experiments

The strategy used by HyDA is based on using the information of all co-assembled
datasets to improve the assembly result of each. Having datasets of various genomic type
cannot corrupt the assembly results and generate chimeric assemblies since HyDA distin-
guishes between co-assembled datasets and keeps the information of each separately. To
show this capability, we chose one E. coli MDA dataset from the datasets explained above
based on maximum N50 of of blackout regions (see Table 5.1) and assembled it with some
well-known single cell assembly tools and compared the results with the assembly of this
dataset with HyDA when it is co-assembled with other MDA datasets explained above.
Velvet-SC [1] are run with & = 55 and auto error cut-off. SPAdes [5], IDBA-UD [9], which
are iterative assembly tools with variable &k are run in default mode (without read error
correction). HyDA was run with k= 21,33,55, similar to SPAdes with cutoffs 5,10,20 respec-

tively. Other variables were default.

5.3.3 Evaluation of Assemblies

We used Quast [4] which is a standard assembly evaluation tool. Table 5.2 displays
the evaluation results when contigs larger than 100 bases are considered. To compare more
evaluation factors, such as the number of missing bases, Quast was run in Gage mode, in

which the evaluation results generated by Gage [2] is provided.
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Assembly IDBA-UD | SPAdes | Velvet-SC HyDA
Total length 4,872,368 | 4,951,781 | 4,653,766 | 5,266,742
Unaligned length 408,740 | 491,827 | 325,988 679,777
Missing ref bases 137,100 125,296 26,1858 1,576
% 2.95 2.70 5.64 0.03
# misassemblies 179 1 1 0
# misassembled contigs 84 1 1 0
Misassembled contigs length 60,936 24,274 24188 0
# mismatches per 100 kbp 2.01 5.59 2.98 1.20
# indels per 100 kbp 0.23 0.56 1.65 0.13
N50 46,468 29,753 17,039 40,158
NG5H0 49,042 32,596 17,039 44,908
NA50 46,468 29,753 16,963 40,158
NGA50 49,042 32,596 16,969 44,908
g-Corrected NGH0 48,854 32,362 16,774 44,741
Largest contig 129,001 121,162 120,295 221,405
Largest alignment 129,001 121,109 120,295 221,352

Table 5.2: The evaluation results obtained from Quast [4] for assembly of E. coli using Velvet-SC [1],
SPAdes [5], IDBA-UD [9], and HyDA. HyDA result is the extracted assembly of an iterative k co-assembly
of 9 MDA lanes from two E. coli and one S. aureus cells. All statistics are based on contigs of size > 100
bp. Quast was in Gage mode.

The advantages of using co-assembly method is related to retrieving blackout regions
due to MDA bias and detecting more bases. HyDA covers almost all the genome and only
misses small regions of size 1,576 bases, which is 0.03% of the genome, while other tools
loose more than 100 times more, in which IDBA-UD, SPAdes, and Velvet-SC miss 137,100
bp (about 2.95%), 125,296 bp (about 2.70) and 261,858 bp (about 5.64%) respectively. The
technique to find blackout regions works for both genome and contamination. Hence, as
the number of detected bases increases, more contamination regions (unaligned bases) are

assembled too.

The quality of the co-assembly result in other evaluation factors is better or at least
similar to other presented tools. One important evaluation factor is related to the misas-
semblies and number of chimeric contigs. Quast defines misassembled contigs as chimeric
contigs in which flanking sequences are located more than 1kbp afar each other in the refer-

ence genome. These There is no misassembly in the result generated by HyDA while Spades,
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and Velvet-SC generate one misassembly contig respective 24,274 bp, and 24,188 bp long.
On the other hand, 84 contigs of IDBA-UD assembly in total of 60,936 bp are misassemblies
and Quast reports 179 misassembly errors in the IDBA-UD result. This suggests that IDBA-
UD mistakenly concatenates contigs, which increases both the number of misassemblies and

contiguity evaluation factors, such as N50 family.

