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CHAPTER 1: INTRODUCTION

Clouds are large-scale distributed computing systems built around core concepts such as

computing as utility, virtualization of resources, on demand access to computing resources,

and outsourcing computing services [169]. These concepts have positioned the clouds as an

attractive platform for businesses enabling them to outsource some of their IT operations.

In fact, the clouds services market share in the IT business has rapidly increased, and it

is estimated to reach $150 billion by 2015 [138]. Cloud services are offered as three main

categories: software as a service (SaaS), platform as a service (PaaS), and infrastructure as

a service (IaaS), defined by the National Institute of Science and Technology (NIST) [114]

as follows:

SaaS: “The capability provided to the consumer is to use the provider’s applications

running on a cloud infrastructure. The applications are accessible from various client

devices through either a thin client interface, such as a web browser (e.g., web-based

email), or a program interface. The consumer does not manage or control the under-

lying cloud infrastructure including network, servers, operating systems, storage, or

even individual application capabilities, with the possible exception of limited user-

specific application configuration settings.”

PaaS: “The capability provided to the consumer is to deploy onto the cloud infras-

tructure consumer-created or acquired applications created using programming lan-

guages, libraries, services, and tools supported by the provider. The consumer does

not manage or control the underlying cloud infrastructure including network, servers,

operating systems, or storage, but has control over the deployed applications and

possibly configuration settings for the application-hosting environment.”

IaaS: “The capability provided to the consumer is to provision processing, storage,

networks, and other fundamental computing resources where the consumer is able to

deploy and run arbitrary software, which can include operating systems and applica-

tions. The consumer does not manage or control the underlying cloud infrastructure



2

but has control over operating systems, storage, and deployed applications; and pos-

sibly limited control of select networking components (e.g., host firewalls).”

In this dissertation, we focus on IaaS, where cloud providers offer different types of

low level resources of their physical machines (PMs) in the form of virtual machine (VM)

instances.

Cloud computing systems’ ability to provide on demand access to always-on comput-

ing utilities has attracted many enterprises due to their cost-benefit ratios, leading to

rapid growth of the cloud computing market. Such market, however, presents a host of

new challenges due to the dynamic nature of users’ demands and heterogeneity of the

resources. The variability of users’ demands increases when it comes to their requests

for data-intensive applications. The ever-growing complexity of IaaS makes human ad-

ministration and management inefficient and, in most of the cases, unfeasible. Therefore,

avoiding direct management actions in resource allocation, VM provisioning, VM pricing,

and monitoring, requires self-management and self-optimizing mechanisms. On the other

hand, cloud users want to minimize their expenses while meeting their performance require-

ments. However, the challenge is how to allocate and price resources in a mutually optimal

way with the lack of information sharing between cloud users and cloud providers. The

aim of this dissertation is to design such mechanisms that facilitate autonomic provisioning

of cloud resources considering the incentives of both cloud users and cloud providers. The

proposed mechanisms can be incorporated in system tools for self-managing the cloud in-

frastructure. Designing mechanisms that are robust against manipulation of users are very

critical for these systems. A resource management mechanism is responsible for deciding

the allocation and the payment charged to the users for the allocated resources. Such a

mechanism is composed of an allocation algorithm and a payment function. We propose

several mechanisms in Chapter 1.2, Chapter 3, and Chapter 4 to address the problem of

Virtual Machine (VM) provisioning, allocation, and pricing in clouds in different settings.

As cloud computing started growing rapidly, cloud systems comprising multiple cloud

providers emerged. Such systems form coalitions to combine resources from the participat-

ing cloud providers in order to provide better computing power to them. However, these
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cloud providers should not have incentives to leave their coalitions and join other coalitions.

In Chapter 5, we design a mechanism for federation formation in clouds.

Several businesses and organizations are faced with an ever-growing need for analyzing

the unprecedented amounts of available data. Such need challenges existing methods, and

requires novel approaches and technologies in order to cope with the complexities of big

data processing. One of the major challenges of processing data intensive applications is

minimizing their energy costs. Electricity used in US data centers in 2010 accounted for

about 2% of total electricity used nationwide [76]. In addition, the energy consumed by the

data centers is growing at over 15% annually, and the energy costs make up about 42% of

the data centers’ operating costs [56]. Considering that server costs are consistently falling,

it should be no surprise that in the near future a big percentage of the data centers’ costs

will be energy costs. Therefore, it is critical for the data centers to minimize their energy

consumption when offering services to customers.

Big data applications run on large clusters within data centers, where their energy costs

make energy efficiency of executing such applications a critical concern. MapReduce [36]

and its open-source implementation, Hadoop [6], have emerged as the leading computing

platforms for big data analytics. Improving energy efficiency of MapReduce applications

leads to a significant reduction of the overall cost of data centers. In this dissertation, we

address this issue by designing MapReduce scheduling algorithms that improve the energy

efficiency of running each individual application, while satisfying the service level agreement

(SLA). To address this problem, we propose two algorithms in Chapter 6.

1.1 Our Contributions

In this section, we present the outline of our dissertation and the summary of our contri-

butions. We summarize below the five research projects that we accomplished as part of

this dissertation.

• A PTAS Mechanism for Provisioning and Allocation of Heterogeneous

Cloud Resources. Cloud providers provision their heterogeneous resources such as
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CPUs, memory, and storage in the form of Virtual Machine (VM) instances which

are then allocated to the users. One of the major challenges faced by the cloud pro-

viders is to allocate and provision these resources such that their profit is maximized,

and the resources are utilized efficiently. Recently, cloud providers have introduced

auction-based models which allow users to submit bids for their requested VMs. We

address the problem of autonomic VM provisioning and allocation for the auction-

based model considering multiple types of resources by designing an approximation

mechanism. In addition, the mechanism determines the payment the users have to

pay for using the allocated resources. This problem is computationally intractable,

and our proposed mechanism is by far the strongest approximation result that can

be achieved for this problem. We show that the proposed approximation mechanism

is a Polynomial-Time Approximation Scheme (PTAS). Furthermore, our proposed

mechanism drives the system into an equilibrium in which the users do not have

incentives to manipulate the system by untruthfully reporting their VM bundle re-

quests and valuations. We perform extensive experiments using real workload traces

in order to investigate the performance of the proposed mechanism, PTAS-VMPAC.

The results of this research were published in Proceedings of the ACM Cloud and

Autonomic Computing Conference (CAC’13) [96] and an extended version of this

paper has been accepted for publication in the IEEE Transactions on Parallel and

Distributed Systems (TPDS) [101]. We present this work in detail in Chapter 1.2.

• Physical Machine Resource Management in Clouds: A Mechanism Design

Approach. We address the problem of physical machine resource management in

clouds considering multiple types of physical machines and resources. We formu-

late this problem in an auction-based setting and design optimal and approximate

strategy-proof mechanisms that solve it. Our proposed mechanisms consist of a win-

ner determination algorithm that selects the users, provisions the virtual machines

(VMs) to physical machines (PM), and allocates them to the selected users; and a

payment function that determines the amount that each selected user needs to pay to
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the cloud provider. We prove that our proposed approximate winner determination

algorithm satisfies the loser-independent property, making the approximate mecha-

nism robust against strategic users who try to manipulate the system by changing

other users’ allocations. We show that our proposed mechanisms are strategy-proof,

that is, the users do not have incentives to lie about their requested bundles of VM in-

stances and their valuations. In addition, our proposed mechanisms are in alignment

with green cloud computing strategies in which physical machines can be powered on

or off to save energy. Our theoretical analysis shows that the proposed approxima-

tion mechanism has an approximation ratio of 3. We perform extensive experiments

in order to investigate the performance of our proposed approximation mechanism

compared to that of the optimal mechanism. The results of this research were pub-

lished in the IEEE Transactions on Cloud Computing, Special Issue on Economics

and Market Mechanisms for Cloud Computing [100]. We present this work in detail

in Chapter 3.

• An Online Mechanism for Resource Allocation and Pricing in Clouds.

Cloud providers provision their various resources such as CPUs, memory, and storage

in the form of Virtual Machine (VM) instances which are then allocated to the users.

The users are charged based on a pay-as-you-go model, and their payments should

be determined by considering both their incentives and the incentives of the cloud

providers. Auction markets can capture such incentives, where users name their own

prices for their requested VMs. We design an auction-based online mechanism for VM

provisioning, allocation, and pricing in clouds that consider several types of resources.

Our proposed online mechanism makes no assumptions about future demand of VMs,

which is the case in real cloud settings. The proposed online mechanism is invoked

as soon as a user places a request or some of the allocated resources are released and

become available. The mechanism allocates VM instances to selected users for the

period they are requested for, and ensures that the users will continue using their

VM instances for the entire requested period. In addition, the mechanism determines
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the payment the users have to pay for using the allocated resources. We prove that

the mechanism is incentive-compatible, that is, it gives incentives to the users to

reveal their actual requests. We investigate the performance of our proposed mecha-

nism through extensive experiments. A paper describing this research was published

in the Proceedings of the 7th IEEE International Conference on Cloud Computing

(CLOUD’14) [104] and an extended version of this paper has been accepted for pub-

lication in the IEEE Transactions on Computers (TC) [103]. We present this work

in detail in Chapter 4.

• Cloud Federations in the Sky: Formation Game and Mechanism. The

amount of computing resources required by current and future data-intensive ap-

plications is expected to increase dramatically, creating high demands for cloud re-

sources. The cloud providers’ available resources may not be sufficient enough to cope

with such demands. Therefore, the cloud providers need to reshape their business

structures and seek to improve their dynamic resource scaling capabilities. Federated

clouds offer a practical platform for addressing this service management issue. We

introduce a cloud federation formation game that considers the cooperation of the

cloud providers in offering cloud IaaS services. Based on the proposed federation

formation game, we design a cloud federation formation mechanism that enables the

cloud providers to dynamically form a cloud federation maximizing their profit. In

addition, the proposed mechanism produces a stable cloud federation structure, that

is, the participating cloud providers in the federation do not have incentives to break

away from the federation. We analyze the performance of the proposed mechanism

by performing extensive experiments. The results of the experiments show that the

cloud federation obtained by our proposed mechanism is stable, yielding high profit

for the participating cloud providers. A paper describing this research was published

in the Proceedings of the 5th IEEE/ACM International Conference on Utility and

Cloud Computing (UCC’12) [90] and an extended version of this paper was published

in the IEEE Transactions on Cloud Computing (TCC) [99]. We present this work in
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detail in Chapter 5.

• Energy-aware Scheduling of MapReduce Jobs for Big Data Applications.

The majority of large-scale data intensive applications executed by data centers are

based on MapReduce or its open-source implementation, Hadoop. Such applications

are executed on large clusters requiring large amounts of energy, making the energy

costs a considerable fraction of the data center’s overall costs. Therefore minimizing

the energy consumption when executing each MapReduce job is a critical concern

for data centers. We propose a framework for improving the energy efficiency of

MapReduce applications, while satisfying the service level agreement (SLA). We first

model the problem of energy-aware scheduling of a single MapReduce job as an Integer

Program. We then propose two heuristic algorithms, called Energy-aware MapReduce

Scheduling Algorithms (EMRSA-I and EMRSA-II), that find the assignments of map

and reduce tasks to the machine slots in order to minimize the energy consumed when

executing the application. We perform extensive experiments on a Hadoop cluster to

determine the energy consumption and execution time for several workloads from the

HiBench benchmark suite including TeraSort, PageRank, and K-means Clustering,

and then use this data in an extensive simulation study to analyze the performance

of the proposed algorithms. The results show that EMRSA-I and EMRSA-II are

able to find near optimal job schedules consuming approximately 40% less energy on

average than the schedules obtained by a common practice scheduler that minimizes

the makespan. A paper describing this research was published in the Proceedings of

the 3rd IEEE International Congress on Big Data (BigData’14) [102] and an extended

version of this paper has been accepted for publication in the IEEE Transactions on

Parallel and Distributed Systems (TPDS) [105]. We present this work in detail in

Chapter 6.
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1.2 Organization

The rest of this dissertation is organized as follows. In Chapter 1.2, we present our research

on designing VM provisioning, allocation, and pricing mechanism for clouds. The mech-

anism is a PTAS (Polynomial-Time Approximation Scheme) and truthful. In Chapter 3,

we present the design of a mechanism for solving the VM allocation and pricing problem

considering the PMs. In Chapter 4, we present the design of online mechanisms for the VM

allocation and pricing problem making no assumptions about the future demand for VMs.

In Chapter 5, we present our research on designing a mechanism for cloud federation forma-

tion problem. In Chapter 6, we present our research on designing energy-aware schedulers

for big data applications. In Chapter 7, we describe the possible future directions of our

research, and conclude the dissertation.
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CHAPTER 2: A PTAS MECHANISM FOR RESOURCE PROVISIONING
AND ALLOCATION

2.1 Introduction

Cloud computing systems provide a large pool of abstracted, virtualized, and dynamically

scalable resources to users as Infrastructure as a Service (IaaS). More specifically, the

resources are offered to users as different types of virtual machine (VM) instances based on

a pay-as-you-go model. For example, Amazon Elastic Compute Cloud (Amazon EC2) [1]

is currently offering four types of VM instances: Medium (M), Large (L), Extra large (XL),

and 2 Extra large (2XL), charging a fixed price per hour for each type of VM instance.

The ever-growing complexity of IaaS makes human administration and management

inefficient and, in most of the cases, unfeasible. Therefore, avoiding direct management

actions in resource allocation, VM provisioning, VM pricing, and monitoring, requires self-

management and self-optimizing mechanisms. The aim of this chapter is to design such

mechanisms that facilitate autonomic provisioning of cloud resources based on the user

demand and the availability of resources. The proposed mechanisms can be incorporated

in system tools for self-managing the cloud infrastructure [134].

Recently, cloud providers have introduced auction-based models when offering IaaS,

which allow users to name their own price for their requested VM instances. Auctions have

been proven to be effective market-based mechanisms for trading cloud services which not

only benefit users by allowing them to obtain their requested resources at lower prices, but

also allow cloud providers to utilize more resources and increase their profits. Mainstream

cloud provider powerhouses such as Amazon have been offering cloud services in an auction

market, the Amazon spot market, for several years. Based on Amazon’s report [3], many

of its users such as Scribd, So-net, Numerate, Backtype, and Fliptop saved more than 50%

using its auction-based cloud market over its fixed-price market. In addition, a new initia-

tive by Deutsche Börse Cloud Exchange, will launch in 2014 a vendor-neutral marketplace

for cloud resources. This market will be a platform for offering, buying and deploying IaaS
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in an auction setting [178].

We consider an auction market with a set of users and a set of heterogeneous VM in-

stances, where each user can bid for any arbitrary combinations of VMs (bundle of VMs).

Our setup and mechanisms are different from the Amazon spot market. The Amazon

spot market allows requests only for individual VM instances and not for bundles of VM

instances of different types. Therefore, users have to request each VM for their bundle

individually. However, in such an auction-based setting, there is no guarantee of receiving

the requested VMs all together. In our setting, we allow users to request bundles of hetero-

geneous VM instances such as requesting communication-intensive VMs and computation-

intensive VMs together. In practice, there are many applications that require such het-

erogeneous bundles of VMs. For example, a social game application composed of three

layers: front-end web server, load balancing, and back-end data storage, requires a bundle

of heterogeneous VMs composed of communication-intensive VMs, computation-intensive

VMs, and storage-intensive VMs, respectively [45].

Each user has a private value for her requested bundle. In our model, each user is

interested in a single bundle of VM instances, and bid only for that bundle. Such a user

obtains the specified value if she is allocated the whole bundle of VM instances (or any

superset of it) and zero value, if she is allocated any other bundle. The users are also selfish

in the sense that they want to maximize their own utilities. It may be beneficial for them

to manipulate the system by declaring different bundles or bids from their actual requests.

In an untruthful auction, users may bid much lower (than their actual valuations) which

not only may hurt other users, but also may indirectly lead to profit losses for the cloud

provider. Thus, unless strategy-proofness is enforced, maximizing the revenue may not be

effective. In strategy-proof auctions, the dominating strategy for users is to bid truthfully,

thereby eliminating the fear of market manipulations and the overhead of strategizing

over others. When users report their true valuations, the cloud provider can allocate its

resources efficiently to users who value them the most. However, allowing users to bid on

bundles of VMs makes the design of strategy-proof mechanisms more challenging. This

is due to the fact that by allowing bids on bundles, the dimensionality of the problem
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increases. A major problem in such settings is determining the optimal allocation and

protecting against manipulations by the users. Because finding the optimal allocation is

computationally intractable [82], designing strategy-proof approximation mechanisms for

solving the problem is of major interest.

In this chapter, we design a strategy-proof polynomial time approximation scheme

(PTAS) mechanism that solves the VM instance provisioning and allocation problem. The

goal is to find an allocation of resources to the users maximizing the social welfare, where

the social welfare is the sum of users’ valuations. We also design an exponential time

strategy-proof optimal mechanism that will serve as a benchmark for the performance of

the proposed PTAS mechanism. Our proposed PTAS mechanism is strategy-proof that

is, the users do not have incentives to lie about their requested bundles of VM instances

and their valuations. The proposed mechanism is designed to adapt to changing conditions

(i.e., users requests) and to lead the system into an equilibrium in which users do not have

incentives to manipulate the system by untruthfully reporting their resource requests and

valuations.

2.1.1 Our Contributions

We address the problem of VM provisioning and allocation in clouds in the presence of

multiple types of heterogeneous resources. First, we design a strategy-proof optimal mech-

anism that uses a dynamic programming algorithm to optimally select the winning users.

We then design a strategy-proof approximation mechanism in spite the fact that approxima-

tion algorithms, in general, do not necessarily satisfy the properties required to guarantee

strategy-proofness. In doing so, the allocation and payment determination of the proposed

mechanisms are designed to satisfy the strategy-proofness property. Strategy-proof mech-

anisms drive the system into an equilibrium in which the users do not have incentives to

manipulate the system by untruthfully reporting their VM bundle requests and valuations.

We also show that the proposed approximation mechanism is a PTAS (Polynomial-Time

Approximation Scheme) which is by far the strongest approximation result that can be

achieved for this problem, unless P = NP . To the best of our knowledge, this is the
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first study proposing a strategy-proof PTAS mechanism for solving the VM provisioning

and allocation problem in clouds. The proposed mechanism allows dynamic provisioning

of VMs, and does not require pre-provisioning the VMs. As a result, cloud providers can

fulfill dynamic market demands efficiently. A key property of our proposed mechanism is

the consideration of multiple types of heterogeneous resources for VMs which is the case

in real cloud settings. We analyze the properties of the proposed mechanism and perform

extensive experiments. The results show that the proposed PTAS mechanism determines

near optimal allocations while satisfying the strategy-proofness property.

2.1.2 Related Work

The primary objective of mechanism design is to obtain system wide solutions for problems

where multiple self-interested users with private information interact. Mechanism design

provides a framework for designing mechanisms that align the system’s incentives with

those of the participants. For a comprehensive introduction to mechanism design, the

reader is referred to [129].

Researchers approached the problem of VM provisioning in clouds from different points

of view. Wood et al. [183] proposed an approach for dynamic provisioning of VMs by

defining a unique metric based on the consumption of the three resources: CPU, network

and memory. Ferrer et al. [43] proposed a toolkit for the cloud service and infrastructure

providers. The toolkit aims to provide a foundation for a reliable cloud computing indus-

try, by addressing the whole service life cycle. Casalicchio et al. [27] proposed a heuristic

(hill-climbing) algorithm to maximize revenue in VM allocation problems satisfying ca-

pacity, availability, SLA, and VM migration constraints. Bjorkqvist et al. [18] proposed

an opportunistic service provisioning strategy minimizing the service provisioning costs

by provisioning a small number of faster VMs, while maintaining the target system uti-

lization. Mashayekhy et al. [99] proposed a federation formation mechanism for resource

provisioning and allocation in clouds considering several heterogeneous resources. Xiong

et al. [185] considered an economical provisioning, where VMs are allocated to achieve a

balanced resource allocation and a better overall performance. Sharma et al. [159] consid-
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Table 2.1: Comparison of auction-based VM allocation methods.

Reference heterogen- strategy- optimality
eous VMs proofness

[193] x in expectation approx.
[196] X in expectation approx.
[195] x X approx.
[45] X x optimal
[124] X X approx.
this study X X optimal & PTAS approx.

ered minimizing the provisioning cost by reducing the time to transit to new configurations

and optimizing the selection of virtual server configurations. Kokkinos et al. [75] proposed

an algorithm to minimize the usage cost of Amazon EC2 instances and to maximize the

utilization. The algorithm collects information regarding the current instances and then

proposes a new set of instances that could be used for serving the same load. However, our

main focus is on dynamic resource provisioning that achieves strategy-proofness and leads

the system into an equilibrium. We also propose an approach for determining the prices of

the bundles of VM instances.

Pricing and modeling of spot instances have been recently addressed by applying a

variety of methodologies. Zhao et al. [198] developed two resource rental planning mod-

els, deterministic and stochastic, to minimize the operational cost of cloud applications on

spot instances. Leslie et al. [83] proposed a resource allocation and job scheduling frame-

work based on checkpointing. Huang et al. [63] proposed a tool for users to minimize their

expenses of running applications in clouds while satisfying the deadlines. The tool automat-

ically determines whether to choose on-demand or spot instances, and also the number of

VMs. However, those studies have focused on users/SaaS sides to better use spot instances,

while we focus on modeling the problem from IaaS’ perspective. Toosi et al. [166] proposed

pricing policies for federated clouds that increase utilization and profit. Lampe et al. [79]

formulated the equilibrium price auction allocation problem for pricing and distribution

of VMs across physical machines as a binary integer program. Based on this mathemat-

ical formulation, they proposed an optimal solution approach as well as a fast heuristic
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approach. However, none of the above-mentioned studies guarantee strategy-proofness.

Designing mechanisms for auction-based cloud markets has attracted a great deal of

attention. Zaman and Grosu [193] proposed a truthful-in-expectation auction-based mech-

anism to allocate VM instances that are statically provisioned. However, their mecha-

nism does not consider heterogeneous VMs. In addition, truthfulness-in-expectation is a

weaker notion of truthfulness (strategy-proof-ness). Zhang et al. [195] proposed a truthful

auction-based mechanism for resource allocation in clouds in the presence of only one type

of resources. Zhang et al. [196] proposed a randomized mechanism for VM allocation in

clouds in an auction market considering heterogeneous VMs. Their proposed mechanism

is truthful in expectation and is based on a pair of primal and dual LPs. Recently, Fu et

al. [45] modeled the heterogeneous VM provisioning problem as a coalitional game, and

proposed a core-based pricing method that obtains the optimal solution. Their method

guarantees the optimal social welfare, at the expense of not obtaining strategy-proofness.

System heterogeneity plays an important role in determining the dynamics of strategy-

proof mechanisms [177]. Our proposed PTAS mechanism takes into account the hetero-

geneity of the systems and that of user requests when making allocation decisions. In our

previous work [123, 124], we proposed a family of strategy-proof greedy mechanisms for

solving the VM instance provisioning and allocation problem considering multiple types

of resources. These existing greedy mechanisms cannot guarantee near optimal solutions.

We also proved that the approximation ratios of the greedy mechanisms is
√
NRCmax,

where N is the number of users, R is the number of types of resources, and Cmax is the

highest capacity among all resources’ capacities. We present a stylized example to show

how far the solution obtained by a greedy mechanism can be from the optimal solution

for the problem. Let us consider a cloud provider with one type of resource with capacity

of 100. We consider two users submitting their requests, where the first one bids $2 for

1 unit of the resource, while the second user bids $100 for 100 units of the resources. All

greedy mechanisms proposed in [124], choose the first user since it has the highest bid den-

sity with a value of 2, where the bid density is the ratio of bid and the amount of resources

requested. However, the optimal mechanism chooses the second user with the value of 100.
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This leads to $98 loss in revenue for the cloud provider if it chooses the greedy mechanism

over the optimal mechanism. However, none of the above-mentioned studies proposed a

mechanism guaranteeing a near optimal solution which is the case for our PTAS mech-

anism proposed in this chapter. Our proposed PTAS mechanism is by far the strongest

approximation result that can be achieved for the VM provisioning and allocation problem,

unless P = NP . Our proposed PTAS mechanism represents a big departure from the ex-

isting designs of VM allocation mechanisms that only provided a constant approximation

guarantee. In Table 2.1, we summarize the differences between the existing auction-based

VM allocation methods.

2.1.3 Organization

The rest of the chapter is organized as follows. In Section 2.2, we describe the VM provi-

sioning and allocation problem in clouds, and introduce the basic concepts of mechanism

design. In Section 2.3, we present the design of an optimal mechanism for VM provisioning

and allocation. In Section 2.4, we present the proposed PTAS mechanism and charac-

terize its properties. In Section 2.5, we evaluate the proposed mechanism by extensive

experiments. In Section 2.6, we summarize our results.

2.2 Problem Statement and Preliminaries

We define the problem of VM provisioning and allocation in clouds (VMPAC) in the pres-

ence of multiple types of resources as follows. We consider a cloud provider offering a set

of M types of VMs, VM = {1, . . . ,M}, to users. Each VM consists of heterogeneous

resources such as cores, memory, storage, etc. There are a set of R types of resources,

R = {1, . . . , R}, where each VM of type m ∈ VM has a specific amount of resource

of type r denoted by wmr. The cloud provider has restricted capacity, Cr, on each re-

source r ∈ R available for allocation.

Table 2.2 shows the four types of VM instances offered by Amazon EC2 US West

(Northern California) Region at the time of writing this chapter. If we consider that
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CPU represents the type 1 resource, memory, the type 2 resource, and storage, the type 3

resource, we can characterize, for example, the XLarge instance (m = 3) by: w31 = 4, w32 =

15 GB, and w33 = 80 GB.

We consider that the cloud provider receives requests for bundles of VM instances from

a set U of N users. User i ∈ U , i = 1, . . . , N submits a request (Si, bi), composed of a bundle

of VM instances denoted by Si = 〈ki1, ki2, . . . , kiM〉, where kim is the number of requested

VM instances of type m ∈ VM, and a bid, denoted by bi representing the maximum price

the user is willing to pay for using the requested bundle if it is allocated. User i has a true

valuation vi(Si) for her requested bundle Si. Note, that for user i, vi(Si) = bi is her true

valuation for Si. An example of a user request is (< 2, 1, 4, 3 >, $10), which means that the

user is requesting 2 medium VM instances, 1 large VM instance, 4 xlarge VM instances,

and 3 2xlarge VM instances, and her bid is $10. We denote by air =
∑

m∈VM kimwmr, the

total amount of each resource of type r that user i has requested. Note that air > 0, due

to the fact that each VM instance includes all resources.

The goal of the cloud provider is to allocate VMs to users who value the VM instances

the most, which can be achieved by maximizing the social welfare. We denote by V the

social welfare, which is defined as the aggregation of users’ valuations, i.e.,

V =
∑
i∈U

vi(Si)xi (2.1)

where xi, i ∈ U , are decision variables defined as follows:

xi =

1 if bundle Si is allocated to user i,

0 otherwise

(2.2)

The problem of VM provisioning and allocation in clouds (VMPAC) is to find a subset

of users who value the VM instances the most, such that the cloud provider fulfills their

requested bundle of VMs along with determining their payments. In doing so, the cloud

provider first finds such subset of users and then provisions the requested VMs for the
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Table 2.2: VM instance types offered by Amazon EC2 - US West (Northern California)

Medium Large XLarge 2XLarge
m = 1 m = 2 m = 3 m = 4

CPU 1 2 4 8
Memory (GB) 3.75 7.5 15 30
Storage (GB) 4 32 80 160

selected users. Finally, it bills the selected users based on all the submitted bids. We denote

by A and P , the allocation function and the payment function, respectively. The allocation

function A = (A1, . . . ,AN) determines which users receive their requested bundles, and the

payment function P = (P1, . . . ,PN) determines the amount that each user must pay to the

cloud provider.

The request of a user i is denoted by θi = (Si, bi). We denote by θ = (θ1, . . . , θN) the

vector of requests of all N users. User i preferences are characterized by a quasi-linear

utility function defined as the difference between her valuation and payment, ui(θ) =

vi(Ai(θ))−Pi(θ), where Ai(θ) is the allocated bundle to user i, and Pi(θ) is the determined

payment for user i. Each user’s bundle and her valuation is private knowledge. However,

users are selfish, and each user’s goal is to maximize her utility, thus, she may manipulate

the mechanism by submitting a different request from her true request to increase her utility.

Since the request of a user is a pair of bundle and value, the user can lie about the value by

submitting a higher bid in the hope to increase the likelihood of obtaining her requested

bundle, or she can lie about her requested bundle. Such manipulations will lead to an

inefficient allocation of VMs and will reduce the revenue obtained by the cloud provider

if we do not prevent them by design. As a result, we resort to designing strategy-proof

mechanisms that determine allocation and payment of users.

To distinguish user i’s truthful request θi = (Si, bi) from the actual submitted request

(that can be untruthful), we denote the actual request by θ̂i = (Ŝi, b̂i). We denote by θ−i

the vector of all requests except user i’s request (i.e., θ−i = (θ1, . . . , θi−1, θi+1, . . . , θN)). A

mechanism composed of an allocation and a payment function is strategy-proof if all users
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have incentives to report their true requests.

Definition 1 (Strategy-proofness). A mechanism consisting of an allocation function A

and a payment function P is strategy-proof (or truthful) if for every user i with a true

request θi and any other request θ̂i, and for every request of the other users θ̂−i, it satisfies

ui(θi, θ̂−i) ≥ ui(θ̂i, θ̂−i).

The definition implies that a mechanism is strategy-proof if truthful reporting of re-

quests is a dominant strategy. As a result, the users maximize their utilities by truthful

reporting of their requests irrespective of the requests of the other users. To design a

strategy-proof mechanism the allocation function A must be monotone and the payment

determination function P must be based on the critical payment [119].

To define monotonicity, we need to introduce a preference relation � on the set of

requests as follows: θ̂′i � θ̂i if b̂′i ≥ b̂i and Ŝi =< k̂i1, k̂i2, . . . , k̂iM >, Ŝ ′i =< k̂′i1, k̂
′
i2, . . . , k̂

′
iM >

such that
∑

m∈VM k̂′imwmr ≤
∑

m∈VM k̂imwmr,∀r ∈ R. That means request θ̂′i is more

preferred than θ̂i if user i requests fewer resources of each type in her current bundle

and/or submits a higher bid.

Definition 2 (Monotonicity). An allocation function A is monotone if it allocates the

resources to user i with θ̂i as her declared request, then it also allocates the resources to

user i with θ̂′i, where θ̂′i � θ̂i.

The definition implies that any winning user who receives her requested bundle by

submitting a request θ̂i will still be a winner if she requests a smaller bundle or submits a

higher bid.

Definition 3 (Critical payment). If A is a monotone allocation function, for every θi, there

exist a unique value vci , called critical payment, such that ∀θ̂i � (Si, v
c
i ), θ̂i is a winning

declaration and otherwise, is a losing declaration.

A mechanism having the critical payment as a payment function will charge user i,

Pi(θ̂) = vci if user i wins, and Pi(θ̂) = 0 otherwise.
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In the design of our PTAS mechanism for solving VMPAC the allocation function needs

to satisfy an additional property, called bitonicity.

Definition 4 (Bitonicity). A monotone allocation function A is bitonic if for any user i:

(i) if A allocates the resources to the user i with θ̂i as her declared request, then

vi(A(θ̂′i, θ̂−i)) ≥ vi(A(θ̂i, θ̂−i)), where θ̂′i � θ̂i.

(ii) if A does not allocate the resources to the user i with θ̂i as her declared request,

then vi(A(θ̂′i, θ̂−i)) ≥ vi(A(θ̂i, θ̂−i)), where θ̂i � θ̂′i.

The allocation function A is bitonic with respect to vi(). This requires that the welfare

does not increase with vi() when user i loses (b̂i < vci ), and it does increase with vi() when

user i wins (b̂i > vci ). In the next sections, we will design an optimal and a PTAS mechanism

that solve the VMPAC problem. These mechanisms work as follows. They first receives

the declared requests (bundles and bids) from each participating user and then based on

the received requests determine the allocation, using their specific allocation function A,

and the payments, using their specific payment function P .

2.3 Strategy-proof Optimal Mechanism for VM Provisioning and Allocation

In this section, we propose a Vickrey-Clarke-Groves (VCG)-based optimal mechanism that

solves VMPAC. A VCG mechanism [35, 51, 172] is defined as follows:

Definition 5 (VCG mechanism). A mechanism is a Vickrey-Clarke-Groves (VCG) mech-

anism if

(i) A is an optimal allocation function, and

(ii) Pi(θ̂) =
∑

j∈U\{i}

vj(Aj(θ̂−i))−
∑

j∈U\{i}

vj(Aj(θ̂)),

where
∑

j∈U\{i} vj(Aj(θ̂−i)) is the optimal social welfare that would have been obtained had

user i not participated, and
∑

j∈U\{i} vj(Aj(θ̂)) is the sum of all users valuations except

user i’s.
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Algorithm 1 VCG-VMPAC Mechanism

1: {Collect user requests.}
2: for all i ∈ U do
3: Collect request θ̂i = (Ŝi, b̂i) from user i
4: {Allocation.}
5: (V ∗, x∗) = DP-VMPAC(θ̂,C)
6: Provisions and allocates VM instances according to x∗.
7: {Payment.}
8: P =VCG-PAY(θ̂,C, V ∗,x∗)

We define our proposed VCG-based mechanism that solves the VMPAC problem as

follows:

Definition 6. The VCG-VMPAC mechanism consists of the allocation algorithm DP-

VMPAC and the payment function VCG-PAY defined by the VCG payment function (given

in Definition 5 (ii)).

Our proposed VCG-VMPAC mechanism is given in Algorithm 1. The mechanism is run

periodically by the cloud provider. It collects the requests from the users, and it determines

the allocation by calling the DP-VMPAC allocation algorithm. Once the allocation is

determined the mechanism provisions the required number and types of VM instances and

determines the payments by calling the VCG-PAY function. The users are then charged

the amount determined by the mechanism.

In order to design a VCG-based mechanism for VMPAC, we need to design an algorithm

that provides the optimal solution to VMPAC. The algorithm, called DP-VMPAC, is based

on a dynamic programming approach, and it is given in Algorithm 2. The DP-VMPAC

algorithm has two input parameters, the vector of users declared requests (θ̂) and the vector

of resource capacities C = (C1, . . . , CR). The algorithm has two output parameters: V ∗,

the optimal social welfare and x∗, the optimal allocation of VM instances to the users.

DP-VMPAC starts by determining âir, the amount of each resource of type r requested

by user i (lines 3-6). We denote by Ai the vector specifying the amount of all resource types

requested by user i. We also denote by V (j, Ĉ) the optimal welfare for the subproblem that

considers the first j users and the available capacity Ĉ. The algorithm calculates V (1,C)



21

Algorithm 2 DP-VMPAC: Optimal Allocation Algorithm

1: Input: θ̂ = (θ̂1, . . . , θ̂N ); vector of requests (bundle, bid)
2: Input: C = (C1, . . . , CR); vector of resource capacities
3: for all i ∈ U do
4: for all r ∈ R do
5: âir =

∑
m∈VM k̂imwmr, where k̂im ∈ Ŝi

6: Ai = (âi1, . . . , âiR)
7: Ĉ = C
8: if â1r ≤ Cr,∀r ∈ R then
9: V (1,C) = b̂1

10: Ĉ = C−A1

11: else
12: V (1,C) = 0
13: for all j = 2, . . . , N do
14: V (j, Ĉ) = max{V (j − 1, Ĉ), V (j − 1, Ĉ−Aj) + b̂j}
15: V ∗ = V (N,C)
16: Find x∗ by looking backward at V (j, Ĉ)
17: Output: V ∗,x∗

(lines 8-12). Based on these values, it calculates V (j, Ĉ), where j = 2, . . . , N (lines 13-14)

according to the following dynamic programming recurrence:

V (j, Ĉ) = max{V (j − 1, Ĉ), V (j − 1, Ĉ−Aj) + b̂j} (2.3)

The recurrence considers two cases, not allocating the bundle to j and allocating it to j.

