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chapter 1

Introduction

This dissertation mainly concerntrates on the study and applications of some significant prop-

erties in well-posedness and sensitivity analysis, which includes the notions of uniform metric

regularity, higher-order metric subregularity and its strong subregularity counterpart. For def-

initeness, we use the number q > 0 to indicate the order/rate of the corresponding regularity

under consideration. Recall first that a set-valued mapping F : X ⇒ Y between Banach spaces

is metrically q-regular at (better around) (x̄, ȳ) ∈ gphF if there exist a number η > 0 and

neighborhoods U of x̄ and V of ȳ such that

d
(
x;F−1(y)

)
≤ η dq

(
y;F (x)

)
for all x ∈ U and y ∈ V, (1.1)

where d(·; Ω) is the distance function associated with Ω. It has been well recognized in nonlin-

ear and variational analysis that metric regularity (q = 1) and the equivalent notions of linear

openness and Lipschitzian stability play an important role in optimization, control, equilibria,

and various applications as documented, e.g., in the books [5, 10, 21, 25] with many refer-

ences therein. On the other hand, metric regularity often fails for broad classes of parametric

variational systems given by the generalized equations in the sense of Robinson [24]:

0 ∈ f(x, y) +Q(y), (1.2)
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where f is single-valued while Q(y) = ∂ϕ(y) is a set-valued mapping of the subdifferen-

tial/normal cone type generated by nonsmooth functions; see [22] and also [2, 3, 4, 15, 17, 28] for

more details and further results in this direction. However, this phenomenon does not appear if

metric regularity is replaced by a weaker property of metric subregularity of F at (x̄, ȳ) defined

by

d
(
x;F−1(ȳ)

)
≤ η d

(
ȳ;F (x)

)
for all x ∈ U. (1.3)

Considering ‖x− x̄‖ instead of d(x;F−1(ȳ)) in (1.3), we get the notion of strong metric subregu-

larity. In the aforementioned books and in an increasing number of papers, the reader can find

more information about these subregularity properties, their calmness (resp. isolated calmness)

equivalents for inverse mappings, as well as their various applications to optimization.

In [6, 13, 27, 29], the authors studied the notion of Hölder metric regularity, which cor-

responds to (1.1) with the replacement of d(y;F (x)) by dq(y;F (x)) as 0 < q < 1. Replacing

d(ȳ;F (x)) by dq(ȳ;F (x)) in (1.3) as 0 < q < 1 gives us the notion of Hölder metric subregularity

considered recently in [14, 18, 19] from different viewpoints while without its strong counterpart.

It is essential to mention that there is no sense to study metric q-regularity of single-valued

or set-valued mappings for q > 1, since only constant mappings satisfy this property. However,

it is not the case for q-subregularity that is equally important whenever q > 0 as demonstrated

in this paper, where—to the best of our knowledge—the notion of q-subregularity for q > 1 is

studied and applied for the first time in the literature.

In what follows we investigate both notions of metric q-subregularity and strong metric

q-subregularity for any positive q concentrating mainly on the higher-order case of q > 1. In

this way we derive verifiable sufficient conditions and necessary conditions for these notions

of q-subregularity in terms of appropriate generalized differential constructions of variational
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analysis, study their behavior with respect to perturbations, and obtain their applications to the

rate of convergence of Newton’s and quasi-Newton methods for solving generalized equations.

Accordingly, we organize the rest of the paper. Chapter 2 contains some preliminaries from

variational analysis and generalized differentiation widely used in the formulations and proofs

of the main results given below. Chapter 3 is devoted to a detailed study of q-subregularity

of set-valued mappings between general Banach and Asplund spaces concentrating mainly on

subdifferential mappings. In addition to deriving verifiable conditions that imply and are im-

plied by these notions, we compare them (when appropriate) with the corresponding notions of

metric regularity and provide several numerical examples illustrating the new phenomena.

Chapter 4 studies behavior of strong metric q-subregularity as q ≥ 1 under parameter pertur-

bations. The obtained results, being of their own interest, allow us to establish the convergence

rate for Newton’s and quasi-Newton methods of solving generalized equations depending on the

order of the strong metric subregularity for the underlying set-valued mapping in the generalized

equation under consideration.

Chapter 5 is devoted to investigating metric q-subregularity for constraint system of the

form 0 ∈ f(x)−C, where f is a Lipchitzian mapping and C is a closed set. Verifiable sufficient

conditions as well as modulus estimation of q-subregularity are obtained through the approach

of projection points. In addition, we established a relationship between metric q-subregularity of

the constraint system and the 1
q -order growth condition on f for any positive order q. Concrete

examples are also given to illustrate the phenomena. The second part of this chapter concen-

trates on uniform metric regularity for a collection of multifunctions {Gi} of the aforementioned

constraint form. Through the approach of Lyusternik-Graves iterative process, we established

a sufficient condition for this uniform regularity to be true.
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Chapter 6 studies the optimality conditions of parametric variational systems (PVS) under

equilibrium constraints, see [20, 31, 33] for more details in this direction. The first part of

this chapter involves coderivative estimation for the solution mapping of (PVS) as well as

canonically perturbed variational systems, which allows us to apply the results obtained to the

study of constrained optimization and equilibrium problems with possibly nonsmooth data. We

derived necessary optimality and suboptimality conditions for various problems of constrained

optimization and equilibria such as MPECs with amenable/full rank potentials and EPECs

with closed preferences in finite-dimensional spaces.
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chapter 2

Preliminary

2.1 Basic Notation

Throughout the paper we use standard notation of variational analysis and generalized differ-

entiation. Recall that, given a set-valued mapping F : X ⇒ X∗ from the Banach space X into

its topological dual X∗ endowed with the weak∗ topology w∗, the symbol

Lim sup
x→x̄

F (x) :=
{
x∗ ∈ X∗

∣∣ ∃ seqs. xk → x̄, x∗k
w∗
→ x∗ such that

x∗k ∈ F (xk) for all k ∈ IN}
} (2.1)

signifies the sequential Painlevé-Kuratowski outer limit of F as x → x̄, where IN := {1, 2, . . .}.

Given a set Ω ⊂ IRn and an extended-real-valued function ϕ : IRn → IR := (−∞,∞] finite

at x̄, the symbols x Ω→ x̄ and x
ϕ→ x̄ stand for x → x̄ with x ∈ Ω and for x → x̄ with

ϕ(x) → ϕ(x̄), respectively. As usual, IB(x, r) = IBr(x) denotes the closed ball of the space in

question centered at x with radius r > 0, while the symbols IB and IB∗ signify the corresponding

closed unit ball in the primal and dual spaces, respectively. Dealing with empty sets, we let

inf φ :=∞, supφ := −∞, and ‖φ‖ :=∞.

Definition 2.1 [21, (1.22)] A set-valued mapping F : X ⇒ Y is said to be positively homo-

geneous if 0 ∈ F (0) and F (αx) ⊃ αF (x) for all x ∈ X and α > 0, or equivalently, when the

graph of F is a cone in X × Y . The norm of a positively homogeneous mapping F is defined

by

‖F‖ := sup{‖y‖
∣∣ y ∈ F (x) and ‖x‖ ≤ 1}.
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The following lemma will be helpful in our later proof.

Lemma 2.2 [21, Theorem 1.54] Let H be a positively homogeneous mapping from X to Y .

then the following equality holds:

‖H−1‖ =
1

inf{‖v‖ | v ∈ H(u), ‖u‖ = 1}

Recall that for a set-valued mapping F : X ⇒ Y , the domain of F is defined as domF :=

{x ∈ X | F (x) 6= φ}.

Definition 2.3 (inner semicontinuous and inner semicompact multifunctions) [21,

Definition 1.63] Let S : X ⇒ Y with x̄ ∈ domS.

(i) Given ȳ ∈ S(x̄), we say that the mapping S is inner semicontinuous at (x̄, ȳ) if for every

sequence xk → x̄ there is a sequence yk ∈ S(xk) converging to ȳ as k →∞.

(ii) S is inner semicompact at x̄ if for every sequence xk → x̄ there is a sequence yk ∈ S(xk)

that contains a convergent subsequence as k →∞.

Finally, given a mapping g : X → Y between Banach spaces that is locally Lipschitzian

around x̄, we denote

lip g(x̄) := lim sup
x,u→x̄

‖g(x)− g(u)‖
‖x− u‖

.

2.2 Variational Geometry

Throughout this section, Let A be a closed subset of a Banach space X and a ∈ A. The Clarke

tangent cone to A at a is defined as

Tc(a,A) := lim inf
x

A−→a,t→0+

A− x
t
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where x A→ a means that x→ a with x ∈ A. Thus, v ∈ Tc(a,A) if and only if, for each sequence

{an} in A converging to a and each sequence {tn} in (0,+∞) decreasing to 0, there exists a

sequence {vn} in X converging to v such that an + tnvn ∈ A for all n ∈ IN .

The Bouligand (or Contingent) tangent cone to A at a is defined as

TB(a,A) :=
{

lim
k→∞

xk − a
tk

: xk
A−→ a, tk → 0+

}

The Contingent tangent cone can be characterized by virtue of the distant function and therefore

we have the equivalence relationship:

TC(a,A) = TB(a,A)

when A is convex due to the fact that the distant function of a convex set is convex as well.

Definition 2.4 (weak contigent derivative) For a set-valued function F : X ⇒ Y , the

weak contigent derivative of F at x̄ for ȳ, where ȳ ∈ F (x̄), is the set-valued mapping

CwF (x̄, ȳ) : X ⇒ Y where for each u ∈ X, the set CwF (x̄, ȳ)(u) is given by the set of all v ∈ Y

for which there are sequences {tk} ↓ 0 and (uk, vk)
w−→ (u, v) with (x̄+ tkuk, ȳ + tkvk) ∈ gphF .

Remark 2.5 We claim that CwF (x̄, ȳ) : X ⇒ Y is a positive homogeneous mapping. To

prove this is true, it suffices to show that (i) 0 ∈ CwF (x̄, ȳ)(0) which is obvious; and (ii) for

any positive λ, λCwF (x̄, ȳ) ⊂ CwF (x̄, ȳ)(λu) holds. Indeed, if we select any v ∈ CwF (x̄, ȳ)(u),

then there exists tk ↓ 0, (uk, vk)
w−→ (u, v) such that (x̄ + tkuk, ȳ + tkvk) ∈ gphF . For any

λ > 0, by rescaling t̃k = tk
λ , one has t̃k ↓ 0 and (x̄ + t̃kuk, ȳ + t̃kvk) ∈ gphF , which means that

λv ∈ CwF (x̄, ȳ)(λu). Hence (ii) is true.

A natural counterpart to “tangent cone" is “normal cone", which we develop next. The
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Clarke normal cone to A at a is defined as:

Nc(a,A) := {x∗ ∈ X∗ : 〈x∗, h〉 ≤ 0 ∀h ∈ Tc(a,A)}

For ε ≥ 0, we define the Fréchet ε-normals of A at a by

N̂ε(a,A) :=

{
x∗ ∈ X∗ : lim sup

x
A→a

〈x∗, x− a〉/ ‖ x− a ‖≤ ε

}
.

When ε = 0, it is simply denoted by N̂(A, a) and called as regular normal cone (also

known as Frechet normal cone) to A at a. Then the limiting (mordukhovich/basic)

normal cone to A at a is defined by

N(a,A) := lim sup
x

A→a,ε→0+

N̂ε(x,A).

Thus, x∗ ∈ N(a,A) if and only if there exists a sequence {(xn, εn, x∗n)} in A × R+ × X∗ such

that (xn, εn)→ (a, 0), x∗n
w∗
→ x∗ and x∗n ∈ N̂εn(xn, A) for each n ∈ IN . It is well-known that we

have the following relationship regarding the aforementioned normal cones:

N̂(a,A) ⊂ N(a,A) ⊂ Nc(a,A).

When A is convex, the above constructions all reduce to the classical case of convex analysis:

Nc(a,A) = N̂(a,A) = N(a,A) = {x∗ ∈ X∗ : 〈x∗, x− a〉 ≤ 0 ∀x ∈ A}.

Recall that a Banach space X is called an Asplund space if every continuous convex function
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on X is Fréchet differentiable at each point of a dense subset of X. It is well known that X is an

Asplund space if and only if every separable subspace of X has a separable dual. In particular,

every reflexive Banach space is an Asplund space. When X is an Asplund space, Mordukhovich

and Shao [21, Theorem 3.57] proved that

Nc(a,A) = cow
∗
(N(a,A)) and N(a,A) = lim sup

x
A→a

N̂(x,A).

The following type of limiting normal cone to moving sets is useful in both finite and infinite

dimensions.

Definition 2.6 (limiting normals to moving sets.) [21, Definition 5.69] Let S : Z ⇒ X

be a set-valued mapping from a metric space Z into a Banach space X, and let (z̄, x̄) ∈ gphS.

Then

N+(x̄, S(z̄)) := lim sup

(z,x)
gphS
→ (z̄,x̄),ε→0+

N̂ε(x;S(z)).

is the extended normal cone to S(z̄) at x̄. One can equivalently put ε = 0 in the above definition

if X is Asplund and S is closed-valued around x̄.

The following Theorem is helpful in the proof of our later result.

Theorem 2.7 (basic normals to inverse images) [21, Theorem 3.8] Let x̄ ∈ F−1(Θ), where

F : X ⇒ Y is a closed-graph mapping and where Θ ⊂ Y is a closed set. Assume that the set-

valued mapping x → F (x) ∩ Θ is inner semicompact at x̄ and that for every ȳ ∈ F (x̄) ∩ Θ the

following hold:

(a) Either F−1 is PSNC at (ȳ, x̄) or Θ is SNC at ȳ.
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(b) {F,Θ} satisfies the qualification condition

N(ȳ; Θ) ∩ ker D̃∗MF (x̄, ȳ) = {0}.

Then one has

N(x̄;F−1(Θ)) ⊂
⋃

[D∗NF (x̄, ȳ)(y∗)|y∗ ∈ N(ȳ; Θ), ȳ ∈ F (x̄) ∩Θ].

2.3 Coderivatives of Set-Valued Mappings

In this section, we let F : X ⇒ Y be a multifunction and denote by gphF the graph of F , that

is ,

gphF := {(x, y) ∈ X × Y : y ∈ F (x)}.

As usual, F is said to be closed (resp., convex) if gphF is a closed (resp., convex) subset of

X × Y . It is known that F is convex if and only if

tF (x1) + (1− t)F (x2) ⊂ F (tx1 + (1− t)x2) ∀x1, x2 ∈ X and∀t ∈ [0, 1]

Following the scheme in [20], we define its regular coderivative and (basic, normal)

coderivative at the graphical point (x̄, ȳ) ∈ gphF by

D̂∗F (x̄, ȳ)(y∗) :=
{
x∗ ∈ X∗

∣∣ (x∗,−y∗) ∈ N̂
(
(x̄, ȳ); gphF

)}
, y∗ ∈ Y ∗

D∗F (x̄, ȳ)(y∗) :=
{
x∗ ∈ X∗

∣∣ (x∗,−y∗) ∈ N
(
(x̄, ȳ); gphF

)}
, y∗ ∈ Y ∗,

(2.2)

respectively. The coderivative mappings from Y ∗ intoX∗ in (2.2) are clearly positive-homogeneous.

Furthermore, if F : IRn → IRm is single-valued (then we omit ȳ = F (x̄) in the coderivative nota-
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tion) and strictly differentiable at x̄ (which is automatic when it is C1 around this point), then

both coderivatives in (2.2) are also single-valued and reduces to the adjoint derivative operator

D̂∗F (x̄)(y∗) = D∗F (x̄)(y∗) =
{
∇F (x̄)∗y∗

}
, y∗ ∈ Y ∗.

Let’s provide next some calculus results for coderivatives of set-valued mapppings between

arbitrary Banach spaces.

Theorem 2.8 (Coderivative sum rules with equalities) [21, Theorem 1.62] Let f : X → Y

be Fréchet differentiable at x̄, and let F : X ⇒ Y be an arbitrary set-valued mapping such that

ȳ − f(x̄) ∈ F (x̄) for some ȳ ∈ Y . The following hold:

(i) For all y∗ ∈ Y ∗ one has

D̂∗(f + F )(x̄, ȳ)(y∗) = Of(x̄)∗y∗ + D̂∗F (x̄, ȳ − f(x̄))(y∗).

(ii) If f is strictly differentiable at x̄, then

D∗(f + F )(x̄, ȳ)(y∗) = Of(x̄)∗y∗ +D∗F (x̄, ȳ − f(x̄))(y∗)

for all y∗ ∈ Y ∗, where D∗ stands either for the normal coderivative or mixed coderivative.

Moreover, the mapping f + F is N-regular(resp. M-regular) at (x̄, ȳ) if and only if F is N-

regular (resp. M-regular) at the point (x̄, ȳ − f(x̄)).

Theorem 2.9 (scalarization of the mixed coderivative) . Let f : X → Y be continuous

around x̄. Then

∂〈y∗, f〉(x̄) ⊂ D∗Mf(x̄)(y∗) for all y∗ ∈ Y ∗.
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If in addition f is Lipschitz continuous around x̄, then

D∗Mf(x̄)(y∗) = ∂〈y∗, f〉(x̄) for all y∗ ∈ Y ∗.

