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CHAPTER 1 

INTRODUCTION 

With sizes ranging between 1 nm to 100 nm at least in one dimension, nanoparticles often  

have electrical, magnetic, and chemical properties that differ from their bulk counterparts [1, 2].  

A high percentage of atoms in nanoparticles are at the material’s surface, which typically reduces 

the material's net crystalline organization, electrical conductivity, and magnetic saturation. This 

size-dependence of the material properties thereby results in diverse phenomena, including the 

quantum confinement effect observed in semiconductor particles [3], the surface plasmon 

resonance in some metallic nanoparticles [4] and the phenomenon of superparamagnetism in 

magnetic nanomaterials [5]. As such, these tiny particles have immense potential and are 

expected to be building blocks for a wide range of future applications. Nanoparticles manifest in 

several different shapes, namely the nanospheres [6, 7], nanotubes [8], nanorods [7, 9, 10], 

nanoribbons [8, 11], and nanoflowers [12]. Some of the most common synthetic nanoparticles 

include carbon nanotubes, fullerenes (C 60), quantum dots (CdTe, CdSe, InAs), polymeric 

nanoparticles, dendrimers, inorganic (TiO2, ZnO), metallic (gold, silver, copper, iron) and 

magnetic nanoparticles (Fe3O4, NiO, NiFe2O4).  

This dissertation focuses on understanding and controlling the magnetic properties of 

nanoparticles. The magnetic nanoparticles are of great interest because of their potential uses in 

magnetic-recording, medical diagnostic and therapeutic applications. Additionally, they also 

offer an opportunity to understand the physics underlying the complex behavior exhibited by 

these materials. This dissertation describes the relaxation dynamics, surface phenomena, and 

magnetic dipolar interactions existing in nanoparticles that are of particular interest in biomedical 

applications. We have also investigated how these tiny structures can be utilized in magnetic 

hyperthermia and can also be incorporated to cell membranes for various detection and treatment 



2 
 

 
 

purposes. The intracellular distribution of these nanoparticles is a topic of intense scientific 

research because it can actually reveal to what subcellular organelle these nanoparticles will 

localize after penetrating through the cell membrane. A thorough study in this specific area could 

serve as a paradigm shift and can open a new chapter in the future nanomedicine research.  

 

1.1 MAGNETIC MATERIALS AND MAGNETIC NANOPARTICLES 

Bulk magnets can be classified into the following categories. They are diamagnets (e.g., 

water, copper, bismuth), paramagnets (e.g., aluminum, magnesium, sodium) ferromagnets (e.g.,  

iron, cobalt, nickel), ferrimagnets (Fe3O4, NiFe2O4, Mn3O4) [13-15] and aniferromagnets (FeMn, 

NiO, MnO) [14, 16, 17]. The magnetization (M) exhibited by a material is found to be 

proportional to the applied field (H), and can be expressed as M=χH, with the constant of 

proportionality being the volumetric magnetic susceptibility (χ). χ is small but negative for 

diamagnets (-10
-6

 to -10
-3

) while it is small and positive for paramagnets (10
-6

 - 10
-1

) [18]. The 

ferro, ferri and the antiferromagnets possess a positive value of χ, which is generally the largest 

in the case of ferromagnets (10
3 

- 10
4
). The ferromagnets and ferrimagnets also exhibit a 

phenomenon called hysteresis (figure 1.1), which is caused by domain wall motion [18]. A 

domain is the region within the material where the atomic magnetic moments are aligned in the 

same direction. The magnetization retained by a sample even after complete removal of the 

applied field is called the remanent magnetization (Mr). The field required in the opposite 

direction to demagnetize a sample after it has achieved saturation magnetization (MS) is called 

the coercive field or coercivity (HC) [2, 18, 19].  

The magnetic moment of nanoparticles are more affected by thermal fluctuations than 

their bulk counterparts [20]. In sufficiently small ferromagnetic or ferrimagnetic particles, 
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thermal fluctuations can alter the direction of their magnetic moments giving rise to the 

phenomenon known as superparamagnetism (SPM). SPM can evolve into a spin-glass-like 

behavior with an increase in the interaction energy amongst the nanoparticles [21]. In the 

following sections, a detailed explanation on magnetic anisotropy, superparamagnetism, spin-

glass behavior, and biomedical applications in context to magnetic nanoparticles is provided. 

 

Figure 1.1 Magnetization (M) vs Magnetic Field (H) loop showing hysteresis [2]. 

 

1.2 ANISOTROPY IN MAGNETIC NANOPARTICLES 

The difference in magnetic energy to produce saturation in a hard and an easy direction is 

called the anisotropy energy. Along the easy and hard directions, saturation magnetization is 

achieved by applying relatively small and large fields respectively. The two most prominent 

anisotropies observed in magnetic nanoparticles are magneto-crystalline anisotropy and shape 

anisotropy [2].  

a) Magneto-crystalline anisotropy  

            The easy and hard directions arise from the interaction of the spin magnetic moment with 

the crystal lattice. This phenomenon results in spin-orbit coupling which produces the magneto-
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crystalline anisotropy [2]. For simplicity we consider uniaxial anisotropy in magnetic 

nanoparticles [2, 18] and the magneto-crystalline anisotropy energy (EA) is given by 

EA=KVsin
2
θ      (1.1) 

where, K is the magnetic anisotropy constant, V is the particle volume and θ is the angle between 

the magnetization vector (M) and an easy direction of magnetization (figure 1.2). Along the easy 

direction, one attains MS even with a relatively small H. This energy has two minima at θ = 0° 

and 180°; the spins flip between these two stable energy minima that are separated by the 

anisotropy energy barrier EA [22]. The magneto-crystalline anisotropy constant ‘K’ for bulk 

magnetite is 1.35×10
5
 erg/cc [23]. The anisotropy constant is an inherent property of the material 

and is not influenced by its shape. Also, larger values of K result in larger HC of a material.  