If allocating the requested bundle of the jth user increases the value V (j − 1, Ĉ), the

algorithm allocates the bundle to the jth user. The maximum between V (j − 1, Ĉ) and

V (j − 1, Ĉ − Aj) + b̂j gives the optimal value of V (j, Ĉ). Once the final value V (N,C)

is determined, the algorithm finds x∗, the optimal allocation of VM instances, by looking

backward at V (j, Ĉ), as follows. If V (N,C) = V (N − 1,C), then it means that we did

not select the N -th user (i.e., xN = 0), and thus, we just recursively work backwards from

V (N − 1,C). Otherwise, we select that user (i.e., xN = 1), output the N -th request, and

recursively work backwards from V (N − 1,C−AN).

Theorem 1. The DP-VMPAC algorithm finds the optimal solution to the VMPAC problem.

Proof. To prove that V (N,C) computed by DP-VMPAC is optimal, we need to show that
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the subproblem V (j, Ĉ) is optimal for every j and Ĉ, where j is the number of users

(j ≤ N), and Ĉ is the vector representing the available capacities of the resources. We

consider two cases, according to the dynamic programming recurrence given in equation

(2.3). In case one, we assume that not allocating the bundle to j is in the optimal solution

for the subproblem V (j, Ĉ). Then, according to equation (2.3), V ∗(j, Ĉ) = V (j − 1, Ĉ).

The proof in this case is by contradiction. We assume that V ∗(j, Ĉ) is the optimal solution

for the subproblem. As a result, we need to check if V (j − 1, Ĉ) is optimal. If V (j − 1, Ĉ)

is not optimal, then there would be a better solution V ′(j − 1, Ĉ) > V (j − 1, Ĉ). Then,

using the subproblem V ′(j − 1, Ĉ), we have: V ∗(j, Ĉ) < V ′(j − 1, Ĉ), which contradicts

the fact that V ∗(j, Ĉ) is the optimal solution. Therefore, V (j − 1, Ĉ) is optimal.

In case two, we consider that allocating the bundle to j is in the optimal solution for the

subproblem V (j, Ĉ). Then, according to equation (2.3), V ∗(j, Ĉ) = V (j − 1, Ĉ−Aj) + b̂j.

The proof in this case is by contradiction. We assume that V ∗(j, Ĉ) is the optimal solution

for the subproblem. As a result, we need to check if V (j − 1, Ĉ − Aj) is optimal. If

V (j− 1, Ĉ−Aj) is not optimal, then there would be a better solution V ′(j− 1, Ĉ−Aj) >

V (j − 1, Ĉ − Aj). Then, using the subproblem V ′(j − 1, Ĉ − Aj), and the rest of the

subproblems, V ∗(j, Ĉ) < V ′(j − 1, Ĉ −Aj) + b̂j, which contradicts the fact that V ∗(j, Ĉ)

is the optimal solution. Therefore, V (j − 1, Ĉ−Aj) is optimal.

We conclude that V ∗(j, Ĉ) = V (j, Ĉ), and that this property is maintained at all times

thereafter.

DP-VMPAC solves VMPAC optimally in timeO(N(Cmax)
R), where Cmax = maxr∈R{Cr}.

This is due to the fact that the dynamic programming builds a (R+ 1)-dimensional table,

where the first dimension corresponds to the number of users and the other R dimensions

correspond to the R types of resources.

The VCG-PAY function is given in Algorithm 3. VCG-PAY has four input parameters,

the vector of users declared requests (θ̂), the vector of resource capacities C, the optimal

welfare V ∗, and the optimal allocation given by x∗. It has one output parameter: P , the

payment vector for the users. VCG-PAY calls DP-VMPAC to find the allocation and

welfare obtained without user i’s participation (line 6). Based on the optimal allocation
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Algorithm 3 VCG-PAY: Payment Function

1: Input: θ̂ = (θ̂1, . . . , θ̂N ); vector of requests (bundle, bid)
2: Input: C; vector of resource capacities
3: Input: V ∗; optimal welfare
4: Input: x∗; optimal allocation
5: for all i ∈ U do
6: (V ′∗, x′∗) = DP-VMPAC(θ̂−i,C)
7: sum1 = 0
8: sum2 = 0
9: for all j ∈ U , j 6= i do

10: sum1 = sum1 + b̂jx
′∗
j

11: sum2 = sum2 + b̂jx
∗
j

12: Pi = sum1 − sum2

13: Output: P = (P1,P2, . . . ,PN )

to the users with and without user i’s participation, VCG-PAY finds the payment for

user i, where sum1 is the sum of all values without user i’s participation in the mechanism,

and sum2 is the sum of all except user i’s value in the optimal case (lines 7-12).

The VCG-VMPAC mechanism is strategy-proof, and it determines the optimal allo-

cation. However, its execution time becomes prohibitive for large instances of VMPAC.

More than this, the problem is strongly NP-hard (by a trivial reduction from the multidi-

mensional knapsack problem [71]), and there is no Fully Polynomial Time Approximation

Scheme (FPTAS) for solving it, unless P = NP . PTAS is by far the strongest approxima-

tion result that can be achieved for this problem, unless P = NP . In the next section, we

design such a PTAS mechanism for VMPAC.

2.4 Strategy-proof PTAS Mechanism for VM Provisioning and Allocation

We now introduce our proposed strategy-proof PTAS mechanism, PTAS-VMPAC. The

definition of a PTAS is as follows:

Definition 7. A maximization problem has a PTAS if for every instance I and for every ε >

0, it finds a solution S for I in time polynomial in the size of I that satisfies S(I) ≥

(1− ε)S∗(I), where S∗(I) is the optimal value of a solution for I.

We define the PTAS-VMPAC mechanism that solves the VMPAC problem as follows:
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Algorithm 4 PTAS-VMPAC Mechanism

1: {Collect user requests.}
2: for all i ∈ U do
3: Collect request θ̂i = (Ŝi, b̂i) from user i
4: {Allocation.}
5: (V , x) = PTAS-ALLOC(θ̂,C, q)
6: Provisions and allocates VM instances according to x.
7: {Payment.}
8: P =C-PAY(θ̂,C, q)

Definition 8. The PTAS-VMPAC mechanism consists of the allocation algorithm PTAS-

ALLOC and the payment function C-PAY.

The PTAS-VMPAC mechanism is given in Algorithm 4. The mechanism is run pe-

riodically by the cloud provider. It collects the requests from the users and determines

the allocation by calling the PTAS-ALLOC algorithm. Once the allocation is determined

the mechanism provisions the required number and types of VM instances, and then it

determines the payments by calling the C-PAY function. The users are then charged the

payment determined by the mechanism. PTAS-ALLOC and C-PAY are presented in the

following subsections.

Our proposed mechanisms, VCG-VMPAC and PTAS-VMPAC, provision the VMs based

on the requests of the users. The mechanisms can handle dynamic changes of heteroge-

neous user demands by supporting dynamic provisioning of cloud resources. As a result,

cloud providers can employ our proposed mechanisms to fulfill dynamic market demands

efficiently. For example, if a user releases a large VM, then the cloud provider can provision

the released resources in the form of smaller VMs if there is a request for them.

2.4.1 PTAS-ALLOC: Allocation Algorithm of PTAS-VMPAC

Our proposed PTAS allocation algorithm, called PTAS-ALLOC, is given in Algorithm 5.

PTAS-ALLOC has three input parameters: the vector of users declared requests θ̂, the

vector of resource capacities C = (C1, . . . , CR), and an integer q, where q ≤ N . The

parameter q controls how close the solution determined by PTAS-ALLOC is to the optimal

solution. The PTAS-ALLOC algorithm has two output parameters: V , the total social
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Algorithm 5 PTAS-ALLOC: Allocation algorithm for VMPAC

1: Input: θ̂ = (θ̂1, . . . , θ̂N ); vector of requests (bundle, bid)
2: Input: C = (C1, . . . , CR); vector of resource capacities
3: Input: q;
4: V = −∞
5: for all Û ⊆ U : |Û | ≤ q do
6: x̂ = 0
7: V̂ = 0
8: sumr = 0, ∀r ∈ R
9: for all i ∈ Û do

10: x̂i = 1
11: V̂ = V̂ + b̂i
12: for all r ∈ R do
13: sumr = sumr +

∑
m∈VM k̂imwmrx̂i

14: if Cr ≥ sumr, ∀r ∈ R then
15: Ũ = U \ Û
16: q̂ = |Û |
17: for all r ∈ R do
18: dr = Cr −

∑
i∈U
∑

m∈VM k̂imwmrx̂i
19: d = (d1, . . . , dR)
20: for all i ∈ Ũ do
21: for all r ∈ R do
22: âir =

∑
m∈VM k̂imwmr

23: ãir = dâirN2/dredr/N2

24: Ãi = (ãi1, . . . , ãiR)
25: {DP to find (Ṽ , x̃) for (Ũ ,d):}
26: d̂ = d
27: if dr ≥ ã1r, ∀r ∈ R then
28: V (1,d) = b̂1
29: d̂ = d− Ã1

30: else
31: V (1,d) = 0
32: for all j = 2, . . . , N − q̂ do
33: V (j, d̂) = max{V (j − 1, d̂), V (j − 1, d̂− Ãj) + b̂j}
34: Ṽ = V (N − q̂,d)
35: Find x̃ by looking backward at V (j,d)
36: if V < (V̂ + Ṽ ) then
37: V = V̂ + Ṽ
38: x = x̂ + x̃
39: Output: V , x

welfare and x, the allocation of VM instances to the users. Our approximation technique

is inspired from Briest et al. [20] who proposed a strategy-proof approximation algorithm
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for the generalized assignment problem where all bins have the same capacity.

The main idea in the design of PTAS-ALLOC, is finding a partial allocation first

and then allocating through dynamic programming the remaining resources based on the

rounded requests of the unallocated users. The partial allocation of fewer users is used

as as a “seed” for the approximate solution and is also allowing us to control the solution

error, ε. The more users we consider in the partial allocation (greater q), the better the

error. In the most extreme case, when q is equal to the total number of users, the algorithm

degenerates into an exhaustive search, producing the optimal allocation but making the al-

gorithm computationally infeasible. In addition, as a consequence of dividing the allocation

process into a partial allocation and an allocation of rounded requests of remaining users,

the resulting overall allocation in each iteration of PTAS-ALLOC is bitonic and monotone.

The algorithm chooses the maximum among the allocations obtained in each iteration, and

thus, as we will show in Theorem 2, the allocation produced by PTAS-ALLOC is monotone.

The PTAS-ALLOC algorithm iterates over all subsets Û of at most q users (lines 5-38).

For each such subset the algorithm finds a feasible partial allocation x̂ of at most q users

(lines 5-14), determines the amount of partially allocated resources for each of the r types

of resources (lines 17-19) and rounds the amount of requested resources by the unallocated

users (set Ũ) for each of the r resources (lines 20-24). Then, it uses a dynamic program-

ming approach to find an allocation of bundles based on the rounded requests ãir, and the

remaining unallocated capacities, dr (lines 25-33). The algorithm determines the maxi-

mum welfare and the corresponding VM instance allocation x obtained over all iterations

(lines 34-38).

We now describe the dynamic programming approach that finds the optimal alloca-

tion for the remaining users of the remaining capacities using the rounded requests of users

(lines 25-33). In order to formulate the problem as a dynamic program, we consider the sub-

problem V (j, d̂) which includes the first j remaining users with the available capacity d̂ such

that V (j, d̂) is the optimal value of the subproblem. The algorithm first calculates V (1,d)

(lines 26-31). Based on these values, it calculates V (j, d̂), where j = 2, . . . , N − q̂ (lines 32-

33). The algorithm compares two cases, not allocating the bundle to j and allocating it
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to j. If allocating the requested bundle of the jth user increases the value V (j − 1, d̂),

the algorithm allocates the bundle to the jth user. The maximum between V (j − 1, d̂)

and V (j − 1, d̂− Ãj) + b̂j gives the optimal value of V (j, d̂), where Ãj is the vector of the

rounded sizes of requested resources by user j. We can formulate the dynamic programming

recursion as follows:

V (j, d̂) = max{V (j − 1, d̂), V (j − 1, d̂− Ãj) + b̂j} (2.4)

This dynamic programming formulation is the same as the one proposed for DP-VMPAC

algorithm except that here the available capacity vector Ĉ is replaced by the vector of

remaining unallocated capacities d̂, and the vector specifying the amount of all resource

types requested by user j, Aj, is replaced by Ãj, the vector of the rounded sizes of requested

resources by user j. Therefore, from Theorem 1, the dynamic programming approach finds

the optimal solution for the allocation of the unallocated resources to the remaining users

with rounded requests (corresponding to lines 25-33 of Algorithm 5).

The dynamic programming builds a table of size (N − q̂) rows and N2 columns,

where (N − q̂) is the number of users and N2 is the number of possible different sizes

for the resource capacities due to rounding of the sizes. As a result, the time complexity of

the dynamic programming is O(N(N2)R), where R is the number of resource types. The

algorithm stores V (N − q̂,d) to Ṽ as the optimal welfare obtained by the dynamic pro-

gramming for the selected Ũ , and the corresponding allocation to x̃. Then, PTAS-ALLOC

finds the maximum total social welfare, V across all iterations on the subsets of at most q

users. It also finds the allocation x by x̂ + x̃ (lines 35-38).

Theorem 2. PTAS-ALLOC is monotone.

Proof. To prove that the PTAS-ALLOC is monotone, we need to show that each iteration

of the main for loop provides a monotone and bitonic allocation. This is based on a result

from [119] that states that if an algorithm A consists of applying the maximum operator

among a set of allocation algorithms that are monotone and bitonic, then algorithm A is

monotone. In our case, the allocation algorithms are basically the iterations of the main
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for-loop in PTAS-ALLOC.

We show that one iteration is producing a monotone allocation by considering two cases.

First, we consider a user i with declared request θ̂i is allocated her requested bundle, and

she is in the first q users selected by the algorithm. If user i declares a request θ̂′i � θ̂i (a

smaller bundle or higher bid), the allocation will not change. This satisfies the definition

of the monotonicity property, where the winning user is among the first q users. Second,

we consider that a user i with declared request θ̂i is allocated her requested bundle, and

she is not in the first q users. In this case, if user i declares a request θ̂′i � θ̂i, her allocation

by dynamic programming will not change. This is due to the fact that she declares a more

profitable request. As a result, user i remains among winning users which satisfies the

monotonicity property, where the winning user is not among the first q users. This proves

the monotonicity of each iteration.

To prove that PTAS-ALLOC is bitonic in each iteration, we consider two cases. First,

user i is not among the first q users. If user i is a winning user, then by declaring a better

request (a smaller bundle or higher bid), the social welfare can only be increased. If user i

is not a winning user, then by declaring a larger bundle or less bid, the social welfare can

not be increased. Second, user i is among the first q users. Thus, she is a winning user. If

she declares a higher bid, the social welfare will increase. If she declares a smaller bundle,

then the remaining capacities of each resource will increase. As a result, the social welfare

can only increase. Thus, each iteration is bitonic.

The monotonicity and bitonicity properties of PTAS-ALLOC in each iteration, com-

bined with the fact that the PTAS-ALLOC keeps the allocation that gives the maximum

welfare among these iterations, proves the overall monotonicity of PTAS-ALLOC.

We now show that our proposed allocation algorithm is a PTAS, that is, for every

fixed ε, its running time is polynomial in the size of the input.

Theorem 3. The PTAS-ALLOC algorithm is a PTAS.

Proof. To prove that the algorithm is PTAS, we need to show that the solution determined

by the algorithm is in a (1− ε) neighborhood of the optimal, and that the time complexity
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of the algorithm is polynomial in N .

We first show that the solution is within (1− ε) of the optimal solution. Let x∗ be the

optimal allocation of the requested bundles, and V ∗ be the corresponding optimal value.

Assume that PTAS-ALLOC determines an allocation x and a value V . Let x̂ be the optimal

allocation when we consider only q users with the highest declared values in the first step.

The second step of allocation is allocating the remaining resources given by d to the users

who were not selected in the first step. The rounding procedure for the remaining users, in

the second step, increases the size of the requested bundles of those users for each resource

type. This may lead to an infeasible allocation of the bundles based on the new rounded

sizes. Based on the rounding, the total increase in the size of the requested bundles for

each resource is less than dr/N . In order to make the allocation feasible, we can remove a

requested bundle such that it satisfies the capacity constraints for each resource type while

decreasing the least amount of value from the objective function. We find those allocated

bundles in the second step where for all resource types their size is larger than dr/N . Among

those, we choose the bundle Ŝi with the smallest size. Since in the first step, we chose the q

bundles with the highest values, the bundle Ŝi can be the q + 1 most valuable bundle.

Therefore, user i valuation for this bundle is vi(Ŝi) ≤ 1/(q + 1)V ∗. Removing bundle Ŝi

makes the obtained objective function between (1 − 1/(q + 1))V ∗ and V ∗. Therefore, we

have (1− ε)V ∗ ≤ V ≤ V ∗, where ε = 1/(q + 1).

We now show that the time complexity of PTAS-ALLOC is polynomial in N . The

running time depends on the partial allocation of q users and the dynamic programming.

The time complexity of the dynamic programming is O(N(N2)R), where N is the number

of users and N2 is the size of each resource based on the rounding. The exhaustive search

to find a partial allocation is based on the total number of allocations of q users which is∑q
i=1R

(
N
i

)
≤ qRN q. Thus, the time complexity of the algorithm is O(qRN2R+q+1). This

proves that the algorithm is PTAS.
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Algorithm 6 C-PAY: Critical Payment Function

1: Input: θ̂ = (θ̂1, . . . , θ̂N ); vector of requests (bundle, bid)
2: Input: C; vector of resource capacities
3: Input: q;
4: Input: x; winning users
5: for all i ∈ U do
6: Pi = 0
7: if xi then
8: l = 0
9: h = b̂i

10: while (h− l) ≥ 1 do
11: vci = (h+ l)/2
12: θ̂ci = (Ŝi, v

c
i )

13: (V ′, x′) = PTAS-ALLOC ((θ̂1, . . . , θ̂
c
i , . . . , θ̂N ),C, q)

14: if x′i then
15: {user i is winning by declaring vci }
16: h = vci
17: else
18: l = vci
19: Pi = h
20: Output: P = (P1,P2, . . . ,PN )

2.4.2 C-PAY: Payment Algorithm of PTAS-VMPAC

The C-PAY function is given in Algorithm 6. The C-PAY function has four input param-

eters, the vector of users declared requests (θ̂), the vector of resource capacities C, the

obtained allocation given by x, and the integer q. It has one output parameter: P , the

payment vector for the users. The payments are based on the critical payments of the

winning users. The payment of winning user i is vci , where vci is the critical payment of

user i, if i wins and zero if i loses. Finding the critical payment is done by a binary search

over values less than the declared value.

Theorem 4. The payment algorithm, C-PAY, implements the critical payment.

Proof. To prove that C-PAY determines the critical payment for the users, we need to

show that Pi is the critical payment for user i, i.e., Pi is the minimum value that she can

declare to obtain her requested bundle of VMs. The C-PAY algorithm finds the critical

payment when the difference between upper and lower bound is less than 1 (line 10 of
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C-PAY algorithm). In addition, the algorithm always sets the winning value as an upper

bound h, and a losing value as a lower bound, l (line 16 and 18, respectively). We separate

the proof into two parts depending on user i’s declared value b̂′i, as follows:

i) User i declares a value b̂′i greater than Pi, (i.e., b̂′i > Pi), and the algorithm finds

a critical payment of vc
′
i . To prove that Pi is the critical payment for user i, we need to

show that for every other critical payments (e.g., vc
′
i ), the difference between vc

′
i and Pi is

at most one. We claim that |vc′i − Pi| ≤ 1. The proof is by contradiction, i.e., we assume

|vc′i −Pi| > 1. Therefore, there are two cases, either vc
′
i −Pi > 1, or Pi−vc

′
i > 1. In the first

case, user i wins by declaring both vc
′
i and Pi, where vc

′
i > Pi. Based on line 16 and line 19

of the C-PAY algorithm vc
′
i is an upper bound on the payment, and thus, there exists a

value l such that vc
′
i − l < 1 due to the convergence and termination of the binary search.

Then, we have l as the lower bound and user i cannot win her bundle by declaring l based

on line 18. As a result, Pi > l, and thus vc
′
i − Pi < 1, which contradicts the assumption.

In the second case, user i wins by declaring both vc
′
i and Pi, where Pi > vc

′
i . With the

same argument, we have Pi as an upper bound for the payment, and thus, Pi − l < 1 to

terminate the binary search. Then, we have l as the lower bound and user i cannot win

her bundle by declaring l. As a result, vc
′
i > l, and thus, Pi − vc

′
i < 1, which contradicts

the assumption.

ii) User i declares a value b̂′i less than Pi, (i.e., Pi − b̂′i > 1). Since the algorithm

converges when Pi − l < 1, there exists l such that user i cannot win her bundle of VMs

by declaring l. As a result, by declaring b̂′i, user i is not a winning user, and her payment

is zero, thus, satisfying the properties of the critical payment.

These show that the payment Pi is the minimum valuation that user i must bid to

obtain her requested bundle. As a result, the payment determined by C-PAY is the critical

payment.

We now show that the proposed mechanism is strategy-proof.

Theorem 5. The PTAS-VMPAC mechanism is strategy-proof.

Proof. The allocation algorithm PTAS-ALLOC is monotone (Theorem 2) and the pay-
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Table 2.3: Users’ true requests

User 1 2 3 4 5 6 7 8
ki1 0 1 2 0 2 1 2 3
ki2 0 2 0 0 0 0 0 2
ki3 2 0 2 2 0 0 0 1
ki4 0 0 3 1 2 3 1 1
bi 30 18 95 10 5 15 7 80

Table 2.4: Different scenarios for user 8’s request declaration

Case Ŝ8 b̂8 Scenario Status

I < 3, 2, 1, 1 > $80 b̂8 = b8, Ŝ8 = S8 W

II < 3, 2, 1, 1 > $90 b̂8 > b8, Ŝ8 = S8 W

III < 3, 2, 1, 1 > $70 b̂8 < b8, Ŝ8 = S8 W

IV < 3, 2, 1, 1 > $9 b̂8 < b8, Ŝ8 = S8 L

V < 3, 2, 1, 3 > $80 b̂8 = b8, Ŝ8 > S8 W

VI < 3, 2, 1, 5 > $80 b̂8 = b8, Ŝ8 > S8 L

ment function C-PAY determines the critical payment (Theorem 4). Therefore, according

to [119], the PTAS-VMPAC mechanism is strategy-proof.

2.4.3 Example

We now analyze the effect of untruthful reporting on the utility of the users participating

in the PTAS-VMPAC mechanism by considering an example. Our goal is to show that our

proposed mechanism, PTAS-VMPAC, is robust against manipulation by a user. The true

requests of the eight users are shown in Table 2.3. We consider the capacities of the two

resources as follows: 100 cores, and 1800 MB of storage. The PTAS-VMPAC (ε = 0.33)

allocates resources to user 1, 2, 3, 7 and 8 in the case where all users declare their true

requests. The payments of the winning users based on C-PAY are 3, 3, 18, 0, and 10,

respectively.

We assume that user 8 reports a different request, θ̂8, from her true request θ8 = (<

3, 2, 1, 1 >, $80), where S8 =< 3, 2, 1, 1 > and b8 = 80. As shown in Table 2.4, we analyze

different scenarios, where user 8 submits different requests. In addition, Fig. 2.1 shows the
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Figure 2.1: PTAS-VMPAC: Effect of untruthful declarations.

payment and utility of the user for all the cases. In Case I, user 8 submits her true request,

that is, θ8 = θ̂8. In this case, user 8 wins, and receives the requested bundle of VMs, S8.

The mechanism charges her $10 for the bundle, and her utility is 80-10=70. In case II,

user 8 submits a request with a higher bid b̂8 = 90. In this case, user 8 is still a winner and

the mechanism determines the same payment for her as in case I, leading to a utility of 70.

In case III, she submits a request with a lower bid b̂8 = 70, which is not less than the price

determined by our mechanism (i.e., $10). Thus, user 8 is still winning, and the mechanism

charges her the same amount as in case I. However, if user 8 submits a request with a lower

bid below the payment, she will not obtain her requested bundle, leading to zero utility.

This is shown in case IV, where user 8 submits a bid b̂8 = 9. We now investigate scenarios

in which user 8 requests a different bundle than her true bundle. In case V, she submits a

larger bundle Ŝ8 =< 3, 2, 1, 3 >, where she requests 3 VM instances of type 2XL instead of

1 (the case of her true request, Case I). In this case, she obtains the bundle due to available

capacities. However, she pays more than she pays in case I, II, and III. Thus, her utility

decreases. In case VI, she submits a larger bundle Ŝ8 =< 3, 2, 1, 5 >, where she requests 5

VM instances of type 2XL instead of 1 VM instance (the case of her true request, Case I).
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However, she becomes a loser since the cloud provider does not have enough resources to

fulfill her request. We showed that if a user submits a request untruthfully, she can not

increase her utility.

2.5 Experimental Results

We perform extensive experiments with real workload data in order to investigate the

properties of the proposed mechanisms, PTAS-VMPAC, and the VCG-VMPAC. We also

compare our proposed mechanisms with a greedy mechanism proposed in [124], called G-

VMPAC-II. Here, we use a simpler name, G-VMPAC, to refer to G-VMPAC-II. G-VMPAC

allocates the VM instances to users in decreasing order of their density metric (a metric

based on the bid of a user and the scarcity of her requested resources). The auctions are

generated using four workload logs from the Grid Workloads Archive [5] and the Parallel

Workloads Archive [8]. VCG-VMPAC, PTAS-VMPAC, and G-VMPAC mechanisms are

implemented in C++ and the experiments are conducted on Intel 2.93GHz Quad Proc

Hexa Core nodes with 90GB RAM which are part of the Wayne State Grid System. In this

section, we describe the experimental setup and analyze the experimental results.

2.5.1 Experimental Setup

In the absence of publicly available users requests data from cloud providers, we resort to

the well studied and standardized workloads from both the Grid Workloads Archive and

the Parallel Workloads Archive.

We selected three logs from the Grid Workloads Archive as follows: 1) NorduGrid

traces from the NorduGrid system; 2) AuverGrid traces from the AuverGrid system; 3)

SHARCNET traces from SHARCNET clusters installed at several academic institutions in

Ontario, Canada. We also selected the following log from the Parallel Workloads Archive.

4) MetaCentrum from the national grid of the Czech republic. We selected these logs

because of the availability of CPU and memory requests/usage recorded. We consider each

hour of a log as one auction, where each job corresponds to a user request. For each log,
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Table 2.5: Statistics of workload logs for the first 100 hours.

Logfile Number
of jobs

Range
of CPU

Range of
Storage
(MB)

Available
CPUs

Storage Ca-
pacity (MB)

GWA-T-3 NorduGrid 843 1 [1-630] 500 3,000
GWA-T-4 AuverGrid 1,524 1 [2-1,168] 500 10,000
METACENTRUM-2009-2 679 [1-32] [1-26,755] 500 12,000
GWA-T-10 SHARCNET 2,938 [1-512] [1-7,812] 10,000 20,000
GWA-T-10 SHARCNET (2) 6,629 [1-150] [1-8,000] 10,000 20,000

except GWA-T-10 SHARCNET, we select 100 hours, while from GWA-T-10 SHARCNET,

we select two 100 hours segments. This selection gives five 100-hour auctions for the

experiments, and represents different input configurations such as available capacities and

number of users. We present the statistics of the logs for the selected segments in Table 2.5.

The number of users (jobs) for each log is given in the second column of Table 2.5. The

total number of users (requests) is 12,613.

We consider each hour of a log as one auction to follow the standard practice in Amazon

EC2. As a result, each log represents a series of auctions, where users submits their requests

over time to a cloud provider. In each auction hour, the participants are the new users and

the unserved users whose deadline has not been exceeded.

The following fields from the log files are selected in order to generate user requests:

JobID, SubmitTime, RunTime, ReqNProcs, and Used Memory. JobID is the index of the

job. SubmitTime and RunTime give the submission time of the job, and the time the

job needs to complete its execution, respectively. ReqNProcs and Used Memory give the

requested number of processors and the average used memory per processor, respectively.

Each job from the logs corresponds to a user request, where the job’s resource usage

represents the resources requested by the user. Therefore, each user request includes the

requested number of CPUs and the amount of storage. For the bid of each user, we

generate a random number between 1 and 10. In addition, we consider a deadline for each

user request which is between 3 to 6 times of RunTime of each job. Users leave the auctions

after their deadline. A user starts bidding for her requested bundle from the SubmitTime
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Figure 2.2: PTAS-VMPAC vs. VCG-VMPAC & G-VMPAC: Social welfare.

until her deadline.

2.5.2 Analysis of Results

We compare the performance of PTAS-VMPAC (for ε = 0.5 and ε = 0.33), G-VMPAC and

VCG-VMPAC for different workloads in Figs. 2.2 and 2.4. The selected ε values correspond

to q equal to 1 and 2. For each workload, we record the execution time, the social welfare,

and the percentage of served users per hour for each mechanism.

Fig. 2.2 shows the average social welfare per hour for the logs. The reason that we

only choose PTAS-VMPAC with ε = 0.5 and ε = 0.33, and did not select smaller values

for ε is that for these cases PTAS-VMPAC obtained optimal results equivalent to the one

obtained by the optimal VCG-VMPAC for all logs. Note that PTAS-VMPAC guarantees

worst case performance, and it does not necessarily produce non-optimal solutions. The

rounding procedure of PTAS makes the size of the requests larger than their actual size.

For most cases, the total size of the requests in the optimal solutions is not equal to the

available capacities. That means, there is extra remaining capacities even in the optimal

allocation. As a result, the rounding of the optimal solution still fits in the available capac-
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Figure 2.3: PTAS-VMPAC vs. VCG-VMPAC & G-VMPAC: Execution time.

ity. Note that such cases occur irrespective of the amount of aggregated users demands,

which can be much higher than the available capacities. The optimality of PTAS-VMPAC

depends on the total size of the requests in the optimal solution and the available capaci-

ties. Our proposed PTAS-VMPAC mechanism can find the optimal solution in such cases.

In fact, there should be a specific configuration in the requested bundles and the available

capacities in order to create the worst case scenario (in terms of performance guarantee

of ε) for the PTAS-VMPAC mechanism. Later in this section, we provide a discussion on

the cases where PTAS-VMPAC cannot achieve optimal social welfare. Since G-VMPAC

considers only the bid densities when making allocation decisions, it obtains the lowest

social welfare in general, which is far from the optimal social welfare. For example, for

GWA-T-10 SHARCNET (2) the optimal social welfare is 362.70, while G-VMPAC obtains

a social welfare of 317.05 leading to a 12.58% gap from the optimal solution obtained by

our proposed PTAS-VMPAC.

Fig. 2.3 shows the average execution time of PTAS-VMPAC (ε = 0.5 and ε = 0.33),

VCG-VMPAC, and G-VMPAC for the logs. In this set of experiments, PTAS-VMPAC

with ε = 0.5 not only achieves optimal social welfare, but it also has the lowest execution
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time among all the mechanisms obtaining optimal solutions. For example, in the case

of METACENTRUM-2009-2, the execution time of PTAS-VMPAC with ε = 0.5 is more

than three orders of magnitude greater than that of VCG-VMPAC. VCG-VMPAC has

the highest execution time in the GWA-T-10 SHARCNET (2) log since it has the highest

available capacity and the highest number of requests 6,629. Note that the complexity

of VCG-VMPAC depends on the number of requests and the available capacities. The

results show that the execution time of the PTAS-VMPAC is polynomial in the number of

requests. One key observation is that since PTAS-VMPAC with ε = 0.5 can obtain optimal

solutions very fast, thus it is beneficial for the cloud providers to use this mechanism rather

than PTAS-VMPAC with other values for ε. For example, for the total of 2,938 and 6,629

requests, PTAS-VMPAC with ε = 0.5 finds the optimal solutions in 1.90 and 6.23 seconds,

respectively. G-VMPAC finds the results very fast since it is a greedy mechanism. However,

it cannot guarantee a near optimal solution, which is the case for our proposed PTAS-

VMPAC mechanism.

Fig. 2.4 shows the percentage of users that have been allocated by the mechanisms.

Since the PTAS-VMPAC mechanism achieves the optimal solutions for all logs, it serves
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the same percentage of users as VCG-VMPAC. Note that VCG-VMPAC does not serve a

higher number of users than G-VMPAC. This is due to the fact that the optimal mechanism

finds the most valuable subset of users in order to maximize the social welfare.

To show that the execution time of PTAS-VMPAC does not depend on the values

of capacity, we perform sensitivity analysis with respect to storage capacity in Fig. 2.5.

For this figure, we select the METACENTRUM-2009-2 log, and choose different storage

capacities in each experiment. Fig. 2.5 shows that the execution time of PTAS-VMPAC

mechanism does not change by increasing or decreasing the capacity. This is not the

case for VCG-VMPAC where its execution time depends on the number of requests and

the available capacities. For example, the execution times of VCG-VMPAC for storage

capacity of 8,000 and 24,000 are 2.56 and 14.23 seconds, respectively.

We now investigate the cases where PTAS-VMPAC cannot achieve optimal social wel-

fare. This happens in cases where the allocated amount of resources in the optimal solution

is the same as the amount of available capacities. In such cases, the rounding procedure

of PTAS-VMPAC needs extra amount for each request. Therefore, the optimal solution

would not fit in the available capacities. As a result, at least one of the requests would
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not be fulfilled by PTAS-VMPAC, leading to a lower social welfare. Since in the logs, we

do not have such cases, we designed a special experiment to show such a scenario. We

select one auction of METACENTRUM-2009-2, and choose the capacities in a way that

PTAS-VMPAC mechanisms do not necessarily find the optimal solution. Fig. 2.6 shows
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the obtained social welfare based on the selected ε, where ε is 0.5, 0.33, 0.25 corresponding

to q equal to 1, 2, 3, respectively. We also show the social welfare in the optimal case

obtained by VCG-VMPAC. The results show that the obtained social welfare is within ε

distance of the optimal social welfare. Fig. 2.7 shows the execution time of PTAS-VMPAC

for the same selected ε, and the execution time of VCG-VMPAC. The results show that

PTAS-VMPAC is able to find a near optimal social welfare in much shorter time. This is

due to the fact the PTAS-VMPAC is a polynomial time approximation scheme.

From all the above results, we conclude that PTAS-VMPAC finds near-optimal solutions

to the VMPAC problem and its execution time only depends on the number of users and

the selected ε. These properties make PTAS-VMPAC a good candidate for deployment on

the current cloud computing systems, where the capacities of the resources available for

allocation are very large.

2.6 Conclusion

We addressed the problem of dynamic VM provisioning, allocation, and payment determi-

nation in clouds considering heterogeneous resources. We proposed a strategy-proof PTAS

mechanism for autonomic resource allocation in clouds that provides incentives to the users

to reveal their true valuations for the requested bundles of VM instances. We also designed

a strategy-proof VCG-based mechanism using a dynamic programming approach. The ob-

jectives of the proposed mechanism are to maximize the social welfare in dynamic resource

provisioning, to achieve strategy-proofness, and to lead the system into an equilibrium.