2.4 Subdifferentials of Nonsmooth Functions

In this section we present for the reader’s convenience some basic tools of generalized differen-

tiation widely employed in what follows. We refer to the books [5, 21, 25, 26] for more details

in both finite and infinite dimensions.

Given ϕ : X → IR with x̄ ∈ domϕ, the regular subdifferential (known also as the presubdif-

ferential and as the Fréchet or viscosity subdifferential) of ϕ at x̄ is defined by

∂̂ϕ(x̄) :=
{
v ∈ IRn

∣∣∣ lim inf
x→x̄

ϕ(x)− ϕ(x̄)− 〈v, x− x̄〉
‖x− x̄‖

≥ 0
}
. (2.3)

It reduces to {∇ϕ(x̄)} if ϕ is Fréchet differentiable at x̄ and to the subdifferential of convex

analysis if ϕ is convex, while the set ∂̂ϕ(x̄) may often be empty for nonconvex and nonsmooth

functions as, e.g., for ϕ(x) = −|x| at x̄ = 0 ∈ IR. A serious disadvantage of (2.3) is the failure

of standard calculus rules required in variational analysis and its applications to optimization.

We come to the different picture while performing a limiting procedure/robust regularization

over the mapping x 7→ ∂̂ϕ(x) as x
ϕ→ x̄ vis the sequential outer limit (2.1), which gives us the

(basic first-order) subdifferential of ϕ at x̄ defined by

∂ϕ(x̄) := Lim sup
x

ϕ→x̄
∂̂ϕ(x) (2.4)
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and known also as the general, or limiting, or Mordukhovich subdifferential. The construction

∂∞ϕ(x̄) := Lim sup
x

ϕ→x̄, λ↓0
λ∂̂ϕ(x) (2.5)

is known as the singular (or horizon) subdifferential of ϕ at x̄; it reduces to {0} if and only

if ϕ is locally Lipschitzian around x̄. In contrast to (2.3), the set (2.4) is often nonconvex

(e.g., ∂ϕ(0) = {−1, 1} for ϕ(x) = −|x|) enjoying nevertheless comprehensive calculus based on

variational/extremal principles of variational analysis.

Recall that ϕ is said to be proper if ϕ(x) > −∞ for all x ∈ X and its domain

dom(ϕ) := {x ∈ X : ϕ(x) < +∞}

is not empty. With such ϕ, we write its epigraph as

epi(ϕ) := {(x, t) ∈ X × R : ϕ(x) ≤ t}.

It is well known that

∂̂φ(x) ⊂ ∂φ(x).

When ϕ is convex, the Mordukhovich and Fréchet subdifferentials reduce to the one in the sense

of convex analysis, i.e.

∂ϕ(x) = ∂̂ϕ(x) = {x∗ ∈ X∗ : 〈x∗, y − x〉 ≤ ϕ(y)− ϕ(x) ∀y ∈ X} ∀x ∈ dom(ϕ).
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For a closed set A in X, let δA denote the indicator function of A, then we have

N(a,A) = ∂δA(a) ∀a ∈ A

Besides the above analytical definition of subgradient, we may as well describe the generalized

differentiation through a geometric approach as follows:

∂ϕ(x) = {x∗ ∈ X∗ : (x∗,−1) ∈ N((x, ϕ(x)), epi(ϕ))} ∀x ∈ dom(ϕ).

Recall that the singular subdiffernetial ∂∞ϕ(x) of ϕ at x is defined by

∂∞ϕ(x) := {x∗ ∈ X∗ : (x∗, 0) ∈ N((x, ϕ(x)), epi(ϕ))}.

It is clear that if ϕ is convex then

∂∞ϕ(x) = N(x, dom(ϕ)).

Now let us present some second-order subdifferential constructions for extended-real-valued

functions, which are at the heart of the variational techniques developed in this paper. Given

ϕ : IRn → IR finite at x̄, pick a subgradient ȳ ∈ ∂ϕ(x̄) and, following Mordukhovich [30], we

introduce the second-order subdifferential (or generalized Hessian) of ϕ at x̄ relative to ȳ by

∂2ϕ(x̄, ȳ)(u) := (D∗∂ϕ)(x̄, ȳ)(u), u ∈ IRn, (2.6)

via the coderivative (2.2) of the first-order subdifferential mapping (2.4). Observe that for
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ϕ ∈ C2 with the (symmetric) Hessian matrix ∇2ϕ(x̄) we have

∂2ϕ(x̄)(u) =
{
∇2ϕ(x̄)u

}
for all u ∈ IRn.

Referring the reader to the book [21] and the recent paper [32] (as well as the bibliographies

therein) for the theory and applications of the second-order subdifferential (2.6). From now on

we focus on an appropriate partial counterpart of (2.6) for functions ϕ : IRn × IRd → IR of two

variables (x,w) ∈ IRn × IRd. Consider the partial first-order subgradient mapping

∂xϕ(x,w) :=
{

set of subgradients v of ϕw := ϕ(·, w) at x
}

= ∂ϕw(x), (2.7)

take (x̄, w̄) with ϕ(x̄, w̄) <∞, and define the extended partial second-order subdifferential of ϕ

with respect to x at (x̄, w̄) relative to some ȳ ∈ ∂xϕ(x̄, w̄) by

∂̃2
xϕ(x̄, w̄, ȳ)(u) := (D∗∂xϕ)(x̄, w̄, ȳ)(u), u ∈ IRn. (2.8)

This second-order construction was first employed by Levy, Poliquin and Rockafellar [40] for

characterizing full stability of extended-real-valued functions in the unconstrained format of

optimization. Note that the second-order construction (2.8) is different from the standard

partial second-order subdifferential

∂2
xϕ(x̄, w̄, ȳ)(u) := (D∗∂ϕw̄)(x̄, ȳ)(u) = ∂2ϕw̄(x̄, ȳ)(u), u ∈ IRn,

of ϕ = ϕ(x,w) with respect to x at (x̄, w̄) relative to ȳ ∈ ∂xϕ(x̄, w̄), even in the classical C2
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setting. Indeed, for such functions ϕ with ȳ = ∇xϕ(x̄, w̄) we have

∂2
xϕ(x̄, w̄)(u) =

{
∇2
xxϕ(x̄, w̄)u

}
while

∂̃2
xϕ(x̄, w̄)(u) = {(∇2

xxϕ(x̄, w̄)u,∇2
xwϕ(x̄, w̄)u)} for all u ∈ IRn. (2.9)

This is due to the fact that the definition of the extended partial second-order subdifferential

set ∂̃2
xϕ(x̄, w̄)(u) involves the limiting procedure of w → w̄.

In this paper, we only consider extended partial second-order subdifferential of ϕ and for

convenience, we write it as ∂2
xϕ(x̄, w̄, ȳ)(u) unless otherwise specified. �
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chapter 3

Characterization of Metric q-Subregularity

3.1 Overview

This chapter is devoted to investigating the notion of metric q-subregularity for set-valued

mappings in the general framework of Banach and Asplund space settings. It is introduced as

Hölder metric subregularity in the case of q ≤ 1, which has been extensively studied in terms

of coderivative by Li and Mordukhovich in [19]. Different from that, we consider in this paper

mainly the notion of q-subregularity for the case of q > 1.

Let us introduce the basic definition of positive-order metric subregularity for arbitrary

set-valued mappings between Banach spaces.

Definition 3.1 (metric q-subregularity and strong q-subregularity) Let F : X ⇒ Y

with (x̄, ȳ) ∈ gphF , and let q > 0. We say that:

(i) F is metrically q-subregular at (x̄, ȳ) if there are constants η, γ > 0 such that

d
(
x;F−1(ȳ)

)
≤ ηdq

(
ȳ;F (x)

)
for all x ∈ IB(x̄; γ) (3.1)

The infimum over all constants/moduli η > 0 for which (3.1) holds with some γ > 0 is called

the exact q-subregularity bound of F at (x̄, ȳ) and is denoted by subreg qF (x̄, ȳ).

(ii) F is strongly metrically q-subregular at (x̄, ȳ) if there are η, γ > 0 such that

‖x− x̄‖ ≤ ηdq
(
ȳ;F (x)

)
for all x ∈ IB(x̄; γ). (3.2)
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The infimum over all η > 0 for which (3.2) holds with some γ > 0 is called the exact strong

q-subregularity bound of F at (x̄, ȳ) and is denoted by ssubreg qF (x̄, ȳ).

For brevity, in what follows we omit the adjective “metric" for q-subregularity. It is easy to

see from the definitions that the strong q-subregularity of F at (x̄, ȳ) implies the corresponding

q-subregularity of F . Furthermore, the validity of q̄-subregularity (resp. strong q̄-subregularity)

of F ar (x̄, ȳ) for the fixed number q̄ > 0 ensures this property for any 0 < q ≤ q̄.

Clearly, the larger q in the above subregularity properties the better the corresponding

estimate (error bound) in (3.1) and (3.2) is. The following simple one-dimensional example

shows that it makes sense to consider the q-subregularity property of order q > 1, in contrast

to its metric regularity counterpart of such (higher) orders, even in the case of real functions.

Example 3.2 (q-subregularity of higher order) Consider the continuous function f(x) :=

|x|
1
2 , x ∈ IR, which is not Lipschitz continuous around x̄ = 0. We have

|x| ≤ |x
1
2 |q for any q ∈ (0, 2] and all x ∈ IB(0, 1).

This shows that f is strongly q-subregular at (0, 0) whenever q ∈ (0, 2].

The next example is more involved, being still one-dimensional, and reveals an interesting

phenomenon: a set-valued mapping may not be metrically regular around the given point while

it is metrically subregular at this point with some q > 1. This example concerns in fact solution

maps of the parametric generalized equations of type (1.2), which fails to have the metric

regularity property in common situations; see Chapter 1.

Example 3.3 (q-subregular but not metrically regular solution maps to parametric



19

generalized equations) Consider the solution map

S(x) =
{
y ∈ Rn

∣∣ 0 ∈ f(x, y) +Q(y)
}

(3.3)

of the parametric generalized equation (1.2) with f(x, y) := x and Q : IR⇒ IR given by

Q(y) :=



[ 1
2k+1 ,

1
2k

] for y = 1
( 3√2)k

,

1
2k+1 for y ∈

(
1

( 3√2)k+1
, 1

( 3√2)k

)
,

0 for y = 0,

[− 1
2k
,− 1

2k+1 ] for y = − 1
( 3√2)k

,

− 1
2k+1 for y ∈

(
− 1

( 3√2)k
,− 1

( 3√2)k+1

)

as depicted in Figure 1. Then S is not metrically regular around (0, 0) while it is strongly

q-subregular of any order q ∈ (0, 2] at this point.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

y

Figure 3.1: Q(y)

Indeed, the failure of metric regularity of S in (3.3) around (0, 0) follows from more general

results of [22]. Let us verify this directly for the mapping S under consideration. Due to

the form of S in (3.3) and the well-known equivalence between metric regularity of the given

mapping and the Lipschitz-like/Aubin property of its inverse (see, e.g., [21, Theorem 1.49]), it
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suffices to show that Q in (3.3) is not Lipschitz-like around (0, 0). By [21, Theorem 1.41] this

is equivalent to the fact that the scalar function

ρ(x, y) := dist
(
x;Q(y)

)
= inf

{
‖x− v‖

∣∣ v ∈ Q(y)
}

is not locally Lipschitzian around (0, 0). To check the latter, we construct two sequences

{(x1k, y1k)} and {(x2k, y2k)}, which converge to (0, 0) when k →∞ as follows:

x1k :=
1

2k−1
, y1k :=

1

( 3
√

2)k−1
− αk, where 0 < αk < min

{ 1

k2k
,

1

( 3
√

2)k−1
− 1

( 3
√

2)k

}
;

x2k :=
1

2k−1
, y2k :=

1

( 3
√

2)k−1
, k ∈ N .

Then we have the equalities

dist(x2k;Q(y2k)) = dist
(
x2k;

[ 1

2k
,

1

2k−1

])
= dist

( 1

2k−1
,
[ 1

2k
,

1

2k−1

])
= 0,

dist
(
x1k;Q(y1k)

)
= dist

( 1

2k−1
;

1

2k

)
=

1

2k
,

where the last one holds due to the estimates

1

( 3
√

2)k
< y1k <

1

( 3
√

2)k−1
, k ∈ N .

Since ‖y1k − y2k‖ = αk ≤ (k2k)−1, we have

∥∥d(x1k;Q(y1k)
)
− d
(
x2k;Q(y2k)

)∥∥ =
1

2k
≥ kαk = k‖(x1k − x2k, y1k − y2k)‖,
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which indicates that ρ(x, y) is not locally Lipschitzian around (0, 0) and yields therefore that

the solution map S from (3.3) is not metrically regular around (0, 0).

Now we show that S is q-subregular for q = 2 and thus for any q ∈ (0, 2] at (0, 0). To

proceed, take η = γ = 1 and, given x ∈ B(0, γ), find k0 so that |x| ∈ [ 1
2k0+1 ,

1
2k0

] and the

corresponding value |Q−1(x)| belongs to
[

1
( 3√2)k+1

, 1
( 3√2)k−1

]
. Notice that S−1(0) = {0}, we have

d
(
x;S−1(0)

)
= |x| ≤ ηd2

(
0;S(x)

)
= η

(
inf
{
‖y‖
∣∣ y ∈ Q−1(x)

})2
, x ∈ IB(0, γ),

due to 1
2k
≤ 1

( 3√2)2(k+1)
for any k ≥ 2, which verifies the 2-subregularity of S at (0, 0) and thus

completes our justification in this example.

It is worth mentioning that the solution map (3.3) in Example 3.3 happens to be even

strongly 2-subregular at (0, 0). It follows from the arguments above since S−1(0) = {0} is a

singleton.

3.2 Necessary and Sufficient Conditions for the Subdifferential

Mapping

In this section, we derive characterizations of q-subregularity of any rate q > 0 for the subdiffer-

ential mappings (2.4) generated by extended-real-valued lower semicontinuous (l.s.c.) functions

on Banach (sufficient conditions) and Asplund (necessary conditions) spaces. For the case of

subregularity (q = 1) the obtained characterization reduces to [11, Theorem 3.1]. For convex

functions on Banach spaces this case while concerning only local minimizers x of f has been

independently characterized in [1, Theorem 2.1] with a weaker modulus estimate; see more

discussions in [11] presented around Corollary 3.2 and also in [1, Remark 2.2] for convex and

nonconvex functions with q = 1. In the general case of q-subregularity the formulation and
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proof of the theorem below are essentially more involved following the lines of the approach in

[23, Theorem 3.2] (for strong metric regularity) and of [11, Theorem 3.1] (for subregularity).

Theorem 3.4 (characterization of q-subregularity of the basic subdifferential) Let

f : X → R be l.s.c. around x̄ ∈ dom f on a Banach space X, let x̄∗ ∈ ∂f(x̄), and let q be an

arbitrary positive number. Consider the following two statements:

(i) ∂f is q-subregular at (x̄, x̄∗) with modulus κ̃ and there exist numbers γ > 0 and r ∈

(0, q/κ) with κ := qκ̃
1
q such that

f(x) ≥ f(x̄) + 〈x̄∗, x− x̄〉 − qr

1 + q
d

1+q
q
(
x; (∂f)−1(x̄∗)

)
for all x ∈ IB(x̄, γ). (3.4)

(ii) There are two positive numbers α and η such that

f(x) ≥ f(x̄) + 〈x̄∗, x− x̄〉+
qα

1 + q
d

1+q
q
(
x; (∂f)−1(x̄∗)

)
for all x ∈ IB(x̄, η). (3.5)

Then we have (ii)=⇒(i) provided that there is β ∈ (0, α) with

f(u) ≥ f(x) + 〈x∗, u− x〉 − qβ

1 + q
d

1+q
q
(
x, (∂f)−1(x̄∗)

)
(3.6)

whenever (u, x̄∗), (x, x∗) ∈ (gph ∂f) ∩ IB
(
(x̄, x̄∗), η + ( qη

1+q )
1
q
)
. Conversely, we have (i)=⇒(ii)

for any fixed α ∈ (0, q/κ) provided that the space X is Asplund.

Proof. Let us first justify implication (ii)=⇒(i) in the case of the general Banach space X

assuming condition (3.6) with some β ∈ (0, α). Since (3.5) clearly yields (3.4), we will arrive at
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(i) by showing that there exists a number κ̃ > 0 such that

d
(
x; (∂f)−1(x̄∗)

)
≤ κ̃dq

(
x̄∗; ∂f(x)

)
for all x ∈ IB

(
x̄, ηq/1 + q

)
. (3.7)

To proceed, fix x ∈ IB(x̄, ηq/1 + q). Pick any u ∈ (∂f)−1(x̄∗) with ‖x − u‖ ≤ q−1‖x − x̄‖ and

get

‖u− x̄‖ ≤ ‖u− x‖+ ‖x− x̄‖ ≤ η.