 

Figure 1.2 Magnetization vector M makes an angle θ with the easy axis of a nanoparticle                       

[20]. 

 

b) Shape anisotropy 

The dipole interactions within a material are long-ranged and yield a variation in the 

magnetization depending on the shape of the particle. Shape anisotropy is caused by dipolar 

interactions within non-spherical particles. A perfectly spherical nanoparticle having symmetry 

along all possible directions will carry no shape anisotropy whereas non-symmetric structures, 

like cylindrical particles, do possess shape anisotropy [2]. In thin films, the magnetic moments 
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tend to align with the plane of the film, whereas in nanorods the alignment is along the axis of 

the rod. 

 

1.3 SUPERPARAMAGNETISM 

Superparamagnetism, a prominent nanomagnetic phenomenon is observed in single 

domain nanoparticles. In a single domain particle, every spin within the interior of the particle 

points in the same direction with the total magnetic moment of the particle being equal to the 

sum of all the atomic spins. As evident from equation 1.1, the anisotropy energy of a particle is 

proportional to its volume. In sufficiently small magnetic nanoparticles (< 20 nm), the thermal 

energy becomes comparable with EA. If the measurement time (τm) is large compared to the 

mean time for the spin relaxation (τ), then superparamagnetism is observed. Over the course of 

this measurement, the particle’s spin will flip stochastically between the two stable minima 

orientations (figure 1.3) and its time-average magnetization reduces to zero, similarly to a 

paramagnet. Since a single domain magnet usually contains 10
4
-10

5
 atoms and the magnetic 

moment of an electron is equal to 1 Bohr magneton (μB), each superparmagnetic nanoparticle can 

have large net magnetic moments (>10,000 μB) as compared to paramagnets with a magnetic 

moment of ~1 μB [22]. Therefore, in this case, the nanoparticle apparently behaves like a 

paramagnet but with an enhanced magnetic moment, hence the name superparamagnetism.  

If τm<< τ, the particle’s spin will not undergo a complete flip during this measurement 

time, and it will appear to be in a blocked state. The temperature at which τm=τ is defined as the 

blocking temperarture (TB). Therefore, below TB, the particles’ spins are blocked while above 

this temperature they behave as a superparamagnet following the T
-1

 dependence of the Curie’s 

law.  
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Figure 1.3 The particle spin flips overcoming the anisotropy energy barrier (EA). 

 

SPM is demonstrated by a sigmoidal, anhysteretic M vs H plot (figure 1.4). The mean 

relaxation time of the particle spin is given by the Néel–Brown equation, τ = τ0 exp (KV/kBT), 

where kB is the Boltzmann’s constant, T is the temperature and τ0 is the attempt time 

characteristic of the material. In case of SPM, the magnitude of τ0 is of the order of 10
−13

–10
−9

 s 

[22, 24]. Typical for laboratory measurements with τ ≈ 100 s and τ0 ≈ 10
-9 

s, TB from the Néel–

Brown equation approximately equals 25KV/kB.  

 

 

Figure 1.4 Magnetization (M) vs Magnetic Field (H) plot for γ-Fe2O3 nanoparticles showing 

superparamagnetic behavior [25]. 
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When the size of a nanoparticle falls below a critical value (Dc), it becomes single 

domain. However, a single domain particle may still show a large value Hc (figure 1.5). A 

superparamagnetic nanoparticle must have only a single domain, but a single domain 

nanoparticle may not be superparamagnetic. The area under the hysteresis loop is greatest for 

single domain particles with diameter = DS, however, Hc gets reduced as the particle size 

increases. Generally, hysteretic behavior is associated with domain wall motion. However, in the 

case of large single domain nanoparticles, the hysteresis loss is instead achieved by spin rotation 

rather than domain wall motion, which effectively increases the HC [2]. As the size of the 

nanoparticle continues to decrease, HC approaches zero. At this limit, there is no hysteresis loss 

and the magnetization returns to zero on removal of the applied external magnetic field and SPM 

is observed. This specific property of exhibiting zero HC and zero Mr enable important 

applications in the biomedical field. For example, SPM limits particle agglomeration at the 

tumor site even after removal of the external magnetic field [26].   