We investigated the properties of our proposed PTAS mechanism by performing extensive

experiments. The results showed that the proposed mechanism determines near optimal

allocations while giving the users incentives to report their true valuations for the bundles

of VM instances.
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CHAPTER 3: PHYSICAL MACHINE RESOURCE MANAGEMENT IN
CLOUDS

3.1 Introduction

The ever-growing demand for cloud resources from businesses and individuals places the

cloud resource management at the heart of the cloud providers’ decision-making process.

A cloud provider offers infrastructure as a service (IaaS) by selling low level resources of its

physical machines (PMs) in the form of virtual machines (VMs). These services are made

available to users as utilities in a pay-as-you-go model, reducing the operational costs for

the users. The cloud auction market follows the pay-as-you-go model, and it has proven

to be beneficial for both users and cloud providers. This is due to the fact that in such

market, cloud providers can attract more customers and better utilize their resources, while

users can obtain services at a lower price than in the on-demand market.

We consider the physical machine resource management problem in the presence of

multiple PMs and multiple types of resources (e.g., cores, memory, storage) in an auction-

based setting, where each user bids for a bundle of heterogeneous VM instances. Bundles

of heterogeneous VM instances are required by several types of applications, such as social

game applications composed of three layers: front-end web server, load balancing, and

back-end data storage. These types of applications require a bundle of heterogeneous

VMs composed of communication-intensive VMs, computation-intensive VMs, and storage-

intensive VMs, respectively [45]. The requests of the selected users are assigned to PMs,

where a PM can be a server, a rack of servers, or a group of racks, and it may host several

VMs. Each user has some private information about her requested bundle of VM instances

and a private valuation for the bundle. This information is not publicly known by the

cloud provider and the other users. The users are self-interested in a sense that they want

to maximize their own utility. The cloud auction market could be vulnerable to such self-

interested users’ behaviors. It may be beneficial for the cloud users to manipulate the

auction outcomes and gain unfair advantages by untruthfully revealing their requests (i.e.,
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different VM bundles or bids from their actual request). Strategic behaviors of any user may

hinder other qualified users, significantly reducing the auction efficiency, and discouraging

users from participation. One of the goals in such settings is to design strategy-proof

mechanisms, that is, mechanisms that induce the users to report their true requests and

valuations.

Our proposed PM resource management mechanisms consist of three phases: winner

determination, provisioning and allocation, and pricing. In the winner determination phase,

the cloud provider decides which users receive their requested bundles. In the provisioning

and allocation phase, the cloud provider provisions the amount of resources in the form

of VM instances onto the PMs, and then allocates the requested bundles of VMs to the

winning users. In the pricing phase, the cloud provider dynamically determines the price

that the winning users should pay for their requests.

The winner determination phase of the PM resource management problem (PMRM) can

be reduced to the multiple multidimensional knapsack problem (MMKP). In this setting,

each PM is considered to be one multidimensional knapsack. The bundle of VMs from a user

request is considered as an item. The aim is to select a subset of items for each knapsack

maximizing the value. Chekuri and Khanna [32] showed that the multiple knapsack problem

(MKP) is strongly NP-hard (even in the case of two knapsacks) using a reduction from the

Partition problem. The MMKP problem is much harder than the MKP problem and is

thus also strongly NP-hard. Sophisticated algorithms for solving MMKP do not necessarily

satisfy the properties required to achieve strategy-proofness, and they need to be specifically

designed to satisfy those properties. On the other hand, another desirable property of such

algorithms in cloud auction settings is to have a very small execution time.

A major factor that a cloud provider needs to take into account when offering VM

instances to users is pricing the VMs based on the market demand. Such pricing functions

should consider the incentives of both cloud providers and users. Amazon reported that

most users have saved between 50% and 66% by bidding in its spot market (Amazon auction

market) compared to standard on demand market [2]. Dynamic pricing is an efficient way

to improve cloud providers revenue [187]. Instead of exclusively selling VMs employing
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a fixed-price model, cloud providers such as Amazon EC2 employ auction-based models,

where users submit bids for their requested VM instances. The auction-based model allows

the cloud providers to sell their VM instances at a price determined according to the real

market demand. Note that in an untruthful auction, users may declare bids lower than

their actual valuations which may hurt other users and indirectly lead to profit losses for

the cloud provider. Thus, unless strategy-proofness is enforced, maximizing the revenue

may not be effective. In the pricing phase, the cloud provider dynamically determines the

price that users should pay for their requests.

We design an optimal and an approximation mechanism that motivates cloud users to

reveal their requests truthfully. Our proposed mechanisms take the strategic behavior of

individual users into account and simultaneously maximize the global performance objective

of the system. In addition, both mechanisms place VMs in as few PMs as possible. Such

approach has been recognized as an efficient way of reducing cost [110]. This is also in

alignment with green cloud computing objectives [14], where the cloud provider determines

which PMs to power on/off in order to save energy. The mechanisms allow a cloud provider

to choose PMs configurations that are aligned with its power consumption policies. In

addition, our proposed approximation mechanism iteratively provisions VMs on each PM.

This iterative mechanism allows the cloud provider to power on/off PMs based on the user

demands.

3.1.1 Our Contribution

We address the problem of cloud resource management in the presence of multiple PMs

with multiple types of resources. We design a strategy-proof greedy mechanism, called

G-PMRM. G-PMRM not only provisions and allocates resources, but also dynamically de-

termines the price that users should pay for their requests. In order to guarantee strategy-

proofness of G-PMRM, we design the winner determination algorithm, such that it de-

termines loser-independent allocations on each PM. This property makes the G-PMRM

mechanism robust against strategic users who try to manipulate the system by chang-

ing the allocations of other users. We prove that G-PMRM mechanism is a polynomial
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time 3-approximation mechanism. We also design an optimal strategy-proof mechanism,

VCG-PMRM, that we use as a benchmark when we investigate the performance of the

G-PMRM mechanism. We perform extensive experiments in order to investigate the per-

formance of the G-PMRM mechanism. The G-PMRM mechanism is fast and finds near

optimal solutions, being very suitable for deployment in real cloud settings.

3.1.2 Related Work

Researchers approached the problem of VM placement in clouds considering different ob-

jectives and points of view. Dong et al. [38] proposed a method for VM placement consid-

ering multiple resource constraints using hierarchical clustering with best fit. Their goal

is to improve resource utilization and reduce energy consumption by minimizing both the

number of active physical servers and network elements. Ghribi et al. [48] proposed an

allocation algorithm with a consolidation algorithm for VM placement in clouds in order

to minimize overall energy consumption and migration cost. Maurer et al. [112] proposed

a dynamic resource configuration to achieve high resource utilization and low service level

agreement violation rates using knowledge management: case-based reasoning and a rule-

based approach. Kesavan et al. [72] proposed a set of low-overhead management methods

for managing the cloud infrastructure capacity to achieve a scalable capacity allocation for

thousands of machines. Hu et al. [61] studied two time-cost optimization problems for pro-

visioning resources and scheduling divisible loads with reserved instances in clouds. They

formulated the problems as mixed integer programs. Tsai et al. [167] proposed a hyper-

heuristic scheduling algorithm with the aim of reducing the makespan of task scheduling

in clouds. Their approach uses two detection operators to determine when to change the

low-level heuristic algorithm and a perturbation operator. Doyle et al. [39] proposed an

algorithm to determine which data center requests should be routed, based on the relative

priorities of the cloud operator. Such routing will reduce the latency, carbon emissions,

and operational cost. Srikantaiah et al. [163] modeled the mapping of VMs to PMs as a

multidimensional bin packing problem in which PMs are represented by bins, and each

resource is considered as a dimension of the bin. They studied energy consumption and
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resource utilization and proposed a heuristic algorithm based on the minimization of the

sum of the Euclidean distances of the current allocations to the optimal point at each

PM. Rodriguez and Buyya [152] proposed a meta-heuristic algorithm based on Particle

Swarm Optimization for VM provisioning and scheduling strategies on IaaS that minimizes

the overall workflow execution cost while meeting deadline constraints. Their approach

considers dynamic provisioning, heterogeneity of unlimited computing resources, and VM

performance variation. However, none of the above works proposed strategy-proof mecha-

nisms for resource management in clouds.

Many researchers focused on reducing the operational costs of cloud providers through

reducing energy consumption. Mastroianni et al. [110] proposed an approach for the con-

solidation of VMs on two resources, CPU and RAM, so that both resources are exploited

efficiently. Their goal is to consolidate the VMs on as few PMs as possible and switch

the other PMs off in order to minimize power consumption and carbon emissions, while

ensuring a good level of QoS. In their proposed approach, decisions on the assignment

and migration of VMs are driven by probabilistic processes and are based exclusively on

local information. Mazzucco et al. [113] proposed policies based on dynamic estimates of

users demand and models of system behavior in order to determine the minimum number

of PMs that should be switched on to satisfy the demand with two objectives, reducing

energy consumption and maximizing revenues. Polverini et al. [143] studied the problem

of scheduling batch jobs on multiple geographically-distributed data centers. They consid-

ered the benefit of electricity price variations across time and locations. Their proposed

algorithm schedules jobs when electricity prices are sufficiently low and to places where the

energy cost per unit work is low. Mashayekhy et al. [105] proposed energy-aware scheduling

algorithms for detailed task placement of MapReduce jobs. Their scheduling algorithms

account for significant energy efficiency differences of different machines in a data center.

Khosravi et al. [73] proposed a VM placement algorithm that increases the environmental

sustainability by taking into account distributed data centers with different carbon foot-

print rates. Beloglazov et al. [15] investigated the challenges and architectural principles

for energy-efficient management of cloud computing. They proposed energy-aware allo-
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cation heuristics that provision resources to improve energy efficiency of the data center

considering QoS requirements. For a survey on energy-efficient cloud computing systems,

and their taxonomy, the reader is referred to [16]. For a survey of green computing per-

formance metrics for data centers, such as power metrics, thermal metrics, and extended

performance metrics, the reader is referred to [173]. However, in this study we focus on

cloud auction markets which necessitate designing game theory based mechanisms to reach

market equilibria.

Motivated by the recent introduction of cloud auctions by Amazon, resource alloca-

tion and pricing in clouds have been increasingly considered by several researchers. Yi et

al. [189] proposed a resource provisioning approach to reduce the monetary cost of com-

putation using Amazon spot instances. Their results show that by using an appropriate

checkpointing scheme, the cost and task completion time can be reduced. Prasad et al. [145]

proposed a cloud resource procurement and dynamic pricing approach in a reverse auction

setting with several cloud providers. They proposed several strategy-proof mechanisms for

resource procurement and pricing. Fu et al. [45] proposed a core-based pricing method

using a coalitional game. However, they did not consider strategy-proofness. Iyer and

Veeravalli [66] studied the problem of resource allocation and pricing strategies in cloud

computing. They considered the Nash Bargaining Solution and Raiffa Bargaining Solution,

and proposed optimal solutions for allocating virtual CPU instances for both independent

tasks and workflow tasks. Kang and Wang [69] proposed an auction-based cloud resource

allocation algorithm that considers the fitness between resources and services. Mihailescu

and Teo [115] proposed a reverse auction-based mechanism for dynamic pricing of resources.

A revenue sharing mechanism for multiple cloud providers using cooperative games was pro-

posed by Niyato et al. [130]. Teng and Magoules [164] employed game theoretical techniques

to solve the multi-user equilibrium allocation problem, and proposed a resource pricing and

allocation policy where users can predict the future resource price. In our previous studies,

we proposed truthful mechanisms for VM allocation in clouds without considering their

placement onto PMs [96, 123].

Our work is different from all the previous works, since we address the cloud resource
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management problem through an economic model by performing VM provisioning, place-

ment, pricing, and considering possible energy savings. Moreover, we consider a realistic

cloud setting with multiple heterogeneous PMs providing multiple types of resources, and

users requesting different types of VM instances. We also provide worst case performance

guarantee for our proposed mechanism.

3.1.3 Organization

The rest of the chapter is organized as follows. In Section 3.2, we describe the PM re-

source management problem in clouds. In Section 3.3, we present our proposed optimal

mechanism. In Section 3.4, we describe our proposed approximation mechanism, and in

Section 3.5, we characterize its properties. In Section 3.6, we evaluate the performance of

the mechanisms by extensive experiments. In Section 3.7, we summarize our results.

3.2 Physical Machine Resource Management Problem

In this section, we present the system model and the problem of Physical Machine Resource

Management (PMRM) in clouds.

We consider a cloud provider managing a public cloud consisting of P PMs, PM =

{1, . . . , P}, offering a set R = {1, . . . , R} of R types of resources such as cores, memory,

and storage, to users in the form of VM instances. The information about cloud’s physical

resources is not known to the users. A PM can be a server, a rack of servers, or a group

of racks. A key characteristic of our model is that it enables cloud providers to define

PMs based on their resource configurations and user demands. This allows the cloud

provider to treat the heterogeneous resources in a flexible way. Each PM p has restricted

capacity, Cpr, for a resource r ∈ R available for allocation. We denote by Cp the vector of

available capacities on each PM p. The cloud provider offers its heterogeneous resources

to users in the form of M types of VMs. The set of VM types is denoted by VM. Each

VM of type m ∈ VM consists of a specific amount of each type of resource r ∈ R. In

addition, wmr represents the amount of resources of type r that one VM instance of type m
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Table 3.1: General purpose (M3) VM instance types offered by Amazon EC2.

m3.medium m3.large m3.xlarge m3.2xlarge
m = 1 m = 2 m = 3 m = 4

CPU 1 2 4 8
Memory (GB) 3.75 7.5 15 30
Storage (GB) 4 32 80 160

provides. Table 3.1 presents the four types of general purpose (M3) VM instances offered

by Amazon EC2. By considering CPU, memory, and storage as type 1, type 2, and type 3

resources, respectively, for example, the m3.medium instance (m = 1) is characterized by:

w11 = 1, w12 = 3.75 GB, and w13 = 4 GB.

We consider a set N of N users requesting a set of VM instances. Each user has a

private valuation for obtaining her request consisting of VM instances. Bidding is the

process of expressing user’s valuation for a heterogeneous set of VMs and communicating

it to the system. In general, it does not matter how the valuation is being encoded, as

long as the system can understand the bid submitted by the user (bidder). Users use a

bidding language to express their requests. We define a bidding language that can be used

to express a user’s request (which may or may not be their true request) and to report it to

the system. Each user i, i ∈ N , can submit a pair (ρi, bi), where ρi is her requested bundle of

VMs and bi is the price that she is willing to pay for ρi. As a result, her valuation is defined

as vi(ρ̂i) = bi if ρi ⊆ ρ̂i and vi(ρ̂i) = 0, otherwise. Such a bid βi = (ρi, bi) is called an atomic

bid. Users with atomic bids are called single-minded bidders. User i’s requested bundle is

represented by ρi = 〈ki1, ki2, . . . , kiM〉, where kim is the number of requested VM instances

of type m ∈ VM. It is worth noting that ρi can consist of one type of VM, while the request

for the remaining types of VMs are zero. For example, request (〈10, 0, 0, 5〉, $25) represents

a user requesting 10 m3.medium VM instances, 0 m3.large VM instance, 0 m3.xlarge VM

instance, and 5 m3.2xlarge VM instances; and her bid is $25. Table 3.2 summarizes the

notation used throughout the chapter.

Given the above setting the problem of Physical Machine Resource Management (PMRM)

in clouds is to determine the allocation of VM to PM simultaneously with the allocation

of VM to users and the prices for the VM bundles such that the sum of users’ valuations
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Table 3.2: Notation

PM Set of physical machines {1, . . . , P}
VM Set of virtual machine types {1, . . . ,M}
R Set of resources {1, . . . , R}
wmr Amount of resources of type r ∈ R provided

by a VM instance of type m ∈ VM
Cpr Capacity of p ∈ PM for a resource of type r ∈ R
N Set of users {1, . . . , N}
ρi Bundle requested by user i ∈ N
kim Number of requested VM instances of

type m ∈ VM by user i ∈ N
bi Bid of user i ∈ N
vi Valuation function of user i ∈ N
ui Utility function of user i ∈ N
Πi Payment of user i ∈ N

is maximized. A mechanism for solving the PMRM problem consists of three phases: win-

ner determination, provisioning and allocation, and pricing. In the winner determination

phase, the cloud provider determines which users receive their requested bundles. Based on

the results of the winner determination phase, the cloud provider provisions the amount of

resources in the form of VM instances onto the PMs, and then allocates the requested bun-

dles of VMs to the winning users. Then, the cloud provider determines the unique amount

that each winning user must pay based on the winner determination results. Note that the

payment of a user is not greater than its submitted bid. The main building blocks of a

PMRM mechanism include: a winner determination function W and a payment function

Π.

Fig. 3.1 shows a high-level view of PMRM. For simplicity, we consider that only one

type of resource is available. Four users submit their bids to the cloud provider, where two

PMs are available to fulfill the users’ requests. As an example, user 1 requests two VM1

and one VM2 as her bundle, and she submits a bid of $0.50. The mechanism employed

by the cloud provider collects the bids and then selects the users whose bundle would

be provisioned. After it provisions the VMs on the PMs based on the selected users, it

allocates the bundles to those users. The selected users pay the amount determined by the

mechanism to the cloud provider.

User i has a quasi-linear utility function defined as the difference between her valuation

and payment, ui = vi(Wi)− Πi, where Wi is the allocated bundle to user i, and Πi is the
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Figure 3.1: A high-level view of PMRM.

payment for user i. The users are self-interested, that is, they want to maximize their own

utility. It may be beneficial for cloud users to manipulate the auction outcomes and gain

unfair advantages via untruthfully revealing their requests. Since the request of a user is

a pair of bundle and value, the user can declare a higher value in the hope to increase the

likelihood of obtaining her requested bundle, or declare a different VM bundle from her

actual request. Strategic behaviors of such users may hinder other qualified users, leading

to reduced revenue and reputation of the cloud provider. Our goal is to design strategy-

proof mechanisms that solve the PMRM problem and discourage users from gaming the

system by untruthful reporting. The mechanism maximizes social welfare, the sum of users’

valuations for the requested bundles of VMs.

3.3 Optimal Mechanism for PMRM

In this section, we propose an optimal strategy-proof mechanism for PMRM. For a detailed

introduction on mechanism design the reader is referred to [129].

Cloud users may submit different requests from their true requests hoping to gain more

utility. We denote by β̂i = (ρ̂i, b̂i) user i’s declared request. Note that βi = (ρi, bi) is user i’s

true request. We denote by β = (β1, . . . , βN) the vector of requests of all users, and by β−i

the vector of all requests except user i’s request (i.e., β−i = (β1, . . . , βi−1, βi+1, . . . , βN)).
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Users are rational in a sense that they do not want to pay more than their valuation for

their requested bundles. A well-designed mechanism should give incentives to users to

participate. Such a property of a mechanism is called individual rationality and is defined

as follows:

Definition 9 (Individual rationality). A mechanism is individually-rational if for every

user i with true request βi and the set of other requests, we have ui(βi) ≥ 0.

In other words, a mechanism is individually-rational if a user can always achieve as

much utility from participation as without participation. However, such mechanisms do

not always give incentives to users to report their requests truthfully. Our goal is to design

a mechanism that is strategy-proof, i.e., a mechanism that gives incentives to users to reveal

their true requests.

Definition 10 (Strategy-proofness). A mechanism is strategy-proof (or incentive compat-

ible) if ∀i ∈ N with a true request declaration βi and any other declaration β̂i, and ∀β̂−i,

we have that ui(βi, β̂−i) ≥ ui(β̂i, β̂−i).

The strategy-proofness property implies that truthful reporting is a dominant strategy

for the users. As a result, it never pays off for any user to deviate from reporting her true

request, irrespective of what the other users report as their requests.

Our first proposed strategy-proof mechanism is an optimal one and it is based on the

Vickrey-Clarke-Groves (VCG) mechanism. An optimal winner determination function with

VCG payments provides a strategy-proof mechanism [35, 51, 172]. We define our proposed

optimal VCG-based mechanism for PMRM as follows:

Definition 11 (VCG-PMRM mechanism). The VCG-PMRM mechanism consists of win-

ner determination function W, and payment function Π, where

i) W is an optimal winner determination function maximizing the social welfare, and

ii) Πi(β̂) =
∑

j∈N\{i}

vj(Wj(β̂−i))−
∑

j∈N\{i}

vj(Wj(β̂)),
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such that
∑

j∈N\{i} vj(Wj(β̂−i)) is the optimal social welfare obtained when user i is ex-

cluded from participation, and
∑

j∈N\{i} vj(Wj(β̂)) is the sum of all users valuations in the

optimal solution except user i’s value.

The problem that needs to be solved in the winner determination phase of PMRM can

be formulated as an integer program (called IP-PMRM), as follows:

Maximize V =
∑
i∈N

∑
p∈PM

bi ·Xip (3.1)

Subject to:∑
p∈PM

Xip ≤ 1,∀i ∈ N (3.2)

∑
i∈N

∑
m∈VM

kimwmrXip ≤ Cpr,

∀p ∈ PM, ∀r ∈ R (3.3)

Xip = {0, 1} (3.4)

The decision variables Xip are defined as follows: Xip = 1, if ρi is allocated to i on

machine p; and 0 otherwise. The objective function is to maximize social welfare V . Con-

straints (3.2) ensure that the request of each user is fulfilled at most once. Constraints (3.3)

guarantee that the allocation of each resource type does not exceed the available capacity

of that resource for any PM. Constraints (3.4) represent the integrality requirements for

the decision variables.

The winner determination phase of VCG-PMRM (implementing W) consists of solving

the IP-PMRM. The execution time of VCG-PMRM becomes prohibitive for large instances

of the PMRM problem. As a result, we resort to designing a fast mechanism providing an

approximate solution for the PMRM problem. The VCG-PMRM mechanism will be used

in our experiments as a benchmark for the performance of the proposed approximation

mechanism.
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3.4 A Strategy-proof Approximation Mechanism for PMRM

In this section, we introduce our proposed strategy-proof greedy mechanism, G-PMRM.

Greedy algorithms to solve PMRM do not necessarily satisfy the strategy-proofness prop-

erty. To obtain a strategy-proof mechanism, the winner determination function W must

be monotone, and the payment function Π must be based on the critical payment [119].

In addition, we design an iterative winner determination algorithm in the sense that, in

each iteration, it determines the assignment of winning requests to their associated PM.

This way the mechanism utilizes PMs one by one until all winning requests are assigned.

This approach allows the cloud provider to power off unutilized PMs to save energy. In the

following, we define the properties that our proposed mechanism needs to satisfy in order

to guarantee strategy-proofness.

Definition 12 (Monotonicity). A winner determination function W is monotone if it

selects user i with β̂i as her declared request, then it also selects user i with a more preferred

request β̂′i, i.e., β̂′i � β̂i.

That means, any winning user who receives her requested bundle by declaring a re-

quest β̂i will still be a winner if she requests a more preferred request (i.e., smaller bun-

dle and/or a higher bid). Formally, β̂′i � β̂i if b̂′i ≥ b̂i and ρ̂i =< k̂i1, k̂i2, . . . , k̂iM >,

ρ̂′i =< k̂′i1, k̂
′
i2, . . . , k̂

′
iM > such that

∑
m∈VM k̂′imwmr ≤

∑
m∈VM k̂imwmr,∀r ∈ R.

Definition 13 (Critical payment). Let W be a monotone winner determination function,

then for every βi, there exists a unique value vci , called critical payment, such that ∀β̂i ≥

(ρi, v
c
i ), β̂i is a winning declaration, and ∀β̂i < (ρi, v

c
i ) is a losing declaration. Πi(β̂) = vci

if user i wins, and Πi(β̂) = 0, otherwise.

However, a key challenge in the design of our greedy mechanism in order to satisfy

monotonicity is the presence of multiple PMs with multiple types of resources. Lucier and

Borodin [86] and Chekuri and Gamzu [31] showed that loser-independent algorithms can

be employed as sub-procedures in a greedy iterative approach to obtain monotonicity for

the overall winner determination algorithm.
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Algorithm 7 G-PMRM Mechanism

1: {Collect user requests.}
2: for all i ∈ N do
3: Collect user request β̂i = (ρ̂i, b̂i) from user i
4: {Allocation.}
5: (V , x) = G-PMRM-WIN(β̂)
6: Provisions and allocates VM instances according to x.
7: {Payment.}
8: Π =G-PMRM-PAY(β̂,x)

Definition 14 (Loser-independence). An algorithm W is loser-independent with respect

to user i’s request β̂i in which Wi(β̂i, β̂−i) = ∅, if user i declares a request β̂′i, then either

Wj(β̂
′
i, β̂−i) =Wj(β̂i, β̂−i), for all j 6= i, or Wi(β̂i, β̂−i) 6= ∅, where β̂′i � β̂i.

In other words, if user i was not selected by algorithm W when she declared request β̂i

and now she declares a new request β̂′i while the declared requests of the rest of the users

do not change, then the outcome of algorithm W changes only if user i becomes a winner

by declaring a better request β̂′i.

If the bid of a not-selected user changes but her allocation stays the same then the

allocations to all other users do not change. A key property of loser-independent algorithms

is that if a user is not a winner, it guarantees the same output no matter her declaration.

This property makes the algorithm robust against strategic users who try to manipulate

the system by changing other users allocations. Note that if such a user tries to change the

allocation determined by the algorithm, she should declare a request that will make her a

winner.

Obtaining strategy-proofness requires the design of a loser-independent winner deter-

mination algorithm that allocates the resources of each PM individually. If the winner

determination algorithm is loser-independent for each PM, then when the solutions for

each individual machines are combined in an iterative fashion it will lead to a monotone

overall winner determination algorithm. Having a monotone winner determination algo-

rithm along with a critical value payment, makes the mechanism strategy-proof.

We define our proposed G-PMRM mechanism as follows:

Definition 15 (G-PMRM mechanism). The G-PMRM mechanism consists of the winner
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Algorithm 8 IS-FEASIBLE(ρi, Cp)
1: for all r ∈ R do
2: σir =

∑
m∈VM kimwmr

3: flag ← TRUE

4: for all r ∈ R do
5: if σir > Cpr then
6: flag ← FALSE

7: break;
8: Output: flag

determination algorithm G-PMRM-WIN and the payment function G-PMRM-PAY.

The G-PMRM mechanism is given in Algorithm 7. The mechanism is run periodically

by the cloud provider. It collects the requests from all users, and then it determines the

winning users by calling the G-PMRM-WIN algorithm. Once the users are selected the

mechanism provisions the required number and types of VM instances on the selected

PMs, and then it determines the payments by calling the G-PMRM-PAY function. The

users are then charged the payment determined by the mechanism. G-PMRM-WIN and

G-PMRM-PAY are presented in the following.

Before describing the winner determination algorithm, we need to define a function,

called IS-FEASIBLE(), that we call in our proposed winner determination algorithm. IS-

FEASIBLE() is given in Algorithm 8. It checks the feasibility of allocating the requested

bundle of VMs of a user on a specific PM, that is, it checks whether PM p has enough

resources to fulfill a requested bundle of VMs. For user i with ρi = 〈ki1, ki2, . . . , kiM〉, and

PM p, the function computes σir, the amount of resources of type r requested by user i, and

then checks it against the available resource capacity Cpr for all types r ∈ R of resources

on PM p.

G-PMRM-WIN is given in Algorithm 9. G-PMRM-WIN has one input parameter, the

vector of users declared requests β̂, and two output parameters: V , the total social welfare,

and x, the set of winning users.

The algorithm finds the total amount of each resource type requested by each user

in N (lines 2-4). It also calculates the reserve price for each request (line 5). We consider

reservation prices for the VMs to avoid non-profitable trade. The reserve price is often
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a reflection of the VM cost. The cloud provider sets a reserve price om for each type of

VM m ∈ VM. These prices are denoted by a vector O =< o1, . . . , oM >. The reserve

price (bundle-specific) of a user is calculated based on her requested bundle as follows:

rpi =
∑

m∈VM kimom, which is the weighted sum of reserve prices for all the requested VMs

in the bundle of user i.

Users whose bids are above the reserve prices are included in U , the set of users who

are not yet selected to receive their requested bundles (lines 6-7). In the following, we call

U , the set of not-selected users. Then, the algorithm iterates over all PMs to find a subset

of users whose requests should be assigned to each PM p, where the vector of resource

capacities of PM p is Cp = (Cp1, . . . , CpR) (lines 8-60). Each iteration of the algorithm

(lines 8-60) consists of three phases. In the first phase, the algorithm finds the user with

the maximum bid (lines 9-17). In the second phase, the algorithm finds the set of users

based on their bid densities whose overall requested amount of resources is at least half of

the capacities of the PM (lines 18-54). In the third phase, the algorithm finds the maximum

social welfare Vp between the obtained social welfare of the first and second phase (lines 55-

60). Based on the phase providing the maximum social welfare, the algorithm chooses

the set of winning users xp for PM p. The requested bundle of VMs of these users will

be provisioned using the resources of PM p. Then, the algorithm updates the set of not-

selected users U (line 60). After finding the set of winning users to be allocated to each

PM p,∀p ∈ PM, the algorithm calculates the obtained social welfare V and the final set

of winning users specified by vector x (line 61).

In the following, we discuss each phase in detail. In phase one, the algorithm first finds

the set of users Û whose requests can be fulfilled by PM p (lines 9-14) by calling the IS-

FEASIBLE() function that checks the feasibility of allocating the requested bundle of VMs

of each user i on PM p. Then, it finds the maximum bid among the users in Û (line 15).

It also finds the user associated with it as a winning user and updates x̂ (lines 16-17).

In the second phase, the algorithm finds the set of users Ũ , where each user’s request

is not greater than half of the available capacity of the PM p, for each resource by calling

IS-FEASIBLE (lines 18-22). Then, the algorithm calculates the bid densities of users
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Algorithm 9 G-PMRM-WIN(β̂)

1: U = ∅
2: for all i ∈ N do
3: for all r ∈ R do
4: σir =

∑
m∈VM kimwmr

5: rpi =
∑
m∈VM kimom

6: if b̂i ≥ rpi then
7: U = U ∪ {i}
8: for all p ∈ PM do
9: {First phase}
10: Cp = (Cp1, . . . , CpR)

11: Û ← ∅; x̂ = 0
12: for all i ∈ U do
13: if IS-FEASIBLE(ρi, Cp) then

14: Û ← Û ∪ {i}
15: V̂ = maxi∈Û b̂i

16: j = argmaxi∈Û b̂i
17: x̂j = 1
18: {Second phase}
19: Ũ ← ∅; x̃ = 0
20: for all i ∈ U do
21: if IS-FEASIBLE(ρi, Cp/2) then

22: Ũ ← Ũ ∪ {i}
23: for all i ∈ Ũ do

24: di = b̂i/
√∑R

r=1
σir
Cpr

25: Sort Ũ in decreasing order of di
26: Ū ← ∅; C̃p = 0; flag ← TRUE

27: while Ũ 6= ∅ and flag do
28: for all r ∈ R do
29: if C̃pr > Cpr/2 then
30: flag ← FALSE

31: if flag then
32: i← argmaxi∈Ũdi

33: Ũ = Ũ \ {i}
34: x̃i = 1
35: Ū ← Ū ∪ {i}
36: for all r ∈ R do
37: C̃pr = C̃pr + σir
38: Ṽ = 0; C̄p = 0
39: if Ū 6= ∅ then
40: for all i ∈ Ū except the last user j added to Ū do
41: Ṽ = Ṽ + b̂i
42: for all r ∈ R do
43: C̄pr = C̄pr + σir
44: for all r ∈ R do
45: σ̄jr = Cpr/2− C̄pr
46: flag ← TRUE

47: for all r ∈ R do
48: if σjr > σ̄jr then
49: flag ← FALSE

50: if flag then
51: for all r ∈ R do
52: σ̄jr = σjr

53: b̄j = dj

√∑R
r=1

σ̄jr
Cpr

54: Ṽ = Ṽ + b̄j
55: {Third phase}
56: if V̂ ≥ Ṽ then
57: Vp = V̂ ; xp = x̂
58: else
59: Vp = Ṽ ; xp = x̃
60: Update U to the unallocated users based on xp
61: V =

∑
p∈PM Vp; x =

∑
p∈PM xp

62: Output: V , x
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in Ũ (lines 23-24) according to a density metric defined as di = b̂i√∑R
r=1

σir
Cpr

,∀i ∈ U , where

σir =
∑

m∈VM kimwmr is the amount of each resource of type r requested by user i, and

1
Cpr

is the relevance factor characterizing the scarcity of resources of type r. Next, the

algorithm sorts the users in Ũ based on the decreasing order of their bid densities (line 25).

Then, the algorithm selects users based on their bid densities (lines 26-37). To do that

it checks whether the total amount of requests of the current selected users are less than

half of the available capacity of each resource in the PM (lines 28-30). If the total amount

of requests do not reach the half, the algorithm selects a new user according to the bid

densities, and updates the set Ū , x̄, and the total amount of requests assigned to PM p

(lines 31-37). Then, G-PMRM-WIN finds the social welfare of the selected users in the

second phase if Ū is not an empty set (lines 38-54). It first, finds the social welfare Ṽ of

all the selected users except the last user (i.e., user j) added to the set Ū (lines 40-43).

Then, the algorithm finds the remaining capacities of each resource σ̄jr from half of the

capacities of the PM (lines 44-45). It also checks if the actual request of user j is less than

the remaining capacities (lines 46-52). Next, the algorithm calculates the value b̄j (line 53)

based on either the remaining capacities (lines 44-45) or the actual user j’s request if her

request is less than the remaining capacities (lines 51-52). Finally, the algorithm updates

the social welfare Ṽ by adding b̄j (line 54).

In phase three, the algorithm selects the maximum social welfare and the associated

selected users from the two phases as the social welfare and the set of winning users whose

requests will be provisioned on PM p (lines 55-60). The obtained social welfare on PM p

is Vp, the maximum social welfare between the social welfare of the two phases. The set of

winning users whose requests will be provisioned on PM p, xp, is the solution that gives Vp.

Then, the algorithm updates the set of not-selected users U based on xp to guarantee that

each user is selected at most once (line 60). After finding the set of users to be allocated

to each PM, the algorithm calculates the obtained social welfare V and the final set of

winning users specified by vector x (line 61).

The G-PMRM-PAY function is given in Algorithm 10. The G-PMRM-PAY function

has two input parameters, the vector of users declared requests (β̂), and the set of winning
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Algorithm 10 G-PMRM-PAY: Critical Payment Function

1: Input: β̂ = (β̂1, . . . , β̂N ); vector of requests (bundle, bid)
2: Input: x; winning users
3: for all i ∈ U do
4: Πi = 0
5: if xi then
6: l = 0
7: for all m ∈ VM do
8: l = l + kimom
9: h = b̂i

10: while (h− l) ≥ 1 do
11: vci = (h+ l)/2

12: β̂c
i = (ρ̂i, v

c
i )

13: (V ′, x′) = G-PMRM-WIN ((β̂1, . . . , β̂
c
i , . . . , β̂N ))

14: if x′i then
15: h = vci {user i is winning by declaring vci }
16: else
17: l = vci
18: Πi = h
19: Output: Π = (Π1,Π2, . . . ,ΠN )

users given by x. The payment of winning user i is vci , where vci is the critical payment of

user i, if i wins and zero if i loses. Finding the critical payment is done by a binary search

over values less than the declared value and above the reserve price. We consider reserve

prices for the VMs in order to avoid non-profitable trade.

G-PMRM-PAY initializes the payment of each user to zero (line 4). Then for each

winning user i (i.e., xi = 1) it initializes the lower and upper bounds of the payment to the

reserve price and the declared value of the user, respectively (lines 6-9). The reserve price

of a user is calculated based on her requested bundle as follows: l =
∑

m∈VM kimom, which

is the weighted sum of reserve prices for all the requested VMs in the bundle of user i.