Then it follows from (3.6) the estimates

f(x̄) ≥ f(u) + 〈x̄∗, x̄− u〉 − βq

1 + q
d

1+q
q
(
u; (∂f)−1(x̄∗)

)
≥ f(u) + 〈x̄∗, x̄− u〉, (3.8)

which ensure in turn that for any such u and x∗ ∈ ∂f(x) ∩ IB(x̄∗, [ηq/(1 + q)]
1
q ) we have

〈x∗ − x̄∗, x− u〉 = 〈x∗, x− u〉+ 〈x̄∗, u− x̄〉 − 〈x̄∗, x− x̄〉

≥ f(x)− f(u)− βq

1 + q
d

q+1
q
(
x; (∂f)−1(x̄∗)

)
+ f(u)− f(x̄)− 〈x̄∗, x− x̄〉

= f(x)− f(x̄)− 〈x̄∗, x− x̄〉 − βq

1 + q
d

q+1
q
(
x; (∂f)−1(x̄∗)

)
≥ q(α− β)

q + 1
d

q+1
q
(
x; (∂f)−1(x̄∗)

)
,

where the first inequality follows from (3.6) and (3.8) while the second one from (3.5). Thus

‖x∗ − x̄∗‖ · ‖x− u‖ ≥ q(α− β)

q + 1
d

1+q
q
(
x; (∂f)−1(x̄∗)

)
,
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which gives us the estimate

‖x∗ − x̄∗‖d
(
x; (∂f)−1(x̄∗)

)
≥ q(α− β)

q + 1
d

q+1
q
(
x; (∂f)−1(x̄∗)

)

due to the arbitrary choice of u ∈ (∂f)−1(x̄∗) with ‖x− u‖ ≤ 1
q‖x− x̄‖ ≤

η
1+q . Hence

‖x∗ − x̄∗‖ ≥ q(α− β)

q + 1
d

1
q
(
x; (∂f)−1(x̄∗)

)
for all x∗ ∈ ∂f(x) ∩ IB

(
x̄∗, [ηq/(1 + q)]

1
q
)
. (3.9)

If d(x̄∗; ∂f(x)) ≤ (ηq/1 + q)
1
q , we deduce from (3.9) that

d
(
x̄∗; ∂f(x)

)
≥ q(α− β)

q + 1
d

1
q
(
x; (∂f)−1(x̄∗)

)
for all x ∈ IB(x̄, ηq/(1 + q)

)
,

which justifies (3.7) with κ̃ := [(1 + q)/(q(α − β)]q. In the remaining case of d(x̄∗; ∂f(x)) >

(ηq/1 + q)
1
q we obviously have the estimates

d
(
x; (∂f)−1(x̄∗)

)
≤ ‖x− x̄‖ ≤ ηq

1 + q
< dq

(
x̄∗; ∂f(x)

)
,

which also justify (3.7) is and thus completes the proof of implication (ii)=⇒(i).

Next we verify the converse (i)=⇒(ii) assuming that X is Asplund. Arguing by contradic-

tion, suppose that (i) holds while property (3.5) is not satisfied whenever α, η > 0. Choose

0 <
2

1+q
q

1 + q
< a <∞

and pick θ from the interval
(

2−q

q(1+q) ,
1
2

)
, which ensures that θ + 1

θqaq(1+q)q < 1. Now we claim



25

that there exists a positive number ν satisfying

f(x) ≥ f(x̄) + 〈x̄∗, x− x̄〉+
q − (aq + 1)κr

a(1 + q)κ
d

1+q
q
(
x; (∂f)−1(x̄∗)

)
for all x ∈ IB(x̄, ν). (3.10)

Indeed, otherwise there is a sequence xk → x̄ such that

f(xk) < f(x̄) + 〈x̄∗, xk − x̄〉+
q − (aq + 1)κr

a(1 + q)κ
d

1+q
q
(
xk; (∂f)−1(x̄∗)

)
, k ∈ N .

This together with (3.4) implies that all xk lie outside of (∂f)−1(x̄∗). Consequently we have

inf
x∈IB(x̄,γ)

{
f(x)− 〈x̄∗, x− x̄〉+

qr

1 + q
d

1+q
q
(
x; (∂f)−1(x̄∗)

)}
≥ f(x̄)

> f(xk)− 〈x̄∗, xk − x̄〉+
qr

1 + q
d

1+q
q
(
xk; (∂f)−1(x̄∗)

)
− q − κr
a(1 + q)κ

d
1+q
q
(
xk; (∂f)−1(x̄∗)

)
.

(3.11)

Denote εk :=
( q−κr
a(1+q)κ

)
d

1+q
q
(
xk; (∂f)−1(x̄∗)

)
↓ 0 as k →∞ and define the function

g(x) := f(x)− 〈x̄∗, x− x̄〉+
qr

1 + q
d

1+q
q
(
x; (∂f)−1(x̄∗)

)
, x ∈ X.

It follows from (3.11) that g(xk) < infx∈IB(x̄,γ) g(x)+εk. Applying Ekeland’s variational principle

(see, e.g., [21, Theorem 2.26]) to the function g+ δIB(x̄,γ) with λk := θd
(
xk; (∂f)−1(x̄∗)

)
ensures

the existence of a new sequence x̂k satisfying ‖x̂k − xk‖ ≤ λk and such that for each k ∈ N we

have x̂k ∈ intIB(x̄, γ) (due to xk → x̄ and λk ↓ 0 as k →∞) and that

g(x̂k) < g(x) +
εk
λk
‖x− x̂k‖ for all x ∈ IB(x̄, γ).

Employing the Fermat stationary rule in the above optimization problem and then using the
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subdifferential sum rule held in Asplund spaces by [21, Theorem 3.41], we arrive at

0 ∈ ∂
(
g(·) +

εk
λk
‖ · −x̂‖

)
(x̂k)

⊂ −x̄∗ + ∂f(x̂k) +
εk
λk
IB∗ +

qr

1 + q
∂d

1+q
q
(
·; (∂f)−1(x̄∗)

)
(x̂k)

⊂ −x̄∗ + ∂f(x̂k) +
(
rd

1
q
(
x̂k; (∂f)−1(x̄∗)

)
+
εk
λk

)
IB∗.

Combining this with the metric q-subregularity property of ∂f at (x̄, x̄∗) ensures the estimates

d
1
q
(
x̂k; (∂f)−1(x̄∗)

)
≤ κ

q
d
(
x̄∗; ∂f(x̂k)

)
≤ κ

q

(
rd

1
q
(
x̂k; (∂f)−1(x̄∗)

)
+
εk
λk

)

for all k ∈ N sufficiently large. Hence for such numbers k we get the inequality

(
1− κr

q

)
d

1
q
(
x̂k; (∂f)−1(x̄∗)

)
≤ κ

q

εk
λk
.

This allows us to successively deduce that

(
1− κr

q

)q
d
(
xk; (∂f)−1(x̄∗)

)
≤

(
1− κr

q

)q
‖x̂k − xk‖+

(
1− κr

q

)q
d
(
x̂k; (∂f)−1(x̄∗)

)
≤

(
1− κr

q

)q
λk +

(κεk
qλk

)q
≤

(
1− κr

q

)q
d
(
xk; (∂f)−1(x̄∗)

)(
θ +

1

aqθq(q + 1)q

)
<

(
1− κr

q

)q
d
(
xk; (∂f)−1(x̄∗)

)
,

where the last strict inequality follows from our choices of a and θ. Thus we arrive at the obvious

contradiction, which justifiers our claim in (3.10). We conclude therefore that q−(aq+1)κr ≤ 0.
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Define now the real number

r1 :=

aq+1
q κr − 1

aκ
∈
[
0, q/κ

)

and observe that inequality (3.10) can be transformed into (3.4) with replacing r by r1 and γ

by ν, respectively. Consequently there is some real number ν1 such that

f(x) ≥ f(x̄) + 〈x̄∗, x− x̄〉+
q − (aq + 1)κr1

a(1 + q)κ
d

1+q
q
(
x; (∂f)−1(x̄∗)

)
for all x ∈ IB(x̄, ν1).

As before, we get the inequality κr1 >
q

aq+1 , or equivalently κr >
q

aq+1 + aq2

(aq+1)2
. Defining

r2 :=

aq+1
q κr1 − 1

aκ
∈
[
0, q/κ

)

and proceeding in the same way as above lead us to the inequality κr > q
aq+1 + aq2

(aq+1)2
+ a2q3

(aq+1)3
.

Then we get by induction the progressively stronger bounds

κr >
q

aq + 1
+

aq2

(aq + 1)2
+ . . .+

ak−1qk

(aq + 1)k
= q
(

1−
( aq

aq + 1

)k)
for all k ∈ N .

Letting k → ∞ gives us κr > q, which is a contradiction. Therefore there exist real numbers

α, η > 0 such that inequality (3.5) is satisfied.

To justify (ii), we verify now that α may be chosen arbitrarily close to q/κ while being

smaller than this number. It suffices to consider the case of α < q/κ. Take ã, θ̃ > 0 such that

q2
1
q

ã(1 + q)
<

1

2
, θ̃ ∈

( 2
1
q

ã(1 + q)
,
1

2

)
, and so θ̃ +

( q

θ̃ã(1 + q)

)q
< 1.
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Given α, η > 0 for which (3.5) holds, let us prove the existence µ > 0 such that

f(x) ≥ f(x̄) + 〈x̄∗, x− x̄〉+
q(q + (ã− 1)ακ)

ã(1 + q)κ
d

1+q
q
(
x; (∂f)−1(x̄∗)

)
for all x ∈ IB(x̄, µ). (3.12)

We just sketch the proof of (3.12) observing that it is similar to the proof of (3.10) given above.

Arguing by contradiction, find a sequence of uk → x̄ so that

f(uk) < f(x̄) + 〈x̄∗, uk − x̄〉+
q(q + (ã− 1)ακ)

ã(1 + q)κ
d

1+q
q
(
uk; (∂f)−1(x̄∗)

)
, k ∈ N .

This gives us together with (3.5) that

inf
x∈IB(x̄,η)

{
f(x)− 〈x̄∗, x− x̄〉 − qα

1 + q
d

1+q
q
(
x; (∂f)−1(x̄∗)

)}
≥ f(x̄)

> f(uk)− 〈x̄∗, uk − x̄〉 −
qα

1 + q
d

1+q
q
(
uk; (∂f)−1(x̄∗)

)
− q(q − κα)

ã(1 + q)κ
d

1+q
q
(
uk; (∂f)−1(x̄∗)

)
.

Denote further νk := q(q−κα)
ã(1+q)κd

1+q
q
(
uk; (∂f)−1(x̄∗)

)
↓ 0 as k →∞ and consider the function

h(x) := f(x)− 〈x̄∗, x− x̄〉 − qα

1 + q
d

1+q
q
(
x; (∂f)−1(x̄∗)

)
, x ∈ X,

for which we have h(uk) < infx∈IB(x̄,η) h(x)+νk whenever k ∈ N . Applying Ekeland’s variational

principle to the function h + δIB(x̄,η) with ρk := θ̃d(uk; (∂f)−1(x̄∗)) ensures the existence of a

new sequence {ûk} satisfying ‖ûk − uk‖ ≤ ρk and such that ûk ∈ int IB(x̄, η) with

h(ûk) < h(x) +
νk
ρk
‖x− ûk‖ for all x ∈ IB(x̄, γ), k ∈ N .
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By the calculus rules as above we get the inclusions

0 ∈ ∂
(
h(·) +

νk
ρk
‖ · −x̂‖

)
(ûk) ⊂ −x̄∗ + ∂f(ûk) +

(
αd

1
q
(
ûk; (∂f)−1(x̄∗)

)
+
νk
ρk

)
IB∗,

which ensure together with the q-subregularity of ∂f at (x̄, x̄∗) that

d
1
q
(
x̂k; (∂f)−1(x̄∗)

)
≤ κ

q
d
(
x̄∗, ∂f(x̂k)

)
≤ κ

q

(
αd

1
q
(
ûk; (∂f)−1(x̄∗)

)
+
νk
ρk

)

for all k ∈ N sufficiently large. Thus for such k we arrive at the estimate

(
1− κα

q
)d

1
q
(
ûk; (∂f)−1(x̄∗)

)
≤ κ

q

νk
ρk
.

This allows us to successively deduce that

(
1− κα

q

)q
d
(
uk; (∂f)−1(x̄∗)

)
≤

(
1− κα

q

)q
‖ûk − uk‖+

(
1− κα

q

)q
d
(
ûk; (∂f)−1(x̄∗)

)
≤

(
1− κα

q

)q
ρk +

(κνk
qρk

)q
≤

(
1− κα

q

)q
d
(
uk; (∂f)−1(x̄∗)

)(
θ̃ +

( q

ãθ̃(q + 1)

)q)
<

(
1− κα

q

)q
d
(
uk; (∂f)−1(x̄∗)

)
,

which is a contradiction justifying the existence of µ > 0 such that (3.12) holds.

In the last part of the proof we define the number

α1 :=
(q + (ã− 1)ακ)

ãκ
∈
(
0, q/κ

)

and observe that (3.12) yields (3.5) with this number α1 and η = µ from (3.12). Then proceeding
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as above allows us to find µ1 > 0 such that

f(x) ≥ f(x̄) + 〈x̄∗, x− x̄〉+
q(q + (ã− 1)α1κ)

ã(1 + q)κ
d

1+q
q
(
x; (∂f)−1(x̄∗)

)
for all x ∈ IB(x̄, µ1).

Define further α2 := (q+(ã−1)α1κ)
ãκ ∈ (0, q/κ) and deduce from the above inequality that (3.5)

holds for α2 and η = µ1. By induction we find sequences {αk} and {µk} satisfying

f(x) ≥ f(x̄) + 〈x̄∗, x− x̄〉+
q

1 + q
αkd

1+q
q
(
x; (∂f)−1(x̄∗)

)
for all x ∈ B(x̄, µk)

with αk :=
(q+(ã−1)αk−1κ)

ãκ ∈ (0, q/κ) for k ∈ N and α0 = α. Letting finally k → ∞ gives us

αk → q/κ and thus completes proof of the theorem. 2

Now we present two examples illustrating the results of Theorem 3.4 and the assumptions

made therein. The first example shows that the conditions of the theorem ensures the validity

of 2-subregularity of the subdifferential mapping while metric regularity fails.

Example 3.5 (2-subregularity versus metric regularity of the subdifferential) Con-

sider the convex and continuous function f : IR→ IR+ defined by

f(x) :=



−x for x < −1,

1 for −1 ≤ x ≤ 1,

x for x > 1.
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It is not hard to calculate its subdifferential mapping as follows:

∂f(x) =



{−1} for x < −1,

[−1, 0] for x = −1,

{0} for −1 < x < 1,

[0, 1] for x = 1,

{1} for x > 1.

Take x̄ = 0, x̄∗ = 0 ∈ ∂f(0) and show that the mapping ∂f is 2-subregular (and hence q-

subregular for any 0 < q ≤ 2) at (0, 0) while not metrically regular around this point. To verify

2-subregularity, it suffices to check by Theorem 3.4 that both conditions (3.5) and (3.6) of this

theorem hold with q = 2. To proceed, take α = 1 and η = 1
2 in Theorem 3.4(ii) and observe

that f(x) = f(0) = 1 for any x ∈ IB(0, η). Then for any q ∈ (0, 2] we have

f(x) ≥ f(0) +
1

2
d

1+ 1
q
(
x; (∂f)−1(0)

)

due to (∂f)−1(0) = (−1, 1), and so condition (3.5) holds. To verify (3.6), take β = 0.5 and get

f(u) = f(x) = 1 for any (u, x̄∗), (x, x∗) ∈ gph (∂f) ∩ IB
(
(x̄, x̄∗), η + (η/2)

1
q
)
,

which justifies (3.6) and thus shows that ∂f is 2-subregular at (0, 0) by Theorem 3.4.

However, the validity of conditions (3.5) and (3.6) do not guarantee that the mapping ∂f

is metrically regular around (0, 0). Indeed, we have for any x, y 6= 0 sufficiently close to 0 that

∂f(x) = {0} while the values of (∂f)−1(y) are either {−1} or {1}. Then it is easy to see by

considering two sequences {xk} = {k−1} and {yk} = {(2k)−1} that there is no positive number
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κ, which ensures the distance estimate

d
(
xk; (∂f)−1(yk)

)
≤ κd

(
yk; ∂f(xk)

)
, k ∈ N ,

i.e., the subdifferential mapping ∂f fails to be metrically regular around (0, 0).

The next example shows that condition (3.6) is not necessary for q-subregularity of ∂f

whenever q > 0. In particular, this illustrates that (i) implies (ii) but does not imply (3.6).

Example 3.6 (on assumptions and conclusions of Theorem 3.4) Define f : IR→ IR+ by

f(x) :=



x
1
2 for x > 0,

0 for x = 0,

(−x)
1
2 for x < 0.

It follows immediately that ∂f(x) = {f ′(x)} at x 6= 0 with

f ′(x) =


1

2
√
x

for x > 0,

− 1
2
√
−x for x < 0

and that [−1, 1] ⊂ ∂f(0). The latter implies that ∂f−1(0) = {0}. Considering now x̄ = 0 and

x̄∗ = 0, we claim that the mapping ∂f is q-subregular at (0, 0) with any positive order q, which

we fix in what follows. To proceed, take γ := 2
− 2q

q+2 and get

|x| ≤
(
1/2
) 2q

2+q ⇐⇒ |x| ≤
(
1/(2

√
|x|)
)q for x ∈ IB(0, γ),

which verifies the validity of the q-subregularity condition (3.1) for the mapping ∂f .