 

 

Figure 1.5 Coercivity (Hc) vs particle size (D) plot. [27] 
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 The temperature dependence of the magnetization is studied under an applied magnetic 

field (usually 100 Oe) after the sample has been cooled in the presence (Field Cooled or FC) and 

in absence (Zero Field Cooled or ZFC) of a magnetic field. The peak of the ZFC curve gives a 

value for the blocking temperature TB. Figure 1.6 shows the FC and ZFC measurements done on 

nanocrystalline nickel–zinc ferrites. The peak of the ZFC curve provides the value of TB, which 

in this case is near 120 K [28]. In a typical ZFC measurement, when the nanoparticle sample is 

cooled in the absence of a magnetic field, their moments get randomly frozen in all possible 

directions below TB. Then the magnetization vs temperature is studied by applying a nominal 

field while warming up the sample. Following an increase in temperature, the thermal energy 

becomes sufficient for some of the particles to overcome the anisotropy barrier. As the 

temperature keeps on increasing, more and more particles align with the applied field, as a result, 

the magnetization increases monotonically until it assumes its maximum value at TB. In case of 

FC, since the sample is initially cooled in the presence of magnetic field, the particle moments 

tend to align themselves with the field. Therefore, during warming up of the sample, the FC 

curve shows an enhanced magnetization at temperatures below TB as compared to the ZFC.  

However, beyond TB, both FC and ZFC follow a typical T
-1

 dependence of the Curie’s law 

signifying the superparamagnetic behavior of these particles.  
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Figure 1.6 FC and ZFC curves for nanocrystalline nickel–zinc ferrites [28].  

 

1.4 SPIN GLASS 

           The Neel-Brown (NB) model describes the behavior of an ensemble of non-interacting 

and single domain magnetic nanoparticles [29]. The relaxation time (τ) for the magnetic 

moments of such individual nanoparticles is governed by an Arrhenius relation given by τ = τ0 

exp(EA/kBT). The NB model describes SPM and blocking of the magnetic moments at high and 

low temperatures respectively [21]. Shtrikmann and Wohlfarth [30] considered the introduction 

of weak interactions to the NB model and described the τ using the Vogel-Fulcher relation given 

by τ = τ0 exp [EA/kB(T-T0)], where T0 measures the strength of the interaction. However, when 

the interactions between the particles are strong enough, the relaxation time of the magnetic 

moments exhibits collective behavior following a specific power law given by τ = τ0[Tf/(T(ν)-

Tf)]
zv

, where Tf is the freezing temperature at the zero frequency limit, T(ν) is the frequency 

dependent freezing temperature and zν is the critical exponent [24, 31]. This relaxation is no 

longer a single particle effect, but depends on the ensemble of nanoparticles. The particle spins 

get frozen in this state and is known as spin-glass-like freezing. The values of τ0 and zν are 
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typically in the range of 10
-9

-10
-13

 s and 4-12 for the spin glass systems, respectively [24]. The 

freezing of the magnetic moments in an assembly of nanoparticles due to strong dipole-dipole 

interaction is sometimes referred to as superspin freezing shown in figure 1.7(a) [22, 32]. The 

dipole–dipole interaction energy (Ed) in an ensemble of randomly distributed magnetic 

nanoparticles is given by  𝐸𝑑 =
µ𝑜µ2

4𝜋𝑎3 (
𝜋

4
)

2
, where, μ0 is the permeability of free space, μ is the 

average magnetic moment, and a is the mean separation between the particles [22, 33]. For 10-12 

nm Fe3O4 nanoparticles, with average magnetic moment of 10,000 μB, the interaction energy 

becomes comparable to thermal energy at 300 K when a = 6 nm.   

Disorder can also be observed on the surface of sufficiently small particles because of the 

increased surface to volume ratio. With the decrease in particle size, the presence of more atoms 

in close proximity to the surface of the nanoparticles produces additional spin disorder, which 

can lead to glassy magnetic behavior [34]. The freezing of the spins on the surface of individual 

nanoparticles is referred to as surface spin-glass freezing, as shown in figure 1.7(b) [32]. 

Kodama et al. [35] have reported surface spin-glass freezing in Nickel ferrite (NiFe2O4) 

nanoparticles. The model proposed by Kodama et al. [35] mentions about a ferrimagnetic core of 

aligned spins surrounded by a shell having a disordered arrangement of surface spins. Winkler et 

al. [36] and Peddis et al. [37] have also shown surface spin freezing in Nickel Oxide (NiO) and 

Cobalt Ferrite (CoFe2O4) nanoparticles. 
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Figure 1.7 (a)Superspin glass freezing and (b) Surface spin glass freezing are mechanisms for 

reduced magnetization from superparamagnetic nanoparticles. 

 

While the magnetic properties of many nanoparticle systems can be fully understood in 

the framework of the non-interacting Neel-Brown model, for some specific situations, the effects 

of interactions cannot be neglected. In these cases, the magnetic dynamics of the nanoparticles 

are often intermediate between non-interacting superparamagnetism and strongly interacting spin 

glass behavior. In order to distinguish these two regimes, a brief discussion of some of the most 

salient features of spin glasses is included below. Both superparamagnetic blocking and spin-

glass-like freezing have similar features in out-of-phase ac susceptibility (χ
//
) vs T plots [38]. 