G-PMRM-PAY sets the critical payment, vci , as the average of the lower and upper

bounds, and checks if user i would have won if she have had declared her bid as vci (lines 11-

13). If user i would have won by declaring vci , G-PMRM-PAY sets the value as a new upper

bound; otherwise, the value is a new lower bound (lines 14-17). G-PMRM-PAY tries to

reduce the gap between upper and lower bound to 1. Then, the payment of user i, Πi is

set to the upper bound value (line 18). G-PMRM-PAY returns an output parameter, Π,

the payment vector for the users.
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Table 3.3: Example - Users requests.

User requested storage bid bid density
I 512 GB $102 204
II 512 GB $102 204
III 768 GB $150 200
IV 256 GB $50 200
V 1024 GB $198 198
VI 1024 GB $198 198

Example. A key idea in the design of G-PMRM-WIN, is finding a partial allocation in

the second phase in order to not only guarantee approximation ratio but also strategy-

proofness. It is not possible to guarantee the strategy-proofness of the mechanism, if we

allow G-PMRM-WIN to find an allocation considering the full capacity in the second phase.

According to the Definition 4 (Monotonicity), any winning user who receives her requested

bundle by declaring a request β̂i will still be a winner if she requests a more preferred request

(i.e., smaller bundle and/or a higher bid). In the following, we provide an example showing

that considering the full capacity in the second phase will not satisfy the monotonicity

property, that is, showing that if a winning user submits a higher bid, she becomes a loser.

We consider six users, where their requests, bids, and bid densities are shown in Ta-

ble 3.3. We consider a cloud provider with only one type of resource (storage) with two

PMs each with capacity of 1024 GB. The first phase of the mechanism selects users I

and II for PM1, and users III and IV for PM2, where the solution has a total value of

$102+$102+$150+$50=$404. The second phase of the modified mechanism (i.e., consider-

ing the full capacity) selects user V for PM1, and user VI for PM2, where the solution has

a total value of $198+$198=$396. As a result, the mechanism selects the result of the first

phase as the solution. Now, we consider that user IV submits a higher bid of $52 instead of

her actual value ($50). Her bid density would change to 208, which is the highest density

among all six users. Therefore, the first phase selects users IV and I for PM1, and user II

for PM2, where the solution has a total value of $102+$102+$52=$256. The second phase

(with full capacity) selects user V for PM1, and user VI for PM2, where the solution has

a total value of $198+$198=$396. As a result, the modified mechanism selects the results
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of the second phase as the solution. This solution does not include user IV anymore, and

the winner determination is not monotone, and thus the mechanism is not strategy-proof.

This example shows that a user can lose by declaring a higher value which should not be

a case.

In the next section, we prove that our proposed mechanism is strategy-proof and that

its worst-case performance is well-bounded.

3.5 Properties of G-PMRM

In this section, we investigate the properties of G-PMRM. We first show that the mechanism

is individually rational (i.e., truthful users will never incur a loss).

Theorem 6. G-PMRM mechanism is individually rational.

Proof. We consider two cases. In case one, we consider a truthful user i who does not

win. Such user is not incurring a loss since she pays 0 (line 4 of Algorithm 10), and her

utility is 0. In case two, we consider user i as a winning user. We need to prove that if

user i reports her true request then her utility is non-negative. In line 18 of Algorithm 10,

the payment for user i is set to h, where h is initially set to b̂i as an upper bound. The

determined payment of user i is less than the initial value of h due to binary search. As

a result, G-PMRM-PAY always computes a payment Πi ≤ b̂i. The utility of user i (i.e.,

ui = b̂i−Πi ≥ 0) is non-negative if she report truthfully (i.e., b̂i = bi ), and she never incurs

a loss. This proves the individual-rationality of G-PMRM.

We now prove that the allocation on each PM (obtained in each iteration of the G-

PMRM-WIN algorithm) is loser-independent.

Theorem 7. The allocation obtained by each iteration of G-PMRM-WIN is loser-independent.

Proof. To prove the loser-independency property of each iteration of G-PMRM-WIN, we

need to analyze the results of two scenarios, a current declaration and a new declaration. In

the current declaration, user i submits a request β̂i, and G-PMRM-WIN on PM p finds V̂

and Ṽ as the social welfare obtained by the first and the second phase, respectively. In
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the new declaration, user i submits a request β̂′i � β̂i, and the rest of the users declare

the same request as they declared in their current declarations. G-PMRM-WIN on PM p

finds V̂ ′ and Ṽ ′ as the social welfare obtained in this scenario by the first and the second

phase, respectively.

In order to prove that the allocation obtained by each iteration of G-PMRM-WIN on

each machine p is loser-independent, we need to show that V̂ ′ ≥ V̂ and Ṽ ′ ≥ Ṽ . In addition,

if either V̂ ′ > V̂ or Ṽ ′ > Ṽ , then user i has been selected, and if the obtained social welfare

does not change, then either user i has been selected or the allocation of the users does not

change. We separate the proof into two cases as follows.

i) V̂ ′ ≥ V̂ , if one user increases her bid. If V̂ ′ > V̂ , then user i must be the user with

the maximum bid, and thus, user i is in the solution (i.e., x̂′i = 1). If V̂ ′ = V̂ , then the

allocation of the users does not change unless user i declares a bid b̂′i = V̂ , and she is

selected by the algorithm.

ii) Ṽ ′ ≥ Ṽ , we consider two subcases (a) and (b). In subcase (a), we consider that

the overall amount of resource requests is less than half of the capacities of a PM. Then

all users must be selected (i.e., x̃′i = 1, ∀i ∈ Ũ ′), where Ũ ⊆ Ũ ′ since user i may declare a

smaller bundle. As a result, Ṽ ′ ≥ Ṽ . In subcase (b), we consider that the overall amount of

resource requests is at least half of the capacities of a PM. Note that user i has a better bid

density by declaring β̂′i. If x̃′i = 0, then x̃i = 0. If Ṽ ′ = Ṽ and x̃′i = 0, then the allocation

would be the same. In addition, if Ṽ ′ > Ṽ , then x̃′i = 1.

This proves that the allocation obtained by each iteration of G-PMRM-WIN on each

machine p is loser-independent.

Theorem 8. G-PMRM-WIN is a monotone winner determination algorithm.

Proof. The allocation obtained by each iteration of G-PMRM-WIN on each machine p is

loser-independent with respect to the request of each user. If loser-independent algorithms

are employed as sub-procedures in a greedy iterative approach, then the overall winner

determination algorithm is monotone [86, 31]. Therefore, the overall allocation on all PMs

obtained by G-PMRM-WIN is monotone.
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Theorem 9. G-PMRM-PAY implements the critical payment.

Proof. We need to prove that Πi is the critical payment for user i,∀i ∈ N . We assume that

user i is selected by G-PMRM-WIN (i.e., xi = 1). If user i declares a higher value than Πi,

(i.e., b̂′i > Πi), she wins and pays the same amount Πi. This is due to the fact that if user i

was selected in phase one, then declaring a higher value makes her a winner. In addition,

if user i was selected in phase two, declaring a higher value increases her bid density, and

thus, user i becomes a winner. If user i declares a lower value than Πi, (i.e., b̂′i < Πi), this

leads to a lower bid density and a lower value. If user i was chosen based on either phase

one or two, a lower bid density and a lower value for the user makes user i a non-winning

user. These show that the payment Πi is the minimum valuation that user i must bid to

obtain her required bundle. This payment is between the reserve price and the declared

value of the user. The critical payment property holds considering the reserve prices. In

the case in which user i is not a winner, she pays 0, thus, satisfying the properties of the

critical payment. As a result, the payment determined by G-PMRM-PAY is the critical

payment.

We now show that our proposed mechanism, G-PMRM, is strategy-proof.

Theorem 10. G-PMRM mechanism is strategy-proof.

Proof. The winner determination is monotone (Theorem 3) and the payment is the critical

value payment (Theorem 4), therefore, according to [129], our proposed mechanism, G-

PMRM, is strategy-proof.

Theorem 11. The time complexity of G-PMRM is polynomial.

Proof. The time complexity of G-PMRM-WIN is O(PN(logN + MR)). This is because

sorting the requests requires O(N logN), while checking the feasibility of the allocation

for each user on each PM requires O(MR). The time complexity of G-PMRM-PAY is

polynomial for similar reasons. As a result, the time complexity of G-PMRM is polynomial.
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We now prove that in the case of only one PM (i.e., P = 1), G-PMRM-WIN is a

2-approximation algorithm.

Theorem 12. The approximation ratio of G-PMRM-WIN in the case of only one PM is 2.

Proof. Let X∗ be set of users in the optimal solution, and V ∗ be the optimal social welfare.

Let X and V be the set of users and the social welfare in the obtained solution by G-PMRM,

respectively. We need to prove that V ∗ ≤ V α, where α is the approximation ratio.

We consider two cases:

i) V is obtained by the second phase of the winner determination algorithm (i.e., V =

Ṽ ). If the amount of overall requests is less than half of the capacities of the physical

machine, then all such users must be selected (i.e., X∗ = X and V ∗ = V ). We now

consider that the amount of overall allocated requests is at least one half the resource

capacities of a physical machine.

In the optimal solution, for the remaining capacity of that resource, the social welfare

is less than V since the second phase is based on bid densities. Thus, the first half contains

the most valuable requests. Therefore, V > V ∗/2.

ii) V is obtained by the first phase of the winner determination algorithm (i.e., V = V̂ ).

That means V̂ ≥ Ṽ . In the optimal solution, the first half cannot have a better social

welfare and the second half cannot have a better social welfare than the first half. As a

result, V > V ∗/2.

Theorem 13. The approximation ratio of G-PMRM in the case of multiple PMs is 3.

Proof. To prove this theorem we use a result from [31], that states that if the winner

determination algorithm is α-approximation on a bin, then the overall approximation ratio

of the winner determination algorithm applied iteratively on multiple bins is α + 1. Since

we proved that the approximation ratio for G-PMRM-WIN on only one PM is 2, then

it follows from [31] that the overall approximation ratio of G-PMRM on multiple PMs

is 3.
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3.6 Experimental Results

We perform extensive experiments in order to investigate the performance of the proposed

mechanism G-PMRM against the performance of the optimal VCG-PMRM mechanism.

While it is desirable to compare G-PMRM with several other mechanisms, we found out

that the existing mechanisms and approaches are not directly comparable to ours and de-

cided to compare it with the optimal mechanism, VCG-PMRM. Therefore, we rely on the

optimal results obtained by VCG-PMRM as a benchmark for our experiments. For the

VCG-PMRM mechanism, we use the IBM ILOG CPLEX Optimization Studio Multiplat-

form Multilingual eAssembly to solve the PMRM problem optimally. The mechanisms are

implemented in C++ and the experiments are conducted on AMD 2.4GHz Dual Proc Dual

Core nodes with 16GB RAM which are part of the WSU Grid System. In this section, we

describe the experimental setup and analyze the experimental results.

3.6.1 Experimental Setup

The generated requests are based on realistic data combining publicly available information

provided by Amazon EC2 and Microsoft Azure as follows. We consider the same types of

VM instances available to users as those offered by Amazon EC2. Each of these VM

instances has specific resource demands with respect to two available resource types: cores

and memory. We also set the amount of each resource type provided by a VM instance to

be the same as in the specifications provided by Amazon Web Services for its Spot Instances

and Elastic Compute Cloud (EC2) (See Table 3.1). Users can request a bundle of VMs,

where for each VM type, they can request between 0 and 20 VM instances.

We generate bids based on Amazon Spot market report on users bidding strategies [2].

Amazon regularly updates its spot price history based on the past 90 days of activity.

Amazon reported that most users bid between the price of reserved instances and on-

demand prices. By doing so, these users saved between 50% and 66% compared to the

on demand prices. The lowest price of the reserved instances is for the Heavy Utilization

Reserved Instances which is $0.018 per hour for a medium VM instance of General Purpose
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Table 3.4: Simulation Parameters

Param. Description Value(s)
N Number of users [50-600]
M Number of VM instances 4 (M,L,XL,2XL)
R Number of resource types 2 (Core, Memory)
PM Number of PMs 100
C1 Core capacity 512 cores
C2 Memory capacity 1244.9 GB
wmr Amount of resource r provided

by a VM instance m
as in Table 3.1

kim Number of requested VM of
type m by user i

[0, 20]

b0i bid of user i for a medium VM [0.018, 0.34]

bi value of user i b0i
∑̇M

m=12m−1kim

- Current Generation. However, the trade-off is that the user’s requested bundles can be

reclaimed by a cloud provider if the spot price exceeds their submitted bid prices. Thus,

some users bid above on-demand prices and up to twice the on-demand prices in some

cases. To generate bids, we generate a random number, b0
i , for each user i from the range

[0.018, 0.34] for a medium VM instance, where the range is given by the lowest price for

the reserved Amazon EC2 medium instance and the on-demand price for the medium

instance. Then, we multiply the random number by the total weights of VMs in the user’s

requested bundle. The total weight of a VM instance for user i is
∑M

m=1 2m−1kim. For both

mechanisms G-PMRM and VCG-PMRM, we set the reserve prices of the VMs to the half

of the posted prices for the Heavy Utilization Reserved Instances. Such reservation prices

are reasonable considering the VM costs and a low profit margin. The parameters and

their values used in the experiments are listed in Table 3.4.

We setup the PM configurations based on the specification of the Titan system [9] at

Oak Ridge National Laboratory (No. 2 in Top500 [10]). Titan currently contains 299,008

CPU cores and 710 terabytes of memory. We consider 100 PMs available from Titan, where

each PM has 512 cores and 1244.9 gigabytes of memory.

3.6.2 Analysis of Results

We compare the performance of G-PMRM and VCG-PMRM for different numbers of users,

ranging from 50 to 600. For 500 and 600 users, the optimal mechanism, VCG-PMRM,
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Figure 3.2: G-PMRM vs. VCG-PMRM: Social welfare
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Figure 3.3: G-PMRM vs. VCG-PMRM: Execution time

could not find the solutions even after 24 hours. This is due to the fact that the problem

is strongly NP-hard, and it is infeasible to solve for large instances.

Fig. 3.2 shows the social welfare obtained by the mechanisms for 50 to 600 users. The

results show that G-PMRM obtains the optimal social welfare when user demand is low
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compared to the available capacity. For example, for 200 users, G-PMRM and VCG-

PMRM obtain the same social welfare of 1259.19. However, the results show that with

the increase of the user demand, optimality gap increases. For example, for 300 users, the

social welfare obtained by G-PMRM and VCG-PMRM is 1582.25 and 2056.26, respectively.

For the first five groups of users for which the optimal mechanism could find solutions, the

optimality gap is 23%. This gap is reasonable given the fact that the execution time of the

VCG-PMRM is very large as we show in the next figure.

Fig. 3.3 shows the execution times of the mechanisms on a logarithmic scale. The

execution time of VCG-PMRM is more than five orders of magnitude greater than that of

G-PMRM. G-PMRM is very fast being suitable for real cloud settings, where the number

of PMs and users are large. In addition, in auction-based mechanisms the response time

should be very small. For example, Amazon runs its Spot Market auction-based mechanism

every hour, and needs to find the winning users and their payments as soon as possible. In

particular, the optimal VCG-PMRM mechanism is not feasible when the problem scales.

VCG-PMRM was not able to determine the allocation for 500 and 600 users in feasible time,

and thus, there are no bars in the plots for those cases. The results of Fig. 3.2 and 3.3 show

that when the user demand is low, VCG-PMRM obtains the results in reasonable time.

However, the execution time of VCG-PMRM is prohibitive when the demand is high. On

the other hand, G-PMRM not only obtains the optimal results when the user demand is

low, but also it obtains reasonable solutions very fast when the demand is high.

Fig. 3.4 shows the revenue obtained by the cloud provider using both mechanisms.

The results show that G-PMRM and VCG-PMRM obtains the same revenue for the cloud

provider when user demand is low compared to the available capacity. However, when the

demand is high, G-PMRM obtains a higher revenue than VCG-PMRM. This is due to

the fact that VCG-PMRM fulfills more requests, which in turn, leads to accepting more

bids, and thus, reducing the price. Note that both mechanisms charge users bellow their

submitted bids.

Fig. 3.5 shows the percentage of used PMs for the mechanisms. With an increase in

the number of users, both mechanisms activate more PMs. For example for 100 users,
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Figure 3.5: G-PMRM vs. VCG-PMRM: Used PMs

G-PMRM powers on about 46 percent of all the PMs, while VCG-PMRM powers about 28

percent of all the PMs. By increasing the number of users, all PMs are activated by both

mechanisms. This can be seen for 400 users.

Fig. 3.6 shows the percentage of served users by the mechanisms. When the demand is
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Figure 3.7: G-PMRM vs. VCG-PMRM: Core utilization

low, all users are served by both mechanisms. However, by increasing in the demand, the

percentage of served users decreases. Note that a higher percentage of served users does

not necessarily result in a higher revenue.

Figs. 3.7 and 3.8 show the percentage of resource utilization for both mechanisms. The
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Figure 3.9: G-PMRM vs. VCG-PMRM: Social welfare over time.

percentage of core and memory utilization increases with the increase in the number of

users. This is due to the fact that with more demand, the cloud provider can better utilize

its resources.

We now analyze the performance of the mechanisms over an extended period of time
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Figure 3.10: G-PMRM vs. VCG-PMRM: Used PMs over time.

of 24 hours, where users dynamically arrive and submit their requests. We consider that

between 50 and 150 users arrive every hour and that each user requests resources for 1 to

4 hours. Fig. 3.9 shows the social welfare obtained by the mechanisms for each hour. The

results show that G-PMRM obtains the optimal social welfare in several cases. When the

number of users’ requests accumulates, G-PMRM cannot always find the optimal solution.

However, the optimality gap is small as guaranteed by the results of Theorem 8. Fig. 3.10

shows the percentage of PMs used in each hour. When the number of users’ requests

accumulates, both mechanisms use all the available PMs. However, with a decrease in the

number of requests, both mechanisms can turn off several PMs to reduce the energy costs.

We also perform experiments to investigate the effect of untruthful reporting on the

utility of the users. In these experiments, we consider the case with 300 users, and select

one of the winning users (i.e., User A) with true request of 15 VMs of type m3.2xlarge

and true valuation of 35.14. We consider User A’s declarations that are different from her

true request as shown in Table 3.5, where Case I represents User A true request. Fig. 3.11

shows the payment and the utility of User A for all these cases.

In case II, User A submits a request with a higher bid and G-PMRM selects User A as
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Table 3.5: Different scenarios for User A’s request declaration

Case ρ̂A b̂A Scenario

I < 0, 0, 0, 15 > $35.14 ρ̂A = ρA, b̂A = bA
II < 0, 0, 0, 15 > $50 ρ̂A = ρA, b̂A > bA
III < 0, 0, 0, 15 > $25 ρ̂A = ρA, b̂A < bA
IV < 0, 0, 0, 15 > $10 ρ̂A = ρA, b̂A < bA
V < 0, 0, 0, 20 > $35.14 ρ̂A > ρA, b̂A = bA
VI < 0, 0, 0, 100 > $35.14 ρ̂A > ρA, b̂A = bA
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Figure 3.11: G-PMRM: Effect of untruthful declarations on the user.

a winner determining the same payment for her as in case I. In case III, User A submits

a request with a lower bid, where the bid is not less than her payment determined by

G-PMRM. In this case also, the user is selected as a winner, and her payment remains the

same. In case IV, User A reports a lower bid than her bid in case I (the true valuation).

G-PMRM does not select the user as a winner leading to zero utility for her. Therefore,

User A did not increase her utility by this untruthful reporting. If User A requests a larger

bundle as shown in case V, she obtains the bundle due to available capacities. However,

her payment increases while her utility decreases due to requesting more VMs. If User A

requests a larger bundle as in case VI, G-PMRM does not select the user as a winner leading

to zero utility for her. These cases show that if any user submits an untruthful request,

she can not increase her utility, that is the mechanism is strategy-proof.
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From all the above results we can conclude that G-PMRM decides the allocation much

faster than VCG-PMRM, achieves a social welfare close to the optimal, and obtains a

higher revenue than VCG-PMRM. The performance of G-PMRM scales very well with the

number of users.

3.7 Conclusion

We proposed optimal and approximate strategy-proof mechanisms for resource management

in clouds in the presence of multiple PMs and multiple types of resources that give incentives

to the users to reveal their true valuations for the requested bundles of VM instances.

Therefore, our mechanisms do not put the burden on users to compute complex strategies

of how to best interact with the mechanisms. We investigated the properties of our proposed

mechanisms by performing extensive experiments. The results showed that the performance

of our proposed approximation mechanism scales very well with the number of users.
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CHAPTER 4: AN ONLINE MECHANISM FOR RESOURCE
ALLOCATION AND PRICING

4.1 Introduction

Cloud computing is gaining more market share in the IT industry by adding flexibility on

resources acquisition, enabling individuals and enterprises to pay only for the resources and

services they use. Cloud providers offer their services based on the pay-as-you-go model,

enabling the reduction of enterprises’ capital and operational costs. One of the major

problems in offering such services is designing efficient mechanisms for Virtual Machine

(VM) provisioning, allocation, and pricing. Such mechanisms should consider the economic

incentives of both cloud users and cloud providers in finding the market equilibrium [24].

Current cloud providers such as Amazon EC2 and Microsoft Azure employ fixed-price and

auction-based mechanisms in order to provision resources in the form of VM instances

and sell them to the users. The auction-based mechanisms complement the fixed-price

models, potentially providing the most cost-effective option for obtaining cloud resources.

Obtaining the VMs in an auction market can significantly lower users’ computing costs

for their jobs [1]. The auction-based mechanisms provide incentives to the users to adjust

consumption patterns according to availability, price, and other factors. Existing resource

allocation and pricing mechanisms are offline, and thus, they need to collect the information

about all users’ requests and then decide the allocation of VM instances to users and the

prices they need to pay. However, cloud users request VM instances over time, thus,

creating an online setting for the provisioning, allocation, and pricing problem. Therefore,

cloud providers need to design online mechanisms suitable for such settings in order to

provide faster services and to efficiently allocate and price their resources.

One of the challenges in designing online mechanisms is dynamic pricing. A price

determination function should consider the incentives of both cloud providers and users.

In doing so, it should increase revenue, facilitate healthy competition among users, and

increase the efficiency of resource usage. A cloud provider may increase the price to generate



77

more profit. However, in a competitive environment, if the increase in the price is too high,

the cloud provider may lose its potential users leading to a profit loss. On the other hand, if

the cloud provider sets the price too low, it may become overwhelmed by high demand from

users. Since the available capacity is limited, the cloud provider can serve a limited number

of users with low price, leading to loss in both profit and reputation. The challenge is how

the cloud provider should determine the price to maximize its profit in such competitive

markets. Mechanism design considers the incentives of the participants when deciding the

allocation and payment. In doing so, the price determination function should determine

the payments of the users based on the value the users derive from the services [22]. A

fundamental problem with significant economic implications is how the cloud should price

its heterogeneous resources at different times under dynamic demand such that its overall

profit is maximized.

We consider an online market with multiple self-interested users who are competing for

cloud resources. In online settings, all users arrive and depart dynamically requiring making

decisions without having information about the future. Each user name her own price for

a bundle of VM instances, and specifies the amount of time the bundle must be allocated

and a deadline. Each user has private information about her requested bundle, and this

information is not necessarily reflected in her submitted request. This is due to the fact that

the users are self-interested, and they may manipulate the system in order to maximize

their utility. A key property of our proposed mechanism, called incentive-compatibility,

is to give incentives to users to reveal their actual requests including the price, the VM

bundle, the length of time of using the requested VM bundle, and the deadline for their

requested bundles. The objective of the mechanism is to allocate cloud resources to the

users who value them the most. The mechanism also calculates the price that each user

must pay to the cloud provider. The allocation and pricing mechanisms used by the current

cloud computing providers do not require the users to explicitly specify a length of time

for using a VM at the time of submitting their requests. These cloud providers charge the

users a fixed price per hour for each VM instance used. Our proposed mechanism provides

more flexibility allowing the users to specify the length of time for which they would like
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to acquire the bundle of VMs and a deadline. We believe that our setting provides more

opportunities to providers, to optimize their operating costs and to increase their profits, as

well as to users, who will be able to better express their requirements in order to maximize

their utilities.

In this chapter, we design an online mechanism for the VM allocation and pricing

problem in clouds in the presence of multiple types of resources (e.g., cores, memory,

storage, etc.). Our proposed mechanism is online and thus, makes no assumptions about

future demand and supply of VMs, which is the case in real cloud settings. Our proposed

online mechanism calculates the allocation and payment as users arrive at the system and

place their requests. Our proposed mechanism demonstrates the benefits of quick response,

revenue maximization, and incentive compatibility which are critical when providing online

cloud services.

4.1.1 Our Contribution

We address the problem of online VM provisioning, allocation, and pricing in clouds in

the presence of multiple types of resources. We design an offline incentive-compatible

mechanism and an online incentive-compatible mechanism for VM allocation and pricing

that give incentives to the users to reveal their actual true requests. Our proposed offline

mechanism is optimal given that the information on all the future requests is known a

priori. However, our proposed online mechanism makes no assumptions about the future

demand for VMs, which is the case in real cloud settings. Our proposed online mechanism

is invoked as soon as a user places a request or some allocated resources are released and

become available. The mechanism not only provisions and allocates resources dynamically,

but also determines the users’ payments such that the incentive-compatibility property is

guaranteed. We compare the performance of the optimal mechanism with that of online

mechanism. The proposed online mechanism provides very fast solutions making it suitable

for execution in real-time settings. We perform extensive experiments showing that the

proposed online mechanism is able to find near optimal solutions.
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4.1.2 Related Work

Mechanism design [128] is a sub-field of game theory aiming at reaching systems’ equilibria

having desired properties such as high revenue [128]. There is a rich body of work on

mechanism design considering static systems in which all participants are present and a

one-time decision is made to find a solution [37, 41, 57]. Such systems are considered in

an offline setting, whereas in online mechanism design, all participants arrive and depart

dynamically, requiring making decisions without having information about the future. The

problem of online mechanism design was introduced by Friedman and Parkes [44]. They

proposed strategy-proof online mechanisms, where truthful revelation of a user’s valuation

is a dominant strategy equilibrium. For an introduction to online mechanism design, the

reader is referred to Parkes [139]. Several online variants of Vickrey-Clarke-Groves (VCG)

mechanisms were proposed by Gershkov and Moldovanu [46] and by Parkes and Singh [140].

These mechanisms focus on Bayesian-Nash incentive compatibility. However, these studies

rely on a model of future availability, as well as future supply. Hajiaghayi et al. [55] designed

online mechanisms for auctioning identical items, where users have three parameters as

private information: value, arrival time, and departure time. However, they assumed

that the number of users is known in advance. Hajiaghayi et al. [54] investigated online

mechanisms for re-usable items in which items can be allocated to different users at different

time slots. They mainly focused on unit-length requests. Porter [144] studied the problem

of online scheduling of a re-usable resource in model-free setting, and characterized the

monotonicity properties.

Researchers approached the problem of resource provisioning and allocation in clouds

from different points of view [68, 77, 174, 186]. Jangjaimon and Tzeng [68] designed an

enhanced adaptive incremental checkpointing mechanism for multithreaded applications on

resource-as-a-service clouds under spot instance pricing. The objective of their approach

is to reduce the expected job turn-around time and the cost. Kuo et al. [77] proposed

a 3-approximation algorithm for the VM placement problem to minimize the maximum

access latency. Xiao et al. [184] studied the automatic scaling problem in clouds. They
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proposed a color set algorithm to decide the application placement and load distribution.

Their proposed algorithm is invoked periodically, and it reduces the number of instances

in order to save energy. Lee and Zomaya [81] proposed two energy-conscious task consol-

idation heuristics for clouds with the goal of maximizing resource utilization considering

both active and idle energy consumption. Papagianni et al. [137] tackled the problem of

providing a unified resource allocation framework for networked clouds with the goal of

minimizing the cost of resource mapping procedures. Ghazar and Samaan [47] proposed

a pricing mechanism for virtual network services to regulate the demand for their shared

substrate network resources. Guazzone et al. [52] proposed a framework for dynamic man-

agement of computing resources in order to achieve suitable QoS levels and to reduce the

amount of energy consumption for providing services. HoseinyFarahabady et al. [60] stud-

ied the problem of task assignment on hybrid-clouds. They proposed two approximation

methods for two different cases of known and unknown running time of available tasks.

More specifically, they designed a fully polynomial-time randomized approximation scheme

based on a Monte Carlo sampling method for the case of unknown running time. Leslie et

al. [83] proposed a framework for resource allocation and job scheduling of VMs aiming to

cost efficiently execute deadline-constrained jobs. Their proposed framework ensures qual-

ity of service in terms of cost, deadline compliance and service reliability. Cao et al. [25]

proposed a pricing model to maximize profit considering different factors of a cloud such as

the amount of services, the workload of an application, the cost of renting, and the cost of

energy consumption. In addition, they proposed a queuing model in order to find optimal

configuration of a multiserver system. All of these prior works assume that the information

is publicly known, and none of them considers a competitive setting, in which the requests

characteristics are private to the users.

Recently, the concepts of game theory and mechanism design have been employed in

the design of cloud resource management mechanisms [42, 179, 196]. Feng et al. [42] pro-

posed a game theoretic approach considering multiple competing cloud providers. They

proposed iterative price determination algorithms for cloud providers to maximize their

profits when offering IaaS (Infrastructure as a Service). Zhang et al. [196] proposed a ran-
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domized mechanism for VM allocation in clouds in an auction market. Their proposed

mechanism is truthful in expectation and is based on a pair of primal and dual LPs (Linear

Programs). It considers a different settings than ours in which the the requests from the

users do not specify the duration of the time the VM bundle is requested, the arrival time,

and the deadline; it only specifies the bundle of VM and its valuation. Prasad et al. [145]

proposed a cloud resource procurement approach which not only automates the selection

of cloud providers but also implements dynamic pricing. They proposed a strategy-proof

mechanism based on VCG, a Bayesian mechanism, and an optimal mechanism for resource

procurement where a user performs a reverse auction for procuring resources from cloud

providers. Wang et al. [175] proposed a generalized dominant resource fairness mechanism

for the multi-resource allocation problem, where there are multiple heterogeneous servers.

Their proposed mechanism improves the resource utilization leading to shorter job comple-

tion times. In our previous studies, we proposed truthful mechanisms for VM allocation

in clouds in periodic-time (offline) settings [96, 101, 124]. However, none of these studies

consider online settings.

Online resource management in clouds has recently attracted a great deal of attention.

Hua et al. [62] proposed a scalable distributed scheme in cloud data centers considering the

network architecture design and data placement. Their proposed network scheme leverages

the off-line precomputation to improve online cloud services. Zhang et al. [197] proposed

a bandwidth cost minimization approach for uploading deferral big data to a cloud or a

federation of clouds. In doing so, they designed a heuristic smoothing algorithm and an

efficient distributed randomized online algorithm. Abbasi et al. [12] proposed an online

algorithm to minimize operational cost of a set of geo-distributed data centers. Song

et al. [161] proposed an online bin packing approach that uses virtualization technology

to allocate cloud resources dynamically based on application demands. Their proposed

approach supports green computing by optimizing the number of servers used. Zhao et

al. [199] proposed an online algorithm for dynamic VM pricing across data-centers in a

geo-distributed cloud in order to maximize the overall profit. Zhang et al. [195] proposed an

online auction mechanism for resource allocation in clouds in the presence of only one type
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of resources. They assumed that job lengths and bids are within known intervals. Zaman

and Grosu [192] proposed a truthful online mechanism for provisioning and allocation of

VM instances in clouds. However, their mechanism assumes that the cloud provider offers

only one type of resources, computational resources. The current work is different from the

two above-mentioned studies since it considers the existence of several resource types, being

more suitable for use in real cloud settings. Note that considering one resource makes the

problem NP-hard, while in our study, we tackle a much more challenging problem which

is strongly NP-hard. Therefore, satisfying incentive-compatibility in our settings brings

about more challenges. In addition, unlike the above-mentioned studies we do not consider

any assumptions on the bids and their distributions, and thus, creating a general framework

for the online setting.

4.1.3 Organization

The rest of the chapter is organized as follows. In Section 4.2, we describe the online VM

allocation and pricing problem in clouds. In Section 4.3, we introduce the basic concepts

of mechanism design, and present our proposed offline optimal mechanism. In Section 4.4,

we present the proposed online mechanism, and characterize its properties. In Section 4.5,

we evaluate the mechanisms by extensive experiments. In Section 4.6, we summarize our

results.

4.2 VM Allocation and Pricing Problem

In this section, we model the online VM allocation and pricing (OVMAP) problem in

the presence of multiple types of resources. A cloud provider offers R different types

of resources, R = {1, . . . , R}, such as cores, memory, storage, etc. These resources are

provisioned in the form of M types of VM instances VM = {1, . . . ,M} and then offered

to the users. Each VM instance of type m ∈ VM has a specific amount of each type

of resource r ∈ R, denoted by wmr. The capacity Cr for each resource r ∈ R available

for allocation is limited. In Table 4.1, we show the four types of VM instances offered by
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Table 4.1: VM instance types offered by Amazon EC2.

Small Medium Large Extralarge
m = 1 m = 2 m = 3 m = 4

CPU 1 2 4 8
Memory (GB) 1.7 3.75 7.5 15
Storage (GB) 160 410 850 1690

Amazon EC2 US West (Northern California) Region. If we consider that CPU represents

the type 1 resource, memory, the type 2 resource, and storage, the type 3 resource, we can

characterize, for example, the Medium instance (m = 2) by: w21 = 2, w22 = 3.75 GB, and

w23 = 410 GB.

A set U of N users are requesting a set of VM instances for a certain amount of

time in order to execute their jobs on the cloud. User i, i ∈ U , requests a bundle Si =

〈ki1, ki2, . . . , kiM〉 of M types of VM instances, where kim is the number of requested VM

instances of type m ∈ VM. In addition, she specifies a bid bi for her requested bundle Si.

User i’s request is denoted by θi = (Si, ai, li, di, bi), where ai is the arrival time of her

request, li is the amount of time for which the requested bundle must be allocated, and di is

the deadline for her job completion. For example, request (〈4, 3, 1, 2〉, 2, 1, 7, $15) represents

a user requesting 4 Small VM instances, 3 Medium VM instances, 1 Large VM instance,

and 2 Extra large VM instances; the request arrives at time 2, needs 1 unit of time to

execute, expires at time 7, and her bid is $15. We denote by σir =
∑

m∈VM kimwmr, the

total amount of each resource of type r that user i has requested.

We define δi = di − li as the time by which Si must be allocated to user i in order

for her job to complete its execution. If the cloud provider allocates a requested bundle,

the request is never preempted. User i values her requested bundle Si at bi, which is the

maximum price a user is willing to pay for using the requested bundle if it is allocated

within time window [ai, δi]. The users are assumed to be single-minded. That means,

user i desires only Si and derives a value of bi if she gets Si, or any superset of it, for the

specified time before its deadline, and zero value, otherwise.

The standard objective of mechanism design is to maximize welfare [129], which can

help a cloud provider increase its revenue. This is due to the fact that the mechanism
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allocates the VMs to the users who value them the most. The welfare, V , is the sum of

users’ valuations, V =
∑

i∈U bi ·xi, where xi, i ∈ U , are decision variables defined as follows:

xi = 1, if bundle Si is allocated to user i within time window [ai, δi]; and xi = 0, otherwise.