However, condition (3.6) fails here whenever β, η > 0. To justify it, we argue by contradiction
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and suppose that (3.6) holds with some β0, η0. It is easy to see that the inclusion

(u, 0), (x, x∗) ∈ gph (∂f) ∩ IB
(

(0, 0), η0 + (
qη0

1 + q
)
1
q

)

yields u = 0, which implies in turn that condition (3.6) reduces to

0 ≥ f(x) + 〈x∗,−x〉 − qβ0

1 + q
|x|

q+1
q (3.13)

Considering x > 0 in (3.13) gives us the inequality

0 ≥
√
x

2
− qβ0

1 + q
|x|

q+1
q , i.e.,

2qβ0

1 + q
|x|

q+1
q ≥ x

1
2 ,

which is a contradiction, since the latter inequality is obviously violated for x sufficiently small.

�
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chapter 4

Strong Q-Subregularity and Its Applications

4.1 Strong q-Subregularity and Its Perturbations

The main goal of this section is to investigate characterization of strong metric q-subregularity

as well as its robustness property under perturbation. Similarly to [11, Corollaries 3.2, 3.3,

3.5] given in the case of q = 1, we can easily deduce from the obtained Theorem 3.4 its conse-

quences for local minimizers as well as the characterization of strong q-subregularity of the basic

subdifferential in the case of arbitrary q > 0.

Theorem 4.1 (characterization of strong q-subregularity of the basic subdifferential)

Let f : X → R be l.s.c. around x̄ ∈ dom f on a Banach space X, let (x̄, x̄∗) ∈ gph (∂f) and q

be an arbitrary positive number. Consider the following two statements:

(i) ∂f is strongly metrically q-subregular at (x̄, x̄∗) with modulus κ̃ and there exist numbers

γ > 0 and r ∈ (0, qκ) with κ := qκ̃
1
q such that

f(x) ≥ f(x̄) + 〈x̄∗, x− x̄〉 − qr

1 + q
‖x− x̄‖(

1+q
q

) for all x ∈ B(x̄, γ) (4.1)

(ii) There exists α, η > 0 such that

f(x) ≥ f(x̄) + 〈x̄∗, x− x̄〉+
qα

1 + q
‖x− x̄‖(

1+q
q

) for all x ∈ B(x̄, η) (4.2)
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Then (i)=⇒(ii), where α may be chosen arbitrarily in (0, qκ). Conversely if in addition there

exists some β ∈ (0, α) such that

f(x̄) ≥ f(x) + 〈x∗, x̄− x〉 − qβ

1 + q
‖x− x̄‖(

1+q
q

) (4.3)

holds for all (x, x∗) ∈ gph (∂f) ∩B((x̄, x̄∗), η + ( qη
1+q )

1
q ), then (ii) =⇒(i) as well.

Proof. (i) =⇒ (ii): Assume that (i) is true. Then by Theorem 3.4, it suffices to show that

d(x; (∂f)−1(x̄∗)) = ‖x − x̄‖ for all x around x̄ which follows from the assumed strong metric

q-subregularity. Hence (ii) is true.

(ii)=⇒(i): Suppose that both (4.2) and (4.3) are satisfied for some constant α > β > 0 and

η > 0. Then according to Theorem 3.4 it suffices to show that (∂f)−1(x̄∗) ∩ IB(x̄, η) = {x̄}.

Indeed, take any u ∈ (∂f)−1(x̄∗) ∩ IB(x̄, η), it follows from (4.2) and (4.3) that

f(u)− f(x̄) ≥ 〈x̄∗, u− x̄〉+
qα

1 + q
‖u− x̄‖

q+1
q

and

f(u)− f(x̄) ≤ 〈x̄∗, u− x̄〉+
qβ

1 + q
‖u− x̄‖

q+1
q

Combining the above two inequalities gives us only one possibility that u = x̄ due to the fact

of α > β. Hence ∂f is metrically q-subregular at (x̄, x̄∗) and our proof is completed. 2

Next we provide an example showing that q+1
q -order growth alone may not imply strong

q-subregularity.
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Example 4.2 Consider the following function:

f(x) =



1
2x− 2x

3
2 sin( 1√

x
) for x > 0

0 for x = 0

∞ for x < 0

Take x̄ = 0, x̄∗ = 0 and α = 1. It is easy to see that f satisfies condition (4.2) when η is small

enough and q = 2. However ∂f is not strongly metrically 2-subregular at (0, 0) since (∂f)−1(0)

is not single-valued. This shows that in Theorem 4.1, condition (4.3) is also necessary.

The following result provides a necessary condition in terms of weak contigent coderivative

for strong q-subregularity of a general multifunction in the case of q > 1 between Banach spaces.

Theorem 4.3 (Necessary condition for strong q-subregularity) Let F : X ⇒ Y be

a closed set-valued function between Banach spaces, (x̄, ȳ) ∈ gphF and q ≥ 1. If F is

strongly metrically q-subregular at (x̄, ȳ), then we have ‖CwF (x̄, ȳ)‖ = ∞ when q > 1, and

ker CwF (x̄, ȳ) = {0} when q = 1.

Proof. Let η > 0 be the modulus with which F is strongly metrically q-subregular at (x̄, ȳ).

Take any v ∈ IBY , u ∈ CwF−1(ȳ, x̄)(v) and let them be fixed. Then there exists {tk} ↓ 0 and

(uk, vk)
w−→ (u, v) such that (x̄+ tkuk, ȳ + tkvk) ∈ gphF . Hence it follows from (3.2) that for all

k large enough,

‖uk‖ ≤ η|tk|q−1‖vk‖q for all k large enough (4.4)

For the case of q > 1, since {tk} ↓ 0 and {‖vk‖} converges weakly hence it’s bounded, passing

(4.4) to the limit gives us ‖u‖ = 0 due to the weak lower semicontinuity property of norm. Since



37

u is arbitrarily chosen, one has

‖CwF−1(ȳ, x̄)‖ = sup{‖u‖ | u ∈ CwF−1(ȳ, x̄)(v), ‖v‖ ≤ 1} = 0

Since the weak contigent derivative function is positively homogeneous, it follows from Lemma 2.2

that

‖CwF (x̄, ȳ)‖ = ‖(CwF−1(ȳ, x̄))−1‖

=
1

inf{‖u‖ | u ∈ CwF−1(ȳ, x̄)(v), ‖v‖ = 1}

≥ 1

sup{‖u‖ | u ∈ CwF−1(ȳ, x̄)(v), ‖v‖ = 1}

≥ 1

sup{‖u‖ | u ∈ CwF−1(ȳ, x̄)(v), ‖v‖ ≤ 1}

=
1

‖CwF−1(ȳ, x̄)‖
=∞

For the case of q = 1, the inequality (4.4) implies that ker CwF (x̄, ȳ) = {0}, which completes

our proof. 2

However, the above necessary condition is not sufficient for strong q-subregularity, even not

for metric q-subregularity. Here is an example in finite dimensional space:

Example 4.4 Let F : R ⇒ R be a set-valued function defined as F (x) = [max{x, 0},∞)

and (x̄, ȳ) = (0, 0). It is easy to see that gphF is a convex set. Therefore, it follows from [7,

Exe.2.7.2 and Prop.2.5.5] that gphCwF (0, 0) = T ((0, 0), gphF ), where

T ((0, 0), gphF ) = cl{λ(x, y) : (x, y) ∈ gphF and λ ≥ 0}
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Hence,

‖CwF (0, 0)‖ = sup{‖v‖ | (u, v) ∈ T ((0, 0), gphF ) with ‖u‖ ≤ 1} =∞.

However, F is not metrically subregular at (0, 0) of order q > 1. To see this, we argue by

contradiction. Assume to the contrary that there exist η, δ ∈ (0,∞) such that

d(x, F−1(0)) ≤ ηdq(0, F (x)) for any x ∈ (−δ, δ)

which indicates that

d(x, (−∞, 0]) ≤ ηdq(0, [max{x, 0},∞))

holds for any 0 < x < δ. i.e x ≤ ηxq holds for any positive small x, which is obviously impossible.

It has been well recognized in the literature that metric subregularity, in contrast to metric

regularity, is not robust/stable with respect to perturbations of the initial data; see, e.g., [10].

In this section we show that the situation is different for strong subregularity and higher-order

q-subregularity (q ≥ 1). Namely, it is proved below that such strong q-subregularity is stable

with respect to appropriate perturbations of the initial set-valued mapping by Lipschitzian

single-valued ones. Furthermore, we estimate the exact bound of strong q-subregularity moduli

together with the radius of perturbations that keep strong q-subregularity of the perturbed

mappings. These results are used in Section 4.2 for establishing the convergence rate for a class

of quasi-Newton methods depending on the order q of the assumed strong q-subregularity of

the initial mapping. Unless otherwise stated, we have q ≥ 1 in the rest of this section.

Theorem 4.5 (strong q-subregularity under Lipschitzian perturbations) Let F : X ⇒

Y be a set-valued mapping between Banach spaces with (x̄, ȳ) ∈ gphF , and let g : X → Y be a
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single-valued perturbation locally Lipschitzian around x̄. If there exist κ, λ ∈ (0,∞) such that

ssubreg qF (x̄, ȳ) < κ and lip g(x̄) < λ <
(
κ

1
q
)−1

,

then we have the modulus upper estimate

ssubreg q(F̃ + g)(x̄, ȳ) ≤ κ

(1− λκ
1
q )q

with F̃ (x) := F (x)− g(x̄). (4.5)

Furthermore, if ssubreg qF (x̄, ȳ) > 0, we have the modulus relationship

ssubreg q(F̃ + g)(x̄, ȳ) ≤ ssubreg qF (x̄, ȳ)(
1− (ssubreg qF (x̄, ȳ)

) 1
q lip g(x̄)q

(4.6)

whenever (ssubregF (x̄, ȳ))
1
q lip g(x̄) < 1.

Proof. Since ssubreg qF (x̄, ȳ) < κ and lip g(x̄) < λ, there exists γ ∈ (0, 1) such that

‖x− x̄‖ ≤ κdq
(
ȳ;F (x)

)
and ‖g(x)− g(x̄)‖ ≤ λ‖x− x̄‖, x ∈ IB(x̄, γ).

For such x, take z ∈ F̃ (x) + g(x) and find y ∈ F (x) such that z − y = g(x)− g(x̄). It yields

‖x− x̄‖
1
q ≤ κ

1
q ‖y − ȳ‖ ≤ κ

1
q
(
‖ȳ − z‖+ ‖y − z‖

)

≤ κ
1
q ‖ȳ − z‖+ κ

1
q λ‖x− x̄‖ ≤ κ

1
q ‖ȳ − z‖+ κ

1
q λ‖x− x̄‖

1
q ,
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where the last inequality holds due to q ≥ 1 and γ < 1. It gives us the estimate

‖x− x̄‖ ≤ κ

(1− λκ
1
q )q
‖ȳ − z‖q for all x ∈ IB(x̄, γ), z ∈ F̃ (x) + g(x),

which implies both inequalities (4.5), (4.6) and so completes the proof of the theorem. 2

Next we derive two useful consequences of Theorem 4.5 of their own interest. The first

one concerns strictly differentiable (in particular, C1-smooth) perturbations and is employed to

establish convergence rates of the quasi-Newton methods considered in Section 4.2.

Corollary 4.6 (strong q-subregularity under smooth perturbations) Let in the setting

of Theorem 4.5 the perturbation g is strictly differentiable at x̄, and let ȳ ∈ F (x̄) + g(x̄). Then

the mapping x 7→ F (x) + g(x) is strongly q-subregular at (x̄, ȳ) if and only if the mapping

G : x 7→ g(x̄) + Og(x̄)(x − x̄) + F (x) is strongly q-subregular at (x̄, ȳ) with the exact strong

q-subregularity bound ssubreg q(F + g)(x̄, ȳ).

Proof. Pick κ ∈ (0,∞) such that ssubreg q(F + g)(x̄) < κ. Define the mapping

g̃(x) := Og(x̄)(x− x̄) + g(x̄)− g(x)

and observe that g̃(x̄) = 0 and lip g̃(x̄) = 0 since g is strictly differentiable at x̄. Thus it follows

from Theorem 4.5 that the mapping x 7→ ˜(F + g)(x) + g̃(x) = F (x) +g(x)− g̃(x̄) + g̃(x) = G(x)

is also strongly q-subregular at (x̄, ȳ) with the exact bound not exceeding κ. The proof of the

converse implication is similar with replacing g̃ by −g̃. 2

The second consequence of Theorem 4.5 provides a lower estimate of moduli of Lipschitzian

perturbations, which fails strong q-subregularity of the original mapping.
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Corollary 4.7 (perturbation radius for failure of strong q-subregularity) In the setting

of Theorem 4.5 we have the following estimate:

inf
g : X→Y

{
lip g(x̄)

∣∣ F̃ + g is not strongly metrically q-subregular at (x̄, ȳ)
}

(4.7)

≥ 1(
ssubreg qF (x̄, ȳ)

) 1
q

.

Proof. We split the proof into considering the three possible cases in the theorem.

(i) If ssubreg qF (x̄, ȳ) = ∞, then the right-hand side of (4.7) is zero. Observing that for

g ≡ 0 the mapping F̃ is not strong q-subregular, we conclude that the infimum in (4.7) the is

also zero, and thus the inequality therein holds.

(ii) If ssubreg qF (x̄, ȳ) = 0, then the right-hand side of (4.7) becomes∞. For any g : X → Y

with lip g(x̄) <∞ we deduce from Theorem 4.5 that the mapping F̃ +g is strongly q-subregular

as well. Hence the infimum in (4.7) is also ∞, and thus the inequality holds therein.

(iii) Consider the major case of 0 < ssubreg qF (x̄, ȳ) <∞ and suppose that (4.7) is violated.

Then we find a mapping g : X → Y locally Lipschitzian around x̄ such that

lip g(x̄)
(
ssubreg qF (x̄, ȳ)

) 1
q < 1

and the mapping F̃ + g is not strongly q-subregular at (x̄, ȳ). This clearly contradicts Theo-

rem 4.5 and thus completes the proof. 2

The concluding result of this section concerns strong q-subregularity of parameterized map-

pings being important, in particular, in the framework of Section 4.2.

Theorem 4.8 (strong q-subregularity of parameterized mappings) Let F : X ⇒ Y

be as above, and let g : X → Y be C1-smooth around x̄. Assume that the mapping G : x 7→
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g(x̄) + Og(x̄)(x − x̄) + F (x) is strongly q-subregular at (x̄, ȳ) with ȳ ∈ G(x̄). Then for any

λ > ssubreg qG(x̄, ȳ) there exists γ > 0 such that the parameterized form of G defined by

x 7→ G(u, x) := g(x̄) + Og(u)(x− x̄) + F (x) with u ∈ IB(x̄, γ)

is strongly q-subregular at (x̄, ȳ) with modulus λ, i.e., there is η > 0 for which

‖x− x̄‖ ≤ λdq
(
ȳ;G(u, x)

)
whenever x ∈ IB(x̄, η).

Proof. Take λ > κ > ssubreg q(G, x̄, ȳ) and select µ > 0 so that

λ >
κ

(1− µκ
1
q )q

and µκ
1
q < 1.

By the assumed C1 property of g, find γ > 0 such that

‖Og(u)− Og(x̄)‖ ≤ µ for all u ∈ IB(x̄, γ).

Fix further u as above and define a new parameterized mapping g̃ : X → Y by

g̃(x) := g(u) + Og(u)(x− u)− g(x̄)− Og(x̄)(x− x̄).

Then we have g̃(x̄) = g(u) + Og(u)(x̄− u)− g(x̄), and hence

‖g̃(x)− g̃(x′)‖ = ‖Og(u)(x− x′)− Og(x̄)(x− x′)‖

≤ ‖Og(u)− Og(x̄)‖ · ‖x− x′‖ ≤ µ‖x− x′‖
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for any x, x′ ∈ IB(x̄, γ). Thus lip g̃(x̄) ≤ µ. Applying Theorem 4.5 to the mappings G and g̃

ensures that the mapping

x 7→ G̃(x) + g̃(x) = G(x)− g̃(x̄) + g̃(x)

g(x̄) + Og(x̄)(x− x̄) + F (x) + (Og(u)− Og(x̄))(x− x̄)

= g(x̄) + Og(u)(x− x̄) + F (x) = G(u, x)

is strongly q-subregular at (x̄, ȳ) with th exact bound not exceeded λ. This tells us that for any

u ∈ IB(x̄, γ) there is η > 0 such that

‖x− x̄‖ ≤ λdq
(
ȳ;G(u, x)

)
for all x ∈ IB(x̄, η),

which thus completes the proof of the theorem. 2

4.2 Application to Quasi-Newton Methods

In this section we discuss some applications of the results on strong q-subregularity under

perturbations obtained in Section 4.1 to the convergence rate for a class of quasi-Newton methods

to solve generalized equations given in the form

0 ∈ g(x) + F (x), (4.8)

where g : X → Y is a single-valued mapping while F : X ⇒ Y is a set-valued mapping between

Banach spaces. As in [9], we consider the following class of quasi-Newton methods to solve

(4.8):

0 ∈ g(xk) +Bk(xk+1 − xk) + F (xk+1), k = 0, 1, . . . , (4.9)
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where Bk signify a sequence of linear and bounded operators acting from X to Y . In the

case of Bk = ∇g(xk) algorithm (4.9) corresponds to Newton’s method while particular choices

of the operator sequence {Bk} make it possible to include in this scheme various versions of

quasi-Newton methods; see more discussions in [8, 9].