Tackett et al. [38] claimed that the low temperature relaxation in Mn3O4 nanoparticles arises 

from superparamagnetism whereas Nadeem et al. [32] reported surface spin-glass freezing in 

NiFe2O4 nanoparticles. Figure 1.8 shows the χ
//
 vs T for Mn3O4 nanoparticles with an average 

particle size of 13 nm. The inset clearly hints at the presence of low temperature features with the 

temperature peak shifting as the frequency changes. Similarly, figure 1.9 shows frequency 

dependent temperature peaks in the low temperature range for NiFe2O4 nanoparticles of size 8 

nm. The χ
//
 vs T plots are qualitatively similar for both cases; it is not possible to clearly 
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distinguish between SPM and spin-glass behavior just from the presence of low temperature 

relaxation.   

 

Figure 1.8 χ
//
 vs T graph for Mn3O4 nanoparticles with an average particle size of 13 nm. The 

inset shows the magnified version of the T dependence on χ
// 

at the low temperature regime for 

five different frequencies [38]. 

 

 

Figure 1.9 χ
//
 vs T graph for NiFe2O4 nanoparticles for six different frequencies with particle size 

of 8 nm. The inset shows the best fit of the dynamic scaling law [32]. 
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Figure 1.10 Vogel Fulcher fit for slightly interacting particles of Mn3O4 having diameters of 13 

nm and 16 nm [38]. 

 

Therefore, we will rely on specific parameters to determine whether a phenomenon is 

SPM blocking (non-interacting behavior) or spin-glass freezing (strongly interacting behavior). 

If a plot of ln τ vs (1/T) follows the functional form expected for the NB model or a plot of ln τ 

vs 1/ (T-T0) for a small T0, as is appropriate for a Vogel Fulcher dependence for a weakly 

interacting system, and yields τ0 in the range of 10
-9

-10
-13 

s [24], then we suppose that the 

relaxation at low temperature is due to SPM blocking. However, if a plot of ln τ vs ln [(T(ν)/Tf) – 

1] gives a straight line with the value of τ0 in the range of 10
-9

-10
-13

s and the critical exponent 

(zν) lying between 4 – 12 [24], then the low temperature relaxation arises because of spin-glass 

behavior. Tackett et al. [38] have shown that a linear relation exists between ln τ and 1/ (T-T0) 

following the Vogel-Fulcher law with the value of τ0 being equal to 10
-10

s and T0 = 4.8 K (figure 

1.10). This suggests that superparamagnetic blocking is responsible for the magnetic relaxation 

observed in Mn3O4 nanoparticle ensemble at low temperatures. On the other hand, the inset in 
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figure 1.9 depicts a linear relation between τ and [To/(Ts-To)] following the non-exponential 

relaxation and indicates the presence of spin-glass freezing in these nanoparticles. Here, To is the 

freezing temperature at the zero frequency limit and Ts is the frequency dependent temperature 

of the peak. Nadeem et al. [32] have estimated the value of zν and τ0 to be equal to 7.5 and 

6.7×10
-5

 s respectively. A higher value of τ0 is due to the fact that frozen agglomerates of highly 

disordered and frustrated surface spins have a much longer relaxation time.  

Another parameter used to differentiate between the blocking and the freezing process is 

given by α = ΔT/ [T*Δ (log10 f)]. Here ΔT is the difference between two frequency (f) dependent 

temperatures (freezing or blocking) and T is the mean value between them. In a typical spin glass 

system, the value of α lies between 0.005 and 0.05 whereas for non-interacting and weakly 

interacting systems α assumes a value usually greater than 0.05 [24, 31]. Tackett et al. [38] have 

calculated the value of α to be 0.11 for their Mn3O4 nanoparticles and thus reported 

superparamagnetism at low temperatures in this system.  

As discussed by Tackett et al. [38] the collective spin-glass freezing temperature remains 

relatively insensitive to the average particle size of an ensemble of nanoparticles while the SPM 

blocking temperature strongly depends on the nanoparticle size. The blocking temperature in an 

ideal SPM system is directly proportional to the cube of the average particle size. If TB be the 

blocking temperature and D the mean diameter of the nanoparticles, then TB is proportional to D3
 

for non-interacting nanoparticles while (TB-T0) is proportional to D
3 

for the weakly interacting 

systems. Tackett et al. [38] have confirmed low-temperature superparamagnetism in Mn3O4 

nanoparticles by showing the blocking temperature shift for two different sizes of the 

nanoparticles. In this system, TB changed significantly from 10.3 K to 14.8 K with the increase in 
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mean particle size from 13 nm to 16 nm, respectively, for a specific frequency of 100 Hz (figure 

1.11).  

Nadeem et al. [32] have shown that the surface spin-glass freezing temperature remains 

unchanged with a change in particle size for NiFe2O4 nanoparticles. The freezing temperature 

remains at about 15 K even as the particle size varies from 8 nm to 12 nm (figure 1.12). The 

graph also shows that the freezing becomes more dominant with decreasing particle size, which 

supports the fact that the fraction of disordered spins at the surface is greater for particles with an 

increased surface to volume ratio.  

 Peaks for both superparamagnetism (blocking temperature, TB) and spin-glasses (freezing 

temperature, Tf) are observed in a zero-field cooled (ZFC) plot. [39]. The difference being, that 

generally below TB, the FC curve attains or tends to attain saturation in the case of a spin-glass 

system [39], while it keeps on increasing with no tendency to reach saturation for 

superparamagnetic particles, indicating that the inter-particle interactions do not influence the 

relaxation dynamics [40] .  