Our goal is to design an online incentive-compatible mechanism maximizing V , that is, a

mechanism that solves OVMAP.

We also define the offline version of OVMAP, called VMAP, which considers that the

information on all the future requests is known a priori. In order to formulate VMAP as

an integer program we define the decision variables over time t ∈ T as follows:

Xit =

1 if Si is allocated to i at t,

0 otherwise.

(4.1)

In addition, we define indicator parameters as follows:

yit =

1 if ai ≤ t ≤ δi,

0 otherwise.

(4.2)

The feasibility of the allocation to user i is indicated by yit. This indicator parameter

ensures that the allocation of the requested bundle is within time window [ai, δi].

We formulate the problem of offline VM allocation and pricing (VMAP) as an Integer
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Program (called VMAP-IP) as follows:

Maximize
∑
i∈U

∑
t∈T

bi · yit ·Xit (4.3)

Subject to:∑
t∈T

Xit ≤ 1, ∀i ∈ U (4.4)

∑
i∈U

t∑
ω=t−li+1

∑
m∈VM

kimwmryiωXiω ≤ Cr,

∀r ∈ R, ∀t ∈ T (4.5)

Xit = {0, 1},∀i ∈ U , ∀t ∈ T (4.6)

yit = {0, 1},∀i ∈ U , ∀t ∈ T (4.7)

The objective function is to maximize welfare V , where xi =
∑

t∈T yit·Xit. Constraints (4.4)

ensure that the request of each user is fulfilled at most once. Constraints (4.5) guarantee

that the allocation of each resource type does not exceed the available capacity of that

resource for any given time. Constraints (4.6) and (4.7) represent the integrality require-

ments for the decision variables and indicator parameters. These constraints force the

cloud provider to provision the whole bundle of VM instances and to allocate bundles to

the selected users. The VMAP problem is strongly NP-hard by a simple reduction from

the multidimensional knapsack problem [71]. Note that VMAP-IP assumes that the infor-

mation about all users’ requests is available at the time of solving it. As a result, if solved,

VMAP-IP finds the optimal allocation of cloud resources in an offline setting. However, in

an online setting, we do not have the information about future requests (such as arrivals),

and thus, we have to rely on online mechanisms that solve the OVMAP problem. Our

goal is to design such an online incentive-compatible mechanism that solve the OVMAP

problem.
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4.3 Mechanism Design Framework

In this section, we first present the basic concepts of mechanism design and then propose

an offline optimal mechanism.

4.3.1 Preliminaries of Mechanism Design

In general, a deterministic mechanismM, is defined as a tuple (A,P), whereA = (A1, . . . ,AN)

is the allocation function that determines which users receive their requested bundles, and

P = (P1, . . . ,PN) is the payment rule that determines the amount that each user must

pay for the allocated bundles. In our model, each user i ∈ U is characterized by her actual

request denoted by θi. Each user’s request is private knowledge. The users may submit

different requests from their actual (true) requests. We denote by θ̂i = (Ŝi, âi, l̂i, d̂i, b̂i)

user i’s submitted request. Note that θi = (Si, ai, li, di, bi) is user i’s actual request. The

valuation function vi(θ̂i) of user i is defined as follows:

vi(θ̂i) =


bi if Ŝi is allocated by A

∧(Si ⊆ Ŝi) ∧ (ti ≤ δi)

0 otherwise

(4.8)

where ti is the time at which Ŝi has been allocated to user i. The goal is to design incentive-

compatible mechanisms that maximize the welfare V , where V =
∑

i∈U vi(θ̂i) · xi.

We denote by θ̂ = (θ̂1, . . . , θ̂N) the vector of requests of all users. In addition, θ̂−i is the

vector of all requests except user i’s request (i.e., θ̂−i = (θ̂1, . . . , θ̂i−1, θ̂i+1, . . . , θ̂N)). The

utility function of user i is quasi-linear, and thus, it is defined as the difference between her

valuation and payment, ui(θ̂i, θ̂−i) = vi(θ̂i) − Pi(θ̂i, θ̂−i), where Pi(θ̂i, θ̂−i) is the payment

for user i calculated by the mechanism using the payment rule P .

Definition 16 (Individual rationality). A mechanism is individually-rational if for every

user i reporting her actual request θi we have ui(θi, θ̂−i) ≥ 0, for all other users requests

θ̂−i.
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In other words, a mechanism is individually-rational if a truthful user can always achieve

as much utility from participation as without participation. Therefore, users reporting

truthfully their requests will never incur losses (i.e., negative utility) by participating in

the mechanism. However, such mechanisms do not give incentives to users to report their

requests truthfully. The goal of a self-interested user is to maximize her utility, and she

may manipulate the mechanism by lying about her actual request. In our case, the request

of a user consists of a bundle, an arrival time, an amount of time for which the requested

bundle must be allocated, a deadline, and a value. As a result, a user can lie about any

of these parameters in the hope to increase her utility. These manipulations may reduce

the revenue of the cloud provider. Our goal is to prevent such manipulations by designing

incentive-compatible mechanisms for solving OVMAP. A mechanism is incentive-compatible

if all users have incentives to reveal their actual requests.

Definition 17 (Incentive compatibility). A mechanism M is incentive-compatible (or

truthful) if for every user i, for every submitted requests of the other users θ̂−i, an actual

request θi and any other submitted request θ̂i of user i, we have that ui(θi, θ̂−i) ≥ ui(θ̂i, θ̂−i).

In an incentive-compatible mechanism, truthful reporting is a dominant strategy for

the users. In other words, it is in the users best interest to submit their actual request

irrespective of other users requests. To design an incentive-compatible mechanism, we need

to design a monotone allocation function A, while the payment rule must be based on the

critical payment [118].

For our model, we define monotonicity in terms of the following preference relation �

on the set of requests: θ̂′i � θ̂i if Ŝi � Ŝ ′i, â
′
i ≤ âi, l̂

′
i ≤ l̂i, d̂

′
i ≥ d̂i, and b̂′i ≥ b̂i for user i.

Moreover, Ŝ ′i � Ŝi if σ′ir ≤ σir, ∀r ∈ R. That means the request θ̂′i is more preferred than θ̂i

if user i requests a smaller bundle, submits an earlier request, the bundle for a shorter time

period, a later deadline, and submits a higher value. In our setting, users cannot report an

earlier arrival (i.e., âi ≤ ai), a shorter length (i.e., l̂i ≤ li), or a later deadline (i.e., d̂i ≥ di)

than their true arrival time, true length, and true deadline. There is no reason for a user

to submit her request earlier than when her job is ready for execution. Declaring a shorter
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length does not allow the completion of the job. Reporting a later deadline may result in

getting her bundle too late to complete her job on time.

Definition 18 (Monotonicity). If a monotone allocation function A allocates the resources

to user i with θ̂i, then it also allocates the resources to that user with θ̂′i, where θ̂′i � θ̂i.

In other words, A is monotone if any winning user who receives her requested bundle

by declaring a request θ̂i is still wining if she submits a more preferred request.

In addition to a monotone allocation function A, any incentive-compatible mechanism

M has a payment rule P . To avoid manipulations and satisfy incentive-compatibility, the

payment Pi of any user i, must be independent of her request [129]. In this setting, a

payment rule that satisfies the critical payment property along with a monotone allocation

function are sufficient conditions to obtain an incentive-compatible mechanism [129]. In

the following, we describe the critical payment property.

Definition 19 (Critical payment). If A is monotone, for every θi, there exist a unique value

bci , called critical payment, such that ∀θ̂i � (Si, ai, li, di, b
c
i), θ̂i is a winning declaration, and

∀θ̂i ≺ (Si, ai, li, di, b
c
i), θ̂i is a losing declaration.

For given requests θ̂−i and allocation function A, θ̂i is a winning declaration if i ∈

A(θ̂i, θ̂−i) (i.e., xi = 1); otherwise we say that θ̂i is a losing declaration.

We define the payment rule P based on the critical payment as follows. Pi(θ̂) = bci , if

user i is a winning user, and Pi(θ̂) = 0, otherwise. A winning user is a user who is selected

by the allocation function to receive her request (i.e., xi = 1). We denote by bci , the critical

payment of user i.

In the next subsection, we incorporate our proposed VMAP-IP in the design of a

Vickrey-Clarke-Groves (VCG)-based optimal mechanism which computes the allocation

and payment offline.

4.3.2 Incentive-Compatible Offline Optimal Mechanism

In this section, we present a VCG-based optimal mechanism that solves VMAP, the offline

version of OVMAP problem. Since the setting is offline, our proposed mechanism has all
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Algorithm 11 Optimal Offline Mechanism: VCG-VMAP (C)

1: for all i ∈ U do
2: Collect user request θ̂i = (Ŝi, âi, l̂i, d̂i, b̂i)
3: θ̂ = (θ̂1, . . . , θ̂N )
4: (V ∗, x∗) = Solution of IP-VMAP(θ̂)
5: Provisions and allocates VM instances based on x∗.
6: for all i ∈ U do
7: (V ′∗, x′∗) = Solution of IP-VMAP(θ̂−i)

8: Pi =
∑

j∈U ,j 6=i
b̂j(x

′∗
j − x∗j )

9: Output: V ∗; x∗; P

the information about the users such as their arrival, deadline, requested time, requested

bundle, etc, and thus, it finds the optimal solution. Any VCG-based mechanism [129]

requires an optimal allocation algorithm implementing the allocation function A. A VCG

mechanism is defined as follows. A mechanism is a Vickrey-Clarke-Groves (VCG) mecha-

nism if the allocation function A maximizes V , and the payment function P is defined as

follows:

Pi(θ̂i, θ̂−i) =
∑

j∈A(θ̂−i)

vj(θ̂j)−
∑

j∈A(θ̂),j 6=i

vj(θ̂j),∀i ∈ U , (4.9)

where
∑

j∈A(θ̂−i)
vj(θ̂j) is the optimal welfare that would have been obtained had user i not

participated, and
∑

j∈A(θ̂),j 6=i vj(θ̂j) is the aggregated users’ valuations except user i’s.

We design a VCG-based mechanism, called VCG-VMAP, that solves the VMAP prob-

lem, by incorporating our proposed VMAP-IP and its optimal solution along with the

above-mentioned VCG payment rule. The optimal offline VCG-VMAP mechanism is

shown in Algorithm 11. The mechanism has as input the vector of resource capacities

C = (C1, . . . , CR). VCG-VMAP collects all the requests (lines 1-3), and when it has all

the information about the requests, it determines the optimal allocation of resources to

users by solving the IP-VMAP given in Equations (4.3) to (4.7) (line 4). Then, the mecha-

nism provisions the resources in the form of VM instances based on the requested number

and types of VM instances of winning users (line 7). Finally, the mechanism determines

the payment of each user (lines 6-8). In doing so, VCG-VMAP finds the allocation and

welfare obtained without each user’s participation (line 7). Then, the mechanism charges
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each user based on the welfare obtained with and without her participation (line 8). The

mechanism returns three parameters: V ∗, the optimal welfare, x∗ = (x∗1, x
∗
2, . . . , x

∗
N), the

optimal allocation of VM instances to the users, and P = (P1,P2, . . . ,PN) their payments.

Because VCG-VMAP is designed with an optimal allocation function and uses the VCG

payment rule, it is incentive-compatible [129]. However, VMAP is strongly NP-hard, and

thus, the execution time of VCG-VMAP becomes prohibitive for large instances of VMAP.

In addition, VCG-VMAP computes the allocation and payment offline since it has all the

information about future demands. However, in a real settings this information is not

available to the cloud providers and requires designing online mechanisms. In Section 4.4,

we introduce our proposed online mechanism.

4.4 Online Mechanism for VM Allocation and Pricing

Our goal is to design an incentive-compatible greedy mechanism that solves the OVMAP

problem in online settings.

The VM instances have R dimensions, where the R dimensions correspond to the R

types of resources. Since the cloud provider provisions resources in the form of VM in-

stances, any bundle of VMs can be seen as one R-dimensional item. Without loss of

generality, we consider that the smallest item in the R-dimensional space contains one unit

of each resources. This assumption does not restrict our proposed model since the resource

capacities can be normalized to their units. As a result, the total volume of available items

to allocate to the users is
∏

r∈RCr. In this section, we present an incentive-compatible

online mechanism for the OVMAP problem, called OVMAP.

4.4.1 OVMAP Mechanism

The OVMAP mechanism is given in Algorithm 12. OVMAP is an event handler, that

is, it is invoked when a new user request arrives or some allocated VM instances become

available. OVMAP takes as input an Event, the current allocation set A, and the payment

set P . An Event is either a release of resources or an arrival of a user request. In lines 1
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Algorithm 12 OVMAP Mechanism (Event, A,P)

1: t← Current time
2: Qt ← {θ̂i|i ∈ U , i has not been allocated}
3: Q̃t ← {θ̂i|i ∈ U , (i has been allocated) ∧

(its job has not finished yet)}
4: for all i ∈ U do
5: for all r ∈ R do
6: σir =

∑
m∈VM kimwmr

7: for all r ∈ R do
8: Ctr ← Cr −

∑
i|θ̂i∈Q̃t σir

9: Ct ← (Ct1, . . . , C
t
R); vector of resource capacities at time t

10: if Qt = ∅ or Ct = 0 then
11: return
12: At ← OVMAP-ALLOC(t,Qt, Ct)
13: A ← A∪At
14: P ← P ∪ {b̂i|(θ̂i, t) ∈ At}
15: P ← OVMAP-PAY(t,Qt,A,P, Ct)
16: return A,P

to 8, OVMAP sets the current time to t and initializes four variables as follows:

Qt: the set of requests of the users that have not been allocated. Formally,

Qt ← {θ̂i|i ∈ U , t ≤ δ̂i ∧ @ti < t : (θ̂i, ti) ∈ A};

Q̃t: the set of requests of the users that have been allocated and their jobs have not

finished yet. Formally,

Q̃t ← {θ̂i|i ∈ U ∧ ∃ti < t : (θ̂i, ti) ∈ A ∧ ti + l̂i > t};

σir: the amount of each resource of type r requested by user i; and,

Ct
r: the available capacity of the resource r at time t.

The mechanism stores the resource capacities at time t as a vector Ct (line 9). Then, it

proceeds only if resources and requests are available. OVMAP determines the allocation

by calling OVMAP-ALLOC. The allocation function OVMAP-ALLOC returns At, the set

of users who would receive their requested bundles at time t (line 12). The mechanism

then updates the overall allocation set A using the newly determined set At. Then, the

mechanism determines the payment of users. The payment of users in At are inserted into
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Algorithm 13 OVMAP-ALLOC(t,Qt, Ct)
1: At ← ∅
2: for all i|θ̂i ∈ Qt do

3: fi = b̂i
l̂i·

∏
r∈R σir

4: Sort all θ̂i ∈ Qt in non-increasing order of fi
5: for all θ̂i ∈ Qt in non-increasing order of fi do
6: Ĉ = Ct
7: flag ← TRUE

8: for all r ∈ R do
9: Ĉr = Ĉr − σir

10: if Ĉr < 0 then
11: flag ← FALSE

12: break;
13: if flag then
14: Ct = Ĉ
15: At ← At ∪ (θ̂i, t)
16: Output: At

the payment set with Pi = b̂i as their initial payment (line 14). The payment function

OVMAP-PAY returns updated set P containing the payment of users at time t (line 15).

The payment of user i is going to be updated several times until t = δi, i.e., until the time

instance the user must obtain the requested bundle. OVMAP-PAY calculates the payments

for these users and updates the payment set P .

4.4.2 Allocation algorithm of OVMAP

The allocation algorithm OVMAP-ALLOC is given in Algorithm 13. We define a metric

called the bid density. OVMAP-ALLOC algorithm allocates the VM instances to users in

decreasing order of their bid densities. OVMAP-ALLOC considers the setting in which a

set U of N users are requesting a heterogeneous set of VM instances for any length of time

in order to execute their applications/jobs on the cloud. It also considers a continuous-time

model such that t ∈ [0, T ]. Note that the request time length for any user i is l̂i ≥ 1. The

bid density is defined as follows:

fi =
b̂i

l̂i ·
∏

r∈R σir
(4.10)
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The bid of user i for a bundle of VM instances for time l̂i can be interpreted as requesting

a hyper-rectangle with volume l̂i ·
∏

r∈R σir in the (R + 1)-dimensional space defined by

the R resource types and the time. User i values this volume at b̂i, if allocated. Hence, fi

represents how much user i values one unit of volume from the (R+ 1)-dimensional space.

OVMAP-ALLOC sorts all requests in non-increasing order of bid densities, fi (line 4).

Then the algorithm allocates bundles requested by the sorted users in Qt while resources

last (lines 5-15). OVMAP-ALLOC checks if it can fulfill the request of user i (lines 8-

12). If there are not enough resources, user i will not be selected, and her request will be

rejected after the current time passes δi (by removing user i from Qt). If there are enough

resources, user i will be allocated (line 15) and the amount of available resources will be

updated (line 14).

The mechanism uses the non-increasing order of bid densities for allocation because

the cloud provider is interested in users who want to pay more per unit of their resources

per unit of time. OVMAP-ALLOC tries to maximize the sum of the reported values of

the users who get their requested bundles. Finally, OVMAP-ALLOC returns the set At of

users who are selected for allocation at time t.

4.4.3 Payment function of OVMAP

The payment function OVMAP-PAY is given in Algorithm 14. This function calculates

the critical payment of each user i if her requested bundle is allocated at t. The critical

payment of user i is the minimum value that she must report to get her requested bundle

at time t. OVMAP-PAY determines the set W of requests of users who are allocated

and still feasible for allocation at t (line 1). Then, it determines the set Q̂ of requests

of users who are allocated or not allocated at t (line 2). OVMAP-PAY calculates fi for

all users in Q̂ (lines 3-4). Then, OVMAP-PAY determines the payment for all users that

have been allocated at time t (lines 5-17). The payment of user i is calculated based on

the critical value payment. To determine the critical payment, we eliminate user i from

the system, add back to Cr the resources allocated to user i, and identify a losing user

that becomes a winner because of user i elimination. The value reported by this losing
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Algorithm 14 OVMAP-PAY(t,Qt,A,P, Ct)

1: W = {θ̂i|∃t′ ≤ t : (θ̂i, t
′) ∈ A ∧ t ≤ δ̂i}

2: Q̂ = Qt ∪W
3: for all i|θ̂i ∈ Q̂ do

4: fi = b̂i
l̂i·

∏
r∈R σir

5: for all θ̂i ∈ W in non-increasing order of fi do
6: Ĉ ← Ct
7: for all r ∈ R do
8: Ĉr = Ĉr + σir
9: q = −1;

10: Ā ← OVMAP-ALLOC(t,Qt \ θ̂i, Ĉ)
11: for all θ̂j ∈ Qt ∩ {θ̂j |(θ̂j , t) 6∈ At ∧ (θ̂j , t) ∈ Ā}

in non-increasing order of fj , where fj < fi do
12: q = j;
13: break;
14: if q then
15: Pi ← min(fq · l̂i ·

∏
r∈R σir,Pi)

16: else
17: Pi ← 0
18: Output: P = (P1,P2, . . . ,PN )

user is the critical value of user i. Thus, only the resources allocated to user i are placed

back into Cr (lines 7-8). Then, it calls the allocation algorithm, OVMAP-ALLOC, without

considering the participation of user i (line 10). Then, OVMAP-PAY tries to find a user j

who had not been allocated at t when user i participated, and would have been allocated

at t if user i did not participate (lines 11-17). If OVMAP-PAY finds such a user, it stores

her index q (line 12), and it determines the payment of user i based on the density of

user q (line 15); otherwise user i pays 0 (line 17). In other words, the payment of user i

is calculated by multiplying l̂i ·
∏

r∈R σir with the highest density among losing users, (i.e.,

that of user q), who would win if user i would not participate. This is the minimum value

to be reported by user i such that she gets her requested bundle. Finally, the set P t is

returned to the mechanism.
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Figure 4.1: Execution of OVMAP

4.4.4 Example of OVMAP Execution

We show the execution of the mechanism by considering a setting in which the users bid

as shown in Table 4.2. For simplicity, we consider R = 1, that is only one resource type

is available (e.g., core). As a result, σi1 is the total amount of resources that user i has

requested. For example, user 1’s bid θ̂1, contains the following information: her requested

resource is σ̂11 = 3, she submits her bid at â1 = 0, she requests the bundle for l̂1 = 3 time

units, her deadline is d̂1 = 5, and she values the allocation of the bundle for the entire time

at b̂1 = 5. We also show for each user, the value of δ̂i = d̂i − l̂i, the time by which the

bundle must be allocated to meet the deadline, and fi = b̂i
l̂i×σ̂i1

, the bid density.

We assume that the available capacity of resource 1 for allocation is 5 units. We show

the execution of OVMAP for this setting in Figure 4.1 and Table 4.3. In Figure 4.1a, we

show the initial state of the system, in Figure 4.1b, we show the system state at time t = 0,

and continue with t = 1, 2, 3 in the subsequent figures. We also show the values of Ct
1

and sets of Qt, Q̃t, A, and P for each of the above time instances as a time diagram in

Table 4.2: User bids

θ̂i σ̂i1 âi l̂i d̂i b̂i δ̂i fi
θ̂1 3 0 3 5 5 2 0.56

θ̂2 3 0 3 4 4 1 0.44

θ̂3 2 1 5 8 6 3 0.60

θ̂4 2 1 2 5 3 3 0.75

θ̂5 3 3 4 9 8 5 0.67

θ̂6 3 3 6 10 9 4 0.50
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Table 4.3: Execution of OVMAP

t t = 0− t = 0 t = 1 t = 2 t = 3

Qt ∅ {θ̂1, θ̂2} {θ̂4, θ̂3, θ̂2} {θ̂3} {θ̂5, θ̂3, θ̂6}
Q̃t ∅ {θ̂1} {θ̂4, θ̂1} {θ̂4, θ̂1} {θ̂5, θ̂3}
Ct

1 5 2 0 0 0

A ∅ {(θ̂1, 0)} {(θ̂1, 0), (θ̂4, 1)} {(θ̂1, 0), (θ̂4, 1)} {(θ̂1, 0), (θ̂4, 1), (θ̂5, 3), (θ̂3, 3)}
P ∅ (4,−) (4,−,−, 2.4) (4, 0,−, 2.4) (4, 0, 0, 2.4, 6,−)

Table 4.3. As a reminder, Qt is the set of bids of users that participate at time t, Q̃t is

the set of bids of users that are holding some resources at time t (including those who win

their bids at time t), Ct
1 is the amount of resources available after allocation at time t, and

A and P are the allocation and payment sets.

In the second column of Table 4.3, we show the initial system state and the subsequent

columns represent the state of the system at time t = 0, 1, 2, 3, respectively. Figure 4.1a

shows the initial state, where all resources are available and there are no outstanding bids.

In column 2 of Table 4.3, we see that all sets are empty and C0−
1 = 5, since all resources

are available for allocation. Users 1 and 2 submit their bids at t = 0 and hence OVMAP

is invoked. Now, Qt = {θ̂1, θ̂2}, since both users will participate in the mechanism. As

shown in Table 4.2, f1 > f2, therefore user 1 is allocated a bundle of size σ̂11 = 3. User 2’s

request (σ̂21 = 3) cannot be satisfied by the remaining resources (Ct
1 = 2), thus θ̂2 remains

in set Qt. θ̂1 is included in the set Q̃t, since user 1 is now receiving some resources. Finally,

(θ̂1, 0) is added to set A and (θ̂1, 4) is added to set A, since the value of the payment for

user 1 determined in line 15 of OVMAP-PAY is P t1 = f2 · l̂1 · σ̂11 = 4.

At time t = 1, users 3 and 4 submit their bids, and their bids are included in the set

Qt. User 4 has the highest bid density (i.e., f4 > f3 > f2) and σ̂41 ≤ Ct
1 , therefore user

4 obtains the requested bundle. At this time, should user 4 not participate, user 3 would

have received her requested bundle, therefore (θ̂4, 2.4) is added to the set P , where the

payment of 2.4 is the product f3 · l̂4 · σ̂41. The payment for user 1 does not change, since

user 2 would still obtain her required bundle should user 1 not participate. Figure 4.1c

shows the allocation.

At t = 2, Ct
1 = 0, thus OVMAP is not invoked. However, user 2’s deadline for allocation
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δ2 = 1 has passed and she leaves the system. Since user 2 did not obtained her bundle, her

final payment is zero. Figure 4.1d shows the allocation of resources at t = 2.

At t = 3, both users 1 and 4 complete their jobs and bids θ̂5 and θ̂6 are submitted. User

3’s request is still not allocated. According to the ordering on the bid densities, users 5

and 3 obtain their requested bundles. User 3’s payment is zero, since the remaining user 6

would not obtain her bundle even if user 3 would have not participated. In a scenario with

reserve price, user 3’s payment will be set to the reserve price. Since δ1 = 2 has passed, user

1’s payment will not change. We show the outcome in Figure 4.1e. The process continues

like this, as more users submit their requests.

To show the importance of incentive compatibility, we consider the following small

example with two users, i and j, arriving at the same time and competing for a unit of

resource. The true valuations of users i and j for the unit of resource are $5 and $3,

respectively. We consider a scenario in which the cloud provider implements a fist-price

type auction to allocate the resources. That is, the user with the highest bid wins and pays

the price she bids. If the users bid truthfully (bid the same as their valuations), user i wins

and pays $5. The revenue of the provider is $5. Since user i wants to maximize her utility

(decrease her payment), she may misreport. If she submits $3.01 as her bid, she still wins,

and she pays $3.01. However, the revenue of the provider reduces from $5 to $3.01. As a

result, user i can benefit by missreporting, thus obtaining a higher utility. If user i submits

$2 as her bid, she will not win. In this scenario, a user needs to know how other users bid

in order to strategize on how to bid to maximize her utility. Now we consider a scenario

using our proposed mechanism. In the case that users i and j submit their actual true bids,

our mechanism selects user i as the winning user, and charge her $3 based on the critical

payment (bid of the losing user). The revenue of the provider is $3. If user i misreports

and submits $4 as her bid, she still wins. However, she still pays $3, and the revenue of the

provider does not change. As a result, user i cannot benefit by missreporting and change

the provider revenue. This scenario shows that a user cannot change the revenue of the

cloud provider by missreporting her true valuations. This leads to more stable revenues for

the cloud provider. Another benefit is that the user does not need to strategize since she
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will maximize her utility only by reporting her true valuation.

4.4.5 Properties of OVMAP

In this section, we investigate the properties of OVMAP. We first show that the OVMAP

mechanism is individually rational (i.e., truthful users will never incur a loss).

Theorem 14. OVMAP mechanism is individually rational.

Proof. We consider user i as a winning user. We need to prove that if user i reports her

true request then her utility is non-negative. This can be easily seen from the structure

of the OVMAP mechanism. In line 15 of Algorithm 4, the payment for user i is set to

Pi = fq · l̂i ·
∏

r∈R σir, where user q is the user who would have won if user i did not

participate. Since user q appears after user i in the decreasing order of the density metric,

we have, fq ≤ fi, and thus, OVMAP-PAY always computes a payment Pi ≤ bi. As a result,

the utility of user i (i.e., ui = bi − Pi ≥ 0) is non-negative, and she never incurs a loss. In

addition, a truthful user who does not win is not incurring a loss since she obtains 0 utility.

This proves the individual-rationality of OVMAP mechanism.

We now prove that the OVMAP mechanism is incentive-compatible. In order to prove

that the mechanism is incentive-compatible, we need to show that the allocation algorithm

is monotone, and the payment function is based on the critical payment.

Theorem 15. OVMAP mechanism is incentive-compatible.

Proof. We first show that the allocation algorithm OVMAP-ALLOC is monotone. If user i

wins by reporting θ̂i, then she will also win if she reports a more preferred request θ̂′i ≥ θ̂i.

Clearly, if user i reports b̂′i ≥ b̂i, her bid θ̂′i will be allocated if θ̂i is also allocated. Similarly,

if a user gets the allocation by reporting d̂i, she will also get it by reporting d̂′i ≥ d̂i. Similar

reasoning applies for the other parameters in the request of the user.

We now prove that the payment function implemented by OVMAP-PAY is based on

the critical payment. In doing so, we need to show that Pi determined by OVMAP-PAY

is the minimum value that user i must report to get the allocation. User i’s payment is
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Pi = fq · l̂i ·
∏

r∈R σir (line 15), where q is the index of user q appearing after user i based on

the non-increasing order of the bid density (line 11), and she would have won if user i did

not participate. We consider that user i submits a lower value b̂′i < Pi. User i’s new bid

density is f ′i =
b̂′i

l̂i·
∏
r∈R σir

< Pi
l̂i·

∏
r∈R σir

. By replacing Pi, we have f ′i <
fq ·l̂i·

∏
r∈R σir

l̂i·
∏
r∈R σir

. Thus,

we have f ′i < fq, that is, user i will appear after user q who did not win. As a result, if

user i reports a bid below the minimum value (i.e., Pi), she loses; otherwise she wins. This

unique value is the critical payment for user i. This, together with the fact that losing

users pay zero, show that the payment function implemented by OVMAP is the critical

payment.

Since the payment is the critical payment and the allocation function is monotone, it

follows from Parkes [139] that OVMAP is incentive-compatible.

Theorem 16. The time complexity of OVMAP mechanism is polynomial.

Proof. The time complexity of OVMAP-ALLOC is O(N(logN + MR)). This is because

sorting the requests requires O(N logN), while checking the feasibility of the allocation for

each user requires O(NMR). Similar reasoning applies to OVMAP-PAY. As a result, the

time complexity of OVMAP mechanism is polynomial.

4.5 Experimental Results

We perform extensive experiments with real workload data in order to investigate the prop-

erties of our proposed online mechanism, and the offline optimal VCG-VMAP mechanism.

For the VCG-VMAP mechanism, we use the CPLEX 12 solver [7] to solve the VMAP prob-

lem optimally. The data that drives our experiments consists of six workload logs from the

Grid Workloads Archive [5] and the Parallel Workloads Archive [8]. The mechanisms are

implemented in C++ and the experiments are conducted on AMD 2.4GHz Dual Proc Dual

Core nodes with 16GB RAM which are part of the university grid system. In this section,

we describe the experimental setup and analyze the experimental results.
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Table 4.4: Statistics of workload logs.

Logfile Avg
jobs
per
hour

Range
of
CPU

Range of
memory
(MB)

Range of
Storage

(MB)

Avail-
able
CPUs

Memory
Capac-
ity
(MB)

Storage
Ca-
pacity
(MB)

Avg
CPU
per job

Avg
memory
per job
(MB)

Avg
storage
per job
(MB)

GWA-T-1
DAS-2

81 [1-
128]

[1-4,295] [10-51,070] 50 100 100 4.37 46.96 43.95

GWA-T-3
NorduGrid

34 1 [1-2,147] [10-
1,053,072]

24 1,400 50,000 1 595.6 93,888.77

GWA-T-4
AuverGrid

33 1 [1.7-
3,668]

[10-
259,316]

7 8,800 640,000 1 374.36 27,805.86

GWA-T-10
SHARCNET

147 [1-
3000]

[1-
32,021]

[10-
2,087,029]

85 2,000 1,000 2.9 94.49 39.43

METACEN-
TRUM-2009-
2

42 [1-60] [1-
61,538]

[10-
2,592,130]

44 100 20,000 1.55 325.14 21,189.11

PIK-IPLEX-
2009-1

36 [1-
2560]

[1-
29,360]

[10-
4,815,007]

88 89,000 4,700 12.15 3,528.22 18,716.06

4.5.1 Experimental Setup

Since real users request data have not been publicly released by cloud providers yet, we rely

on well studied and standardized workloads from both the Grid Workloads Archive [5] and

the Parallel Workloads Archive [8]. We selected the following six logs based on the avail-

ability of both recorded CPU and memory requests/usage: i) DAS-2 traces from a research

grid at the Advanced School for Computing and Imaging in Netherlands; ii) NorduGrid

traces from the NorduGrid system; iii) AuverGrid traces from the AuverGrid system; iv)

SHARCNET traces from SHARCNET clusters installed at several academic institutions in

Ontario, Canada. v) MetaCentrum from the national grid of the Czech republic; vi) IBM

iDataPlex Cluster log from the Potsdam Institute for Climate Impact Research (PIK) in

Germany. In our experiments, a user request is represented by a job in a log. We present

statistics of the logs in Table 4.4.

Each log represents a series of requests, where the users arrive over time, and they can

submit their requests to a cloud provider. The following fields of the log files are extracted

to represent different features of the users’ requests. (1) JobID: the user’s identifier; (2)

SubmitTime: the arrival time of the request; (3) RunTime: the amount time for which the

requested bundle must be allocated; (4) ReqNProcs: the requested number of processors;

(5) Used Memory: the requested amount of memory. Since the amount of storage usage was
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not recorded in the workloads, we generate the requested storage as shown in Table 4.4. We

consider these resource usage as values for the requested σir, the amount of each resource

of type r requested by user i, where i is a job in a log, and r is a type of resource. We

generate a random number bi between 1 and 10 to represent user i’s bid. For a deadline of

a request, we choose a random number between 3 to 6 times the job’s runtime. We use the

job’s runtime as the requested length of the job. We select 100 hours of the logs containing

706, 842, 1523, 1865, 677, and 416 requests for the afore-mentioned logs, respectively.

4.5.2 Analysis of Results

We compare the performance of OVMAP and VCG-VMAP for different workloads. For

each workload, we record the execution time, the welfare, the revenue, the percent of users

served and the utilization for each mechanism. Users served is the number of users who

received their requests for their entire requested time. The utilization of each resource

type is calculated as the percentage of allocated resource out of the total capacity of that

resource over the entire time. We now present the results obtained by OVMAP for the

selected logs.

We analyze the performance of OVMAP and VCG-VMAP in terms of welfare, execution

time, the percent of users served, resource utilization, and revenue. In this case, users

are requesting a heterogeneous set of VM instances for a length of time. The optimal

mechanism, VCG-VMAP, could not find the solutions even after 72 hours for three out of

the six logs. This is due to the fact that the problem becomes more complex for different

job lengths, higher number of requests, and greater available capacity. Fig. 4.2 shows the

welfare achieved by the mechanisms. VCG-VMAP is not able to determine the allocation

for GWA-T-3 NorduGrid, GWA-T-4 AuverGrid, and GWA-T-10 SHARCNET in feasible

time, and thus, there are no bars in the plots for those cases. For the remaining logs, the

results show that OVMAP obtains a welfare very close to that obtained by the optimal

VCG-VMAP mechanism. On average the optimality gap is 3.7%. For example, OVMAP

and VCG-VMAP obtain welfares of 1233.57 and 1274.25 for the METACENTRUM-2009-2

log, respectively, leading to a 3.19% optimality gap. Such results are very promising given
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Figure 4.2: OVMAP vs. VCG-VMAP: Welfare

the fact that OVMAP is an online mechanism which does not have any information about

future demand. However, VCG-VMAP is an offline mechanism and has all the information

available a priori. Fig. 4.3 shows the execution times of the mechanisms on a logarithmic

scale. As we expected from the time complexity of the mechanism, the execution time of

OVMAP is very small. However, the execution time of the optimal offline mechanism,

VCG-VMAP, is more than six order of magnitudes greater than that of OVMAP for each

of the logs. Note that the online setting requires mechanisms with very small execution

times. Since OVMAP obtains close to optimal welfare and is very fast it is very suitable for

solving the allocation and pricing problem is online settings. We measured the execution

time of the mechanism for processing each of the requests from the traces and calculated

its average. The average execution time of the mechanism for processing a request is 1.27

microseconds. This shows that the mechanism is very fast and can be used in online

settings. Since for each request the system will need to instantiate a VM to serve the

request, the total time required to process and serve a request is given by the sum of the

time to instantiate a VM and the time to run the mechanism. Since the time to instantiate

a VM is in the order of tens of seconds, the contribution of the mechanism to the total time
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Figure 4.3: OVMAP vs. VCG-VMAP: Execution time
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Figure 4.4: OVMAP vs. VCG-VMAP: Users served

to process a request is negligible. The total time to process a request will basically impose

an upper bound on the arrival rate of requests. However, since not all of the requests will

be allocated (no VM instantiated) the upper bound on the arrival rate will be much grater

than the bound imposed by the total time to process a request.