Quast defines N50 as the length in which those contigs longer than it cover half of the
assembly; NG50 is similar to N50 except that reference genome; NA5Q is similar to N50 and
NGAS5O0 is similar to NG50 except they are calculated based on the aligned and corrected
contigs, in which misassembled contigs are broken out based on the alignment location.
These definitions are similar in other genomic quality assessment tools [?], [2], and [3] and
display the ability of the assemblers in generation of longer contigs as one important factor
of a good assembly. The 40 kbs N50 of the assembly generated by HyDA is longer than
the N50 generated by Velvet-SC and SPAdes which are about 17 and 30 kbs respectively.
Although the HyDA Nb50 is shorter than the 46 kbs N50 generated by IDBA-UD, IDBA-
UD gains this high value by loosing the accuracy and generating a significant number of
misassembly errors. Similar to N50, HyDA generates a high NG50, which is about 45 kbp,
while IDBA-UD, SPAdes and Velvet-SC generates N50s, about49, 32, 17 kbp respectively.
Since there is no error in HyDA assembly its N50 and NA5O are exactly the same like its
NG50 and corrected NG50. However, other tools’ assemblies contain misassemblies and their

corrected factors, NA5O and NGA50, are slightly different from N50 and NG50.

The strength of co-assembly process (to find more bases) and iterative co-assembly
(to keep more contiguity information) is displayed in Table 5.3 when these type of assemblies
are compared to the simple assembly of a single MDA with a constant k. All assemblies are

done by HyDA in various mode with final k=55 and final coverage cutoff=20.

5.4 Time and Space Complexity

The procedure of generating a genome assembly using de Bruijn graph can be divided

into 4 processes, which each has its own computational requirements. The first process is to
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individual assembly | co-assembly | iterative co-assembly
Genome fraction (%) 92.512 97.455 98.388
N50 30,285 36,320 40,993
NG50 30,285 40,595 44,741
Largest contig 132,865 179,118 221,501

Table 5.3: Comparison between individual assembly, co-assembly and iterative co-assembly with HyDA.

generate k-mers from the sequencing reads. Having n reads of length d gives n(d — k + 1)

k-mers. Hence, the time and space complexity of the generating k-mer process is O(n).

The next step is to construct de Bruijn graph, which is the main bottleneck in the
term of computational complexities. Since each vertex in the graph represents a unique k-
mer sequence, the total number of the nodes (if there is no error) will not exceed the number
of k-mers generated from the target genome sequence. That is, the number of vertices is less
than G — k41 for a genome of size G. However, there are some errors in the sequencing read
dataset, which are represented by some vertices in the de Bruijn graph. On the other hand,
repeated subsequences in the genome and also the sequence gaps in the dataset information
reduce the number of de Bruijn graph nodes. Generally, the number of nodes are sensitive to
the number of repeats in the genome, the sequencing read coverage, and error rate (including
contamination and missing bases) [44, 57]. In the case of having resealable depth of coverage,
the genome size G is much less than the total length of reads, and the maximum number
of vertex is O(G). Obviously, more repentant in the genome means less the number of
vertex.

To add each k-mer to the graph, the whole de Bruijn graph should be examined to find
a sequence match. If the matched sequence exists, the coverage of the vertex is increased
once, unless a new vertex is generated and added to the graph. The search can be done
by various methods. For example, a search strategy based on the Dijkstra algorithm can
be done using a Fibonacci heap in a time of O(vlogv) in which v is the number of vertex
[58].

After graph construction, the process of error removal and graph condensation is

done. The required time for this stage is dependent to the cut-off threshold. Since in the
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single cell sequencing methods, we use an iterative error removal process with different cut-off

threshold in each round, the time complexity is much sensitive.

In co-assembly process, the number of iterations is constant for all colored dataset.
The maximum cut-off value and increasing value for each step are calculated for all colored
datasets based on the single value Threshold and each colored average coverage obtained
from the Graph (See Algorithm 3).

Let T = {t1,ta,t3,...,t,} be a set of cut-off threshold of n co-assembled dataset

and A = {ay,as,as,...,a,} be the average coverage of those datasets. If M represents the

maximum threshold, which is the cut-off parameter of HyDA, the items in T set are:

Vt,eT: {t; = M x a;} (5.1)

Let the number of iterations is represented by N. The number of iterations is de-
pendent to the maximum cut-off threshold. In co-assembly, the number of iterations is
calculated based on the largest dataset, which is the one with the largest average coverage

and represented by MAX(T):

N =Max(T)—-1 (5.2)

The cut-off threshold for the largest dataset is incremented once in each iteration.
Other co-assembled datasets have their own incremental value. Let V = {vy,vo,v5,...,v,}

is the incremental value set for the n co-assembled dataset. Its items are calculated:

N
Vo, e Vi {u; = T 1} (5.3)

On the other hand, the time required for condensation is dependent to number of
vertex. The number of vertex in each iteration is different based on the eliminated vertices

as error and the re-condensed nodes. Obviously, the Maximum number, v, is when we want
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Algorithm 3 :Pseudo-code for Calculating Normalized cutoff and the increasing value for
each round
1: function CALCULATE-CUTOFF(Graph, Threshold)
2: Initialize totalCoverage, AverageCoverage, normalizedCutof f, step to empty sets
of size MAXCOLORS.
Initialize AverageCoverage to empty sets of size MAXCOLORS.
Initialize totalSize to Zero.
for all node € Graph do
totalSize < totalSize + node.size() — k + 1
totalCoverage < totalCoverage + node.coverage()
end for
AverageCoverage < totalCoverage/ totalSize
10: normalizedCutof f < AverageCoverage * Threshold
11: step < normalizedCutof f/ normalizedCutof f.maz()
12: return step
13: end function

to condense the graph for the first time (before pruning the graph). After that, we will have
less number of nodes and more contiguity information.
Finally, after the last error removal/condensation process, the augmented nodes are
reported as the final result and are printed out as the contig set.
In HyDA, we do the assembly process in three steps:
1. import
2. assemble-unitig

3. assemble-finish

5.4.1 Import

In the first step, import, we take all the reads and do some preprocess on them,
including removing non-informative data and assigning library number, in time and space
of O(N), in which N is the total length of the reads. There is no difference between colored
and normal assembly in this stage. Figure 5.2 time complexity for import process based
on 9 datasets of 2 of E. coli cells and one S. aureus explained before [1]. The number of
reads for each dataset them and the exact required time for import are indicated in table

0.4.
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Cell Dataset | number of reads | time (s) | time/read
Dataset 1 29 M 432 1.50 x 1072

. Dataset 2 32 M 486 1.54 x 1072

B coli- Cell 11 1y, toset 3 32 M 490 | 1.51 x 1072
Dataset 4 32 M 486 1.51 x 1072

Dataset 5 27 M 411 1.50 x 1072

E. coli- Cell 2 | Dataset 6 26 M 400 1.51 x 1072
Dataset 7 24 M 371 1.52 x 1072

Dataset 8 67 M 1023 | 1.53 x 1072

S. aureus Dataset 9 66 M 1013 | 1.53 x 1072

Table 5.4: The number of reads and time required to import them for 9 datasets of 2 of E. coli cells and
one S. aureus cell [1].

Import
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Figure 5.2: The time complexity of import stage of HyDA is illustrated based on the real data of 9 lanes
of emphE. coli and S. aureus cells [1]. The slope is 0.015. The exact number of reads for each dataset
is presented in Table 5.4. Each points indicated the time required for importing reads of an accumulated
datasets start from dataset 1 to the aggregated of datasets 1-9.



74

Cell Dataset | number of reads | time (s) | time/read
Dataset 1 29 M 406 x 10° 1.41
. Dataset 2 32 M 464 x 10° 1.47
B coli- Cell 11 by taset 3 32 M 450 x 10° | 1.38
Dataset 4 32 M 452 x 10° 1.41
Dataset 5 27T M 385 x 10° 1.41
E. coli- Cell 2 | Dataset 6 26 M 388 x 10° 1.47
Dataset 7 24 M 363 x 10° 1.49
Dataset 8 67 M 897 x 10° 1.34
S. aureus Dataset 9 66 M 930 x 10° 1.40

Table 5.5: The number of reads and time required for assemble-unitig based on 9 datasets of 2 of E. coli
cells and one S. aureus cell [1]. The de Bruijn graph is constructed by k=21.

5.4.2 Assemble-Unitig

The next stage of HyDA assembly, assemble-unitig, is dedicated to the graph con-
struction and also the first round of graph condensation (before error removal). The only
difference between normal and colored method in this stage is related to the coverage in-
formation for each vertex. The information of the coverage in colored de Bruijn graph
is stored in an array of size ¢, which is the color number up to a compile time constant
MAXCOLORS, while there is only one coverage value for each vertex of normal de Bruijn
graph. Since the number of colors is a constant with a small value (in compare with number
of reads), the required time and complexity for both method (with identical input datasets)

are not different and both are linear. (See Figure 5.5 and Table 5.5).