 

Figure 1.11 The size dependency on the blocking temperature for Mn3O4 nanoparticles having 

diameters of 13 nm and 16 nm [38]. 
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Figure 1.12 The freezing temperature (Tf) remains unaffected with varying particle size for 

NiFe2O4 nanoparticles [32]. 

 

 

1.5 BIOMEDICAL APPLICATIONS OF MAGNETIC NANOPARTICLES 

Nanoparticles have played a significant role in modernizing present healthcare industries. 

There has been extensive use of gold [41, 42], silver [43], iron [44], silica [45], and polymeric 

nanoparticles [46] for the detection and treatment of various deadly diseases. The interaction of 

nanoparticles with the human cell line has been widely studied in the recent years. Researchers 

have worked with silver [47], gold [48], zinc oxide [49] , silica [50], cerium oxide [51] to 

investigate the distribution and cytotoxicity of these nanoparticles. In the last decade, the 

superparamagnetic nanoparticles, especially iron oxide based nanoparticles have emerged as a 

potential candidate in the field of nanomedicine with their applications ranging from molecular 

imaging, targeted drug/gene delivery to regenerative medicine, tissue engineering [52-57]. 

 

1.5.1 Magnetic nanoparticles for drug delivery applications 

 Magnetic nanoparticles have been applied widely in the field of targeted drug delivery. 

Because of their magnetic nature, these tiny particles can be driven directly at the tumor site by 
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means of an externally applied magnetic field [58, 59]. This promotes accumulation of magnetic 

nanoparticles in close proximity to the cancer cells (specific targeting) without affecting the 

healthy tissues of the human body, hence reducing the possibility of adverse side effects [58, 59]. 

At the tumor site, these nanoparticles carrying anti-cancer drugs release the medicine either by 

enzymatic activity, or via changes in the physiological conditions like pH and temperature [58]. 

The superparamagnetic behavior of iron oxide nanoparticles of less than 20 nm diameter at room 

temperature coupled with its biocompatibility and non-toxic nature makes them well suited for 

in-vivo applications [60]. Since they possess a sufficiently high value of saturation magnetization 

(Ms ~ 65-70 emu/g) [61], they can be well guided to the tumor site by an externally applied 

magnetic field. However, due to their superparamagnetic behavior, they do not agglomerate even 

after the removal of the external applied field [62]. Further, the surface functionalized iron oxide 

nanoparticles conjugated with the chemotherapy drug doxorubicin creates a widely studied anti-

cancer therapeutic complex. Researchers have shown that PEG (Polyethylene Glycol) 

functionalized porous silica shell onto doxorubicin-conjugated Fe3O4 nanoparticle cores [63], 

PAMAM (Poly(amidoamine)) coated Fe3O4 nanoparticles-doxorubicin complex [64], 

doxorubicin loaded Fe3O4 nanoparticles modified with PLGA-PEG copolymers [65] could 

potentially serve as a promising candidate in therapeutic cancer treatment. 

 

1.5.2 Magnetic nanoparticles for hyperthermia 

At the tumor site, localized heating by magnetic nanoparticles can also cause effective 

damage to the malignant tissues [27]. Elevated temperatures above the physiological body 

temperature (40
o 

- 45
o
C) have been found to inhibit the growth of the cancer cells without 

affecting the normal tissues [62, 66]. For example, a colloidal suspension of magnetic 

http://www.chemspider.com/Chemical-Structure.29400.html
javascript:popupOBO('CHEBI:50803','C0CC02577A','http://www.ebi.ac.uk/chebi/searchId.do?chebiId=50803')
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nanoparticles, known as ferrofluids, when subjected to an alternating magnetic field is capable of 

dissipating heat energy in the surrounding medium [66]. This heat energy is basically produced 

as a result of hysteresis loss and also due to two prominent relaxation phenomena occurring in 

magnetic nanoparticles: (a) Neel and (b) Brownian relaxation [66]. In the former, the magnetic 

spin of the particle simply rotates while the latter is caused by the effective rotation of the entire 

particle as shown in figure 1.13. The specific absorption rate commonly known as SAR (usually 

expressed as W/g) is an important parameter in magnetic hyperthermia studies. SAR is a 

measure of the heat energy absorbed by the magnetic nanoparticles per unit mass under an 

alternating magnetic field of certain amplitude and frequency and is expressed as  

                                                     SAR = 
𝐶

𝑚
×

𝑑𝑇

𝑑𝑡
 , where C is the specific heat capacity of water 

per unit volume, m is the concentration (in g/L) of the magnetic material in solution and 
𝑑𝑇

𝑑𝑡
  is the 

rate of change of temperature.  [66]. An elevated SAR value, which is an essential requirement 

for effective cancer hyperthermia treatment, can be achieved by increasing the amplitude (A) and 

the frequency (f) of the magnetic field. However, beyond a certain threshold value (A×f = 5×10
9
 

Am
-1

s
-1

) [66], clinical trials on human may give rise to certain complications. Therefore, 

developing an efficient magnetic nanoparticle system with optimized SAR value is a crucial 

challenge in magnetic hyperthermia (MHT) research for cancer treatment. 
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Figure 1.13 (a) The Neel relaxation shows the rotation only the magnetic spin with the particle 

being fixed (b) The Brownian relaxation indicates the physical rotation of the entire particle. 