104

 0

 20

 40

 60

 80

 100

G
W

A-T-1 D
AS-2

G
W

A-T-3 N
orduG

rid

G
W

A-T-4 AuverG
rid

G
W

A-T-10 SH
AR

C
N
ET

M
ETAC

EN
TR

U
M

-2009-2

PIK-IPLEX-2009-1

C
o

re
 u

ti
liz

a
ti
o

n

Workload file

VCG-VMAP*
OVMAP

Figure 4.5: OVMAP vs. VCG-VMAP: Core utilization
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Figure 4.6: OVMAP vs. VCG-VMAP: Memory utilization

Fig. 4.4 shows the percentage of served users for the mechanisms. The percentage of

served users obtained by OVMAP is very close to that of VCG-VMAP due to its close

to optimal solution. This is due to the fact that the solution determined by OVMAP is

very close to the optimal solution. Figs. 4.5 to 4.7 show the utilization of cores, memory
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Figure 4.7: OVMAP vs. VCG-VMAP: Storage utilization

and storage, respectively. Note that a higher utilization does not show the effectiveness

of the mechanisms. The objective of all the mechanisms is maximizing the welfare not

the utilization of the resources. Fig. 4.8 shows the revenue achieved by the cloud provider

when using the mechanisms. OVMAP is able to obtain a higher revenue than that of the

VCG-VMAP.

For example, for log GWA-T-1 DAS-2, OVMAP and VCG-VMAP obtain total rev-

enues of $916.25 and $783.67, respectively, corresponding to 16.91% higher revenue using

OVMAP. Note that the VCG-VMAP is optimal in terms of welfare and not the revenue.

This is due to the fact that VCG-VMAP fulfills more requests (i.e., more users are allo-

cated), that is, it accepts more bids. Accepting more bids, reduces the price charged to

users and implicitly the revenue.

From the above results we can conclude that OVMAP decides the allocation and pricing

much faster than VCG-VMAP and achieves a welfare closer to the optimal. As a result,

OVMAP is suitable for making allocation decisions and price determination in real-time.
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Figure 4.8: OVMAP vs. VCG-VMAP: Revenue

4.6 Conclusion

The nature and dynamics of users’ demand in cloud markets necessitates designing online

mechanisms. Such online mechanisms make no assumptions about future demands. In

this chapter, we proposed an online incentive-compatible mechanism, OVMAP, for VM

allocation and pricing in clouds. The OVMAP mechanism not only provisions and allo-

cates resources dynamically, but also determines the price that users must pay for their

requested VMs. Our proposed mechanism provides incentives to the users to reveal their

actual requests facilitating a healthy competition among users. We proved that OVMAP is

individually-rational and incentive-compatible. In addition, we proposed an optimal offline

mechanism in order to compare its performance with our proposed online mechanism. The

experimental results showed that the proposed online mechanism obtains better revenue

and decides the allocation much faster than the offline mechanism.
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CHAPTER 5: CLOUD FEDERATIONS IN THE SKY: FORMATION
GAME AND MECHANISM

5.1 Introduction

Clouds are large-scale distributed computing systems built around core concepts such as

computing as utility, virtualization of resources, on demand access to computing resources,

and outsourcing computing services [169]. These concepts have positioned the clouds as an

attractive platform for businesses enabling them to outsource some of their IT operations.

In fact, the clouds services market share in the IT business has rapidly increased, and it

is estimated to reach $150 billion by 2015 [138]. Cloud services are offered as three main

categories: software as a service (SaaS), platform as a service (PaaS), and infrastructure

as a service (IaaS). In this chapter, we focus on IaaS, where cloud providers offer different

types of resources in the form of virtual machine (VM) instances.

Cloud computing systems’ ability to provide on demand access to always-on computing

utilities has attracted many enterprises due to their cost-benefit ratios, leading to rapid

growth of the cloud computing market. Such market, however, presents a host of new

challenges due to the dynamic nature of users’ demands. The variability of users’ demands

increases when it comes to their requests for data-intensive applications. The amount

of computing resources that data-intensive applications require can dramatically increase,

and cloud providers’ available resources may not be sufficient enough to cope with such

demands. This emerging service management problem in cloud computing necessitates

that cloud providers reshape their business structures and seek to improve their dynamic

resource scaling capabilities. Federated clouds offer a practical platform for addressing

this service management problem. A cloud provider can dynamically scale-up its resource

capabilities by forming a cloud federation with other cloud providers. On the other hand,

other cloud providers that have unused capacities can make profit by participating in a

federation. Users’ requests can be satisfied by federating resources belonging to several

cloud providers [149, 151]. A cloud federation is a collection of cloud providers that co-
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operate in order to provide the resources requested by users. Forming cloud federations

helps achieve greater scalability and performance. If a cloud provider does not have enough

resources to provide all the requested resources to the customer, it will reject the requests

which leads not only to profit loses, but also to reputation losses. However, by forming

a federation with other cloud providers, it can provide part of the requested resources to

make some profit. In addition, the federation may provide the resources at a lower cost.

Employing only one cloud provider may lead to issues such as lock-in and a single point of

failure. Interoperability among clouds can eliminate the single point of failure problem [59].

Federating cloud resources can be a solution for interoperability among multiple clouds,

enabling the formation of a pool of resources used for providing on demand services.

Virtualization is a major breakthrough enabling cloud providers to abstract the physical

infrastructure, and to hide the complexity of underlying resources. They create a pool of

virtualized resources which are offered to users as different types of VM instances. In

this chapter, we model the cloud federation formation as a coalitional game, where cloud

providers decide to form a coalition (cloud federation) to allocate VMs dynamically, based

on users’ requests. The cloud federation tries to maximize the total profit obtained by

serving the users’ requests. The model that we consider consists of a set of cloud providers

and a user that submits a request consisting of a number of different VM instances. A

subset of cloud providers will form a federation in order to provide the requested VM

instances. Based on the proposed federation formation game we design a cloud federation

formation mechanism.

5.1.1 Our Contribution

We model the cloud federation formation as a hedonic game, a type of coalitional game,

satisfying fairness and stability properties. We define the federation preference relations for

the cloud federation formation game and design a cloud federation formation mechanism

which allows the cloud providers to make their own decisions to form a federation yielding

the highest total profit. In the proposed mechanism, federations of cloud providers decide

to merge and split in order to form a federation providing requested resources as a service
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to the user. The mechanism also determines the individual profit of each participating

cloud provider in the federation. Each cloud provider covers its incurred costs, and obtains

a profit based on its market power. The mechanism provides a stable federation structure,

that is, none of the cloud providers has incentives to merge to another federation or split

from a federation to form another federation. We analyze the properties of our proposed

cloud federation formation mechanism and perform extensive experiments to investigate

its properties.

5.1.2 Related Work

The primary requirements for forming federations of cloud providers are discussed by

Rochwerger et al. [150]. In order to support these requirements, Rochwerger et al. [149]

introduced the Reservoir (resources and services virtualization without boundaries) model

which allows two or more cloud providers to pool their resources together in order to pro-

vide services as a federated cloud. However, Reservoir does not provide any mechanism

for forming cloud federations. Buyya et al. [23] presented the vision, challenges, and archi-

tectural elements of federated cloud computing environments. Their proposed framework

supports scaling of applications across multiple cloud providers. Celesti et al. [28] intro-

duced a cloud architecture that allows a cloud to build a federation with other clouds.

Their model considers two types of clouds, home and foreign, where a home cloud is the

cloud that is unable to fulfill its users’ requests and forwards the requests to foreign clouds.

Their model assumes that the foreign clouds could provide resources. It does not consider

the incentives of the foreign clouds for providing resources to the home cloud. However,

in this chapter we consider the incentives of the cloud providers for forming federations

and provide a mechanism for sharing the profit among the cloud providers in a federation.

Goiri et al. [49] provided models that assist a cloud provider in making decisions on forming

federations with public clouds in order to maximize its profit. Their study does not con-

sider the incentives of the other clouds for providing resources. In addition, they did not

consider different types of VMs and their heterogeneous resources. However, our work takes

into account the incentives of all the participating cloud providers and the heterogeneity of
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VMs and cloud resources. Toosi et al. [166] proposed several resource provisioning policies

helping the cloud providers increase their resource utilization and profit. They considered

a model where the cloud providers can terminate the VMs, called spot VMs, whenever the

profit for running such VMs is negative. Van den Bossche et al. [168] proposed a binary

integer program formulation that minimizes the cost of outsourcing using a mix of public

and private clouds. Their mechanism tries to maximize the utilization of the private cloud.

However, their proposed method cannot find the solution on hybrid clouds in reasonable

amount of time. Nordal et al. [131] proposed a system for managing computations in fed-

erated clouds. They also considered the applications’ confidentiality constraints. Bin et

al. [17] proposed a VM placement approach in a cloud federation considering multiple data

privacy constraints. However, they did not consider the cost of outsourcing in the objective

of their method. Chaisiri et al. [29] proposed an optimal VM provisioning algorithm using

stochastic programming considering several cloud providers with the objective of maximiz-

ing profit. Bruneo [21] proposed performance evaluation techniques based on stochastic

reward nets for federated clouds to predict and quantify the cost-benefit of a strategy

portfolio and the corresponding quality of service experienced by users. Mihailescu and

Teo [116] evaluated the impact of users’ rationality in a federated cloud. Yang et al. [188]

proposed a business-oriented federated cloud computing architecture for a specific type

of applications, the real-time online interactive applications, such as multi-player online

computer games. Their model is built on the concept of computation migration instead of

VMs, and it does not consider the federation formation problem.

Researches approached the cloud resource management problem considering different

objectives and points of view. Kesavan et al. [72] proposed a set of low-overhead man-

agement methods for managing the cloud infrastructure capacity to achieve a scalable

capacity allocation for thousands of machines. Rodriguez and Buyya [152] proposed a

meta-heuristic algorithm based on Particle Swarm Optimization for VM provisioning and

scheduling strategies on IaaS. The proposed strategies minimize the overall workflow execu-

tion cost while meeting deadline constraints. Their approach considers dynamic provision-

ing, the heterogeneity of computing resources, and the variations in the VMs performance.
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Doyle et al. [39] proposed an algorithm that determines to which data center the user re-

quests should be routed, based on the relative priorities of the cloud operator. Their algo-

rithm reduces the latency, carbon emissions, and operational costs. Mastroianni et al. [110]

proposed an approach for the consolidation of VMs on two resources, that minimizes the

power consumption while ensuring a good level of QoS. In their approach, decisions on

the assignment and migration of VMs are driven by probabilistic processes and are based

exclusively on local information. All these works addressed the resource management issues

within a single cloud and not within federations of clouds.

Game theory-based resource allocation mechanisms for single clouds were proposed by

Wei et al. [180] and Jalaparti et al. [67]. Zhang et al. [195] proposed online auction mech-

anisms for resource allocation in clouds. In our previous studies [96, 123], we proposed

strategy-proof mechanisms for VM provisioning and allocation in clouds in order to max-

imize the profit. A game theoretic solution for dynamic resource allocation in a cloud

federation was proposed by Hassan et al. [58]. The authors defined a price function for a

cloud provider that gives incentives to other clouds to contribute resources and to form a

federation. Mihailescu and Teo [115] proposed a strategy-proof dynamic pricing scheme for

federated cloud environments. A revenue sharing mechanism for multiple cloud providers

using stochastic linear programming games was proposed by Niyato et al. [130]. Their

mechanism does not consider the cost that each cloud provider incurs. As a result, the

solution of the revenue sharing is in the core of the proposed game. The model considers

a fixed cooperation cost for each cloud provider. A cloud provider decides to join or not

to join the federation based on the cooperation cost. Mashayekhy and Grosu [93] proposed

a mechanism for solving the virtual organization formation problem in grids. The mech-

anism considers the incentives of the grid service providers while providing the required

capabilities to execute the user’s application. They also proposed a distributed mecha-

nism for dynamic virtual organization formation in grids [91]. These mechanisms cannot

be employed in cloud settings because the unique characteristics of cloud systems bring

about new problems. Clouds necessitate the design of novel mechanisms considering virtu-

alization, VM provisioning, VM allocation, and profit sharing among cloud providers. Li et
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al. [85] investigated profit maximization strategies in cloud federations, where VMs are sold

through auctions. They proposed a truthful double auction-based mechanism for trading

VMs within a federation, where clouds can buy and sell their resources. Samaan [154] pro-

posed an economic model based on repeated games, to regulate capacity sharing in a cloud

federation. Cloud providers’ objective is to sell their unused capacity in the spot market,

but they are uncertain of future workload fluctuations. Our study is different from these

studies since we consider the federation formation problem, where our proposed mechanism

determines how cloud providers should provide the resources to fulfill users’ requests.

5.1.3 Organization

This chapter is organized as follows. In Section 5.2, we describe the cloud federation for-

mation problem and the system model we consider. In Section 5.3, we describe the game

theoretic framework used to design the proposed cloud federation formation mechanism.

Then, we present the proposed mechanism and characterize its properties. In Section 5.4,

we evaluate the mechanism by extensive simulation experiments. In Section 5.5, we sum-

marize our results.

5.2 Cloud Federation Framework

In this section, we describe the model of the system and introduce the problem of maxi-

mizing the profit within a cloud federation. We also introduce a coalitional game, called

the cloud federation game, that serves as a basis for the development of our proposed cloud

federation formation game and mechanism that will be presented in Section 5.3.

5.2.1 System Model

We first describe the system model consisting of a set of cloud providers, a broker as

a mediator, and several cloud users. The broker is a trusted third party responsible for

handling the federation formation tasks such as, receiving requests, executing the federation

formation mechanism, receiving the payment from users, and dividing the profit among
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Table 5.1: Notation

I Set of cloud providers {C1, . . . , Cm}
Ni Number of available cores of Ci ∈ I
Mi Amount of available memory of Ci ∈ I
Si Amount of available storage of Ci ∈ I
VM Set of VMs {VM1, . . . , V Mn}
wcj Number of cores in VM j ∈ VM
wmj Amount of memory in VM j ∈ VM
wsj Amount of storage in VM j ∈ VM
pj Price for an instance of type VM j ∈ VM
cij Cost of an instance of type VMj provided by Ci ∈ I
rj Number of requested VM instances of type VMj

R User’s request, R = {r1, . . . , rn}

participating providers. We assume that a set of cloud providers I = {C1, C2, . . . , Cm}

is available to provide resources in the form of VM instances to cloud users. The cloud

providers offer n types of VM instances: VM = {VM1, . . . , V Mn}, where each instance

provides a specific number of cores, amount of memory, and amount of storage. The VM

instance of type VM j (j = 1, . . . , n) is characterized by: (i) the number of cores, wcj ; (ii)

the amount of memory, wmj ; and (iii) the amount of storage provided, wsj .

Each cloud provider Ci ∈ I has a specific number of cores, amount of memory, and

amount of storage available to share in a federation. Note that each provider reserves a

specific capacity for its own users, and specifies the available capacity to be shared in the

federation based on its load. We denote by Ni, the number of available cores of cloud

provider Ci, by Mi, the amount of available memory of cloud provider Ci, and by Si,

the amount of available storage of cloud provider Ci. Each provider Ci incurs cost when

providing resources. For a cloud provider Ci, we denote by cij, the cost associated with

each VM instance of type VMj, where j = 1, . . . , n.

A user sends a request to a broker, consisting of the number of VM instances of each

type needed. A request is denoted by R = {r1, . . . , rn}, where rj is the number of requested

VM instances of type VMj, j = 1, . . . , n. The broker bills a user based on the allocated

VM instances. To do so, the broker sets a price pj on each type of VM instance VMj,



114

where j = 1, . . . , n. The final price that the user pays for her request is independent of

the cloud provider providing the VM instances. The final price paid by the user for each

of the rj VM instances of type VMj is rjpj, where pj is a fixed price for an instance of

type VM j. A broker has all the information about cloud providers such as their available

resources and associated cost, and it is responsible for forming the federation. Table 5.1

summarizes the notation used throughout the chapter.

A cloud federation F is a set of cloud providers, i.e., F ⊆ I. The objective of a

cloud federation F is to maximize its profit. We formulate the cloud federation profit

maximization problem for a given federation F as an integer program (IP), called IP-

CFPM, as follows:

Maximize
∑
Ci∈F

n∑
j=1

xij(pj − cij), (5.1)

Subject to:

n∑
j=1

wcjxij ≤ Ni, (∀Ci ∈ F), (5.2)

n∑
j=1

wmj xij ≤Mi, (∀Ci ∈ F), (5.3)

n∑
j=1

wsjxij ≤ Si, (∀Ci ∈ F), (5.4)
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∑
Ci∈F

xij = rj, (∀j = 1, . . . , n), (5.5)

n∑
j=1

xij ≥ 1, (∀Ci ∈ F), (5.6)

xij ≥ 0, and is integer

(∀Ci ∈ F and ∀j = 1, . . . , n), (5.7)

The decision variables xij represent the number of VM instances of type VMj provided

by cloud provider Ci. The objective function (5.1) is the total profit obtained by the

participating cloud providers in the federation F . The total profit is equal to the revenue

received from the user minus the cost incurred by the cloud providers. Constraints (5.2)

ensure that the number of cores provided by a cloud provider participating in the federation

is less than its available number of cores. Constraints (5.3) guarantee that the amount of

memory provided by a cloud provider participating in the federation is less than the amount

of its available memory. Constraints (5.4) ensure that the amount of storage provided by

a cloud provider participating in the federation is less than the amount of its available

storage. Constraints (5.5) guarantee that the number of VM instances assigned to the

user for each type of VM by all cloud providers is exactly the number of VM instances

requested by the user for that type of VM instance. Constraints (5.6) ensure that each cloud

provider in the federation contributes at least one VM instance. These constraints force

the cloud providers to contribute resources to the federation. Constraints (5.7) represent

the integrality requirements for the decision variables.
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5.2.2 Cloud Federation Game

In this section, we introduce the cloud federation game, a coalitional game that allows us

to model federations and investigate the stability of different federation structures. This

game model will be extended in Section 3 into a hedonic game, called the cloud federation

formation game, that characterizes the process of federation formation and will serve as

the basis for the design of our proposed federation formation mechanism. The reader is

referred to [133] for preliminaries on coalitional game theory. We define a cloud federation

game (I, v), as a coalitional game with transferable utility, where each cloud provider in

I is a player in the game, and v is the characteristic function, defined on F ⊆ I. The

characteristic function is the profit obtained when the cloud providers of federation F

cooperate as a coalition. This function is a real-valued function such that v : F → R+ and

v(∅) = 0. We consider each cloud federation F ⊆ I as a coalition. If all the cloud providers

form a federation, i.e., F = I, we call it the grand federation.

We define the characteristic function for our proposed cloud federation game as follows:

v(F) =

0 if |F| = 0 or IP-CFPM is not feasible,

P if |F| > 0 and IP-CFPM is feasible,

(5.8)

where |F| is the cardinality of F , and P is the total profit obtained by the federation (i.e.,

the value of IP-CFPM objective function).

A cloud federation game should satisfy two main properties, fairness and stability. The

profit obtained by a federation should be fairly divided among the participating cloud

providers. A federation should be stable, that is, the participating cloud providers should

not have incentives to leave the federation. In the following, we explain these two properties

of the proposed game in more details.

The value v(F) of the federation F must be divided among its participating cloud

providers based on a given rule that satisfies fairness. In this study, we consider a fair

profit division rule based on the market share of the cloud providers. A cloud provider that

contributes more resources in all the possible federations in which it participates should
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receive higher profit regardless of its resource allocation in the selected federation. We

define, ψCi(F), the payoff or the share of cloud provider Ci that is part of federation F . In

order to determine the payoff ψCi(F), we employ the normalized Banzhaf value [132]. The

Banzhaf value is a division of payoffs for the grand federation that takes into account the

power of the players. The Banzhaf value of cloud provider Ci in the cloud federation game

(I, v) is defined as follows:

βCi(I) =
1

2m−1

∑
F⊆I\{Ci}

[v(F ∪ {Ci})− v(F)]. (5.9)

The Banzhaf value represents the average marginal contribution of cloud provider Ci over

all possible federations containing Ci. The marginal contribution of Ci in a federation F is

v(F ∪ {Ci})− v(F), i.e., the difference between the value of a federation with and without

Ci. The normalized Banzhaf value is defined as

BCi(I) =
βCi(I)∑
Cj∈I βCj(I)

. (5.10)

The normalized Banzhaf value gives a fair way of dividing the grand federation’s profit

among its members. The profit that each member Ci receives in the grand federation is

calculated as follows:

ψCi(I) = BCi(I)v(I). (5.11)

The payoff vector Ψ(I) = (ψC1(I), · · · , ψCm(I)) gives the payoff division for the grand

federation. Computing the Banzhaf value for a game with a large number of players is

NP-hard [111].

We now define, ψCi(F), the payoff of cloud provider Ci participating in federation F , as

follows:
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Table 5.2: The characteristics of available VM instances.

Small Medium Large Extralarge
VM1 VM2 VM3 VM4

wcj (1.6GHz CPU) 1 2 4 8

wmj (GB Memory) 1.7 3.75 7.5 15

wsj (TB Storage) 0.22 0.48 0.98 1.99

pj (price) 0.12 0.24 0.48 0.96

ψCi(F) =
ψCi(I)∑
∀Cj∈F ψCj(I)

v(F). (5.12)

In our setting, using the Banzhaf value for payoff division is more reasonable than using

the Shapley value. The Shapley value [158] considers the order of the players entering the

federations, when determining the payoffs. However, in our case such an order does not

affect the value of the federations. The Banzhaf value assumes that each player is equally

likely to join any federation. That means, each federation will form with equal probability.

We analyze the stability of the grand federation using a solution concept for coalitional

games, called the core. To define the core, we first need to introduce the concept of

imputation, as follows.

Definition 20 (Imputation). An imputation is a payoff vector (ψC1(I), · · · , ψCm(I)) sat-

isfying:

i) ψCi(I) ≥ v(Ci), ∀Ci ∈ I, and

ii)
∑
Ci∈I ψCi(I) = v(I).

Condition (i) guarantees that the profit obtained by each cloud provider Ci participating

in the grand federation is not less than its profit obtained by acting alone. Condition (ii)

ensures that the entire profit of the grand federation is divided among all cloud providers.

Definition 21 (Core). The core is a set of imputations satisfying
∑
Ci∈F ψCi(I) ≥ v(F),∀F ⊆

I.
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Table 5.3: The cloud providers’ settings.

Ni Mi Si VM cj pj

Ci 8 16 GB 2000 GB

VM1 0.072 0.12
VM2 0.168 0.24
VM3 0.378 0.48
VM4 0.839 0.96

That means, the profit of any federation is not greater than the sum of the payoffs of

its participating cloud providers in the grand federation. The existence of a payoff vector

in the core shows that the grand federation is stable. As a result, a payoff division is in

the core if there is no incentive for any cloud provider to leave the grand federation to join

another federation. In the case that the core does not exist (i.e., the grand federation is

not stable), independent and disjoint federations would form.

In the following we consider an example that shows that the core of the proposed cloud

federation game can be empty. We consider three cloud providers I = {C1, C2, C3}, and

four types of VM instances VM = {VM1, V M2, V M3, V M4} representing small, medium,

large, and extra large VM instances, respectively. The description of the VM instances

is provided in Table 5.2. The instance types and pricing are similar to the ones used by

Microsoft Azure [11].

We consider that a user requests one VM instance of type small, one VM instance of

type medium, and one VM instance of type extra large. That is, the request of the user

is R = {1, 1, 0, 1}. In Table 5.3, we give the computing and storage capacity of each cloud

provider, the cost and the price of each type of VM instance. For simplicity, we assume

that all cloud providers have the same specifications. As an example, C1 incurs a cost of

$0.072 to provide one VM of type VM1. The computing, memory, and storage capacity of

C1 is 8 cores, 16 GB, and 2000 GB, respectively. Based on the request, the user pays $1.32

to the federation, that is $0.12+$0.24+$0.96.

If C1, C2 and C3 provide resources individually, then none of them can satisfy the user’s

request. The values v(F) for all possible federations are given in Table 5.4. If the sum of the
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Table 5.4: The value for each federation.

F v(F)

{C1} 0
{C2} 0
{C3} 0
{C1, C2} 0.24
{C1, C3} 0.24
{C2, C3} 0.24
{C1, C2, C3} 0.24

payoffs to individual cloud providers {C1, C2}, {C1, C3}, and {C2, C3} is less than 0.24 in the

grand federation {C1, C2, C3}, then the set of cloud providers has incentive to deviate from

the grand federation. Since ψC1(I) + ψC2(I) ≥ v({C1, C2}), ψC1(I) + ψC3(I) ≥ v({C1, C3}),

and ψC2(I)+ψC3(I) ≥ v({C2, C3}), are not simultaneously satisfied, there is no payoff vector

in the core, and thus, the core of the cloud federation game is empty. Therefore, the grand

federation would not form.

Since the grand federation may not be stable, we propose a cloud federation formation

mechanism in order to find a stable cloud federation. In the next section, we introduce

the cloud federation formation game, where the focus is on how to form independent and

disjoint federations. The cloud federation formation game will be the basis for the design

of our proposed cloud federation formation mechanism.

5.3 Cloud Federation Formation Mechanism

As we showed in the previous section, the core of the cloud federation game can be empty.

If the grand federation does not form, independent and disjoint federations would form.

In this section, we introduce the proposed cloud federation formation game, present the

proposed cloud federation formation mechanism and characterize its properties.
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5.3.1 Federation Formation Framework

In this section, we investigate the coalitional structures in the cloud federation game when

the grand federation does not form, i.e., the grand federation is not stable. A federation

structure FS = {F1,F2, . . . ,Fh} is a partition of the set of cloud providers I such that

each provider is a member of exactly one federation, i.e., Fi ∩ Fj = ∅ for all i and j,

where i 6= j and
⋃
Fi∈CF Fi = I. We denote by Π the set of all federation structures. The

total number of federation structures is Bm, where Bm is the m-th Bell number [74], and

m = |I|. Thus, finding the optimal federation structure via exhaustive search through all

federation structures is not feasible.

The coalition formation [13] investigates the partitioning of the players into disjoint sets.

In general, the problem of finding the optimal coalition structure in coalition formation is

NP-complete [157]. Note that, only one of the federations in the federation structure is

selected to provide the resources requested by the user. The remaining cloud providers

may form other federations to service other requests of users. As a result, the formation

of other federations with cloud providers outside of the selected federation does not affect

the decision of the cloud providers participating in the selected federation.

To be able to model the cloud federation formation process, we augment the cloud

federation game presented in subsection 2.2 with a preference relation over federations. The

newly obtained game, called the cloud federation formation game, is a hedonic game [19],

that is, a special type of coalitional game that considers players’ preferences over coalitions.

In hedonic games, players have preferences over coalitions. In the following, we present the

definition of a hedonic game.

Definition 22 (Hedonic game). A hedonic game is a tuple (I,�), where I is the set of

players in the game, �i is a reflexive, complete, and transitive preference relation defined

on Πi for player i, and Πi is the set of subsets in I containing player i.

Each player knows whether it prefers to be in company of some players rather than

others. If A �i B, player i prefers coalition B at most as much as coalition A. As in the

case of the cloud federation game, the core does not exist for the cloud federation formation
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game.

Definition 23 (Cloud federation formation game). A cloud federation formation game is

a pair (I,�), where �i is a reflexive, complete, and transitive binary relation on Πi, and

Πi is the set of federations in I containing Ci.

We define the federation preference relation �i for each Ci. This allows Ci to compare

two federations and to indicate its preference to be a part of one of them. A �i B implies

that Ci prefers to be a member of federation A than to be a member of federation B, or

at least it prefers both federations equally. In addition, A �i B indicates that Ci strictly

prefers to be a member of A than a member of B.

To model the cloud federation formation as a hedonic game, we need to define the

federation preference relation over all pairs of federations in Πi. For all Ci ∈ I and for all

F ,F ′ ∈ Πi, we define �i as

F �i F ′ ⇐⇒ v(F) ≥ v(F ′). (5.13)

That means a cloud provider prefers the federation that gives the higher profit. Using this

preference relation, every cloud provider can evaluate its preferences over the set of possible

federations that the cloud provider can be a member of. Therefore, the objective of each

cloud provider is to determine the membership in a federation that gives the highest profit.

Next, we define two comparison relations based on the preference relation �i. These

comparison relations will be used in the design of our proposed cloud federation formation

mechanism. The two comparison relations, called merge comparison �m and split compar-

ison �s, will allow us to decide if a federation is more preferred than other federations.

The merge comparison �m is defined as follows:

{F ∪ F ′} �m {F ,F ′} ⇐⇒

{∀Ci ∈ F ; {F ∪ F ′} �i F and

∀Cj ∈ F ′; {F ∪ F ′} �j F ′}

(5.14)

Equation (5.14) implies that federation {F ∪ F ′} is preferred over two disjoint federations
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{F ,F ′}, if the profit obtained by federation {F ∪ F ′} is greater than the profit obtained

by the providers in F , and it is greater than the profit obtained by the providers in F ′. As

a result, all providers are able to improve the total profit.

The split comparison �s is defined as follows:

{F ,F ′} �s {F ∪ F ′} ⇐⇒

{∃Ci ∈ F ;F �i {F ∪ F ′} or

∃Cj ∈ F ′;F ′ �j {F ∪ F ′}}

(5.15)

Equation (5.15) implies that {F ,F ′} is preferred over {F ∪ F ′}, if at least one federation

is able to keep the same amount of profit or to increase the profit of its members. Such

a split preference is irrespective of the other cloud providers’ preferences outside of that

federation.

The two comparison relations defined above induce two rules [13] that will be used in

the design of our proposed cloud federation formation mechanism:

Merge Rule: For any pair of federations F and F ′:

{F ∪ F ′}�m{F ,F ′} ⇒ Merge F and F ′.

Split Rule: For any federation {F ∪ F ′}:

{F ,F ′}�s{F ∪ F ′} ⇒ Split {F ∪ F ′}.

The merge rule implies that two federations join to form a larger federation if operating

all of their cloud providers together strictly improves the total profit. The split rule implies

that a federation splits only if there exists one sub-federation that obtains at least the

same total profit with its constituent cloud providers. A split happens irrespective of the

effect on the profit of the other sub-federations, i.e., their profit may decrease. Note that

only one of the federations in the federation structure is selected to provide the resources

requested by the user. Therefore, the goal of the cloud providers is to find a federation

with maximum profit. This federation is obtained through an iterative application of the

merge and the split rules.
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As we mentioned before, computing the Banzhaf value for a game is NP-hard. However,

through the iterative application of merge and split rules some of the possible federations

are checked and their values are calculated. Based on those values, we define the estimated

Banzhaf value of Ci as follows:

ECi(I) =
1

λ

∑
F⊆I\{Ci}
F∈V
F∪Ci∈V

[v(F ∪ {Ci})− v(F)]. (5.16)

where V is the set of all checked federations (i.e., federations that were already produced

during the merge and split iterations), and λ is the total number of checked federations

containing Ci. That means, λ = 2m−1−α, where α is the number of non-checked federations.

The estimated Banzhaf value is based only on the value of federations that are checked

during the merge and split process. The normalized estimated Banzhaf value is defined as

follows:

ECi(I) =
ECi(I)∑
Cj∈I ECj(I)

. (5.17)

The profit that each member Ci receives in the grand federation is calculated as follows:

ψCi(I) = ECi(I)v(I). (5.18)

The payoff vector Ψ(I) = (ψC1(I), · · · , ψCm(I)) gives the payoff divisions of the grand

federation. We define ψCi(F), the payoff of cloud provider Ci ∈ F , as follows:

ψCi(F) =
ψCi(I)∑
∀Cj∈F ψCj(I)

v(F). (5.19)

During the merge-and-split we estimate the Banzhaf value for each provider based only on

the federations that were already explored. The profit obtained by the federation is divided

among participating cloud providers in proportion to their power in the federation.

We define a new concept of stability similar to the stability of a coalition structure
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Algorithm 15 Cloud Federation Formation Mechanism (CFFM)

1: Input: Request R
2: V = ∅
3: FS = {{C1}, · · · , {Cm}}
4: for all Fi ∈ FS do
5: v(Fi) = Solve IP-CFPM(Fi)
6: V = V ∪ Fi
7: repeat
8: MergeFederations();
9: SplitFederation();

10: until No split happens
11: Find Fk = arg maxFi∈FS {v(Fi)}
12: for all Ci ∈ Fk do
13: Calculate ψCi(Fk) based on V
14: Fk allocates and provides the requested VM instances.

defined in the context of the hedonic games [19]. The difference from the stability concept

in hedonic games is that we consider only one federation instead of a federation structure.

This is due to the fact that only one federation of cloud providers is needed to form in

order to fulfill a user request. As a result, our proposed stability notion is defined on the

participating cloud providers in the obtained federation by the proposed mechanism. We

define the individual federation stability as follows.

Definition 24 (Individual federation stability). A federation F is individually federation

stable if there is no member Ci ∈ F such that F \ {Ci} �j F for all j ∈ F .

In other words, a federation F is individually federation stable if there is no cloud

provider Ci ∈ F that can leave F without making at least one cloud provider Cj ∈ F

unhappy.

In the next section, we introduce our proposed cloud federation formation mechanism

and prove that it produces individually stable federations.

5.3.2 Cloud Federation Formation Mechanism (CFFM)

The proposed cloud federation formation mechanism (CFFM), presented in Algorithm 15,

relies on the merge and split rules defined in the previous section. The mechanism is

executed by a broker.
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Algorithm 16 MergeFederations()

1: repeat
2: Select two non-checked federations Fi,Fj ∈ FS
3: v(Fi ∪ Fj) = Solve IP-CFPM(Fi ∪ Fj)
4: V = V ∪ {Fi ∪ Fj}
5: if Fi ∪ Fj�m{Fi,Fj} then
6: Fi ← Fi ∪ Fj
7: Fj ← ∅ {Fj is removed from FS}
8: until No merge happens

CFFM receives a user request as input (line 1). CFFM uses V to store all checked

federations during the merge-and-split process. The algorithm sets V to the empty set

(line 2). First, an initial federation structure FS in which every individual cloud provider

Ci ∈ I is a federation Fi, is formed (line 3). Then, CFFM solves IP-CFPM to find v(Fi)

for each federation Fi (line 5). Note that if IP-CFPM is not feasible for a federation, i.e.,

IP does not have a solution, the value of the federation is zero. All singleton federations

are added to V (line 6).

CFFM iteratively calls MergeFederations() and SplitFederation() functions (lines 7-10).

CFFM exits from the merge-and-split process when there is no possibility for a further

merge or a further split. Then, CFFM finds a federation, Fk, with the highest total profit

among all federations in the final federation structure (line 11). CFFM calculates the

normalized estimated Banzhaf value as the individual profit for each participating cloud

provider in Fk based on its marginal contributions in the set of checked federations, V

(lines 12-13). The selected federation, Fk, provides the requested VM instances to the user

(line 14).

The MergeFederations() procedure is presented in Algorithm 16. This procedure checks

all merge possibilities of any pair of federations in the federation structure. First, MergeFed-

erations() randomly selects two non-checked federations in FS, e.g., Fi and Fj (line 2).