5.4.3 Assemble-Finish

The last step, assemble-finish, is allocated to iterative error removal and reporting
the final output sets. Although the process of colored and normal assemble-finish process
are pretty similar, the suitable cut-off threshold for each of assembly and co-assembly are
different when identical datasets are assembled since the cut-off threshold should be chosen
based on average depth of coverage. When the number of colored datasets are co-assembled

each of them has its own average coverage. On the other hand, for mixed assembly, the
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Figure 5.3: The time complexity of assemble-unitig stage of HyDA is illustrated based on the real data
of 9 MDA lanes of E. coli and S. aureus cells [1]. In one experiment set, the datasets are assembled using
colored de Bruijn graph. In the other experiment set, the datasets are mixed together and assembled using
a normal uni-colored de Bruijn graph. The time required for assemble-unitig process for both colored and
normal de Bruijn graph is similar. The process is done for k¥ = 21. The slope is 1.4. The exact number
of reads is presented in Table 5.5. Each points indicates the time required for running assemble-unitig
on reads of an accumulated datasets. The first experiment is based on dataset 1 and the last experiment is
based on the aggregation of datasets 1-9.
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Cell Dataset | number of reads | time (ms) | time/read
Dataset 1 29 M 5.8 x 10° | 2.0 x 1072

. Dataset 2 32 M 6.4 x 10° | 2.0 x 1072

B coli- Cell 11 1y toset 3 32 M 6.2 x 10° | 1.9 x 1072
Dataset 4 32 M 6.3 x 10° | 1.9 x 1072

Dataset 5 27T M 4.7 x 10° | 1.7 x 1072

E. coli- Cell 2 | Dataset 6 26 M 4.4 x 10° | 1.7 x 1072
Dataset 7 24 M 4.6 x 10° | 1.9 x 1072

Dataset 8 67 M 2.6 x 10° | 0.4 x 1072

S. aureus Dataset 9 66 M 2.8 x 10° | 0.4 x 1072

Table 5.6: The number of reads and time required for assemble-finish based on 9 datasets of 2 of F. coli
cells and one S. aureus cell [1]. The de Bruijn graph is constructed by k=21.

datasets are accumulated and assembled as one dataset with an average coverage. Therefore,
in the normal assembly, there is only one maximum cut-off threshold and one fixed increment
value. On the other hand, an array of maximum cut-off threshold is generated in colored
assembly, in which each item is allocated to a color. The values of this array are based on the
depth of coverage of that particular colored dataset, which are calculated using a maximum

cut-off constant and simple normalization process.

The process of error removal in colored assembly process is more time consuming
since to prune the graph, each node should be examined for each colored valued (colored
coverage and colored cut-off threshold). Another part of assemble-finish is generating
contig/extended-contig set. The process of generating extended contigs and outputting
contig/extended-contig set is done in the number of colors time when is is done only once for
normal assembly. Therefore, the colored assemble-finish process is longer that the normal

one (See Figure 5.4 and Table 5.6).

5.4.4 Iterative Assembly

To improve HyDA in the term of contiguity, the assembly process (including import,
assemble-unitig, and assemble finish) is done number of time with various k using

the information provided by previous rounds. This information is stored in an extra data
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Figure 5.4: The time complexity of assemble-unitig stage of HyDA is illustrated based on the real data
of 9 MDA lanes of E. coli and S. aureus cells [1]. In one experiment set, the datasets are assembled using
colored de Bruijn graph. In the other experiment set, the datasets are mixed together and assembled using
a normal uni-colored de Bruijn graph. Colored assembly requires more time for assemble-finish process.
The process is done on the unitigs generated by k = 21 and specified in Figure 5.3. The exact number of
reads is presented in Table 5.5. Each point indicates the time required for running assemble-finish on
reads of an accumulated datasets. The first experiment is based on dataset 1 and the last experiment is
based on the aggregation of datasets 1-9
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structure, called extended contig set. It is shown that the required recourses for HyDA to
assemble a number of reads as uni-colored or multi-colored data is similar in import and
assemble-unitig process (see Figure 5.2, 5.3). However, assemble-finish in co-assembly

process is longer than the process of normal uni-color assembly (see Figure 5.4).

In iterative assembly, each round is done with a different k£ and different cut-oft
threshold. Although the required resources for import and assemble-unitig are similar
for uni-colored and colored assembly, these requirements are varied for iterative uni-colored
assembly and co-assembly since only the input of first iteration is similar for them and next
assembly rounds are done using the information generated from previous iteration (which is

not similar).