(Image by courtesy of nanotherics.com) 

 

1.5.3 Magnetic nanoparticles as contrast agents in MRI imaging 

MRI is a valuable, non-invasive imaging methodology for many ailments and diseases; 

however, it often lacks contrast between tumor and healthy tissue in cancer diagnosis. MRI 

measures the relaxation rates of the hydrogen nuclei in water, which are affected by the local 

magnetic environment that differs between different tissue types. The hydrogen nuclei within the 

water naturally align in the direction of the external magnetic fields, and, when the appropriate 

radio frequency pulses are introduced, these protons are excited. When the pulses are switched 

off, the protons precess and relax to their original position while emitting characteristic 

electromagnetic signatures. This emission is used to visualize the morphology of the human body 

tissues as different tissue types yield different emission. While natural and diseased tissues 

occasionally emit indistinguishable signals, these signals can be made distinct and, therefore, 

images can further be sharpened by introducing contrast agents that are conjugated to 

biomarkers or antibodies for specific targeting to diseased tissues. MRI contrast is characterized 
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by the two major spin relaxation processes namely T1 (spin-lattice or longitudinal) and T2 (spin-

spin or transverse). The magnetic contrast agents change the rates of these relaxation processes 

for the tissue that surrounds them. The paramagnetic gadolinium chelate complexes are known to 

accelerate the T1 relaxation rates producing ‘bright’ contrasts whereas the superparamagnetic 

iron oxide nanoparticles play an important role as a T2 enhancer creating ‘dark’ or negative 

contrasts [18, 67, 68].   

 

1.6   SCOPE OF THE THESIS  

This dissertation describes the fundamental physical principles governing magnetic 

nanoparticles and also how nanomagnetism plays a prominent role in biomedical applications. 

Chapter 2 of this thesis introduces the working principles of the key characterization techniques 

used throughout this research. In Chapter 3, studies involving structural, optical, and ac magnetic 

properties in undoped and doped (B, Co, Gd, La) Fe3O4 nanoparticle systems are presented. The 

Chapter 4 describes the magnetic dipolar interactions in two different systems of iron oxide 

nanoparticles. Understanding interactions and magnetic relaxation in undoped and boron doped 

Mn3O4 nanoparticles are included in Chapter 5. The magnetic properties and possible biomedical 

applications of dextran coated undoped and Gd-doped Fe3O4 as well as BiFeO3 nanoparticles are 

also investigated in Chapter 6, Chapter 7 and Chapter 8. Finally, the conclusions and future work 

are placed in Chapter 9.  
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CHAPTER 2 

MAJOR EXPERIMENTAL TECHNIQUES 

 

This chapter describes the basic working principles of some of the characterization 

techniques used in this dissertation. They are as follows: 1. X-ray Diffraction, 2. Raman 

Spectroscopy, 3. Scanning Electron Microscopy, 4. Transmission Electron Microscopy, 5. 

Dynamic Light Scattering & Zeta Potential measurements, 6. Physical Property Measurement 

System, and 7. Magnetic Hyperthermia (MHT) Measurements. 

 

2.1 X-RAY DIFFRACTION (XRD) 

 The crystallite size and phase identification of a sample can be obtained from the XRD 

analysis. The XRD works on the basic principle of Bragg’s law given by, 

                                                          2d(hkl) sinθ nλ                                                                  (2.1) 

where, d(hkl) is the spacing between the atomic planes corresponding to the Miller indices hkl, θ is 

the angle between the incident rays and the atomic planes, n is any positive integer and λ is the 

wavelength of the incident rays. This Bragg’s condition is satisfied only when the incident rays, 

with wavelength comparable to the lattice spacings, undergo a constructive interference after 

getting reflected from the atomic planes.  

 

Figure 2.1 The X-rays after reflection from the atomic planes undergo constructive interference 

(image courtesy of ETH, Zurich).  
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The average crystallite size of the nanoparticles is calculated using the Debye-Scherrer 

equation 

                                              𝑑𝑎𝑣𝑔. =  
𝑘 𝜆

𝛽𝐹𝑊𝐻𝑀𝑐𝑜𝑠𝜃
                                                 (2.2) 

where, davg. is the average crystallite size of the particle, λ is the X-ray wavelength, k is the shape 

factor which is roughly equal to 0.94 for spherical particles, FWHMis the full width at half 

maxima (in radians) of the diffraction peak, and θ is angle of diffraction. The  davg. is inversely 

related to FWHM, indicating that the peak width increases for a decrease in the crystallite size. 