Then, it solves IP-CFPM to find the value of a new federation {Fi ∪ Fj}, and adds the

new federation to the set V (lines 3-4). If merge is more preferred, then federations Fi and

Fj are merged. The new federation is saved in Fi, and Fj is removed from FS (lines 5-7).

Note that the members of Fi have changed, and thus, Fi can be selected again for the
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Algorithm 17 SplitFederation()

1: for all Fi ∈ FS where |Fi| > 1 do
2: for all partitions {Fj ,Fk} of Fi,

where Fi = Fj ∪ Fk,Fj ∩ Fk = ∅ do
3: v(Fj) = Solve IP-CFPM(Fj)
4: v(Fk) = Solve IP-CFPM(Fk)
5: V = V ∪ Fj
6: V = V ∪ Fk
7: if {Fj ,Fk}�sFi then
8: Fi ← Fj
9: FS = FS ∪ Fk

10: break

merge. The MergeFederations() procedure tries to find another pair of non-checked fed-

erations in the federation structure by repeating the procedure. The MergeFederations()

procedure terminates if all pairs of federations are checked and a merge does not happen,

or the grand federation forms.

The SplitFederation() procedure is presented in Algorithm 17. This procedure checks

all split possibilities of any federation with more than one member in the federation struc-

ture. The SplitFederation() procedure tries to split a federation, e.g., Fi, into two disjoint

federations Fj and Fk, where Fj ∪ Fk = Fi. Then, it solves IP-CFPM twice to find the

value of Fj and Fk (lines 3-4). In addition, it adds the two federations into the set V

since their values are calculated (lines 5-6). If the split is more preferred, then one of the

splited federations, Fj, is saved in Fi, and the other splited federation, Fk, is added to the

federation structure (lines 7-10). Since the federation structure has changed after the split

happened, CFFM executes another iteration of merge-and-split. Note that if none of the

existing federations splits then CFFM terminates. This is due to the fact that the existing

federations already have been checked for the merge in the MergeFederations() procedure.

If only the MergeFederations() procedure is applied without applying the SplitFederation()

procedure, then the mechanism converges very fast, but the obtained solution would be far

from the optimal, since it does not allow the formation of smaller intermediate federations

that can later on lead to better federations. However, by applying the SplitFederation()

procedure, the mechanism iteratively improves the solution until it finds one that is closer
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to the optimal.

For a given user request, only one federation will form. When another request arrives

and the cloud providers participating in some already formed federations have resources

available, they can participate again along with other cloud providers to form a federation

in order to serve the request. If a cloud provider does not have any resources available, it

waits until the federation that it belongs to dissolves, and then participates again in the

federation formation mechanism to serve future requests.

5.3.3 CFFM Properties

In this section, we show that CFFM converges to a stable federation structure and analyze

CFFM’s time complexity. First, we prove that the proposed CFFM converges to a final

federation structure.

Theorem 17. CFFM converges to a federation structure composed of disjoint federations

of cloud providers.

Proof. Based on the proposed preference relation �m, the resulting federation after each

merge is more preferred than previous federations. This is also true for the resulting

federations after each split using the proposed preference relation �s. As a result, if a

federation structure is created during the merge-and-split iterations, the mechanism cannot

create that federation structure again by any further merge-and-split iterations. This is

due to the fact that by any merge-and-split iteration, the mechanism finds more preferred

federations. In addition, the total number of federation structures is finite. Therefore, the

merge-and-split iterations terminate, and the final federation structure cannot be subject

to any further merge and split. As a result, CFFM always converges.

Since CFFM converges to a final federation structure, there is no possibility for further

merge and split. Therefore, the final federation structure cannot be subject to any further

change, that is, none of the federations in the federation structure can merge to another

federation (or split into sub-federations) to form another federation structure.

Now, we prove that the final federation satisfies the individual stability property.
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Theorem 18. CFFM produces an individually stable federation.

Proof. A federation F is individually federation stable if there is no cloud provider Ci ∈ F

that can leave F without making at least one cloud provider Cj ∈ F unhappy. In the split

procedure, CFFM checks if any cloud provider in a federation wants to leave its current

federation by checking all the possibilities for split. If it finds such a cloud provider, CFFM

applies the split rule. As a result, no cloud provider that is part of the final federation has

incentive to leave the federation.

Solving the federation formation problem optimally has the same complexity as per-

forming an exhaustive search on all the possible partitions of the set of cloud providers.

However, since CFFM is using the merge and split procedures, it does not perform an

exhaustive search on the set of partitions. The time complexity of CFFM is determined by

the number of merge and split operations and the size of the sub-partitions. In the worst

case scenario, each federation needs to make a merge attempt with all the other federations

in FS. In the initial federation structure, where each of the m individual cloud providers

is a federation, the first merge occurs after m(m−1)
2

attempts in the worst case. The second

merge requires (m−1)(m−2)
2

attempts and so on. As a result, the total worst case number of

merges is in O(m3). In the worst case scenario, splitting a federation F is in O(2|F |), which

involves finding all the possible partitions of size two of the participating federations.

5.4 Experimental Results

We perform a set of simulation experiments which allows us to investigate how effective

the proposed federation formation mechanism is in producing stable cloud federations.

5.4.1 Experimental Setup

For our experiments, we consider that eight independent cloud providers are participating.

We set the costs and the types of VMs offered by each of these cloud providers to the

types and costs of VMs offered by Amazon EC2 [1] in each of its eight regions. These

cloud providers offer four types of VM instances as presented in Table 5.2. For the cost of
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Table 5.5: Cost
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Cloud
Provider

C1 C2 C3 C4 C5 C6 C7 C8

VM1

(Small)

$0.03 $0.045$0.048$0.033$0.055$0.04 $0.058$0.044

VM2

(Medium)

$0.06 $0.091$0.096$0.065$0.111$0.08 $0.115$0.088

VM3

(Large)

$0.12 $0.182$0.192$0.130$0.222$0.16 $0.230$0.175

VM4

(Ex-

tralarge)

$0.24 $0.364$0.384$0.260$0.444$0.32 $0.460$0.350

VMs, we use the VM prices of On-Demand Instance Prices offered by Amazon EC2. We

set the cost of VM instances to the half of the actual VM prices of Amazon EC2 regions.

The detailed information regarding the cost of VMs are presented in Table 5.5. We relied

only on EC2 information for its different regions because it is publicly available. Each of

the cloud providers considered in the simulation are independent and the cost information

from each of the Amazon EC2 regions is used only to setup their cost structure. Following

Samaan [154] and Toosi et al. [166], we consider 1024 cores, 1740 GB of memory, and 225 TB

of storage as the average of capacities of the cloud providers from which 40% is available for

the federation. We generate 100 requests such that requests with less than 15%, 25%, 35%,

and 45% of the total available capacity belong to the small, medium, large, and extra-large

classes, respectively. All requests cannot be served by only one cloud provider and they

need to form a federation in order to serve the user. Each class contains 25 requests, and

in the plots we represent the average of the obtained results. The parameters used in our

experiments and their values are listed in Table 5.6.

While it is desirable to compare our proposed mechanism with several mechanisms, we
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Table 5.6: Parameters

Param. Description Value(s)
m Number of cloud pro-

viders
8

n Number of VM types 4
Ni Number of cores [512, 1536]
Mi Memory (GB) [870, 2610]
Si Storage (TB) [112, 338]
cj VM cost vector (4) Based on Amazon Re-

gions
pj VM price vector (4) Based on Microsoft

Azure

found out that the existing mechanisms and approaches are not directly comparable to ours

and decided to compare it with only two other mechanisms, Optimal Cloud Federation

Mechanism (OCFM), and Random Cloud Federation Mechanism (RCFM). The OCFM

mechanism finds the optimal solution to the federation formation problem, that is, it finds

a cloud federation with maximum profit. This is achieved by exhaustively enumerating all

the possible federations and solving IP-CFPM optimally for each of these federations. We

rely on the optimal results obtained by OCFM as a benchmark for our experiments. We use

the IBM ILOG Concert Technology APIs [7] in C++ to solve the integer program IP-CFPM

associated with the mechanism. IBM ILOG provides optimization APIs and its engine is

the CPLEX Optimizer that solves integer programming problems. The RCFM mechanism

selects several cloud providers randomly and forms a federation. All the mechanisms are

implemented in C++, and the experiments are conducted on AMD 2.93GHz hexa-core

dual-processor systems with 90GB of RAM which are part of the Wayne State Grid System.

5.4.2 Analysis of Results

In Fig. 5.1, we compare the total profit obtained by CFFM with that obtained by the other

two mechanisms. In all cases CFFM yields the highest profit which is very close to the

optimal profit obtained by OCFM. These results show that RCFM achieves profits that are

not even half the profits obtained by the other two mechanisms. In addition, the obtained
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Figure 5.1: Total profit of the cloud federation
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Figure 5.2: Average size of the cloud federation

total profit obtained by CFFM and OCFM increases with the increase in the size of the

requests.

Fig. 5.2 shows the average number of cloud providers participating in the federation

for each class of requests. As it is expected, with the increase in the size of the requests,
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Figure 5.3: Execution time of the mechanisms

more cloud providers need to participate in the federation to serve the requests. The size

of the formed federations obtained by our proposed mechanism, CFFM, is close to that

of the optimal solution. Note that in RCFM some of the federations are not feasible (i.e.,

the randomly chosen cloud providers cannot fulfill the request). Therefore, the average

federation size of RCFM is very small.

Fig. 5.3 shows the execution time of the two mechanisms. The execution times of RCFM

are negligible compared to that of CFFM and OCFM, and thus, we chose not to present

them in the figure. From 255 federations that the eight cloud providers could form, CFFM

only considers some of them in the merge-and-split process based on the merge and split

rules. On average, CFFM explores 48 federations until it finds the final federation. As a

result, the execution time of CFFM is a lot less than that of OCFM which goes through

all the federations. The mechanisms require more time for larger requests. The execution

time of our proposed mechanism, CFFM, is about two orders of magnitude less than that

of the optimal mechanism OCFM.

Figs. 5.4 to 5.7 show the individual profit of each participating cloud provider in the fed-

eration, separately, for each class of requests. The mechanisms use different profit division



134

 0

 5

 10

 15

 20

 25

 30

 35

C1 C2 C3 C4 C5 C6 C7 C8

In
d
iv

id
u
a
l 
p
ro

fi
t 
(s

m
a
ll 

re
q
u
e
s
ts

)

Cloud providers

CFFM
OCFM

Figure 5.4: Profit of cloud providers (small requests)
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Figure 5.5: Profit of cloud providers (medium requests)

rules as follows. CFFM uses the estimated normalized Banzhaf value, while the OCFM

uses the normalized Banzhaf value. As it is shown in the figures, the individual profits

of the participating cloud providers are very close in CFFM and OCFM. The difference

between the average individual profit of CFFM and OCFM is 17%, 17%, 17% and 6% for
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Figure 5.6: Profit of cloud providers (large requests)
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Figure 5.7: Profit of cloud providers (extralarge requests)

small, medium, large, and extra-large requests presented in Figs. 5.4 to 5.7, respectively.

The reason that the difference between the average individual profit of CFFM and OCFM

for the extra-large requests are much less than those for the other requests is that the num-

ber of federations that are checked during the process of merge-and-split is higher, leading
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Figure 5.8: Percentage participation of cloud providers (small requests)

to a precise estimated normalized Banzhaf value. This is due to the fact that for larger

requests the number of participating cloud providers in a federation increases resulting in

more possibilities for merge-and-split operations. However, this comes at the cost of higher

execution time.

We now investigate the performance of the proposed mechanism in more details. Figs. 5.8

to 5.11 show the percentage of participation of cloud providers in the federation, separately,

for each class of requests. In all cases, the cloud provider with the lowest cost (i.e., C1) is a

member of the formed federation. Fig. 5.8 shows that C1 and C4 participated in all formed

federations obtained by CFFM and OCFM for small requests. For 40% of the requests a

federation with size two does not have enough capacity to fulfill the requests, and thus, C6

participated in the formed federation on such cases. Figs. 5.9 shows that C1, C4, and C6

participated in all formed federations for the medium requests. This is due to the fact that

their capacity is sufficient for the medium size requests. Note that all three cloud providers

have to participate in the federations for the medium size requests unlike the small size re-

quests case. In addition, as the size of the requests becomes larger, the cloud providers with

higher costs are selected to participate in federations. For example, comparing Fig. 5.8 and
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Figure 5.9: Percentage participation of cloud providers (medium requests)
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Figure 5.10: Percentage participation of cloud providers (large requests)

Fig. 5.10 we observe that C1, C4, and C6 are members of the formed federations obtained

by CFFM and OCFM. Based on Table 5.5, these cloud providers have the lowest costs.

By increasing the size of the requests from small to large, the available capacity of these

cloud providers are not sufficient enough. To fulfill the large requests (Fig. 5.10) federations
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Figure 5.11: Percentage participation of cloud providers (extralarge requests)
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Figure 5.12: Percentage of request provided by cloud providers (small requests)

with larger capacity are needed. The next lowest cost cloud provider is C8, and thus, C8 is

included in the federations formed by CFFM and OCFM to provide the requested VMs.

Note that the percentage of participation of cloud providers in the federation obtained by

RCFM is distributed over all cloud providers. This is due to the fact that RCFM selects
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Figure 5.13: Percentage of request provided by cloud providers (medium requests)
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Figure 5.14: Percentage of request provided by cloud providers (large requests)

the participating cloud providers in a federation randomly without considering their cost.

Figs. 5.12 to 5.15 show the percentage of requested cores provided to the federation by

each cloud provider. For example, Fig. 5.12 shows that using CFFM and OCFM, 41.8% of

the small requests are provided by C1, 53.4% of are provided by C4, and 4.8% are provided
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Figure 5.15: Percentage of request provided by cloud providers (extralarge requests)

by C6. However, RCFM selects the cloud providers randomly to provide VMs for the small

requests, and thus, the percentage of provided requests by cloud providers is far from the

optimal solution. As shown in Fig. 5.13, the percentage of provided requests by C1, C4,

and C6 changes to 27.5%, 41.3%, and 31.2% , respectively. The results show that with the

increase in the size of the requests, the percentage of requests provided by C6 increases.

This is due to the fact that more resources are needed to fulfill the demand of medium

requests, and thus, C6 needs to provide more resources in the federation. Note that the

amount of provided resources depends on the available capacity of the cloud providers.

From the above results, we conclude that our proposed mechanism, CFFM, is able to

form stable federations with total profit very close to the optimal profit. In addition, CFFM

finds the results in reasonable amount of time making it suitable for real cloud settings.

5.5 Conclusion

In this chapter, we proposed a mechanism that improves the cloud providers’ dynamic

resource scaling capabilities to fulfill users’ demands. We proposed a cloud federation

formation game that characterizes the process of federation formation and then proposed
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a novel cloud federation formation mechanism called CFFM. In the proposed mechanism,

cloud providers dynamically cooperate to form a federation in order to provide the requested

resources to a user. The resources are provisioned as VM instances of different types.

The proposed mechanism forms cloud federations yielding the highest total profit. The

mechanism also determines the individual profit of each participating cloud providers in

the federation using the normalized estimated Banzhaf value. In addition, our proposed

mechanism produces a stable cloud federation structure, that is, the participating cloud

providers in the federation do not have incentives to break away from the federation. We

performed extensive experiments to investigate the properties of our proposed mechanism.

The results showed that our proposed mechanism is able to form stable federations with

total profit very close to the optimal profit. In addition, our mechanism finds the stable

cloud federation in a reasonable amount of time making it suitable for real cloud settings.
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CHAPTER 6: ENERGY-AWARE SCHEDULING OF MAPREDUCE JOBS

6.1 Introduction

Several businesses and organizations are faced with an ever-growing need for analyzing

the unprecedented amounts of available data. Such need challenges existing methods, and

requires novel approaches and technologies in order to cope with the complexities of big

data processing. One of the major challenges of processing data intensive applications is

minimizing their energy costs. Electricity used in US data centers in 2010 accounted for

about 2% of total electricity used nationwide [76]. In addition, the energy consumed by the

data centers is growing at over 15% annually, and the energy costs make up about 42% of

the data centers’ operating costs [56]. Considering that server costs are consistently falling,

it should be no surprise that in the near future a big percentage of the data centers’ costs

will be energy costs. Therefore, it is critical for the data centers to minimize their energy

consumption when offering services to customers.

Big data applications run on large clusters within data centers, where their energy costs

make energy efficiency of executing such applications a critical concern. MapReduce [36]

and its open-source implementation, Hadoop [6], have emerged as the leading computing

platforms for big data analytics. For scheduling multiple MapReduce jobs, Hadoop origi-

nally employed a FIFO scheduler. To overcome the issues with the waiting time in FIFO,

Hadoop then employed the Fair Scheduler [190]. These two schedulers, however, do not

consider improving the energy efficiency when executing MapReduce applications. Im-

proving energy efficiency of MapReduce applications leads to a significant reduction of the

overall cost of data centers. In this chapter, we design MapReduce scheduling algorithms

that improve the energy efficiency of running each individual application, while satisfy-

ing the service level agreement (SLA). Our proposed scheduling algorithms can be easily

incorporated and deployed within the existing Hadoop systems.

In most of the cases, processing big data involves running production jobs periodically.

For example, Facebook processes terabytes of data for spam detection daily. Such produc-
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tion jobs allow data centers to use job profiling techniques in order to get information about

the resource consumption for each job. Job profiling extracts critical performance charac-

teristics of map and reduce tasks for each underlying application. Data centers can use the

knowledge of extracted job profiles to pre-compute new estimates of jobs’ map and reduce

stage durations, and then construct an optimized schedule for future executions. Further-

more, the energy consumption of each task on a machine can be profiled using automatic

power-meter tools such as PDU Power Strip [4], which is currently a standard practice in

data centers. Many researchers studied different profiling techniques [142, 170], and several

MapReduce scheduling studies rely on such techniques [136, 171]. Our proposed algorithms

schedule MapReduce production jobs having as the primary objective the minimization of

energy consumption.

Most of the existing research on MapReduce scheduling focused on improving the

makespan (i.e., minimizing the time between the arrival and the completion time of an ap-

plication) of the MapReduce job’s execution (e.g., [30, 33, 117, 200]). However, makespan

minimization is not necessarily the best strategy for data centers. Data centers are obli-

gated to deliver the services by their specified deadlines, and it is not in their best interests

to execute the services as fast as they can in order to minimize the makespan. This strat-

egy fails to incorporate significant optimization opportunities available for data centers to

reduce their energy costs. The majority of production MapReduce workloads consists of a

large number of jobs that do not require fast execution. By taking into account the energy

consumed by the map and reduce tasks when making scheduling decisions, the data centers

can utilize their resources efficiently and reduce the energy consumption. Our proposed

energy-aware scheduling algorithms capture such opportunities and significantly reduce the

MapReduce energy costs, while satisfying the SLA.

6.1.1 Our Contribution

To the best of our knowledge this is the first study that designs algorithms for detailed

task placement of a MapReduce job to machines with the primary focus on minimizing the

energy consumption. Our proposed algorithms can be incorporated into higher level energy
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management policies in data centers. We first model the problem of scheduling MapRe-

duce tasks for energy efficiency as an integer program. In the absence of computationally

tractable optimal algorithms for solving this problem, we design two heuristic algorithms,

called EMRSA-I and EMRSA-II, where EMRSA is an acronym for Energy-aware MapRe-

duce Scheduling Algorithm. EMRSA-I and EMRSA-II provide very fast solutions making

them suitable for deployment in real production MapReduce clusters. The time complex-

ity of the proposed algorithms is polynomial in the number of map and reduce slots, the

number of map tasks, and the number of reduce tasks. We perform experiments on a

Hadoop cluster to determine the energy consumption of several MapReduce benchmark

applications such as TeraSort, Page Rank, and K-means Clustering. We use this data in

an extensive simulation study to characterize the performance of the proposed algorithms.

We show that the current practice scheduling methods, such as makespan minimization,

produce schedules having energy consumption that is far from optimal. We compare the

performance of EMRSA-I and EMRSA-II against the optimal solution for cases in which

the optimal solution can be obtained in reasonable amount of time. The results show that

EMRSA-I and EMRSA-II are capable of finding close to optimal solutions very fast. Due

to the intractability of the problem, when the optimal results are not available, we show

that the energy consumption for the schedules obtained by the proposed algorithms is very

close to the lower bound solution obtained by the linear programming (LP) relaxation of

the integer program.

6.1.2 Related Work

We summarize the related work from three perspectives: resource allocation and scheduling

in data centers and clouds, MapReduce scheduling with different objectives, and energy

savings in data centers.

Resource allocation and scheduling in data centers and clouds. Hacker and Mahadik [53]

proposed scheduling polices for virtual high performance computing clusters. They pre-

sented a resource prediction model for each policy to estimate the resources needed within a

cloud, the queue wait time for requests, and the size of the pool of spare resources needed.
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Palanisamy et al. [135] proposed a new MapReduce cloud service model for production

jobs. Their method creates cluster configurations for the jobs using MapReduce profil-

ing and leverages deadline-awareness, allowing the cloud provider to optimize its global

resource allocation and reduce the cost of resource provisioning. Ekanayake et al. [40]

proposed a programming model and an architecture to enhance MapReduce runtime that

supports iterative MapReduce computations efficiently. They showed how their proposed

model can be extended to more classes of applications for MapReduce. Tian and Chen [165]

proposed a cost function that models the relationship between the amount of input data,

Map and Reduce slots, and the complexity of the Reduce function for the MapReduce job.

Their proposed cost function can be used to minimize the cost with a time deadline or

minimize the time under certain budget. Zhan et al. [194] proposed a cooperative resource

provisioning solution using statistical multiplexing to save the server cost. Song et al. [162]

proposed a two-tiered on-demand resource allocation mechanism consisting of the local and

global resource allocation. In our previous studies [99, 104, 124], we proposed mechanisms

for resource provisioning, allocation, and pricing in clouds considering several heteroge-

neous resources. However, none of the above mentioned studies consider the energy saving

objectives.

MapReduce scheduling with different objectives. Zaharia et al. [191] studied the prob-

lem of speculative execution in MapReduce. They proposed a simple robust scheduling

algorithm, Longest Approximate Time to End (LATE), which uses estimated finish times

to speculatively execute the tasks that hurt the response time the most. Sandholm and

Lai [155] designed a system for allocating resources in shared data and compute clusters that

improves MapReduce job scheduling. Their approach is based on isolating MapReduce clus-

ters in VMs with a continuously adjustable performance. Wang et al. [176] proposed a task

scheduling technique for MapReduce that improves the system throughput in job-intensive

environments without considering the energy consumption. Ren et al. [148] proposed a

job scheduling algorithm to optimize the completion time of small MapReduce jobs. Their

approach extends job priorities to guarantee the rapid response for small jobs. Chang et

al. [30] proposed various online and offline algorithms for the MapReduce scheduling prob-
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lem to minimize the overall job completion times. Their algorithms are based on solving

a linear program (LP) relaxation. Moseley et al. [117] proposed a dynamic program for

minimizing the makespan when all MapReduce jobs arrive at the same time. They mod-

eled the problem as a two-stage flow shop problem, and proved that the dynamic program

yields a PTAS if there is a fixed number of job-types. Pastorelli et al. [141] proposed a

size-based approach to scheduling jobs in Hadoop to guarantee fairness and near-optimal

system response times. Their scheduler requires a priori job size information, and thus, it

builds such knowledge by estimating the sizes during job execution. Wolf et al. [182] pro-

posed a flexible scheduling allocation scheme, called Flex, to optimize a variety of standard

scheduling metrics such as response time and makespan, while ensuring the same minimum

job slot guarantees as in the case of Fair scheduler. Sandholm and Lai [156] proposed a

dynamic priority parallel task scheduler for Hadoop that prioritizes jobs and users and

gives users the tool to optimize and customize their allocations to fit the importance and

requirements of their jobs such as deadline and budget. Verma et al. [170] proposed a

job scheduler for MapReduce environments that allocates the resources to production jobs.

Their method can profile a job that runs routinely and then uses its profile in the designed

MapReduce model to estimate the amount of resources required for meeting the deadline.

Verma et al. [171] proposed a job scheduler that minimizes the makespan for MapReduce

production jobs with no dependencies by utilizing the characteristics and properties of the

jobs in a given workload. Nanduri et al. [120] proposed a heuristic scheduling algorithm

to maintain a resource balance on a cluster, thereby reducing the overall runtime of the

MapReduce jobs. Their job selection and assignment algorithms select the job that is best

suitable on a particular node while avoiding node overloads. Ibrahim et al. [65] proposed a

scheduling algorithm for map tasks to improve the overall performance of the MapReduce

computation. Their approach leads to a higher locality in the execution of map tasks and

to a more balanced intermediate data distribution. Kurazumi et al. [78] proposed dynamic

processing slot scheduling for I/O intensive MapReduce jobs that use efficiently the CPU

resources with low utilization caused by I/O wait related to task execution. However, these

studies did not consider energy efficiency as their objectives.
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Energy savings in data centers. Kaushik et al. [70] proposed an approach to partition

the servers in a Hadoop cluster into hot and cold zones based on their performance, cost,

and power characteristics, where hot zone servers are always powered on and cold zone

servers are mostly idling. Cardosa et al. [26] proposed a spatio-temporal tradeoff that in-

cludes efficient spatial placement of tasks on nodes and temporal placement of nodes with

tasks having similar runtimes in order to maximize utilization. Leverich and Kozyrakis [84]

proposed a method for energy management of MapReduce jobs by selectively powering

down nodes with low utilization. Their method uses a cover set strategy that exploits

the replication to keep at least one copy of a data-block. As a result, in low utilization

periods some of the nodes that are not in the cover set can be powered down. Chen et

al. [34] proposed a method for reducing the energy consumption of MapReduce jobs with-

out relying on replication. Their approach divides the jobs into time-sensitive and less

time-sensitive jobs, where the former are assigned to a small pool of dedicated nodes, and

the latter can run on the rest of the cluster. Maheshwari et al. [87] proposed an algorithm

that dynamically reconfigures clusters by scaling up and down the number of nodes based

on the cluster utilization. Lang and Patel [80] proposed a framework for energy man-

agement in MapReduce clusters by powering down all nodes in the cluster during a low

utilization period. Wirtz and Ge [181] conducted an experimental study on the MapRe-

duce efficiency. They analyzed the effects of changing the number of concurrent worker

nodes, and the effects of adjusting the processor frequency based on workloads. Goiri et

al. [50] proposed a MapReduce framework for a data center powered by renewable sources

of energy such as solar or wind, and by the electrical grid for backups. Their proposed

framework schedules jobs to maximize the green energy consumption by delaying many

background computations within the jobs’ bounded time. Salehi et al. [153] proposed an

adaptive energy management policy employing a fuzzy reasoning engine to determine if

the resources for a request have to be allocated through switching on resources, preemp-

tion, consolidation, or a combination of these. Shen and Wang [160] formulated several

stochastic optimization models to investigate the trade-off between energy footprints and

quality of service in cloud computing services. In their models, decisions include workload
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scheduling and switching servers on/off based on loads. While the above frameworks can

be used as data center-level energy minimization strategies, our focus is on minimizing the

energy consumption by scheduling jobs, which can be considered as a cluster-level strategy

in data centers. In addition, none of the above frameworks and systems exploit the job

profiling information when making the decisions for task placement on the nodes to increase

the energy efficiency of executing MapReduce jobs. Our proposed algorithms consider the

significant energy consumption differences of different task placements on machines, and

find an energy efficient assignment of tasks to machines.

6.1.3 Organization

The rest of the chapter is organized as follows. In Section 6.2, we describe the problem

of scheduling MapReduce jobs for energy efficiency. In Section 6.3, we present our pro-

posed algorithms. In Section 6.4, we evaluate the algorithms by extensive experiments. In

Section 6.5, we summarize our results.

6.2 Energy-aware MapReduce Scheduling Problem

A MapReduce job comprising a specific number of map and reduce tasks is executed on

a cluster composed of multiple machines. The job’s computation consists of a map phase

followed by a reduce phase. In the map phase, each map task is allocated to a map slot

on a machine, and processes a portion of the input data producing key-value pairs. In

the reduce phase, the key-value pairs with the same key are then processed by a reduce

task allocated to a reduce slot. As a result, the reduce phase of the job cannot begin until

the map phase ends. At the end, the output of the reduce phase is written back to the

distributed file system. In Hadoop, job scheduling is performed by a master node running

a job tracker process, which distributes jobs to a number of worker nodes in the cluster.

Each worker runs a task tracker process, and it is configured with a fixed number of map

and reduce slots. The task tracker periodically sends heartbeats to the job tracker to report

the number of free slots and the progress of the running tasks.
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We consider a big data application consisting of a set of M map and R reduce tasks

that needs to be completed by deadline D. Tasks in each set can be run in parallel, but no

reduce task can be started until all map tasks for the application are completed. Let M

and R be the set of map and reduce tasks of the application, and A and B the set of

slots on heterogeneous machines available for executing the map and the reduce tasks,

respectively. The number of slots for each machine is decided by the system administrators

when the Hadoop cluster is setup and each slot can handle only one map or reduce task at

a time. Since we consider a heterogeneous cluster, the execution speed of a task on different

slots from different machines may not be the same. Also, the energy required to execute

a task on different slots may not be the same. We denote by eij the difference between

energy consumption of slot j ∈ {A,B} when executing task i ∈ {M,R} and its idle energy

consumption. In addition, we denote by pij the processing times of task i ∈ {M,R} when

executed on slot j ∈ {A,B}. We assume that the processing time of the tasks are known.

In doing so, we use the knowledge of extracted job profiles to pre-compute the processing

time of map and reduce tasks, along with their energy consumption. We define an indicator

variable δti, ∀t, i ∈ M ∪ R, characterizing the dependencies of the map and reduce tasks

as follows:

δti =

1 if task i should be assigned after task t

0 otherwise

(6.1)

We formulate the Energy-aware MapReduce Scheduling problem as an Integer Program
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(called EMRS-IP), as follows:

Minimize
∑
j∈A

∑
i∈M

eijXij +
∑
j∈B

∑
i∈R

∑
t∈M∪R

δtieijYij (6.2)

Subject to:∑
j∈A

Xij = 1,∀i ∈M (6.3)

∑
j∈B

∑
t∈M∪R

δtiYij = 1,∀i ∈ R (6.4)

∑
i∈M

pijXij +
∑
i∈R

∑
t∈M∪R

δtipij′Yij′ ≤ D,

∀j ∈ A,∀j′ ∈ B (6.5)

Xij = {0, 1}, ∀i ∈M, ∀j ∈ A (6.6)

Yij = {0, 1},∀i ∈ R, ∀j ∈ B (6.7)

where the decision variables Xij and Yij are defined as follows:

Xij =

1 if map task i is assigned to slot j

0 otherwise

(6.8)

Yij =

1 if reduce task i is assigned to slot j

0 otherwise

(6.9)

The objective function is to minimize the energy consumed when executing the MapRe-

duce application considering the dependencies of reduce tasks on the map tasks. Con-

straints (6.3) ensure that each map task is assigned to a slot for execution. Constraints (6.4)

ensure that each reduce task is assigned to a slot. Constraints (6.5) ensure that processing

time of the application does not exceed its deadline. Constraints (6.6) and (6.7) represent

the integrality requirements for the decision variables. The solution to EMRS-IP consists
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of X and Ŷ , where Ŷij =
∑

t∈M∪R δtiYij, i ∈ R, and j ∈ B.

Note that based on constraints (6.5), the scheduler can assign all reduce tasks after

finishing all map tasks without exceeding the deadline. This is due to the fact that these

constraints can be interpreted as max∀j∈A
∑

i∈M pijXij + max∀j′∈B
∑

i∈R pij′Yij′ ≤ D. As a

result, all reduce tasks can be assigned after time max∀j∈A
∑

i∈M pijXij. In addition, the

scheduler can assign multiple map tasks to a machine, as well as multiple reduce tasks.

This is due to the fact that in bigdata applications the number of tasks is greater than

the number of machines available in a cluster. The focus of this study is the detailed

placement of map and reduce tasks of a job in order to reduce energy consumption. While

it is important to consider data placement in an integrated framework for energy savings

in data centers, data placement is beyond the scope of this study.

At the high level the problem we consider may appear as composed of two independent

scheduling problems, one for the map tasks and one for the reduce tasks. This would be

the case if the deadline for the map phase would be known. But since the deadline for

map tasks is not known from the beginning, we cannot just simply divide the problem

into two scheduling subproblems and solve them independently. Our proposed algorithms

determine the map deadline as the tasks are allocated and schedule the map and reduce

tasks to reduce the energy consumption of executing the job.

6.3 Energy-aware MapReduce Scheduling Algorithms

We design two heuristic algorithms called EMRSA-I and EMRSA-II for solving the energy-

aware MapReduce scheduling problem. Our proposed algorithms, EMRSA-I and EMRSA-

II, take the energy efficiency differences of different machines into account and determine

a detailed task placement of a MapReduce job into slots while satisfying the user specified

deadline. The two algorithms are presented as a single generic algorithm called EMRSA-X,

in Algorithm 18.

The design of these algorithms require a metric that characterizes the energy consump-

tion of each machine and induces an order relation among the machines. We define such a

metric, called energy consumption rate of a slot j. EMRSA-I and EMRSA-II use different
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energy consumption rate metrics as follows:

1) EMRSA-I uses energy consumption rate metrics based on the minimum ratio of

energy consumption and processing time of tasks when executed on slot j, as follows:

ecrmj = min
∀i∈M

eij
pij
,∀j ∈ A (6.10)

ecrrj = min
∀i∈R

eij
pij
,∀j ∈ B (6.11)

where ecrmj and ecrrj represent the energy consumption rate of map slot j and reduce slot j,

respectively.

2) EMRSA-II uses energy consumption rate metrics based on the average ratio of energy

consumption and processing time of tasks when executed on slot j, as follows:

ecrmj =

∑
∀i∈M

eij
pij

M
, ∀j ∈ A (6.12)

ecrrj =

∑
∀i∈R

eij
pij

R
,∀j ∈ B (6.13)

The ordering induced by these metrics on the set of slots determines the order in which

the slots are assigned to tasks, that is, a lower ecrmj means that slot j has a higher priority

to have a map task assigned to it. Similarly, a lower ecrrj means that slot j has a higher

priority to have a reduce task assigned to it.

In addition, EMRSA-X uses the ratio of map and reduce processing times, denoted

by f , in order to balance the assignment of map and reduce tasks. The ratio f is defined

as follows:

f =

∑
∀i∈M pijm∑
∀i∈R pijr

(6.14)

This ratio is used in the task assignment process in each iteration of EMRSA-X. As we



153

already mentioned, we use job profiling of production jobs to estimate the processing time

of map and reduce tasks. This information, extracted from job profiling (i.e., the values of

pijm and pijr) is used by EMRSA-X to compute the ratio f .

A key challenge when designing the algorithms is that the user only specifies the deadline

for the job and there is no information on the deadline for completing the map phase.

However, since the reduce tasks are dependent on the map tasks, the algorithms have to

determine a reasonable deadline for the map tasks with respect to the availability of the

map slots in the cluster in order to utilize its resources efficiently. Our proposed algorithms

find the assignments of map tasks to the map slots satisfying the determined map deadline,

and then find the assignments of reduce tasks to the reduce slots satisfying the deadline D,

where all the reduce tasks start after the map deadline.

First, EMRSA-X determines the assignment of large tasks in terms of their processing

time, and the map deadline according to such tasks. The reason that EMRSA-X gives

priority to large tasks is due to the hard deadline constraint, and the fact that there may

not be many choices for large task placement configurations to avoid exceeding the deadline

constraint. Then, EMRSA-X tries to close the optimality gap by filling with smaller tasks

the leftover time of each slot based on the deadline. This leads to better utilization of each

machine in the cluster.