Iterated colored assembly (co-assembly) and uni-colored assembly, in which the col-
ored datasets are mixed together and assembled as one dataset, are compared in term of
required resources. Also, we compare HyDA with IDBA-UD [9] and SPAdes [5]. Figure
5.5 and Table 5.7, regarding the required time, indicate that the colored HyDA and mixed
HyDA assembled the same datasets at the same duration (colored HyDA is slightly longer).
IDBA-UD takes less time to assemble the same datasets and SPAdes is significantly longer

in compare with other methods.

Figure 5.6 and Table 5.8 are regarding required memory. Table 5.8 compares the
required Virtual Memory Size (VSZ) for each experiment. Figures compares the percentage
of maximum Virtual Memory Size (VSZ) divided total memory. They indicate that the
colored and mixed HyDA occupy the same memory while IDBA-UD requires slightly less

and SPAdes required significantly more memory.

Figure 5.7 compares the maximum required CPU for HyDA, IDBA-UD and SPAdes.
It indicates colored and mixed HyDA needs the same CPU, which is more than the one,
required by IDBA-UD and SPAdes. It should be noted that although IDBA-UD assembles a
genome while it use less resources (time, memory, and CPU), its result is less accurate than

the other compared methods (See Table 5.2). The experiments also indicate that the colored
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Datasets | total Reads | HyDA-Colored | HyDa-Mixed | IDBA-UD | SPAdes
1 29 M 105 105 65 217
1-2 60 M 225 220 155 455
1-3 93 M 325 300 255 720
1-4 125 M 435 435 330 1080
1-5 152 M 520 510 395 1280
1-6 179 M 610 600 465 1560
1-7 203 M 690 670 545 1760
1-8 270 M 915 850 613 2080
1-9 336 M 1060 960 680 2430

Table 5.7: The comparison between IDBA-UD [9], SPAdes [5], and HyDA (colored and mixed) in the term
of required Virtual Memory Size (KByte) is shown. The datasets are the sequencing reads of 9 MDA lane
of 2 of E. coli cells and one S. aureus cell [1], which their exact number of reads are displayed in Table
5.4. For each experiment, the indicated datasets are aggregated and assembled by Spades, IDBA-UD and
HyDA-Mixed, while they are co-assembled by HyDA-Colored.

Datasets | total Reads | HyDA-Colored | HyDa-Mixed | IDBA-UD | SPAdes
1 29 M 1.6 x107 1.6 x107 1.3 x107 3.0 x10”
1-2 60 M 2.6 x107 2.6 x107 2.0 x107 5.8 x107
1-3 93 M 3.2 x107 3.2 x107 2.6 x107 8.4 x107
1-4 125 M 3.8 x107 3.8 x107 3.1 x107 | 10.8 x107
1-5 152 M 4.5 x107 4.5 x107 3.7 x107 | 12.8 x107
1-6 179 M 4.8 x107 4.8 x107 4.1 x107 | 14.6 x107
1-7 203 M 5.4 x107 5.4 x107 4.5 x107 | 16.3 x107
1-8 270 M 6.0 x107 6.6 x107 5.1 x10" | 17.9 x107
1-9 336 M 6.3 x107 6.3 x107 5.5 x107 | 19.4 x107

Table 5.8: The comparison between IDBA-UD [9], SPAdes [5], and HyDA (colored and mixed) in the term
of required time (minutes) is shown. The datasets are the sequencing reads of 9 MDA lane of 2 of E. coli
cells and one S. aureus cell [1], which their exact number of reads are displayed in Table 5.4. For each
experiment, the indicated datasets are aggregated and assembled by Spades, IDBA-UD and HyDA-Mixed,
while they are co-assembled by HyDA-Colored.

and Mixed HyDA require the same resources when co-assembly generates more accurate

results (see Table 3.3 and Table 5.2).