Let x̄ be a solution to (4.8), and let {xk} be a sequence generated by (4.9) that converges

to x̄. The classical Dennis-Moré theorem [8, Theorem 2.2] for F ≡ 0 establishes a certain

characterization of the superlinear convergence (called in [8] the Q-superlinear convergence,

where Q stands for “quotient") of the quasi-Newton iterations

lim
k→∞

‖xk+1 − x̄‖
‖xk − x̄‖

= 0 (4.10)

under the smoothness of g : IRn → IRn and nonsingularity of its Jacobian ∇g(x̄). Recently [9,

Theorem 3], Dontchev extended this result to the case of generalized equations (4.8) assuming

that the mapping x 7→ g(x̄)+Og(x̄)(x− x̄)+F (x) is strongly subregular at (x̄, 0), which reduces

to the nonsingularity of ∇g(x̄) in the setting of [8].

The following theorem imposes the q-subregularity of F at (x̄,−g(x̄)) as q ≥ 1 and shows,

by using the approach somewhat different from both papers [8, 9] and based on the stability

results of Section 4.1, that we have the higher convergence rate

lim
k→∞

‖xk+1 − x̄‖
‖xk − x̄‖q

= 0, q ≥ 1, (4.11)

which reduces to the superlinear one in (4.10) for q = 1.

Theorem 4.9 (convergence rate for quasi-Newton iterations) Let x̄ be a solution of the

generalized equation (4.8), where g : X → Y be a mapping between Banach spaces that is C1-
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smooth on some convex neighborhood U of x̄. Given a starting point x0 ∈ U and a sequence of

linear and bounded operators Bk : X → Y , consider the corresponding sequence {xk} generated

by (4.9) such that {xk} ⊂ U and xk → x̄ as k → ∞. Assume that the set-valued mapping

F : X ⇒ Y in (4.8) is strongly q-subregular at (x̄,−g(x̄)) with some q ≥ 1 and that there exist

positive numbers κ, λ for which

ssubreg qF
(
x̄,−g(x̄)

)
< κ and lip g(x̄) < λ <

(
κ

1
q
)−1

. (4.12)

Suppose also that xk 6= x̄ for all k ∈ N . Then we have the implication

[
lim
k→∞

∥∥(Bk − Og(x̄)
)
(xk+1 − xk)

∥∥
‖xk+1 − xk‖

= 0
]

=⇒ (4.11). (4.13)

Proof. By (4.12) it follows from Theorem 4.5 that

ssubreg q(F̃ + g)
(
x̄,−g(x̄)

)
≤ κ

(1− λκ
1
q )q

with F̃ (x) = F (x)− g(x̄).

Then Corollary 4.6 tells us that the mapping G̃ : x 7→ g(x̄) +Og(x̄)(x− x̄) + F̃ (x) = Og(x̄)(x−

x̄)+F (x) is strongly q-subregular at (x̄,−g(x̄) with modulus µ ≤ κ

(1−λκ
1
q )q

. To prove implication

(4.13) with q ≥ 1, take any small ε > 0 and find a natural number k0 sufficiently large so that
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for all k ≥ k0 we have the relationships

‖xk+1 − x̄‖
1
q ≤ µ

1
q d
(
− g(x̄); G̃(xk+1)

)
= µ

1
q d
(
− g(x̄);Og(x̄)(xk+1 − x̄) + F (xk+1)

)
≤ µ

1
q ‖ − g(x̄) + g(xk) +Bk(xk+1 − xk)− Og(x̄)(xk+1 − x̄)‖

= µ
1
q ‖g(xk)− g(x̄)− Og(x̄)(xk − x̄) +

(
Bk − Og(x̄)

)
(xk+1 − xk)‖

≤ µ
1
q

∥∥∥∫ 1

0
Og
(
x̄+ t(xk − x̄)

)
(xk − x̄) dt− Og(x̄)(xk − x̄)

∥∥∥
+ µ

1
q ‖Bk − Og(x̄)‖‖xk+1 − xk‖

≤ µ
1
q

∥∥∥∫ 1

0

(
Og
(
x̄+ t(xk − x̄)

)
− Og(x̄)

)
(xk − x̄)dt

∥∥∥+ µ
1
q ε‖xk+1 − xk‖

≤ µ
1
q ε‖xk − x̄‖+ µ

1
q ε‖xk+1 − x̄‖+ µ

1
q ε‖xk − x̄‖

≤ 2µ
1
q ε‖xk − x̄‖+ µ

1
q ε‖xk+1 − x̄‖

1
q .

This gives us the upper estimate

‖xk+1 − x̄‖ ≤
2qµεq

(1− µ
1
q ε)q
‖xk − x̄‖q,

which ensures the validity of (4.11) and thus completes the proof of the theorem. 2

It worth mentioning that the inverse implication also holds in (4.13), which in fact follows

from the proof of [9, Theorem 3] for q = 1; cf. also [8].

As shown by the examples of Chapter 3, strong higher-order subregularity (q > 1) holds in

natural situations when metric regularity fails. The following simple example, where F (x) is a

non-Lipschitzian function, illustrates the application of Theorem 4.9 in such settings.

Example 4.10 (quasi-Newton method for non-Lipschitzian 2-subregular equations)

Let g(x) := x2 and F (x) := |x|
1
2 , x ∈ IR. Then x̄ = 0 is a solution to the generalized
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equation (4.8), which in this case reduces to a nonsmooth equation defined by a non-Lipschitzian

function. As has been well recognized in the literature (see, e.g., [12, 16] and the references

therein), the vast majority of the results on Newton-type methods for nonsmooth equations

concerns Lipschitzian ones, while non-Lipschitzian settings are highly challenging. Based on

Example 3.2, we conclude that F is strongly 2-subregular at (0, 0). It is easy to check that

the other conditions of Theorem 4.9 are also satisfied. Consider now the quasi-Newton method

(4.9) with

Bk :=

(
2

(k+1)!
2

)−1
+
(
22k!
)−1(

2k!
)−1 −

(
2(k+1)!

)−1 .

It is easy to verify that limk→∞ |Bk − Og(x̄)| = 0. Then for any starting point x0 close to x̄,

it follows that algorithm (4.9) generates a sequence {xk} = {(2k!)−1} converging to x̄ = 0 with

the convergence rate that exceeds q = 2.

�
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chapter 5

Q-Subregularity for Constraint Systems

For many optimization problems the constraints can be formulated as an inclusion of the abstract

form

0 ∈ F (x),

where F : X ⇒ Y is a multifunction between Banach spaces X and Y . An important special

case, appearing in many applications, is given by constraint systems of the form

0 ∈ f(x)− C, (5.1)

where f : X → Y is a mapping and C ⊂ Y is a set, i.e., we have F (x) = f(x)−C. A prominent

example of a constraint system of the form (5.1) is given by the constraints of a possibly

infinite dimensional mathematical programming problem with Y := Y1 × Rm, C = {0} × Rm+

and f = (P, f1, · · · , fm), i.e.,

P (x) = 0,

fi(x) ≤ 0, i = 1, · · · ,m.
(5.2)

Our main task in this chapter is to investigate the metric q-subregularity as well as uniform

metric regularity of the constraint system (5.1). We intend to characterize the aforementioned

properties in terms of its initial data. Let’s provide the following result, which is a direct

consequence of [34, Theorem 4.10] and [21, Theorem 3.41 and Corollary 1.81] and will be

helpful in the later proofs.
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Theorem 5.1 (chain rule for Lipschitz functions) Assume that X and Y are Asplund

spaces. Let f : X → Y be Lipschitz continuous around x̄, and let g : Y → R be Lipschitz

continuous around ȳ with ȳ := f(x̄). Then one has

(i) for any ε, σ > 0 and each fixed x∗ ∈ ∂̂(g ◦ f)(x̄), there exist x ∈ B(x̄, ε), y ∈ B(ȳ, ε) with

|g(y)− g(ȳ)| ≤ ε as well as y∗ ∈ ∂̂g(y) + σBY ∗ and x̃∗ ∈ ∂̂〈y∗, f〉(x) such that

x∗ ∈ x̃∗ + σBX∗ ; (5.3)

(ii)

∂(g ◦ f)(x̄) ⊂
⋃

y∗∈∂g(ȳ)

D∗f(x̄)(y∗). (5.4)

5.1 Characterizations on q-Subregularity

Let us start this section with some basic notations. Let C ⊂ Y, y ∈ Y \ C, recall that the

Euclidean projector of y to C is defined as follows:

Π(y;C) := {w ∈ C|‖y − w‖ = d(y, C)},

For convenience, we set

N(y;C) :=
⋂

w∈Π(y;C)

N̂(w;C) ∩ SY ∗

and

Nε(y;C) :=

{
y∗ + εb∗

‖y∗ + εb∗‖

∣∣∣∣ y∗ ∈ N(y), b∗ ∈ BY ∗

}
. (5.5)

We first provide the following sufficient condition as well as modulus estimation for metric

q-subregularity of the constraint system (5.1) under Lipschitz condition.
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Theorem 5.2 (Sufficient condition of q-subregularity in terms of projection points)

Let X and Y be Asplund spaces, β, q ∈ (0,+∞), C be a closed set of Y , f : X → Y and

F (x) = f(x) − C. Suppose x̄ ∈ f−1(C) and f is local Lipschitz around x̄. Also assume that

Π(f(x);C) is not empty for all x close to x̄ with f(x) 6∈ C. Then the following condition

κ := sup
ε>0

inf

{
‖x∗‖

d(x, f−1(C))
1−q
q

∣∣∣∣∣x, x′, x′′ ∈ B(x̄, ε) \ f−1(C), x′ ∈ B(x, d(f(x), C)),

x′′ ∈ B(x′, d(f(x′), C)), y ∈ B(f(x′), ε) \ C, d(f(x), C)q < βd(x, f−1(C)),

y∗ ∈ Nε(y;C), x∗ ∈ ∂̂〈y∗, f〉(x′′)
}
> 0.

(5.6)

implies that F is metrically q-subregular at (x̄, 0). Moreover, we have the following modulus

estimate:

subregqF (x̄, 0) ≤


max

{
2
κq ,

2
βq

}
, q ∈ (0, 1],

max
{

4q

(3κ)q ,
2
βq

}
, q ∈ (1,+∞).

(5.7)

Proof. It is clear that estimate (5.7) with κ > 0 ensures all the statements of the theorem.

To justify this, assume the contrary and thus find τ > 0 with

subregqF (x̄, 0) > τ >


max

{
2
κq ,

2
βq

}
, q ∈ (0, 1],

max
{

4q

(3κ)q ,
2
βq

}
, q ∈ (1,+∞).

(5.8)

Then, there are sequences xk with ‖xk − x̄‖ → 0 such that

τd(f(xk), C)q < d(xk, f
−1(C)). (5.9)
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And hence, we have that

d(f(xk), C) < inf
x∈X

d(f(x), C) + (
d(xk, f

−1(C))

τ
)
1
q . (5.10)

Now we apply Ekeland’s variational principle [21, Theorem 2.26] to the function d(·, C) ◦ f on

X with εk = (d(xk,f
−1(C))
τ )

1
q and λk := d(xk,f

−1(C))
2 , which ensures us optimal solutions x̃k ∈ X

satisfying ‖x̃k − xk‖ ≤ λk, d(f(x̃k), C) ≤ d(f(xk), C) and

d(f(x̃k), C) ≤ d(f(x), C) +
d(xk, f

−1(C))
1−q
q

ατ
1
q

‖x− x̃k‖ ∀x ∈ X. (5.11)

It follows from the triangle inequality that

d(x̃k, f
−1(C)) ≤ d(xk, f

−1(C)) + ‖x̃k − xk‖ ≤
3d(xk, f

−1(C))

2

and

d(x̃k, f
−1(C)) ≥ d(xk, f

−1(C))− ‖x̃k − xk‖ ≥
d(xk, f

−1(C))

2
.

which guarantee that

3

2
d(x̃k, f

−1(C)) ≤ d(xk, f
−1(C)) ≤ 2d(x̃k, f

−1(C)) (5.12)

and d(x̃k, f
−1(C)) > 0. Then x̃k 6∈ f−1(C), and hence f(x̃k) 6∈ C. Note that d(f(x̃k), C) ≤

d(f(xk), C), combining (5.8), (5.9) and (5.11) gives us

d(x̃k, f
−1(C)) ≤ (

d(xk, f
−1(C))

τ
)
1
q <

2
1
q

τ
1
q

d(x̃k, f
−1(C))

1
q ≤ βd(x̃k, f

−1(C))
1
q . (5.13)
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Observe that 0 ∈ ∂̂(d(f(·), C)+ 2d(xk,f
−1(C))

1−q
q

τ
1
q

‖ ·−x̃k‖)(x̃k) due to the validity of (5.11). Then

by applying the semi-Lipschitzian sum rule [21, Theorem 2.33 (b)], we find x̃′k ∈ B(x̃k, d(x̃k, f
−1(C)))

and u∗k ∈ BX∗ such that

2d(xk, f
−1(C))

1−q
q

τ
1
q

u∗ ∈ ∂̂(d(f(·), C))(x̃′k). (5.14)

Clearly, d(x̃′k, f
−1(C)) > 0, then x̃′k 6∈ f−1(C), and hence f(x̃′k) 6∈ C. Note that d(·, C) and

f are Lipschitz continuous, using the fuzzy chain rule in Theorem 5.1 (i), we can find x̃′′k ∈

B(x̃′k, d(x̃′k, f
−1(C))), yk ∈ B(f(x̃′k), d(f(x̃′k), C)), y∗k ∈ ∂̂d(·, C)(yk), y

′∗
k ∈ B(y∗k, d(f(x̃′k), C))

and v∗k ∈ ∂̂〈y′
∗
k, f〉(x̃′′k) satisfying

‖v∗k −
2d(xk, f

−1(C))
1−q
q

τ
1
q

u∗‖ ≤ d(f(x̃′k), C) ↓ 0. (5.15)

It is easy to see that yk 6∈ C and Π(yk;C) 6= ∅. Since y∗k ∈ ∂̂d(·, C)(yk), it follows from [21,

Theorem 1.102] that y∗k ∈ N(yk;C). Now let

ỹ∗k :=
y′∗k
‖y′∗k‖

and ṽ∗k :=
v∗k
‖y′∗k‖

,

then ỹ∗k ∈ Nε(yk;C) and ṽ∗k ∈ ∂̂〈ỹ∗k, f〉(x̃′′k), when k is sufficient large. By (5.12), one has

2d(xk, f
−1(C))

1−q
q

τ
1
q

≤


( 2
τ )

1
q d(x̃k, f

−1(C))
1−q
q , q ∈ (0, 1],

3( 2
3τ )

1
q d(x̃k, f

−1(C))
1−q
q , q ∈ (1,+∞).
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This and (5.8) show that

2d(xk, f
−1(C))

1−q
q

τ
1
q

< κd(x̃k, f
−1(C))

1−q
q ∀q ∈ (0,+∞).

Therefore by taking into account of d(f(x̃′k), C) ↓ 0 as k →∞, we have

‖ṽ∗k‖ ≤
2d(xk,f

−1(C))
1−q
q

τ
1
q

+ d(f(x̃′k), C)

1− d(f(x̃′k), C)
< κd(x̃k, f

−1(C))
1−q
q ∀q ∈ (0,+∞).

when k is large enough. This is a contradiction to the definition of κ by taking into account of

the construction of x̃k, x̃′k, x̃
′′
k, yk, ỹ

∗
k, ṽ
∗
k and (5.13). Our proof is completed. 2

The following example illustrates that our sufficient condition in Theorem 5.2 is only valid

for metric q-subregularity, not for q-regularity.

Example 5.3 Let X = Y = R, x̄ = 0, f(x) = x2 and C = (−∞, 0]. It is easy to see that

f−1(C) = {0} and d(f(x), C) = x2

for all x ∈ R. Pick q = 1
2 , β = 2 and let them be fixed. Observe that for any ε > 0 and

selections of x, x′, x′′ ∈ (−ε, ε) \ {0} satisfying

x′ ∈ (x− x2, x+ x2), x′′ ∈ (x′ − x′2, x′ + x′2), y ∈ (0, x′2 + ε)

and

d(f(x), C)
1
2 < 2d(x, f−1(C))
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, it’s not difficult to calculate that

Nε(y;C) = {1} and D̂∗f(x′′)(y∗) = ∇f(x′′) ∗ y∗ = 2x′′y∗

for all y∗ ∈ R. Therefore for any y∗ ∈ Nε(y;C) and x∗ ∈ D̂∗f(x′′)(y∗) = D̂∗f(x′′)(1) = 2x′′,

one has

‖x∗‖ = 2|x′′| ≥ 2|x| − ε

, which implies that κ = 2 according to the definition of κ in (5.6). It follows from Theorem

5.2 that F (x) = x2 − (−∞, 0] is 1
2 -metrically subregular at (0, 0) with modulus no more than

√
2. However, F (x) = x2 − (−∞, 0] is not metrically 1

2 -regular around (0, 0) due to the fact

that F−1(y) = φ when y < 0.