For investigation of the crystalline structure and phase purity of our nanoparticle samples, we 

used a Rigaku MiniFlex 600 X-ray diffractometer with a θ-2θ scanning mode (i.e., stationary 

source, rotating stage, and rotating detector) as shown in figure 2.2 (a) generating Cu Kα 

radiation (λ = 1.54 Å) under a supply voltage of 40 kV and an emission current of 15 mA. In a 

typical θ-2θ scanning mode, the x-ray beam is incident at an angle θ with the lattice planes, and 

then gets diffracted making an angle 2θ with the direction of incidence. Finally, the intensity of 

the diffracted beam is recorded as a function of 2θ as shown in a typical XRD spectrum in figure 

2.2 (b). 

 

Figure 2.2 (a) The Rigaku MiniFlex 600 XRD instrument used for our nanoparticle analysis.  

(b) A typical XRD spectrum of Fe3O4 nanoparticles. 
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2.2   RAMAN SPECTROSCOPY  

Proposed by the Indian scientist Sir C.V. Raman in 1928, this is a highly sophisticated 

spectroscopic technique used for analyzing rotational, vibrational and other low frequency 

transitions in molecules of solids, liquids and gaseous samples. It is based on the principle of 

inelastic scattering of monochromatic light, usually from a laser source. The laser light initially 

interacts with the molecules of the sample and emits photons of both lower (- and higher 

(+) frequencies as compared to the frequency of the parent monochromatic source (). The 

photons thus emitted with lower and higher frequencies are termed as Stokes and Anti-Stokes 

lines respectively (figure 2.3(a)). Information regarding a specific sample can be obtained from 

these characteristic lines, which are collectively called the Raman lines. The Raman scattered 

light is collected by the detector while a notch filter cuts off the effect of the Rayleigh photons. 

The Raman measurements were conducted on our nanoparticle samples at room temperature 

using a Raman spectrometer (HORIBA Jobin Yvon, Triax 550 detector) emitting green light (λ = 

514.5 nm) from an Ar
+
 ion laser source. Solid nanoparticle samples in the form of pellets were 

used for the characterization purposes. In a typical Raman spectrum, the scattered intensity is 

plotted as a function of wavenumber (cm
-1

) as shown in figure 2.3 (b).  
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Figure 2.3 (a) Schematic showing the Raman scattering [69] (b) A typical Raman spectrum of 

boron doped Fe3O4 nanoparticles showing the 667 cm
-1

 peak corresponding to Fe3O4 along with 

the presence of amorphous secondary phase of goethite (-FeOOH). 

 

 

2.3   SCANNING ELECTRON MICROSCOPY (SEM)         

In a SEM, a highly focused beam of electrons emanating from an electron gun is targeted 

onto the surface of the sample. Before interacting with the sample, the electrons travel through a 

vacuum and are guided by electromagnetic lenses. When the electron beam hits the surface of the 

sample, X-rays, secondary electrons, backscattered electrons, and Auger electrons are ejected 

(figure 2.4). These ejected electrons and X-rays carry useful information regarding the 

morphology, chemical composition and crystalline properties of the sample, and therefore they 

are collected by a detector. The detector is connected to a computer screen in which one can see 

the high resolution 2D images of the sample. Generally in SEMs, the sample to be studied needs 

to be electrically conductive or is given a conductive coating (i.e., gold). The secondary electrons 

mainly originating from areas in proximity to the surface of the sample give information 

pertaining to topography. Backscattered electrons and the characteristic X-rays coming from 

deeper regions inside the sample provide details regarding the chemical composition of the 

sample. Unlike light microscopes, electrons are used instead of ordinary light and hence the 
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much enhanced resolution of the images photographed by a SEM versus optical microscopes. 

SEMs incorporating energy dispersive spectroscopy (EDS) and wavelength dispersive 

spectroscopy (WDS) provide elemental composition details of the sample. While EDS is the 

most commonly used technique for elemental detection, but with elements having low atomic 

numbers (generally Z<10), WDS plays a very important role. For our boron doped nanoparticles, 

we used WDS for the detection of boron; however, we failed to quantify its actual content in our 

samples due to the absence of proper standards. In all other cases, we have adopted the EDS 

technique to roughly estimate the dopant concentrations (Co, Gd, La) in our doped nanoparticle 

systems. 

 

Figure 2.4 The electrons (secondary, backscattered and Auger) and X-rays are ejected when 

high-energy focused electron beam strikes the sample surface in a SEM. (image courtesy of 

Purdue University).  

 

 

 

2.4 TRANSMISSION ELECTRON MICROSCOPY (TEM)         

Like SEM, a TEM is also a 2D imaging technique with sub-nanometer resolution. The 

electrons originating from an electron gun are focused into a thin beam by means of 

electromagnetic lenses. The concentrated electron beam is incident on a very thin sample to 

facilitate sufficient transmission of electrons through it.  These electrons are absorbed, scattered 
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or transmitted through the sample. For our experiments, we generally use one or two drops of a 

very dilute solution of nanoparticles dispersed in ethanol before mounting them on a carbon 

coated copper grid for capturing the images. The electron beam which transmits through the 

sample and the copper grid strikes the fluorescent or photographic screen and produces an image 

of the specimen which is visualized by means of a sophisticated camera. The transmitted central 

beam consisting of unscattered electrons gives rise to “bright-field” image while the scattered 

non-central electrons produce the “dark-field” image. These images collectively contain useful 

structural information involving the morphology and crystal structure of the sample. A JEOL-

2010 FasTEM transmission electron microscope operated at 200 kV was used to capture high 

resolution images of our nanoparticles. Our main purpose of using TEM was to determine the 

shape, size and degree of polydispersity of our nanoparticles. From the high resolution TEM 

images better known as HRTEM, the spacing between the atomic planes (of the order of few 

angstroms) in crystalline nanoparticle samples was also estimated. Like SEM, a TEM also comes 

with EDS option for elemental analysis. 