5.5 Summary

To overcome the problem of contiguity loss due to limitation of k&, we have improved
HyDA by implementing the idea of iterative assembly using variable k , which is the method
that employed by SPAdes [5] and IDBA-UD [9]. We modified the idea of iterative assembly
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Figure 5.5: The comparison between IDBA-UD [9], SPAdes [5], and HyDA (colored and mixed) in the term
of required time is shown. The datasets are the sequencing reads of 9 MDA lane of 2 of E. coli cells and one
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in Table 5.7.
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indicated in Table 5.8.
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Figure 5.7: The comparison between IDBA-UD [9], SPAdes [5], and HyDA (colored and mixed) in the term
of required CPU is shown. The datasets are the sequencing reads of 9 MDA lane of 2 of F. coli cells and
one S. aureus cell [1], which their exact number of reads are displayed in Table 5.4. For each experiment,
the indicated datasets are aggregated and assembled by Spades, IDBA-UD and HyDA-Mixed, while they
are co-assembled by HyDA-Colored. The experiments are done using 64 cores.
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and adapted it with the colored de Bruijn graph. Also, we introduced a new data structure,
called extended contig, which is used in iterative assembly to preserve more contiguity infor-
mation. The result of iterative HyDA is compared with the result generated by SPAdes and
IDBA-UD. The comparison shows the strength of HyDA in term of all the evaluation fac-
tors except N50, which IDBA-UD works better. Although, IDBA-UD slightly outperforms
HyDA in the terms of N50, the high error rates in IDBA-UD result indicates that the good
performance on providing high contiguity information is obtained by loosing the accuracy,
which make the IDBA-UD result unreliable. While, with the similar error rate, HyDA out-
performs SPAdes in the therm of N50. Moreover, HyDA detects more bases of the genome
due to the strength of colored assembly method using colored de Bruijn graph. Finally, we
compared co-assembly method with others in the terms of the resource requirement. The
comparison indicates that when we assign a unique color to each dataset and co-assembled
them with HyDA instead of aggregating datasets and assembling them as one mixed dataset,
the required resources are pretty similar (co-assembly is slightly more resource consuming
than uni-colored assembly). Moreover the comparison results show that SPAdes consume
requires more time and memory (and less CPU), while IDBA-UD requires less resources,
which is expected since IDBA-UD does not preserve the accuracy and generates results with

high error rate.
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6 CONCLUSION

6.1 Summary of Original Contribution

Algorithmic paradigms for fragment assembly, such as overlap-layout-consensus and
de Bruijn graph, depend on the characteristics of sequencing reads, particularly read length
and error profile. Overlap-layout-consensus is a paradigm that is usually applied to assembly
projects using long reads, and the de Bruijn graph is another widely adopted paradigm that
is used for short read data sets [59]. A number of consecutive k-mers (a sequence of length k
nucleotides) replace each read in the de Bruijn graph paradigm. Each k-mer is represented
by a unique vertex. An edge is present between two vertices if there is a read in which the
two respective k-mers are consecutively overlapping. When there are at least k£ consecutive
common bases, reads share a vertex (respectively k + 1 common bases for an edge) along

which contigs are efficiently constructed.

Colored de Bruijn graph is a method proposed for co-assembly of multiple short read
data sets [45]. It is an extension of the classical approach by superimposing different uniquely
colored input data sets on a single de Bruijn graph. Each vertex, which is a representation
of a k-mer, accompanies an array of colored multiplicities. In this way, input data sets are
virtually combined while they are almost fully tracked, enabling separation after assembly.
Igbal et al. proposed the colored de Bruijn graph in Cortex [45] for variant calling and
genotyping, whereas our tool Hybrid De novo Assembler (HyDA) [47] is developed for de
novo assembly of short read sequences with non-uniform coverage, which is a dominant

phenomenon in MDA-based single cell sequencing [1]. To fill the gaps and compare colors,
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contigs in HyDA are constructed in a color oblivious manner solely based on the branching
structure of the graph. First, this method rescues a poorly covered region of the genome in
one data set when it is well covered in at least one of the other input data sets . Second,
it allows comparison of colored assemblies by revealing all shared and exclusive pieces of

sequence not shorter than k.

Single cell sequencing, which was challenging and limited for years, is now acces-
sible and also attractive [36] for many scientific fields. It helps various type of research
and projects such as antibiotics discovery [60], Earth Microbiome Project (EMP) [34], and
Human Microbiome Project (HMP) [16]. The importance of the single cell sequencing is
partially related to the fact that only 1% of bacteria in the environment have been cultured
in the laboratory [35] since they need their natural habitant for cultivation. Also, single
cell sequencing can preserve the uniqueness of each cell and its individual mutations and
structural variations, which are valuable information, especially in cancer studies. Due to
its importance and benefit for other research fields, Nature called it Method of the Year
2013 [36].