Remark 5.4 It is easy to observe that the formulation of the constant κ in (5.6) involves triple

selections regarding candidates x’s. This is a result of the fuzzy sum rule which was applied

to the Fréchet subdifferentials. Indeed, by employing the generalized Fermat Rule and the

semi-Lipschitzian sum rule [21, Theorem 2.33 (c)] to Mordukhovich subdifferential instead of

the Fréchet case on (5.11), we are then able to simplify the calculations of κ with help of the

following result [35, Example 2.130]:

∂d(·, C)(y0) = N(C, y′) ∩ ∂‖ · −y′‖(y0) (5.16)

where y′ ∈ Π(y0;C) for a closed convex subset C of Y and y0 ∈ Y . Note that y′ need not to be

unique and the right hand side of (5.16) is the same for all possible y′ ∈ Π(y0;C). It is clear

that if y0 ∈ Y \ C, then ∂d(·, C)(y0) ⊂ SX∗ .
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Theorem 5.5 Let X be an Asplund space and Y be a reflexive Banach space. Let β, q ∈ (0,+∞)

and C be a closed convex subset of Y . Suppose that F (x) = f(x) − C, x̄ ∈ f−1(C), where the

mapping f : X → Y is locally Lipschitzian around x̄. Then the condition

κ := sup
ε>0

inf

{
‖x∗‖

d(x, f−1(C))
1−q
q

∣∣∣∣∣x ∈ B(x̄, ε) \ f−1(C), d(f(x), C)q < βd(x, f−1(C)),

∃y′ ∈ Π(f(x);C), x∗ ∈ D∗f(x)
(
N(C, y′) ∩ ∂‖ · −y′‖(f(x))

)}
> 0.

(5.17)

is sufficient for F to be metrically q-subregular at (x̄, 0). More precisely, we have the following

estimates of modulus

subregqF (x̄, 0) ≤


max

{
2
κq ,

2
βq

}
, q ∈ (0, 1],

max
{

4q

(3κ)q ,
2
βq

}
, q ∈ (1,+∞).

(5.18)

Proof. It suffices to show that (5.18) is true. Taking the similar approach as in Theorem

5.2, we assume to the contrary that there exists a τ > 0 such that (5.8) holds. Then there

are sequences xk with ‖xk − x̄‖ → 0 such that (5.9) and (5.10) holds. From that we are ready

to apply Ekeland’s Variational Principle to the function d(·, C) ◦ f and get x̃k ∈ X such that

‖x̃k − xk‖ ≤ λk := d(xk,f
−1(C))
2 , d(f(x̃k), C) ≤ d(f(xk), C) and satisfy (5.11), (5.12), (5.13) as

well as f(x̃k) 6∈ C. It then follows from (5.11) and then the semi-Lipschitzian Sum Rule [21,

Theorem 2.33] that

0 ∈ ∂

(
d(f(·), C) +

2d(xk, f
−1(C))

1−q
q

τ
1
q

‖ · −x̃k‖

)
(x̃k)

⊂ ∂d(f(·), C)(x̃k) +
2d(xk, f

−1(C))
1−q
q

τ
1
q

BX∗ .
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Applying the chain rule in Theorem 5.1 (ii) ensures the existence of u∗k ∈ BX∗ such that

2d(xk, f
−1(C))

1−q
q

τ
1
q

u∗k ∈ ∂(d(f(·), C))(x̃k)

⊂
⋃

y∗∈∂d(·,C)(f(x̃k))

D∗f(x̃k)(y
∗).

Note that f(x̃k) 6∈ C and d(·, C) and f are Lipschitz continuous, it follows from the above

inclusion and (5.16) that, there exist y′ ∈ Π(f(x̃k);C) and y∗ ∈ N(C, y′) ∩ ∂‖ · −y′‖(f(x̃k))

satisfying

2d(xk, f
−1(C))

1−q
q

τ
1
q

u∗k ∈ D∗f(x̃k)(y
∗). (5.19)

Recall that by (5.12), one has

2d(xk, f
−1(C))

1−q
q

τ
1
q

≤


( 2
τ )

1
q d(x̃k, f

−1(C))
1−q
q , q ∈ (0, 1],

3( 2
3τ )

1
q d(x̃k, f

−1(C))
1−q
q , q ∈ (1,+∞).

This and (5.8) imply that

2d(xk, f
−1(C))

1−q
q

τ
1
q

< κd(x̃k, f
−1(C))

1−q
q ∀q ∈ (0,+∞).

Therefore we conclude that

‖2d(xk, f
−1(C))

1−q
q

τ
1
q

u∗k‖ ≤
2d(xk, f

−1(C))
1−q
q

τ
1
q

< κd(x̃k, f
−1(C))

1−q
q ∀q ∈ (0,+∞).

which is a contradiction to our definition of κ by taking into account of the constructions of

(5.13) and (5.19). The proof is completed. 2

The next example shows that Theorem 5.5 does not hold when C is nonconvex.
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Example 5.6 Let X = R, Y = R2, f(x) = (x, x2) and C = {(x, y) ∈ R2|y ≥ x ≥ 0 or y ≤

x ≤ 0}. Apparently, C is not convex. Let x̄ = 0, then x̄ ∈ f−1(C) = {0} ∪ [1,+∞), hence

d(x, f−1(C)) = |x| and d(f(x), C) = |x2−x|√
2

when x is sufficiently close to 0. It is clear that

lim
x→0

d(x, f−1(C)

d(f(x), C)
= lim

x→0

√
2|x|

|x2 − x|
=∞.

which implies that F (x) := f(x) − C is not metrically subregular at (0, 0). However, it is not

difficult to calculate that for any nonzero element x close enough to 0, we have Π(f(x);C) =

{(x+x2

2 , x+x2

2 )} and

N

(
C,

(
x+ x2

2
,
x+ x2

2

))⋂
∂

∥∥∥∥· − (x+ x2

2
,
x+ x2

2

)∥∥∥∥ (x, x2) =


{

(
√

2
2 ,−

√
2

2 )
}
, x > 0,{

(−
√

2
2 ,

√
2

2 )
}
, x < 0.

Since

D∗f(x)(

√
2

2
,−
√

2

2
) = ∇f(x)∗(

√
2

2
,−
√

2

2
) = (1, 2x)∗(

√
2

2
,−
√

2

2
) =

√
2

2
−
√

2x

and

D∗f(x)(−
√

2

2
,

√
2

2
) =
√

2x−
√

2

2
,

we can claim that the κ in (5.17) is no less then
√

2
2 with β = 1 and q = 1.

The rest of this section investigate the application of our previous results on the constraint

system (5.1) to q-order weak sharp minimizer [36, Definition 1.1]. For convenience, we refor-
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mulate the definition here. Consider the problem

(P ) min{f(x)|x ∈ X}

where f : X → R is a continuous function. Denote the solution set of (P) by S. Recall that

Definition 5.7 (q-order growth condition) Let p > 0. Then the objective function f in

(P) is said to satisfy a p-order growth condition if there exist a constant c > 0 and a

neighborhood N of S such that

f(x) ≥ f∗ + cd(x, S)p ∀x ∈ N . (5.20)

where f∗ = inf{f(x)|x ∈ X}.

The following result provides a relationship between metric q-subregularity of the constraint

system (5.1) and 1
q -order growth condition on f for any positive q.

Theorem 5.8 Let the solution set S of (P ) be nonempty and compact, and suppose that the

multifunction F (x) := f(x)− (−∞, f∗] is metrically q-subregular at (S × {0}) ( i.e., metrically

q-subregular at (x, 0) for all x ∈ S). Then f satisfies a 1
q -order growth condition in (P).

Proof. Pick an arbitrary x0 ∈ S and let it be fixed, i.e. f(x0) = f∗. Therefore the metric

q-subregularity of F at (x0, 0) implies the existence of δ, τ > 0 such that

d(x, F−1(0)) ≤ τd(0, f(x)− (−∞, f∗])q = |f(x0)− f(x)|q
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for all x ∈ B(x0, δ). Since F−1(0) = S, it follows that

1

τ
d(x, S)

1
q ≤ |f(x0)− f(x)|q ∀ x ∈ B(x0, δ).

Note that f(x) ≥ f(x0) for all x around x0, we have

f(x) ≥ f∗ +
1

τ
d(x, S)

1
q ∀x ∈ B(x0, δ).

Since x0 is arbitrarily chosen and S is compact, there exist a finite number of xi’s from S,

δi > 0, and τi > 0, such that S ⊂ ∪ni=1B(xi, δi) and for each i from {1, . . . , n} ,

f(x) ≥ f∗ +
1

τi
d(x, S)

1
q ∀x ∈ B(xi, δi),

which implies that f satisfies a 1
q -order growth condition with c = maxni=1 τi andN = ∪ni=1B(xi, δi).

The proof is completed. 2

By Theorem 5.5 and Theorem 5.8, we have the following result:

Corollary 5.9 Let X be an Asplund space. Let β, q ∈ (0,+∞), f∗ and S be defined as in

(5.20). Suppose that for all x ∈ S, the mapping f : X → R is local Lipschitz around x and

κx := sup
ε>0

inf

{
‖x∗‖

d(x′, S)
1−q
q

∣∣∣∣∣x′ ∈ B(x, ε) \ S, (f(x′)− f∗)q < βd(x′, S), x∗ ∈ ∂̂f(x′)

}
> 0.

(5.21)

Then, f satisfies a 1
q -order growth condition in (P).

Proof. Let C := (−∞, f∗] and F (x) := f(x) − C, then f−1(C) = S. Fix any ε > 0, x ∈ S

and x′ ∈ B(x, ε) \ S, one has d(f(x′), C) = f(x′)− f∗, Π(f(x′);C) = {f∗}, N(C, f∗) = [0,+∞)
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and ∂| ·−f∗| = {1}. Note that D̂∗f(x′)(1) = ∂̂f(x′), then (5.21) implies (5.17). Hence it follows

from Theorem 5.5 that F (x) is metrically q-subregular at (x, 0). Now we are ready to apply

Theorem 5.8 and get that f satisfies a 1
q -order growth condition in (P). The proof is completed.

2

5.2 Uniform Metric Regularity for Constraint Systems

This section studies the notion of uniform metric regularity of a collection of multifunctions

Gi : X ⇒ Y defined by

Gi(x) := g(x)−Θi ∀x ∈ X, (5.22)

where g is a mapping between X and Y and {Θi ⊂ Y : i ∈ I} is a collection of closed sets. Let’s

start by recalling the following definition:

Definition 5.10 Let I be any index set, Gi : X ⇒ Y, i ∈ I be a collection of multifunctions

with (x̄, ȳ) ∈ ∩i∈IgphGi. Then the multifunction collection {Gi : i ∈ I} is said to be uniformly

metrically regular at (x̄, ȳ) if there exist τ, δ ∈ (0,+∞) such that

d(x,G−1
i (y)) ≤ τd(y,Gi(x)) ∀(i, x, y) ∈ I ×B(x̄, δ)×B(ȳ, δ). (5.23)

Many authors have studied the uniform metric regularity, see [37, 38]. In [37], the authors

provided the following Proposition under the assumptions of surjectivity on g′(x̄) and uniform

subsmoothness of {Gi : i ∈ I}.

Proposition 5.11 [37, Proposition 3.5] Let X and Y be Banach spaces and g : X → Y be a

smooth mapping. Let I be an arbitrary index set, {Gi : i ∈ I} be a collection of closed sets in

Y and let each Gi be defined by (5.22). Suppose that x̄ is an element in ∩i∈Ig−1(Θi) such that
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g′(x̄) is surjective and that {Θi : i ∈ I} is uniformly subsmooth at g(x̄). Then {Gi : i ∈ I} is

uniformly metrically regular at (x̄, 0).

In what follows, we relaxed the surjectivity assumption on g′(x̄) and dropped the uniform

subsmoothness assumption on {Θi : i ∈ I} from Proposition 5.11 with a different approach.

The proof of the following Theorem is a modification of the Lyusternik-Graves iterative process

[21, Theorem 1.57].

Theorem 5.12 Let X and Y be Banach spaces,I be an arbitrary index set, {Θi ⊂ Y : i ∈ I} be

a collection of closed sets and {Gi} be defined as in (5.22). Suppose that x̄ ∈ ∩i∈Ig−1(Θi) and

g : X → Y is a mapping such that there exists a surjective linear operator A ∈ B(X,Y ), some

neighborhood U of x̄, µ > 0 and γ > regA satisfying the relationships µγ < 1 and

‖g(x)− g(x′)−A(x− x′)‖ ≤ µ‖x− x′‖ ∀x, x′ ∈ U. (5.24)

Then {Gi : i ∈ I} is uniformly metrically regular at (x̄, 0) and more over

reg(Gi) ≤
γ

1− µγ
∀i ∈ I. (5.25)

Proof. It suffices to justify (5.25). To this end, we fix any i ∈ I and pick an a > 0 such that

(5.24) holds for every x, x′ ∈ B(x̄, a). Choose further α ∈ (0,min{2(µ+ ‖A‖)a, a}) sufficiently

small satisfying the following estimates

(γ + 1)α ≤ a and
(γ + 1− µγ)α

1− µγ
≤ a. (5.26)
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It is clear that g is locally Lipschitz around x̄. Indeed by (5.24), we have that

‖g(x)− g(x′)‖ ≤ ‖g(x)− g(x′)−A(x− x′)‖+ ‖A(x− x′)‖ ≤ (µ+ ‖A‖)‖x− x′‖. (5.27)

holds for all x, x′ ∈ B(x̄, a). Take any arbitrary pair (x, y) from B(x̄, α
2(µ+‖A‖)) × B(0, α2 ) and

let it be fixed. It then follows from (5.27) that g(x) ∈ B(g(x̄), α2 ) and

d(g(x), y + Θi) ≤ ‖g(x)− y − g(x̄)‖ < α. (5.28)

Thus Θi∩B(g(x)−y, α) 6= ∅. Now pick an arbitrary θ ∈ Θi∩B(g(x)−y, α) and start with x0 := x

to construct a sequence xk ∈ B(x̄, a) by using the following iterates of the Lyusternik-Graves

type as k ∈ N:

A(xk − xk−1) = y + θ − g(xk−1) with ‖xk − xk−1‖ ≤ γ(µγ)k−1‖g(x)− y − θ‖. (5.29)

Indeed, since A is surjective, it follows from [21, Lemma 1.18] and [39, Theorem 4.13] or [21,

(1.43), Theorem 1.57] that there exists x1 ∈ X such that

A(x1 − x0) = y + θ − g(x0) and ‖x1 − x0‖ ≤ γ‖g(x0)− y − θ‖.

The above inequality together with (5.26) and (5.27) ensure the estimates

‖x1 − x̄‖ ≤ ‖x1 − x0‖+ ‖x0 − x̄‖

≤ γ‖g(x0)− y − θ‖+ α

≤ (γ + 1)α ≤ a,
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which implies that x1 ∈ B(x̄, a) and thus (5.29) is true for k = 1. Suppose now that we have

constructed the iterates x1, . . . , xn in B(x̄, a) satisfying (5.29) for some n ∈ N. Using again the

surjectivity we get xn+1 ∈ X such that A(xn+1 − xn) = y + θ − g(xn) and

‖xn+1 − xn‖ ≤ γ‖g(xn)− y − θ‖ = γ‖g(xn)− g(xn−1)−A(xn − xn+1)‖

≤ γµ‖xn − xn−1‖ ≤ γ(µγ)n(‖g(x0)− y − θ‖).

The latter yields furthermore that

‖xn+1 − x0‖ ≤
n+1∑
i=1

‖xi − xi−1‖ ≤ γ(‖g(x0)− y − θ‖)
n+1∑
i=1

(µγ)i

≤ γ

1− µγ
‖g(x0)− y − θ‖ ≤ γα

1− µγ
.

(5.30)

Then by this and (5.26), we have that

‖xn+1 − x̄‖ ≤ ‖xn+1 − x0‖+ ‖x0 − x̄‖ ≤
γα

1− µγ
+ α ≤ a.

which verifies by induction the validity of choosing a sequence xk ∈ B(x̄, a) satisfying (5.29).

Therefore, for any m > n ≥ 1, we have

‖xm − xn‖ ≤
m∑

i=n+1

‖xi − xi−1‖ ≤ γ(‖g(x0)− y − θ‖)
m∑

i=n+1

(µγ)i

≤ γ(‖g(x0)− y − θ‖)
∞∑

i=n+1

(µγ)i.

Since
∑∞

i=n+1(µγ)i → 0 as n → ∞, {xk} is a Cauchy sequence and it converges therefore to
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some x̂ ∈ B(x̄, a). Passing to the limit in (5.29) and (5.30) as k →∞, we obtain that

‖x0 − x̂‖ ≤
γ

1− µγ
‖g(x0)− y − θ‖ and g(x̂) = y + θ.

which implies that

d(x, g−1(y + Θi)) ≤ ‖x0 − x̂‖ ≤
γ

1− µγ
‖g(x0)− y − θ‖.