EMRSA-X is given in Algorithm 18. EMRSA-X builds two priority queues Qm and Qr

to keep the order of the map and reduce slots based on their energy consumption rates

(lines 1-8). Then, it initializes the deadlines for map tasks, Dm, and reduce tasks, Dr, to

infinity. In each iteration of the while loop, the algorithm chooses the slots with the lowest

energy consumption rates (i.e., jm and jr) from the priority queues, and finds the task

placement on the selected slots. For these slots, the ratio of processing time of map tasks

to that of the reduce tasks, denoted by f , is calculated (line 13). Then, EMRSA-X sorts

the unassigned map and reduce tasks, if there is any, based on their processing time on

the selected slots (lines 14-15). Then, it determines the assignments of large tasks based

on the metric f by calling ASSIGN-LARGE() (given in Algorithm 19). Then, it finds the

assignments of small tasks by calling ASSIGN-SMALL() (given in Algorithm 20) if there is
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Algorithm 18 EMRSA-X

1: Create an empty priority queue Qm
2: Create an empty priority queue Qr
3: for all j ∈ A do
4: ecrmj = min∀i∈M

eij
pij

, for EMRSA-I; or

ecrmj =

∑
∀i∈M

eij
pij

M , for EMRSA-II
5: Qm.enqueue(j, ecrmj )
6: for all j ∈ B do
7: ecrrj = min∀i∈R

eij
pij

, for EMRSA-I; or

ecrrj =

∑
∀i∈R

eij
pij

R , for EMRSA-II
8: Qr.enqueue(j, ecrrj)
9: Dm ←∞; Dr ←∞

10: while Qm is not empty and Qr is not empty do
11: jm = Qm.extractMin()
12: jr = Qr.extractMin()

13: f =
∑
∀i∈M pijm∑
∀i∈R pijr

14: T m: sorted unassigned map tasks i ∈M based on pijm

15: T r: sorted unassigned reduce tasks i ∈ R based on pijr

16: if T m = ∅ and T r = ∅ then break
17: ASSIGN-LARGE()
18: ASSIGN-SMALL()
19: if Dm =∞ then
20: Dm = D − pr
21: Dr = pr

22: if T m 6= ∅ or T r 6= ∅ then
23: No feasible schedule
24: return
25: Output: X,Y

any unallocated processing time on a slot. EMRSA-X assigns a new task to a slot whenever

the slot becomes available. At the end of the first iteration, the algorithm sets the map

and reduce deadlines based on the allocated tasks (lines 19-21).

We now describe the two procedures, ASSIGN-LARGE() and ASSIGN-SMALL() into

more details. ASSIGN-LARGE() is given in Algorithm 19. ASSIGN-LARGE() selects the

longest map task im and reduce task ir from the sorted sets T m and T r, respectively (lines 1-

2). Then it checks the feasibility of allocating map task im to slot jm and reduce task ir to

slot jr by checking the total processing time of the tasks against the deadline D (line 4).

If the assignment of map task im and reduce task ir is feasible, the algorithm continues



155

Algorithm 19 ASSIGN-LARGE()

1: im = argmaxt∈T m ptjm

2: ir = argmaxt∈T r ptjr

3: pm = 0; pr = 0
4: if pimjm + pirjr ≤ D and pimjm ≤ Dm and pirjr ≤ Dr then
5: T m = T m \ {im}
6: T r = T r \ {ir}
7: pm = pimjm

8: pr = pirjr

9: Ximjm = 1
10: Yirjr = 1
11: do
12: im = argmaxt∈T m ptjm

13: ir = argmaxt∈T r ptjr

14: if f > 1 then

15: while
pm+pimjm

pr < f and pm + pr + pimjm ≤ D and pm + pimjm ≤ Dm and T m 6= ∅
do

16: T m = T m \ {im}
17: pm = pm + pimjm

18: Ximjm = 1
19: im = argmaxt∈T m ptjm

20: Balance the assignment of reduce tasks (repeat lines 15-19 for reduce tasks).
21: else
22: The code for f < 1 is similar to lines 15-20 and is not presented here.
23: while pm+pr+pimjm +pirjr ≤ D and pm+pimjm ≤ Dm and pr+pirjr ≤ Dr and (T m 6= ∅

or T r 6= ∅)

Algorithm 20 ASSIGN-SMALL()

1: {Assign small map tasks}
2: i = argmint∈T m ptjm

3: while pm + pr + pijm ≤ D and pm + pijm ≤ Dm and T m 6= ∅ do
4: T m = T m \ {i}
5: pm = pm + pijm

6: Xijm = 1
7: i = argmint∈T m ptjm

8: {Assign small reduce tasks}
9: i = argmint∈T r ptjr

10: while pm + pr + pijr ≤ D and pm + pijm ≤ Dr and T r 6= ∅ do
11: T r = T r \ {i}
12: pr = pr + pijr

13: Yijr = 1
14: i = argmint∈T r ptjr
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to select tasks from T m and T r, and updates the variables accordingly (lines 5-23). To

keep the assignments of the tasks in alignment with the ratio of processing time f , the

procedure balances the assignment. In doing so, if f > 1 (i.e., the load of processing time

of map tasks is greater than that of reduce tasks) and the ratio of the current assignment is

less than f , then the algorithm assigns more map tasks to balance the allocated processing

time close to f (lines 15-20). If the ratio of the current assignment is greater than f , the

procedure assigns more reduce tasks to balance the allocated processing time (lines 22).

After allocating the map and reduce tasks with the largest processing time, EMRSA-

X assigns small map and reduce tasks while satisfying the deadline by calling ASSIGN-

SMALL() (given in Algorithm 20). ASSIGN-SMALL() selects the smallest map task i,

and based on the already assigned tasks and the remaining processing time of the slot, it

decides if allocating task i is feasible or not (line 3). Then, it selects the smallest reduce

task i, and checks the feasibility of its assignment (line 10).

The time complexity of EMRSA-X isO(A(M+logA)+B(R+logB)+min(A,B)(M logM+

R logR)), where A, B, M , and R are the number of map slots, the number of reduce slots,

the number of map tasks, and the number of reduce tasks, respectively. The first two terms

correspond to the running time of the two for loops in lines 4-5 and 6-8, while the third

term corresponds to the running time of the while loop in lines 10-21.

6.3.1 Example

We now describe how EMRSA-II algorithm works by considering an example. We consider

a job with 2 map tasks {tm1 , tm2 } and 2 reduce tasks {tr1, tr2} with a deadline of 12, and

a data center with 3 map slots {a1, a2, a3} and 2 reduce slots {b1, b2}. The processing

time and energy consumption of the map and reduce tasks are presented in Table 6.1 and

Table 6.2, respectively. For example, task tm1 has 8 units of processing time and 8 units

of energy consumption if it runs on map slot a1 (i.e., p11 = 8 and e11 = 8). Then, we

have ecrm = {1, 2.5, 4.5} and ecrr = {3, 1.5} for the map and reduce slots. EMRSA-II

determines Qm = {a1, a2, a3} and Qr = {b2, b1} (Algorithm 1, lines 1-8). Based on the

priority queues, Qm and Qr, the first map slot to take into account is a1, and the first
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Table 6.1: Example: Map tasks.

Map tasks

Processing time Energy consumption

a1 a2 a3 a1 a2 a3

Tasks
tm1 8 4 2 8 12 12

tm2 3 2 1 3 4 3

Table 6.2: Example: Reduce tasks.

Reduce tasks

Processing time Energy consumption

b1 b2 b1 b2

Tasks
tr1 2 3 6 3

tr2 2 2 6 4

reduce slot is b2. For these slots, the longest tasks are tm1 and tr1, respectively (i.e., X11 = 1

and Y12 = 1). Based on the deadline, the algorithm cannot assign more tasks to these slots.

Therefore, the deadlines for the map and reduce tasks are Dm = 8 and Dr = 12 − 8 = 4,

respectively. That means, map tasks can be assigned to the other slots with the deadline

of 8, and the reduce tasks can be assigned to the other slots from time 8 by the deadline

of 12.

The map tasks assignment is as follows. So far we have X11 = 1, the algorithm chooses

the second map slot in Qm, and finds the longest task that has not been assigned to any

slot yet. That means tm2 is assigned to a2 (i.e., X22 = 1). For the reduce tasks assignment,

we already have Y12 = 1. The algorithm chooses the second reduce slot in Qr, and finds the

longest task that has not been assigned to any slot yet. That means tr2 is assigned to b1 (i.e.,

Y21 = 1). This solution leads to a total energy consumption of 21 units, while satisfying the

deadline constraint. However, the solution that minimizes the makespan will select X13 = 1

and X22 = 1 to obtain a map makespan of 2 units, and will select Y11 = 1 and Y22 = 1 to

obtain a reduce makespan of 2 units. This solution leads to a total makespan of 4 units

with a total energy consumption of 26. Both approaches obtain schedules that meet the

deadline. However, our proposed algorithm reduces the energy consumption by 19%. Note
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that the makespan for our approach is 11.

6.4 Experimental Results

We perform extensive experiments in order to investigate the properties of the proposed

algorithms, EMRSA-I and EMRSA-II. We compare the performance of EMRSA-I and

EMRSA-II with that of OPT, where OPT obtains the optimal solution minimizing the

energy consumption. OPT is obtained by optimally solving the EMRS-IP problem (Equa-

tions (6.2) to (6.7)). Since OPT cannot find the optimal solutions in several cases due

to the intractability of the problem, we present the results of the linear programming

(LP) relaxation of EMRS-IP by changing the binary decision variables into continuous

decision variables (constraints (6.6) and (6.7)). The LP relaxation of EMRS-IP, called

EMRS-LP, transforms an NP-hard optimization problem (EMRS-IP) into a related prob-

lem that is solvable in polynomial time. EMRS-LP gives a lower bound on the optimal

solution of EMRS-IP by allowing partial assignments of each task to machines. Therefore,

OPTEMRS−LP ≤ OPTEMRS−IP , where OPTEMRS−LP is the optimal solution to EMRS-LP,

and OPTEMRS−IP is the optimal solution to EMRS-IP.

However, such partial assignment of each task (obtained by solving the relaxation of

EMRS-IP) is not a solution for the problem and cannot be used in practice. We only use the

solution of the EMRS-LP (the relaxation of EMRS-IP) as a lower bound for EMRS-IP and

compare it with the solutions obtained by the other algorithms. We denote by L-BOUND

the algorithm that solves EMRS-LP and produces the lower bound on the solutions.

In addition, we present the results of minimizing the makespan, MSPAN, to show how

far the current practice in MapReduce scheduling is from the optimal solutions that consider

energy savings objectives. MSPAN is obtained by optimally solving the IP corresponding

to the MapReduce makespan minimization problem (the same constraints as in ERMSA-

IP, but the objective is makespan minimization). Since MSPAN cannot find the optimal

solutions in several cases due to the intractability of the problem, we implemented a greedy

algorithm for makespan minimization, called G-MSPAN. G-MSPAN schedules the tasks on

the machines such that the processing time of all machines are balanced. It assigns longer
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Table 6.3: Selected HiBench workloads.

Category Workload

Micro Benchmarks TeraSort

Web Search Page Rank

Machine Learning K-means Clustering

tasks to faster machines to keep the balance.

To analyze the performance of EMRSA-I and EMRSA-II, we present two classes of

experiments, small-scale and large-scale. In the small-scale experiments, we compare the

performance of EMRSA-I, EMRSA-II, OPT, and MSPAN for small MapReduce jobs. For

large jobs, however, we cannot obtain the optimal results for OPT and MSPAN even after

24 hours, thus, we compare the performance of EMRSA-I, EMRSA-II, L-BOUND, and

G-MSPAN.

EMRSA-I, EMRSA-II, OPT, L-BOUND, MSPAN, and G-MSPAN algorithms are im-

plemented in C++. OPT, MSPAN, and L-BOUND are implemented using APIs provided

by IBM ILOG CPLEX Optimization Studio Multiplatform Multilingual eAssembly [7]. In

this section, we describe the experimental setup and analyze the experimental results.

6.4.1 Experimental Setup

We performed extensive experiments on a Hadoop cluster of 64 processors and measured

the energy and execution time for several MapReduce HiBench benchmark workloads [64].

HiBench is a comprehensive benchmark suite for Hadoop provided by Intel to characterize

the performance of MapReduce based data analysis running in data centers. HiBench

contains ten workloads, classified into four categories: Micro Benchmarks, Web Search,

Machine Learning, and Analytical Query. We select three workloads, TeraSort, Page Rank,

and K-means Clustering, from different categories as shown in Table 6.3. The cluster is

composed of four Intel nodes, with one node as a master. Two of the nodes have 24GB

memory, 16 2.4GHz Intel processors, and a 1TB Hard Drive. The other two nodes have

16GB memory, 16 2.4GHz Intel processors, and a 1TB Hard Drive. The cluster has a total
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Figure 6.1: Energy needs of tasks for the actual and simulated architectures

of 80GB memory, 64 processors, 4TB of storage, and network speed of 1Gbps. We set

one map slot and one reduce slot per processor. Energy measurements were taken using

Wattsup? PRO ES.Net Power meter. The input voltage is 100-250 Volts at 60 HZ and

the max wattage is 1800 Watts. The measurement accuracy is +/- 1.5% and the selected

interval of time between records is one second.

We run and profiled several TeraSort, Page Rank, and K-means Clustering workloads

from the HiBench benchmark set. Each workload contains both map and reduce tasks.

For each workload, we collect its start time, finish time, the consumed power and other

performance metrics. We used 240 workloads for job profiling. We run only one job at a

time, and collect the energy measurements and execution times. Since the reduce tasks

execute only after the execution of all map tasks is completed, we do not have overlaps

between the map and reduce tasks. Based on the collected job profiles, we generated four

small MapReduce jobs that we use in the small-scale experiments with the deadline of 250

seconds, and twenty four large MapReduce jobs, that we use in the large-scale experiments

with the deadline of 1500 seconds. Since for production jobs the choice of the deadline is at

the latitude of the users, we select the deadlines specifically to obtain feasible schedules. The

execution time and the energy consumption of the map and reduce tasks composing these
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Table 6.4: Terasort Workloads for the small scale experiments.

Workload Map tasks Reduce tasks

(48M, 48R) 48 48

(48M, 64R) 48 64

(64M, 48R) 64 48

(64M, 64R) 64 64

jobs were generated from uniform distributions having as the averages the average energy

consumption and the average execution time of the map and reduce tasks extracted from the

jobs profiled in our experiments. Fig. 6.1 shows the energy needs of map and reduce tasks

for the actual and simulated architecture. The energy consumption range of each node is

shown as a filled box, where the bottom and the top of the box represent the minimum and

the maximum energy consumption, respectively. For the simulated architecture, the energy

consumption of each node is generated within a range whose boundaries are represented in

the figure as horizontal lines. The simulation experiments are conducted on AMD 2.93GHz

hexa-core dual-processor systems with 90GB of RAM which are part of the Wayne State

Grid System.

6.4.2 Analysis of Results

Small-scale experiments

We analyze the performance of EMRSA-I, EMRSA-II, OPT, and MSPAN for four small

MapReduce TeraSort jobs with 10,737,418 records, where the number of map tasks and

reduce tasks are presented in Table 6.4. For example, the smallest job represented by

(48M, 48R) has 48 map tasks and 48 reduce tasks. Fig. 6.2 presents the energy consumption

of the jobs scheduled by the four algorithms we consider. The results show that EMRSA-I

and EMRSA-II obtain the assignments of map and reduce tasks with energy consumption

close to the optimal solution, obtained by OPT. OPT, EMRSA-I, and EMRSA-II are able

to schedule the tasks with an average of 41.0%, 38.9%, and 39.2% less energy consumption

than that of MSPAN, respectively. For example, the total energy consumptions for work-

load (48M, 48R) obtained by EMRSA-I, EMRSA-II, OPT, and MSPAN are 5356, 5396,
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Figure 6.2: EMRSA-I and EMRSA-II performance on TeraSort: Energy consumption
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Figure 6.3: EMRSA-I and EMRSA-II performance on TeraSort: Execution time

5233, and 8687 J, respectively. While it is desirable to use OPT as a scheduler to reduce

cost, the slow execution of OPT makes it prohibitive to use in practice. In addition, it

is practically impossible to use OPT when it comes to scheduling big data jobs due to its

prohibitive runtime. EMRSA-I and EMRSA-II are very fast and practical alternatives for

scheduling big data jobs, leading to 39% reduction in energy consumption. However, the
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Figure 6.4: TeraSort energy consumption (small-scale experiments): Map tasks
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Figure 6.5: TeraSort energy consumption (small-scale experiments): Reduce tasks

energy consumption obtained by MSPAN is far from the optimal solution, making it not

suitable for scheduling MapReduce jobs with the goal of minimizing the energy consump-

tion.

Fig. 6.3 presents the execution time of the algorithms. The results show that EMRSA-I

and EMRSA-II find the assignments in significantly less amount of time than OPT and



164

MSPAN. As shown in this figure, EMRSA-I and EMRSA-II obtain the solution in a time

that is six orders of magnitude less than that of OPT. For example, the execution times of

EMRSA-I, EMRSA-II, OPT, and MSPAN for the workload (48M, 48R) are 0.001, 0.001,

673.7, and 839.3 seconds, respectively.

In Fig. 6.4 and Fig. 6.5, we present the energy consumption of map and reduce tasks

in more details. When the number of reduce tasks is greater than the number of map

tasks (e.g., workload (48M, 64R)), EMRSA-I and EMRSA-II capture more optimization

opportunities for energy saving available for reduce tasks. In more detail, the energy

consumptions of map tasks for workload (48M, 64R) obtained by EMRSA-I, EMRSA-

II, OPT, and MSPAN are 3130, 3090, 2897, and 4751 J, respectively, while the energy

consumptions of reduce tasks for workload (48M, 64R) are 3547, 3527, 3448, and 5972 J,

respectively. However, when the workload has more map tasks than reduce tasks (e.g.,

workload (64M, 48R)), EMRSA-I and EMRSA-II save more energy for map tasks. The

energy consumption for the map tasks of workload (64M, 48R) obtained by employing

EMRSA-X (shown in Fig. 6.4) is closer to the optimal than the energy consumption for

the reduce tasks (shown in Fig. 6.5) for the same workload. This is due to the fact that for

this workload, the load of the map tasks is greater than that of the reduce tasks, that is

f > 1. For workload (48M, 64R), where f < 1, EMRSA-X leads to an energy consumption

closer to the optimal for the reduce tasks. This shows the effect of ratio f on the energy

consumption.

Large-scale experiments

We analyze the performance of EMRSA-I, EMRSA-II, L-BOUND, and G-MSPAN, for

three types of benchmarks (TeraSort, Page Rank, and K-means Clustering) considering

eight large MapReduce jobs for each, where the number of map tasks and reduce tasks are

given in Table 6.5.

(i) Terasort: Fig. 6.6 shows the energy consumption of EMRSA-I, EMRSA-II, L-

BOUND, and G-MSPAN. This figure shows that the energy consumption obtained by

EMRSA-I and EMRSA-II is very close to the lower bound for all cases, which in turn im-
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Table 6.5: Workloads for the large scale experiments.

Workload Map tasks Reduce tasks

(128M, 128R) 128 128

(128M, 256R) 128 256

(128M, 512R) 128 512

(256M, 128R) 256 128

(256M, 256R) 256 256

(256M, 512R) 256 512

(512M, 128R) 512 128

(512M, 512R) 512 512

plies that EMRSA-I and EMRSA-II solutions are even closer to the optimal solutions. This

shows the near-optimality of solutions obtained by EMRSA-I and EMRSA-II. In some cases

EMRSA-I obtains better results. However, the results show that EMRSA-I and EMRSA-II

are able to find schedules requiring an average of 35.6% and 35.8% less energy than that of

those obtained by G-MSPAN, respectively. Such reduction in energy consumption can be

a great incentive for data centers to incorporate EMRSA-I and EMRSA-II for scheduling

MapReduce jobs to reduce their costs. Note that the amount of energy savings obtained by

EMRSA-I and EMRSA-II in the large-scale experiments is compared with that obtained

by the G-MSPAN. However, in the small-scale experiments, we presented the amount of

energy savings of EMRSA-I and EMRSA-II compared to the optimal makespan minimiza-

tion algorithm. As the total number of map and reduce tasks increases (from 256 to 1024),

the total amount of energy consumption of the workloads increases. In addition, this figure

shows the sensitivity analysis on the number of tasks. By fixing the number of map tasks

while increasing the number of reduce tasks, we observe an increase in the total energy

consumption. For example, this behavior is shown for the first three workloads, where the

number of map tasks is 128, and the number of reduce tasks is from 128 to 512.

Fig. 6.7 shows the execution time of the algorithms. EMRSA-I, EMRSA-II, and G-

MSPAN find the results in less than a second for all selected MapReduce jobs. Note that

the lower bound results are obtained by solving the LP relaxation, not the EMRSA-IP.

The execution time of L-BOUND presenting the LP relaxation results is polynomial. In
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Figure 6.6: EMRSA-I and EMRSA-II performance on TeraSort: Energy consumption
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Figure 6.7: EMRSA-I and EMRSA-II performance on TeraSort: Execution time

addition, with the increase in the total number of map and reduce tasks, the execution

time of L-BOUND increases. For example, the execution time of L-BOUND increases from

workload (128M, 128R) to (128M, 512R). However, it decreases from workload (128M,

512R) to (256M,128R). The execution time of EMRSA-I and EMRSA-II follows the same

behavior.
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Figure 6.8: TeraSort energy consumption (large-scale experiments): Map tasks
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Figure 6.9: TeraSort energy consumption (large-scale experiments): Reduce tasks

In Fig. 6.8 and Fig. 6.9, we present the energy consumption of map and reduce tasks

separately in more detail. The results show that for both map and reduce tasks, the

solutions obtained by EMRSA-I and EMRSA-II are very close to the lower bounds. In

addition, we perform sensitivity analysis with respect to the number of map and reduce

tasks. Fig. 6.8 and Fig. 6.9 show how the energy consumption of map and reduce tasks
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Figure 6.10: EMRSA-I and EMRSA-II performance on Page Rank: Energy consumption

changes by fixing the number of map tasks (e.g., to 128), and changing the number of

reduce tasks (e.g., from 128 to 512). For example, for workloads (128M, 128R), (128M,

256R), and (128M, 512R), Fig. 6.8 shows that these workloads have almost the same energy

consumption for their map tasks, which is expected as the number of map tasks are the

same. However, Fig. 6.9 shows an exponential increase in the energy consumption of the

reduce tasks for these workloads which is expected as the number of reduce tasks increases

exponentially. For the sensitivity analysis of energy consumption with respect to number

of reduce tasks, we analyze workloads (128M, 128R), (256M, 128R), and (512M, 128R).

Fig. 6.9 shows that these workloads have almost the same energy consumption for their

reduce tasks since the number of reduce tasks are the same. However, Fig. 6.8 shows that

by increasing the number of map tasks, the energy consumption of the map tasks for these

workload increases.

(ii) Page Rank: Fig. 6.10 shows the energy consumption of EMRSA-I, EMRSA-II, L-

BOUND, and G-MSPAN. This figure shows that the obtained results by EMRSA-I and

EMRSA-II are very close to the lower bounds obtained by L-BOUND. The results show

that EMRSA-I and EMRSA-II are able to find schedules requiring an average of 35.3% and

35.5% less energy than that of those obtained by G-MSPAN, respectively. The sensitivity
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Figure 6.11: EMRSA-I and EMRSA-II performance on Page Rank: Execution time

analysis with respect to the number of tasks shows that by increasing the total number of

map and reduce tasks, the energy consumption increases. For example, the total energy

consumptions of (256M, 128R) obtained by EMRSA-I, EMRSA-II, the L-BOUND, and

G-MSPAN are 26,064, 26,364, 25,642.7, and 45,845 J, respectively, while the total energy

consumptions of (256M, 512R) are 68,388, 67,888, 65,832.3, and 100,426 J, respectively.

For jobs with the same number of map tasks and the same number of reduce tasks, the

energy consumption of Page Rank is similar to TeraSort energy consumption as shown in

Fig. 6.6.

Fig. 6.11 shows the execution time of the algorithms. EMRSA-I, EMRSA-II, and G-

MSPAN find the solutions very fast. With the increase in the total number of map and

reduce tasks, the execution time of all algorithms increases. For example, the execution time

of L-BOUND for workload (512M, 128R) increases from 1.43 to 3.22 seconds for workload

(512M, 512R). In addition, the execution time of EMRSA-I and EMRSA-II for workload

(512M, 128R) increases from 0.004 to 0.006 seconds for workload (512M, 512R).

Fig. 6.12 and Fig. 6.13, show the energy consumption of map and reduce tasks separately

in more detail, and they are similar to the results for TeraSort workloads. These figures

show the sensitivity analysis with respect to number of map and reduce tasks.
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Figure 6.12: Page Rank energy consumption (large-scale experiments): Map tasks
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Figure 6.13: Page Rank energy consumption (large-scale experiments): Reduce tasks

(iii) K-means Clustering: Fig. 6.14 shows the energy consumption of EMRSA-I, EMRSA-

II, L-BOUND, and G-MSPAN. The results show that the obtained solutions by EMRSA-I

and EMRSA-II are very close to the lower bounds obtained by L-BOUND. This figure

shows that EMRSA-I and EMRSA-II are able to save an average of 30.9% and 31.4% en-

ergy compared to G-MSPAN, respectively. This figure also shows the sensitivity analysis
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Figure 6.14: EMRSA-I and EMRSA-II performance on K-means: Energy consumption
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Figure 6.15: EMRSA-I and EMRSA-II performance on K-means: Execution time

on the total number of tasks, along with the detailed sensitivity analysis on the number of

map and reduce separately. It confirms the above mentioned sensitivity analysis results for

TeraSort and Page Rank. However, for similar workloads (i.e., having the same number

of map tasks and the same number of reduce tasks) the energy consumption of K-means

Clustering is almost twice the energy consumption of Page Rank and TeraSort. This shows
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Figure 6.16: K-means Clustering energy consumption: Map tasks
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Figure 6.17: K-means Clustering energy consumption: Reduce tasks

that K-means Clustering tasks are more computationally complex than TeraSort and Page

Rank, leading to consuming more energy.

In Fig. 6.15, we present the execution time of the algorithms. The results show that

EMRSA-I, EMRSA-II, and G-MSPAN find the solutions very fast. In Fig. 6.16 and

Fig. 6.17, we present the energy consumption of map and reduce tasks separately in more
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details. The results show that for both map and reduce tasks, the obtained results by

EMRSA-I and EMRSA-II are very close to the lower bounds. In addition, these figures

show the sensitivity analysis with respect to the number of map and reduce tasks.

From all the above results, we conclude that EMRSA-I and EMRSA-II obtain MapRe-

duce job schedules with significantly lower energy consumption, and require small execution

times, making them suitable candidates for scheduling big data applications in data centers.

In addition, the schedules obtained by EMRSA-I and EMRSA-II provide energy savings

close to the optimal. The results show that makespan minimization is not necessarily the

best strategy to consider when scheduling MapReduce jobs for energy efficiency in data

centers. This is due to the fact that data centers are obligated to deliver the requested

services according to the SLA, where such agreement may provide significant optimization

opportunities to reduce energy costs. Such reduction in energy costs is a great incentive

for data centers to adopt our proposed scheduling algorithms.

6.5 Conclusion

Due to the increasing need for big data processing and the widespread adoption of MapRe-

duce and its open source implementation Hadoop for such processing, improving MapRe-

duce performance with energy saving objectives can have a significant impact in reducing

energy consumption in data centers. In this chapter, we show that there are significant

optimization opportunities within the MapReduce framework in terms of reducing energy

consumption. We proposed two energy-aware MapReduce scheduling algorithms, EMRSA-I

and EMRSA-II, that schedule the individual tasks of a MapReduce job for energy efficiency

while meeting the application deadline. Both proposed algorithms provide very fast solu-

tions making them suitable for execution in real-time settings. We performed experiments

on a Hadoop cluster to determine the energy consumption of several MapReduce bench-

mark applications such as TeraSort, Page Rank, and K-means Clustering. We then used

this data in an extensive simulation study to analyze the performance of EMRSA-I and

EMRSA-II. The results showed that the proposed algorithms are capable of obtaining near

optimal solutions leading to significant energy savings.
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CHAPTER 7: CONCLUSION

In this Ph.D. dissertation, we presented our research accomplishments in the field of re-

source management in cloud and big data systems. We presented the background knowledge

and discussed a survey of relevant literature to lay the foundation of our work. We identi-

fied fundamental open problems in the field, formalized them as mathematical programs,

and solved the problems by designing mechanisms and algorithms. We also evaluated our

proposed mechanisms and algorithms, both theoretically and experimentally. In this chap-

ter, we present a summary of our research, and we outline future directions of research that

may stem from our work.

7.1 Summary

Although cloud computing has gained a great deal of attention, there are still some key im-

pediments to large scale enterprise adoption. The ever-growing demand for cloud resources

from businesses and individuals places the cloud resource management at the heart of the

cloud providers’ decision-making process. One of the major challenges faced by the cloud

providers is cloud resource management. Cloud providers and cloud users, pursue different

goals. Cloud providers aim to maximize revenue while achieving high resource utilization.

On the other hand, users want to minimize their expenses while meeting their performance

requirements. However, the challenge is how to allocate and price resources in a mutually

optimal way despite the lack of information sharing among users and cloud providers. In

addition, the cloud environment is highly variable and unpredictable. Cloud providers may

oversubscribe users to a shared infrastructure to increase their resource utilization, while

oversubscription will results in resource contention and interference. In addition, there are

other factors that contribute to unpredictability of the environment such as heterogeneity

of the VMs. These factors make these multi-criteria optimization problems very complex.

In this dissertation, we addressed this fundamental challenge.
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7.2 Future Research Directions

We believe that our research will encourage new research work in the area of resource

management in large-scale distributed systems. The following are several important and

promising directions of research that can be pursued following our work.

7.2.1 Resource Management in Geographically Distributed Clouds

Determining the locations that VMs should be placed in a cloud federation setting is a

challenging problem. The objective is to minimize the cost while keeping the quality of

service (e.g., response time). Existing solutions for the problem have either ignored the

dynamics, or provided inadequate solutions that achieve both objectives at the same time.

To address the dynamic resource management of resources in geographically distributed

clouds, game-theoretic models can be applied.

7.2.2 Energy-Efficient Resource Management in Clouds

One of the main concerns for a cloud service provider is minimizing the operational cost,

especially the cost of power consumption. It is possible to reduce power consumption of

the hardware by means of deploying more Virtual Machines (VMs) onto fewer hosts.

7.2.3 Integrated System Design for Cloud Computing

When designing cloud computing systems, focusing on only one specific objective such

as resource utilization without considering other objectives such as reducing data move-

ment and data privacy can lead to inferior performance. One of the areas of interest is

designing an integrated cloud system that support big data. Such a system will consider

multiple objectives including location-aware big data computing, energy efficiency, and

incentive-compatibility which bring about several challenges arising from the complexity

of the problem and the fact that data centers need fast and autonomic decision making

algorithms.
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7.2.4 Double Auction Market Design for Trading Clusters

The commercial public cloud market is an emerging and evolving computing market where

cloud providers and users can trade computing resources and services. The big data trend

is generating massive data sets and requires unique services that are different from con-

ventional computing services. Therefore, there is a need to fundamentally address such

requirements by developing economics and market mechanisms for managing, trading, and

pricing cloud services. Cloud-based technologies have a great potential to meet the re-

quirements of new compute-intensive and data-intensive applications. Therefore, cloud

providers can gain a part of the big data market share by facilitating and supporting big

data processing as a pay-as-you-go model. However, gaining such market share comes at

the cost of architectural changes to the current cloud frameworks along with designing eco-

nomic mechanisms for shaping cloud computing into a big data pay-as-you-go paradigm.

Currently, cloud providers offer IaaS to users in the form of virtual machines with lim-

ited computing resources. However, such services are not specifically designed for the big

data applications. The unique characteristics of big data applications present a host of

new challenges for the cloud providers. Big data applications require larger resources (e.g.,

entire clusters) compared to those required by conventional computing services. Auctions

have proven to be effective market-based mechanisms for cloud services. Main stream cloud

provider powerhouses such as Amazon and Microsoft have been offering cloud services in

auction market for several years. We envision that two-sided auction markets for trading

clusters of machines would be of interest. In such a markets, both users and providers will

have an opportunity to host and take part in auctions.

7.2.5 Scalable Big Data Analytics Algorithms

The growing rate of big data is faster than Moore’s law while the demand for more complex

analytics is increasing. A key difficulty in scaling interactive analytical tools to support big

data is maintaining sub-second latencies. Existing analytical tools with MapReduce-style

frameworks cannot find solutions in reasonable amount of time which make them prohibitive
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for interactive data exploration or online applications. This challenge necessitates the

design of algorithms that provide reasonable decisions in the absence of perfect solutions.

A line of research in this direction is designing distributed ranking algorithms for big data

analysis. Such massively parallel ranking algorithms will obtain approximate solutions with

well defined statistical error guarantees and sub-second latencies when processing big data.

7.3 Conclusion

In this Ph.D. dissertation, we presented our research on resource management in cloud and

big data systems. We believe that this Ph.D. dissertation is a significant contribution to the

existing literature on resource management in large-scale distributed systems. We proposed

several mechanisms for VM allocation and pricing problem in clouds considering different

settings. These mechanisms will provide the cloud providers the flexibility of dynamically

determining the price of their resources and their cost share. The cloud providers will be free

from building complex pricing models or generating user statistics for prediction of system

usage. In addition, the cloud providers can use our proposed energy-aware schedulers in

their data centers to lower their energy costs leading to lower service prices offered to their

users. On the other hand, different types of users will be able to select their desired usage

of cloud services.
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Cloud computing is a paradigm shift in computing, where services are offered and ac-

quired on demand in a cost-effective way. These services are often virtualized, and they

can handle the computing needs of big data analytics. The ever-growing demand for cloud

services arises in many areas including healthcare, transportation, energy systems, and

manufacturing. However, cloud resources such as computing power, storage, energy, dol-

lars for infrastructure, and dollars for operations, are limited. Effective use of the existing

resources raises several fundamental challenges that place the cloud resource management

at the heart of the cloud providers’ decision-making process. One of these challenges faced

by the cloud providers is to provision, allocate, and price the resources such that their profit

is maximized and the resources are utilized efficiently. In addition, executing large-scale ap-

plications in clouds may require resources from several cloud providers. Another challenge

when processing data intensive applications is minimizing their energy costs. Electricity

used in US data centers in 2010 accounted for about 2% of total electricity used nationwide.

In addition, the energy consumed by the data centers is growing at over 15% annually, and

the energy costs make up about 42% of the data centers’ operating costs. Therefore, it is

critical for the data centers to minimize their energy consumption when offering services to

customers. In this Ph.D. dissertation, we address these challenges by designing, developing,

and analyzing mechanisms for resource management in cloud computing systems and data

centers. The goal is to allocate resources efficiently while optimizing a global performance
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objective of the system (e.g., maximizing revenue, maximizing social welfare, or minimizing

energy). We improve the state-of-the-art in both methodologies and applications. As for

methodologies, we introduce novel resource management mechanisms based on mechanism

design, approximation algorithms, cooperative game theory, and hedonic games. These

mechanisms can be applied in cloud virtual machine (VM) allocation and pricing, cloud

federation formation, and energy-efficient computing. In this dissertation, we outline our

contributions and possible directions for future research in this field.
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