Unfortunately, the DNA material of a single cell is not sufficient for sequencing and a
whole genome amplification procedure is needed to augment the femtograms material of one
cell, into micrograms of DNA material. Today, the dominant amplification method in single
cell sequencing technology is the Multiple Displacement Amplification (MDA) [15, 13, 37]
method even though it generates a coverage bias, in which the average coverage of the regions
are different in orders of magnitude. More preciously, the amplified sequences cover some
regions with high average coverage while some other regions are covered poorly or not covered

at all.

The uneven depth of coverage of a single cell dataset makes the result of de novo
assembly tools that consider only uniform sequencing depth [52, 61] inaccurate. This makes
the challenges of single cell sequencing more computational rather than experimental [52].

A novel computational solution proposed by [1] overcomes the complication of MDA uneven
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depth of coverage. The method is implemented into a tool named Velvet-SC [1] and adapted
by other subsequent single cell assembly tools such as SPAdes [5] and IDBA-UD [9], which
introduce further algorithmic features and outperform Velvet-SC [1].

However, even state of the art single cell assemblers, applying various computational
strategies, cannot assemble the regions that are not covered in the MDA (blackout regions).
We propose an elegant solution to retrieve those blackout regions using the information
hidden in other MDA datasets. It has been shown that many blackout regions in one MDA
dataset are fully covered in other MDA datasets.

Acknowledging this fact, we introduce a co-assembly strategy, which can fill the black-
out regions of a MDA dataset by using the information of other co-assembled MDA datasets
using the idea of colored de Bruijn graph [45].

Although, colored de Bruijn graph was first introduced for structural variation detec-
tion, we modified and implemented the algorithm for single cell sequencing. Furthermore,
our algorithm modifies the iterative k assembly algorithm, which is applied by SPAdes [5]
and IDBA-UD [9], and adapts it to the colored graph. It has been shown that the weakness of
the co-assembly is related to breaking contigs due to various colored branches [47]. Iterative
assembly with variable k overcomes the contiguity weakness. Obviously, co-assembling MDA
datasets of different species without common sequencing regions does not improve the assem-
bly result of each. Hence, to retrieve the blackout regions the co-assembled MDA datasets
should be of phylogenetically close species. However, there is no harm of co-assembling MDA

datasets of sufficiently distinct genomes or species.

6.1.1 Original contribution

The original contribution of this work is summarized:
e We present the colored de Bruijn graph and co-assembly process, which is implemented
in a single cell assembly tool, named HyDA (Hybrid De novo Assembler). We explain

the strategy the the proposed co-assembly mitigate the the uneven depth of coverage
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of single cell datasets due to amplification bias. Also, we describe how co-assembly can
retrieve poorly/not-covered reigns of a single cell dataset when they are fully covered
in another co-assembled dataset.

e We present an algorithm to assemble a genome using multiple MDA datasets that
are guessed to be identical. HyDA can verify whether the datasets are identical and
detect the outliers. By co-assembling the MDA datasets and removing the false contig
from the outlier datasets, HyDA assembles the genome with high quality. The most
important weakness of this problem is contiguity loss.

e We present how the co-assembly algorithm is extended for assembling various phylo-
genetically close genomes at a time by clustering the input MDA datasets.

e We present a modified version of HyDA based on iterative assembly using variable k.
in each iteration, besides the sequencing reads information, the data generated in last
iteration in the extendedcontig data format are used.

We outline this PhD work in Figure 6.1.

6.2 Future Research Direction

Many genetic fields today benefit from single cell sequencing technology. Sequencing
a genome using one individual cell is a widely employed technique in bacterial genomic
sequencing field since only 1% of bacteria in the world have been cultured in laborites.
Although single cell sequencing technology is a promising tool to approach many problems
in various other genetic areas such as cancer study [36, 62]. In this work, we only target
bacterial libraries which are categorized into libraries with known and un-known reference
genome. We used sequencing read datasets of E. coli and S. aureus cells (with known
reference genome) and sequencing read datasets obtained of from single cells of Anaerolinea,
Smithella, and Syntrophus species.