Note that θ is arbitrarily chosen in Θi ∩B(g(x)− y, α), it then follows from (5.28) that

d(x, g−1(y + Θi)) ≤
γ

1− µγ
d(g(x), y + Θi).

for all (i, x, y) ∈ I × B(x̄, α
2(µ+‖A‖)) × B(0, α2 ), which implies that (5.25) is true by taking into

account of the definition of Gi. Our proof is completed. 2

Next we provide two examples illustrating the assumptions made in Theorem 5.12. The first

example shows that condition (5.24) itself is not enough without the surjectivity property on A

even for the case when the index set I and {Θi} are all singleton.

Example 5.13 Consider a function g : R→ R2 defined as follows:

g(x) =


(0, x2) for x ≥ 0

(0, x) for x < 0

Let x̄ = 0 and Θ := {(0, 0)}. Then G(x) = g(x) − Θ = g(x). It is easy to see that condition

(5.24) holds with A = 0 and µ = 1 for sufficiently small x and x′. Now select yk = (0, 1
k ) and
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xk = 1
k , then we have

lim
k→∞

d(xk, G
−1(yk)

d(yk, G(xk))
= lim

k→∞

| 1k −
1√
k
|

| 1
k2
− 1

k |
=∞.

which implies that G is not metrically regular around (0, (0, 0)). The reason is of course that

the linear operator A is not surjective.

The next example shows that Theorem 5.12 does not require the constraint sets {Θi} to be

uniformly subsmooth as in Theorem 5.11 even in the setting of a single Θ and G.

Example 5.14 Consider the multifunction G : R⇒ R2 defined as G(x) = g(x)−Θ, where

g(x) = (x, x) and Θ = {(x, y) ∈ R2|xy ≥ 0}.

Take A = g′(0) = (1, 1), then it is easy to verify that A is surjective and (5.24) holds for any

sufficient small positive real number µ. Therefore the assumptions in Theorem 5.12 is fulfilled

and hence G is metrically regular around (0, (0, 0)). Indeed, take any x and y := (y1, y2) close

to 0. Without loss of generality, we may assume that y2 ≥ y1. Then it is easy to calculate that

d(y,G(x)) = d(g(x)− y,Θ)

= d((x− y1, x− y2),Θ)

=


0 if x ≤ y1 or x ≥ y2

min{|x− y1|, |x− y2|} if y1 < x < y2
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and that

d(x,G−1(y)) = d(x, g−1(y + Θ))

= d(x, (−∞, y1] ∪ [y2,+∞))

=


0 if x ≤ y1 orx ≥ y2

min{|x− y1|, |x− y2|} if y1 < x < y2

Therefore we have that d(x,G−1(y)) = d(y,G(x)) for small x and y around 0. However, it is

obvious that Θ is not subsmooth at g(0) = (0, 0).
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chapter 6

Sensitivity Analysis of PVS

6.1 Coderivatives of Variational Systems

In this section we consider a special class of parametric generalized equations of type (1.2),

where the set-valued (field) mapping Q depends not only on the decision variable but also on

the parameter, which is a more general form than (1.2). On the other hand, our attention

below is paid to the most useful specifications of such generalized equations given in the form

of finite-dimensional parametric variational systems (PVS)

0 ∈ f(x,w) + ∂w(φ ◦ g)(x,w), (6.1)

where w ∈ IRd is the decision variable (we use this notation here for further convenience),

x ∈ IRn is the parameter, f : IRn × IRd → IRn, g : IRn × IRd → IRm, and φ : IRm → IR with

m ≤ d. The subdifferential operator of the composition in (6.1) is understood in the sense of the

partial first-order subdifferential (2.4) with respect to the decision variable. Our main object is

S(x) :=
{
w ∈ IRd

∣∣ 0 ∈ f(x,w) + ∂w(φ ◦ g)(x,w)
}
, (6.2)

which is the parameter-dependent solution set for (6.1).

The main goal we pursue in what follows is evaluating the coderivative (2.2) of the solution

map (6.2). The results obtained in this direction, which are of their own interest, extend those

presented in [21, Section 4.4] in the case of the full versus partial subdifferential in (6.1). We
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also study these issues for solution maps of canonically perturbed variational systems. The

obtained conditions are rather involved, which reflects significant difficulties of the problems

under consideration.

Let us start with the coderivative estimation. Recall that the composition φ ◦ g as above is

strongly amenable in x at x̄ with compatible parametrization by w at w̄ if g is C2-smooth around

(x̄, w̄) while φ is convex, proper, l.s.c., and finite at g(x̄, w̄) under the qualification condition

∂∞φ
(
g(x̄, w̄)

)
∩ ker∇xg(x̄, w̄)∗ = {0} (6.3)

expressed via the singular subdifferential (2.5). This broad class of functions has been well

recognized in variational analysis and parametric optimization being important in many appli-

cations; see, e.g., the book [25] and more recent paper [32] with the references and discussions

therein.

The first coderivative estimate concerns the case of strongly amenable compositions under

the partial subdifferential in (6.2) known as potentials.

Theorem 6.1 (coderivative estimate for PVS with strongly amenable potentials) Let

S be given in (6.2), where the potential φ ◦ g is strongly amenable in w at w̄ with compatible

parametrization by x at x̄, and where f is continuous around (x̄, w̄) ∈ gphS. Denote z̄ :=

g(x̄, w̄), ȳ := −f(x̄, w̄) ∈ ∂w(φ ◦ g)(x̄, w̄),

M(x̄, w̄, ȳ) :=
{
v ∈ IRm

∣∣ v ∈ ∂φ(z̄) with Owg(x̄, w̄)∗v = ȳ
}

(6.4)

and impose the following two conditions:

(A1) ∂2φ(z̄, v)(0) ∩ kerOwg(x̄, w̄)∗ = {0} for all v ∈M(x̄, w̄, ȳ);
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(A2) The relationship

(x∗, w∗) ∈
⋃

v∈M(x̄,w̄,ȳ)

[(
∇2
wx〈v, g〉(x̄, w̄)u,∇2

ww〈v, g〉(x̄, w̄)u
)

+
(
∇xg(x̄, w̄),∇wg(x̄, w̄)

)∗
∂2φ(z̄, v)(∇wg(x̄, w̄)u

)]
∩
(
−D∗f(x̄, w̄)(u)

)

holds only for the trivial triple (x∗, w∗, u) = (0, 0, 0).

Then we have the coderivative upper estimate

D∗S(x̄, w̄)(w∗) ⊂
{
x∗ ∈ IRn

∣∣∣∃u ∈ IRn with (x∗,−w∗) ∈ D∗f(x̄, w̄)(u)

+
⋃

v∈M(x̄,w̄,ȳ)

[(
∇2
wx〈v, g〉(x̄, w̄)u,O2

ww〈v, g〉(x̄, w̄)u
)

+
(
Oxg(x̄, w̄),∇wg(x̄, w̄))∗∂2φ(z̄, v)(∇wg(x̄, w̄)u

)]}
.

(6.5)

Proof. Picking any x∗ ∈ D∗S(x̄, w̄)(w∗), we have

(x∗,−w∗) ∈ N
(
(x̄, w̄); gphS

)
= N

(
(x̄, w̄);h−1(gph ∂w(φ ◦ g))

)
,

where h : IRn × IRd → IRn × IRd × IRn is defined by h(x,w) := (x,w,−f(x,w)). This follows

from

gphS =
{

(x,w) ∈ IRn × IRd
∣∣ h(x,w) ∈ gph ∂w(φ ◦ g)

}
= h−1

(
gph ∂w(φ ◦ g)

)
.

Next we employ the obvious representation

h(x,w) = h1(x,w) + h2(x,w) with h1(x,w) := (x,w, 0), h2(x,w) := (0, 0,−f(x,w)).
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Since h1 is C1-smooth, it follows from the coderivative sum rule of Theorem 2.8 that

D∗h(x̄, w̄)(x∗, w∗, y∗) = Oh1(x̄, w̄)∗(x∗, w∗, y∗) +D∗h2(x̄, w̄)(x∗, w∗, y∗)

= (x∗, w∗) +D∗f(x̄, w̄)(−y∗), (x∗, w∗, y∗) ∈ IRn × IRd × IRn.
(6.6)

Applying the second-order chain rule from [32, Theorem 3.3] valid under (A1), we get

∂2
w(φ ◦ g)(x̄, w̄, ȳ)(u) ⊂

⋃
v∈M(x̄,w̄,ȳ)

[(
O2
wx〈v, g〉(x̄, w̄)u,O2

ww〈v, g〉(x̄, w̄)u
)

+
(
Oxg(x̄, w̄),Owg(x̄, w̄)

)∗
∂2φ(z̄, v)

(
Owg(x̄, w̄)u

)]
.

(6.7)

It follows from the definitions and constructions above that for any triple (x∗, w∗, y∗) ∈ kerD∗h(x̄, w̄)∩

N(h(x̄, w̄); gph ∂w(φ ◦ g)) we have the inclusion

(x∗, w∗) ∈
(
−D∗f(x̄, w̄)(−y∗)

)
∩ ∂2

w(φ ◦ g)(x̄, w̄, ȳ)(−y∗),

which implies by assumption (A2) and inclusion (6.7) that

N
(
h(x̄, w̄); gph ∂w(φ ◦ g)

)
∩ kerD∗h(x̄, w̄) = {0}.

Since φ is l.s.c. and g is C2-smooth around the points in question, it follows that the sets

epi (φ ◦ g) and gph ∂w(φ ◦ g) are locally closed around the corresponding points. Furthermore

the mapping (x,w) 7→ h(x,w) ∩ gph ∂w(φ ◦ g) is inner semicompact at (x̄, w̄) in the sense of

Definition 2.3. Applying thus Theorem 2.7 gives us the inclusion

N
(
(x̄, w̄);h−1(gph ∂w(φ ◦ g))

)
⊂ D∗h(x̄, w̄) ◦N

(
(x̄, w̄, ȳ); gph ∂w(φ ◦ g)

)
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This yields in turn together with (6.6) that there exists a triple

(u∗1, u
∗
2,−v∗) ∈ N

(
(x̄, w̄, ȳ); gph ∂w(φ ◦ g)

)
⇐⇒ (u∗1, u

∗
2) ∈ ∂2

w(φ ◦ g)(x̄, w̄, ȳ)(v∗)

such that we have the equalities

(x∗,−w∗) = D∗h(x̄, w̄)(u∗1, u
∗
2,−v∗) = (u∗1, u

∗
2) +D∗f(x̄, w̄)(v∗).

Finally, using (6.7) leads us to (6.5) and thus completes the proof of the theorem. 2

The next result estimating the coderivative of (6.2) is independent from Theorem 6.1 in

both assumptions and conclusions made. The imposed full rank condition (6.8) ensures the

validity of the constraint qualification (6.3) and in (A1) of Theorem 6.1 as well as that the set

M(x̄, w̄, ȳ) is a singleton—hence the corresponding simplifications in conditions (ii) and (6.5)

of the previous theorem, but the composition φ ◦ g may not be strongly amenable under (6.8),

i.e., the outer function φ is not assumed to be l.s.c. and convex.

Theorem 6.2 (coderivative estimate for PVS under full rank condition) In the setting

of Theorem 6.1 with a C2-smooth mapping g, let us impose the full rank condition

rankOwg(x̄, w̄) = m (6.8)

instead of the assumption that the composition φ ◦ g is strongly amenable with compatible

parametrization. Denoting by v̄ the unique solution to the system

v̄ ∈ ∂φ(z̄), Owg(x̄, w̄)∗v̄ = ȳ
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and assuming the validity of condition (A2) from Theorem 6.1 with M(x̄, w̄, ȳ) = {v̄}, we have

the coderivative estimate (6.5) with the replacement of M(x̄, w̄, ȳ) by v̄ therein.

Proof. We proceed similarly to the proof of Theorem 6.1 with replacing the usage of [32,

Theorem 3.3] by the second-order subdifferential chain rule

∂2
w(φ ◦ g)(x̄, w̄, ȳ)(u) =

(
O2
wx〈v̄, g〉(x̄, w̄)u,O2

ww〈v̄, g〉(x̄, w̄)u
)

+
(
Oxg(x̄, w̄),Owg(x̄, w̄)

)∗
∂2φ(z̄, v̄)

(
Owg(x̄, w̄)u

)
from [32, Theorem 3.1] valid for all u ∈ IRn under the full rank condition (6.8). The remaining

part of the proof of the theorem follows the lines in the proof of Theorem 6.1 with taking into

account that M(x̄, w̄, ȳ) = {v̄} when (6.8) is imposed. 2

As in [21, Section 4.4.1], we can derive various consequences and specifications of the ob-

tained Theorems 6.1 and 6.2 ensuring, in particular, the validity of the assumptions made

therein. It is worth also mentioning that, as follows from the proof, the coderivative estimate

of Theorem 6.2 can be extended to the infinite-dimensional setting of Asplund spaces.

Theorem 6.3 (metric regularity of subdifferential PVS with composite potentials)

Let (x̄, w̄) ∈ gphS for the parametric variational system S given in (6.1) under notation and

assumptions of Theorem 6.1. Let f : IRn × IRd → IRn be strictly differentiable around (x̄, w̄)

and assume that for any v ∈M(x̄, w̄, ȳ),

[0 = Oxf(x̄, w̄)u+ O2
wx〈v, g〉(x̄, w̄)u+ Oxg(x̄, w̄)∗∂2φ(z̄, v)(4wg(x̄, w̄)u)]⇒ u = 0 (6.9)
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Then we have the following inclusion

kerD∗S(x̄, w̄) ⊂ −Owg(x̄, w̄)∗∂2φ(z̄, v)(0) (6.10)

for some v ∈ M(x̄, w̄, ȳ). Hence the Lipschitz-like property of ∂φ around (z̄, v) for all v ∈

M(x̄, w̄, ȳ) implies the metric regularity of the property of S.

Proof. Take any w∗ ∈ kerD∗S(x̄, w̄), it follows from (6.5) that there exists u ∈ IRn with

(0,−w∗) ∈ (Oxf(x̄, w̄),Owf(x̄, w̄))(u) +
⋃

v∈M(x̄,w̄,ȳ)

[(
∇2
wx〈v, g〉(x̄, w̄)u,O2

ww〈v, g〉(x̄, w̄)u
)

+
(
Oxg(x̄, w̄),∇wg(x̄, w̄))∗∂2φ(z̄, v)(∇wg(x̄, w̄)u

)

Then our assumption (6.9) implies that u = 0. Hence

−w∗ = Owg(x̄, w̄)∗∂2φ(z̄, v)(0)

for some v ∈ M(x̄, w̄, ȳ). i.e. (6.10) is true. Therefore, if ∂φ is Lipshcitz-like, by [21, Theo-

rem4.10], one has w∗ = 0, i.e. kerD∗S(x̄, w̄) = {0}, which implies that S is metrically regular

around (x̄, w̄) from [21, Theorem4.18]. 2

Finally in this section, we consider the canonically perturbed version of PVS (6.2) given by

Σ(x, p) =
{
w ∈ IRd

∣∣ p ∈ f(x,w) + ∂w(φ ◦ g)(x,w)
}
, (6.11)

with the same data as in (6.1) and the pair of parameters (p, x) one of which enters in a

special/canonical way; see, e.g., [10, 21] for more details on this type of perturbations.

The next theorem unifies the coderivative estimate for Σ in the case of strongly amenable



74

potentials. Observe that the special (while fairly general) structure of (6.11) allows us, in

particular, to avoid somewhat involved assumptions of type (A2) as imposed in Theorems 6.1

and 6.2. Note also that out treatment of the canonically perturbed variational systems is

different from more conventional approaches based on preliminary first-order approximations

as in, e.g., [10, 21].

Theorem 6.4 (coderivative estimate of canonically perturbed systems) Consider the

triple (x̄, p̄, w̄) ∈ gphΣ for system (6.11), denote z̄ := g(x̄, w̄) and ȳ := p̄ − f(x̄, w̄) ∈ ∂w(φ ◦

g)(x̄, w̄), and form the set M(x̄, w̄, ȳ) by (6.4). Assume that f is locally Lipschitzian around

(x̄, w̄), the composition φ ◦ g is strongly amenable in w at w̄ with compatible parameterization

by x at x̄, and the second-order qualification condition (A1) of Theorem 6.1 is satisfied. Then

for all w∗ ∈ IRd we have the coderivative estimate

D∗Σ(x̄, p̄, w̄)(w∗) ⊂
{

(x∗1, x
∗
2) ∈ IRn × IRn

∣∣∣ ∃(y∗, z∗) ∈ (∂x〈x∗2, f〉(x̄, w̄), ∂w〈x∗2, f〉(x̄, w̄)
)

with (x∗1,−w∗ + y∗ + z∗) ∈
⋃

v∈M(x̄,w̄,ȳ)

[(
− O2

wx〈v, g〉(x̄, w̄)x∗2,−O2
ww〈v, g〉(x̄, w̄)x∗2

)
+
(
Oxg(x̄, w̄),Owg(x̄, w̄)

)∗
∂2φ(z̄, v)

(
− Owg(x̄, w̄)x∗2

)]}
.

(6.12)

Proof. Let us justify inclusion (6.12). Picking any (x∗1, x
∗
2) ∈ D∗Σ(x̄, p̄, w̄)(w∗), we get

(x∗1, x
∗
2,−w∗) ∈ N

(
(x̄, p̄, w̄); gphΣ

)
= N

(
(x̄, p̄, w̄);h−1(gph ∂w(φ ◦ g))

)

for the mapping h : IRn × IRn × IRd → IRn × IRd × IRn defined by

h(x, p, w) :=
(
x,w, p− f(x,w)

)
= h1(x, p, w) + h2(x, p, w)
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with h1(x, p, w) := (x,w, p) and h2(x, p, w) := (0, 0,−f(x,w)). Then we claim the equalities

D∗h(x̄, p̄, w̄)(x∗, w∗, z∗) = Oh1(x̄, p̄, w̄)∗(x∗, w∗, z∗) +D∗h2(x̄, p̄, w̄)(x∗, w∗, z∗)

=


1 0 0

0 0 1

0 1 0




x∗

w∗

z∗

+D∗h2(x̄, p̄, w̄)(x∗, w∗, z∗)

= (x∗, z∗, w∗) + ∂〈(x∗, w∗, z∗), h2〉(x̄, p̄, w̄)

= (x∗, z∗, w∗) +
(
0, 0, (∂x〈x∗,−f〉+ ∂w〈z∗,−f〉)(x̄, p̄, w̄)

)
= (x∗, z∗, w∗ + ∂x〈x∗,−f〉(x̄, p̄, w̄) + ∂w〈z∗,−f〉(x̄, p̄, w̄)).

Indeed, the first equality follows from Theorem 2.8 due to the smoothness of h1. The third

equality holds by Theorem 2.9 since h2 is locally Lipschitzian around (x̄, w̄).

This allows us to conclude that the first-order qualification condition

N
(
h(x̄, p̄, w̄); gph ∂x(φ ◦ g)

)
∩ kerD∗h(x̄, p̄, w̄) = {0}

is satisfied. To verify this, take any (x∗, w∗, z∗) ∈ kerD∗h(x̄, p̄, w̄) and deduced from the above

coderivative calculation that x∗ = z∗ = 0 and so w∗ = 0, i.e., kerD∗h(x̄, p̄, w̄) = {0}.

Since h is continuous and the subgradient set gph ∂w(φ ◦ g) is locally closed due to the

amenability of ψ ◦ g, we can apply Theorem 2.7 and get from it that

N
(
(x̄, p̄, w̄);h−1(gph ∂w(φ ◦ g))

)
⊂ D∗h(x̄, p̄, w̄) ◦N

(
(x̄, w̄, z̄), ; gph ∂w(φ ◦ g)

)
.
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Hence there exists a triple of normal vectors

(u∗1, u
∗
2,−v∗) ∈ N

(
(x̄, w̄, ȳ); gph ∂w(φ ◦ g)

)
⇐⇒ (u∗1, u

∗
2) ∈ D∗

(
∂w(φ ◦ g)

)
(x̄, w̄, ȳ)(v∗)

for which we have the inclusion (x∗1, x
∗
2,−w∗) ∈ D∗h(x̄, p̄, w̄)(u∗1, u

∗
2,−v∗). It follows then from

the above calculation of D∗h(x̄, p̄, w̄) that the relationships

x∗1 = u∗1, x∗2 = −v∗, −w∗ ∈ u∗2 + ∂x〈u∗1,−f〉(x̄, p̄, w̄) + ∂w〈v∗, f〉(x̄, p̄, w̄)

are satisfied and imply therefore the inclusion

u∗2 ∈ −w∗ + ∂x〈u∗1, f〉(x̄, p̄, w̄) + ∂w〈x∗2, f〉(x̄, p̄, w̄).

The latter gives us by the partial second-order subdifferential construction (2.8) that there are

(y∗, z∗) ∈
(
∂x〈x∗2, f〉(x̄, w̄), ∂w〈x∗2, f〉(x̄, w̄)

)
with (x∗1,−w∗+y∗+ z∗) ∈ ∂2

w(φ◦g)(x̄, w̄, ȳ)(−x∗2),

Then it follows from [32, Theorem 3.3] that (6.12) is true and our proof is completed. 2

The results of Theorem 6.4 admit various simplifications under additional assumptions on the

initial data, e.g., when the base mapping f is C1-smooth. We can also derive their counterpart

in the case when the amenability assumption on φ ◦ g is replaced by the full rank condition

(6.8).
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6.2 Optimality Conditions of PVS

This section is devoted to applications of coderivative result obtained above to the study of

constrained optimization and equilibrium problems with possibly nonsmooth data. The primary

objective of this chapter is to derive necessary optimality and suboptimality conditions for various

problems of constrained optimization and equilibria in finite-dimensional spaces.

First, we consider MPECs with equilibrium constraints governed by parametric variational

systems in the form of (6.1):

minimize ψ(x,w) subject to 0 ∈ f(x,w) + ∂w(φ ◦ g)(x,w), (x,w) ∈ Ω (6.13)

where ψ : IRn × IRd → ĪR is an extended real valued function. In what follows, we are going to

derive both lower and upper subdifferential necessary optimality conditions of (6.13) in terms

of its initial data.

Theorem 6.5 (upper, lower subdifferential conditions for MPECs (6.13) with strongly

amenable potentials) Let (x̄, w̄) be a local optimal solution to (6.13), f be continuous around

(x̄, w̄). Let φ ◦ g be strongly amenable in w at w̄ with compatible parametrization by x at x̄,

Ω be locally closed at (x̄, w̄) and z̄, ȳ,M(x̄, w̄, ȳ) be the same as in Theorem 6.1. Assume that

conditions (A1), (A2) of Theorem 6.1 hold and in addition

[
(x∗, w∗) ∈ D∗f(x̄, w̄)u+

⋃
v∈M(x̄,w̄,ȳ)

[(
∇2
wx〈v, g〉(x̄, w̄)u,∇2

ww〈v, g〉(x̄, w̄)u
)

(6.14)

+
(
∇xg(x̄, w̄),∇wg(x̄, w̄)

)∗
∂2φ(z̄, v)(∇wg(x̄, w̄)u

)]
, and

( −x∗,−w∗) ∈ N((x̄, w̄),Ω)
]
⇒ x∗ = w∗ = 0
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Then for every (x∗, w∗) ∈ ∂̂+ψ(x̄, w̄), there is u ∈ IRn × IRd, such that

0 ∈ (x∗, w∗) + D∗f(x̄, w̄)u+
⋃

v∈M(x̄,w̄,ȳ)

[(
∇2
wx〈v, g〉(x̄, w̄)u,∇2

ww〈v, g〉(x̄, w̄)u
)

(6.15)

+
(
∇xg(x̄, w̄),∇wg(x̄, w̄)

)∗
∂2φ(z̄, v)(∇wg(x̄, w̄)u

)]
+N((x̄, w̄),Ω)

If furthermore, ψ is Lipschitzian around (x̄, w̄), there are elements (x∗, w∗) ∈ ∂ψ(x̄, w̄) and

u ∈ IRn × IRd satisfying (6.15).

Proof. Observe that (x̄, w̄) provides a local minimum to the function ψ subject to the

constraints (x,w) ∈ Ω1 := gphS and (x,w) ∈ Ω2 := Ω, where S is defined in (6.2). First we

show that the set system {Ω1,Ω2} satisfies the limitting qualification condition at (x̄, w̄) in the

sense of [21, Definition 3.2]. To this end, take (x∗, w∗) ∈ (−N((x̄, w̄),Ω))∩N((x̄, w̄), gphS), i.e.

x∗ ∈ D∗S(x̄, w̄)(−w∗). Since all the assumptions of Theorem 6.1 are fullfilled, we can conclude

from (6.5) and condition (6.14) that x∗ = w∗ = 0. Hence (N((x̄, w̄),Ω1)) ∩ (−N((x̄, w̄),Ω2)) =

{0}. Note that Ω1 is locally closed at (x̄, w̄) as it has been discussed in the proof of Theorem 6.1,

we are now ready to apply [21, Theorem 5.5 (i)] to get

−∂̂+ψ(x̄, w̄) ⊂ N((x̄, w̄), gphS) +N((x̄, w̄),Ω)

The above inclusion together with (6.5) indicates that for every (x∗, w∗) ∈ ∂̂+ψ(x̄, w̄), there is

u ∈ IRn × IRd, such that

(−x∗,−w∗) ∈ D∗f(x̄, w̄)u+
⋃

v∈M(x̄,w̄,ȳ)

[(
∇2
wx〈v, g〉(x̄, w̄)u,∇2

ww〈v, g〉(x̄, w̄)u
)

+
(
∇xg(x̄, w̄),∇wg(x̄, w̄)

)∗
∂2φ(z̄, v)(∇wg(x̄, w̄)u

)]
+N((x̄, w̄),Ω)
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Hence (6.15) is true. If in addition, ψ is Lipschitzian around (x̄, w̄), then we apply [21, Theorem

5.5 (ii)] to get (x∗, w∗) ∈ ∂ψ(x̄, w̄) and u ∈ IRn × IRd such that (6.15) holds. 2

Remark 6.6 In the setting of MPECs (6.13), there is a special form when the geometric

constraint only involves x but no w:

minimize ψ(x,w) subject to 0 ∈ f(x,w) + ∂w(φ ◦ g)(x,w), x ∈ Ω

which indicates that Ω2 = Ω × IRd in the proof of Theorem 6.5. In this case, to ensure the

limitting qualification condition N((x̄, w̄), gphS) ∩ (−N((x̄, w̄),Ω × IRd)) = {0}, assumption

(6.14) can be reduced to the following:

[
(x∗, 0) ∈ D∗f(x̄, w̄)u+

⋃
v∈M(x̄,w̄,ȳ)

[(
∇2
wx〈v, g〉(x̄, w̄)u,∇2

ww〈v, g〉(x̄, w̄)u
)

+
(
∇xg(x̄, w̄),∇wg(x̄, w̄)

)∗
∂2φ(z̄, v)(∇wg(x̄, w̄)u

)]
, and − x∗ ∈ N(x̄,Ω)

]
⇒ x∗ = 0

Also, observe that in (6.15), N((x̄, w̄),Ω2) = N(x̄,Ω)× {0}.

Theorem 6.7 (upper, lower subdifferential conditions for MPECs (6.13) with full

rank conditions) Let (x̄, w̄) be a local optimal solution to (6.13) where φ, g, z̄, ȳ, v̄ are the

same as in the setting of Theorem 6.2. Assume that condition (A2) and (6.14) holds with

M(x̄, w̄, ȳ) = {v̄}, then we have both lower and upper subdifferential necessary condition of

Theorem 6.5 holds with the replacement of M(x̄, w̄, ȳ) by v̄ provided that ψ is Lipschitz contin-

uous around (x̄, w̄) in the lower subdifferential case.

Proof. The proof is similar to the one of Theorem 6.5 but apply Theorem 6.2 instead of
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Theorem 6.1. 2

The next part of our application is devoted to discuss necessary conditions for generalized

order optimality with constraint understood in the sense of [21, Definition 5.53]. For conve-

nience, we recall that for a given single valued mapping ψ : X → Z between Banach spaces and

a set 0 ∈ Λ ⊂ Z,Ω ⊂ X, we say that a point x̄ ∈ Ω is locally (ψ,Λ) − optimal relative to Ω, if

there are a neighborhood U of x̄ and a sequence {zk} ⊂ Z with ‖zk‖ → 0 as k →∞ such that

ψ(x)− ψ(x̄) /∈ Λ− zk for all x ∈ U ∩ Ω and k ∈ N .

Theorem 6.8 (Generalized order optimality with equilibrium constraints of type

(6.1) for strongly amenable potentials) Let ψ : IRn × IRd → IRs be continuous, let Λ ⊂ IRs

be a closed set with 0 ∈ Λ and let (x̄, w̄) be locally (ψ,Λ) − optimal subject to the parameter-

dependent equilibrium constraints (6.2), where Θ = φ ◦ g is strongly amenable in x at x̄ with

compatible parameterizations in w at w̄. Let all the assumptions of Theorem 6.1 be true, then

there are 0 6= (x∗, w∗, z∗) with z∗ ∈ N(0,Λ) satisfy the relations

(−x∗,−w∗) ∈ D∗ψ(x̄, w̄)(z∗) and (6.16)

( x∗, w∗) ∈ D∗f(x̄, w̄)u+
⋃

v∈M(x̄,w̄,ȳ)

[(
∇2
wx〈v, g〉(x̄, w̄)u,∇2

ww〈v, g〉(x̄, w̄)u
)

+
(
∇xg(x̄, w̄),∇wg(x̄, w̄)

)∗
∂2φ(z̄, v)(∇wg(x̄, w̄)u

)]

with some u ∈ IRn×IRd. Furthermore, these optimality conditions are equivalent to the existence
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of z∗ ∈ N(0,Λ)�{0} and u ∈ IRn × IRd satisfying

0 ∈ ∂〈z∗, ψ〉(x̄, w̄) + ∂〈u, f〉(x̄, w̄) +
⋃

v∈M(x̄,w̄,ȳ)

[(
∇2
wx〈v, g〉(x̄, w̄)u,∇2

ww〈v, g〉(x̄, w̄)u
)

+
(
∇xg(x̄, w̄),∇wg(x̄, w̄)

)∗
∂2φ(z̄, v)(∇wg(x̄, w̄)u

)]

when f is strictly Lipschitzian at (x̄, w̄).

Proof. The proof follows from [21, Corollary 5.80] with S in the form of (6.1) by applying

the coderivative estimate with strongly amenable partial potentials derived in Theorem 6.1. 2

Theorem 6.9 (Generalized order optimality with equilibrium constraints of type

(6.1) for full rank conditions) Let (x̄, w̄) be locally (ψ,Λ)− optimal in the setting of Theo-

rem 6.8 with a C2 − smooth mapping g with the full rank condition

rankOwg(x̄, w̄) = m

instead of the assumption that the composition φ◦g is strongly amenable with compatible param-

eterization. Let us impose the validity of condition (A2) from Theorem 6.1 with M(x̄, w̄, ȳ) =

{v̄}. Then there are 0 6= (x∗, w∗, z∗) with z∗ ∈ N(0,Λ) satisfy the relations (6.16) with

M(x̄, w̄, ȳ) = {v̄} for some u ∈ IRn × IRd.

Proof. Omitted. 2

The next part of our application goes to optimality conditions for EPECs with closed pref-
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erences and variational constraints:

minimize ψ(x,w) with respect to ≺ (6.17)

subject to 0 ∈ f(x,w) + ∂w(φ ◦ g)(x,w)

where the preference ≺ is closed , in two different settings: (B1):Θ = φ ◦ g is amenable with

compatible parameterization; (B2): g is C2 with full rank condition: rankOwg(x̄, w̄) = m and

L(z) is the level set at z ∈ Z with respect to the given preference ≺ defined as follows:

L(z) := {u ∈ Z|u ≺ z}

For more information about closed preference relations, see [21, Definition 5.55].

Theorem 6.10 (Optimality conditions for EPECs with closed preferences and vari-

ational constraints) Let (x̄, w̄) be a local optimal solution to the multiobjective optimization

problem (6.17). Let ψ, f be continuous around (x̄, w̄). Then,

(i)In the setting of (B1), assume that conditions (A1) and (A2) of Theorem 6.1 holds,

then there are 0 6= (x∗, w∗, z∗) ∈ IRn × IRd × IRs with z∗ ∈ N+(z̄, clL(z̄)) such that

(−x∗,−w∗) ∈ D∗ψ(x̄, w̄)(z∗) and (x∗, w∗) ∈ D∗f(x̄, w̄)u+ (6.18)⋃
v∈M(x̄,w̄,ȳ)

[(
∇2
wx〈v, g〉(x̄, w̄)u,∇2

ww〈v, g〉(x̄, w̄)u
)

+
(
∇xg(x̄, w̄),∇wg(x̄, w̄)

)∗
∂2φ(z̄, v)(∇wg(x̄, w̄)u

)]

(ii)In the setting of (B2), the assumptions of Theorem 6.2 guarantees that (6.18) holds for

M(x̄, w̄, ȳ) = {v̄}
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Proof. The proof follows from Theorem 6.1, Theorem 6.2 and [21, Theorem 5.86]. 2
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ABSTRACT

WELL-POSEDNESS PROPERTIES IN VARIATIONAL ANALYSIS AND ITS
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by
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This dissertation focuses on the study and applications of some significant properties in

well-posedness and sensitivity analysis, among which the notions of uniform metric regularity,

higher-order metric subregularity and its strong subregularity counterpart play an essential

role in modern variational analysis. We derived verifiable sufficient conditions and necessary

conditions for those notions in terms of appropriate generalized differential as well as geometric

constructions of variational analysis. Concrete examples are provided to illustrate the behavior

and compare the results. Optimality conditions of parametric variational systems (PVS) under

equilibrium constraints are also investigated via the terms of coderivatives. We derived necessary

optimality and suboptimality conditions for various problems of constrained optimization and

equilibria such as MPECs with amenable/full rank potentials and EPECs with closed preferences

in finite-dimensional spaces.
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