Bacterial genome are generally smaller than genomes of other species such as animals

and single cell eukaryotes and therefore contain less number of genes. They also contain
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less variant in size in compare with other genomes. Most bacteria have about millions base
pairs in their DNA ranging from 139 kbp [63] to 13,000 kbp.[64], containing a few thousand
genes. The E. coli genome is about size of the Bacterial genomes 4 million base pairs, which
is the average genome size for bacteria. On the other hand, the human genome is over 3
billion base pairs. That is, E. coli genome is about 0.1 % large as human genome. The
computational complexities factor such as time and space are directly related to the size of
sequencing read dataset. Obviously, larger genome (and larger depth of coverage) generates
larger read dataset. Generally, assembling a human genome and particulary co-assembling a
number of human genome is more challenging than a number of small size bacterial genome
in term of required cpu, memory and time. In this work, we didn’t handle the problems
related to shortage of resources due to small input datasets. Since single cell sequencing is
beneficial in many genomic studies of human genome, such as cancer research, one future
work is to study co-assembling number of human genomes and approach the challenges due
to large size of human genome. Moreover, bacterial genomes are simpler with less variant and
gene and less non-coding sequence in respect to human genome [65]. Also, human genomes
contain many repetitive regions, which is one main difficulty in de Bruijn graph and assembly
process. Thus, co-assembling number of human genome will introduce many new challenges,

which open new research projects.

Another possible further study in co-assembling genomes is related to the de Bruijn
graph variable factors such as cut-off and k. In this work, we use a single cutoff value
and calculate the normalized cutoff for each co-assembled dataset. In this work, the main
resource to chose the cut-off value is the depth of coverage. One further research is study
the impact of the quality of data, error rate, sequencing read length, genome size, and k£ on
error removal process which leads to proposing a new technique to calculate a proper cut-off
especially when there are various dataset in co-assembly method. Another important factor
that the assembly results are sensitive to is k& that de Bruijn graph is construct with. Since

each colored dataset has its unique characteristics such as depth of coverage, sequencing read



90
length, error rate, and probably reference genome, choosing a proper k is a complex task,
which needs more study. Especially when we use iterative assembly technique, the task is
more complicated. In this work we chose k set for iterative assembly based on the default
values proposed by SPAdes [5]. The impact of the combination of k& and cut-off series on the

quality of co-assembly result is an intrusting topic of research.

One benefit of using colored de Bruijn graph and co-assembly process is to cluster
colored datasets based on their genome sequence and decide whether they are of same families
or same reference genome. The algorithm we use in this work to determine the relationship
between co-assembled dataset is a simple technique. A new study on how to distinguish
between input datasets using colored de Bruijn graph is a promising research, which will

help to sequence new species with unknown reference genome.

Finally, HyDA can be improved by employing various modules used in state of art
assembly tools such as considering the information provided paired-end reads and aligning
reads to the graph. Obviously, all the methods should be adapted to colored de Bruijn graph.
Also, new studies are needed to explore the influence of these methods when we co-assemble

various type of datasets with different characteristics.
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ABSTRACT

EFFICIENT SYNERGISTIC DE NOVO CO-ASSEMBLY OF BACTERIAL
GENOMES FROM SINGLE CELL DATASETS USING COLORED DE
BRUIJN GRAPH

by
NARJES SADAT MOVAHEDI TABRIZI

December 2015

Advisor: Dr. Dongxiao Zhu
Major: Computer Science

Degree: Doctor of Philosophy

Recent progress in DNA amplification techniques, particularly multiple displacement
amplification (MDA), has made it possible to sequence and assemble bacterial genomes from
a single cell. However, the quality of single cell genome assembly has not yet reached the
quality of normal multi-cell genome assembly due to the coverage bias (including uneven
depth of coverage and region blackout) and errors caused by MDA. Computational methods
try to mitigates the amplification bias. In this document we introduce a de novo co-assembly
method using colored de Bruijn graph, which can overcome the problem of blackout regions
due to amplification bias. The algorithm is implemented in a tool named HyDA (Hybrid
De novo Assembler). HyDA can assemble various genome of phylogenetically close species
simultaneously whit a high quality while it can determine the genomic relationship between
each pair of co-assembled dataset based on their common and exclusive contigs. More-
over, Co-assembly can provide a high quality genome assembly from a number of guessed
to be identical single cell. Since our algorithm can detect the outlier, it can generate a
non-chimeric result with most recovered genome regions. Various techniques, such as itera-
tive assembly with multiple &, are employed in HyDA, which makes it a powerful de novo

assembly tool.
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