 

 

Figure 2.5 Schematic of a TEM (image courtesy of nobelprize.org) 
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2.5 DYNAMIC LIGHT SCATTERING (DLS) & ZETA POTENTIAL 

DLS provides the hydrodynamic size and size distribution of particles undergoing 

Brownian motion in liquid suspensions. When a monochromatic beam of light, usually from a 

laser source, hits the particles in solution, there is a time-dependent fluctuation in the scattering 

intensity due to the random motion of the particles. An autocorrelation analysis of these intensity 

fluctuations provides information regarding the diffusion coefficient (D). Finally, an estimation 

of the hydrodymic size or diameter (dH) can be obtained with the aid of Stokes-Einstein relation 

given by 

                                                          𝑑𝐻 =
𝑘𝐵𝑇

3𝜋𝜂𝐷
                                                  (2.3) 

where, kB is the Boltzmann constant,  is the viscocity of the medium and T is the absolute 

temperature. The hydrodynamic size is defined as the diameter of a sphere in the same medium 

having an identical diffusion coefficient as that of the particle. 

The zeta potential ( measurements were also conducted to determine the stability of our 

nanoparticle dispersions. The zeta potential is defined as the electrokinetic potential difference 

between the particle surface and the dispersing medium. The ionic concentration of the medium 

and the pH are crucial factors for defining the zeta potential. A large magnitude of , usually 

|40 mV, implies the existence of strong electrostatic charges on the surface of the particles. 

These similar charges repel one another and prevent aggregation or clustering of the particles, 

and thereby remain well suspended inside the solution. We have used a Nano ZS90, Malvern 

Instruments for estimating the hydrodynamic size distribution and zeta potentials for our 

nanoparticle samples. The concentration of the nanoparticle dispersions used for DLS and zeta 

potential measurements were usually between 50-100 g/ml. 
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2.6 PHYSICAL PROPERTY MEASUREMENT SYSTEM (PPMS)          

The PPMS is used to record magnetization (dc and ac), heat capacity, electro-transport 

and thermal transport of the concerned sample. The Quantum Design PPMS (Model 6000) used 

for characterizing our nanoparticle samples have the following specifications:  

            1. Magnetic Field Range: -9T to +9T 

2. Temperature Range: 1.8-400 K 

3. AC Frequency Range: 10 Hz to 10 kHz 

4. AC Field Amplitude Range: 2 mOe to 15 Oe 

5. Sensitivity of DC magnetization measurements: 2.5 x 10
-5

 emu 

6. Sensitivity of AC susceptibility measurements: 2 x 10
-8

 emu  

Approximately, 20-30 mg of the nanoparticle sample was placed in a gelatin capsule 

packed with cotton (cotton restricts the motion of the sample) and mounted in a straw with 

proper stitching for performing the magnetic measurements in a PPMS.   

 

dc Magnetometer & ac susceptometer 

When a constant field is applied in the measurement region in case of dc magnetic 

measurements, the sample rapidly travels through both sets of detection coils (figure 2.6) causing 

a change in the magnetic flux. Hence, following Faraday’s law, signals get induced in these 

detection coils. During the ac measurements, when an alternating field is applied in the 

measurement region, the sample is moved to the center of each detection coil. These coils 

basically detect any change in the applied ac field amplitude due to the presence of the sample.  
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Figure 2.6 ACMS coil set of PPMS (image courtesy of Quantum Design) 

 

We use the dc extraction technique to determine saturation magnetization for our 

nanoparticle samples from the magnetization (M) vs applied field (H) plots. From the ac 

susceptibility measurements, frequency dependent peaks are observed in 

vs T and 


vs T plots 

to analyze superparamagnetic blocking or spin-glass like freezing in nanoparticles. The 

frequency independent features in these plots are marked by phase transitions, especially from 

ferri/ferro/antiferromagnetic to a paramagnetic phase. The ac magnetic susceptibility can be 

written as   

ac= 𝜒/- i𝜒//                                               (2.4) 

where,  / and // are the real and imaginary parts of the susceptibility. Following the Debye 

relaxation model [70] they can be expressed as 

                                                                                       𝜒/ =
χ𝑜

1+(𝜔𝜏)2
                                                      (2.5) 

                                                                                      𝜒// =
χ𝑜𝜔𝜏

1+(𝜔𝜏)2
                                                        (2.6) 
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Here, ,  and  are the dc magnetic susceptibility, angular frequency and relaxation time of the 

particles. It can be inferred from the above equations that / increases with a decrease in 

frequency f of the applied ac field while // peaks at = 1, where =2πf. 

 

2.7 MAGNETIC HYPERTHERMIA MEASUREMENTS 

The experimental set-up of a typical MHT system is shown in figure 2.7. The MHT 

measurements were conducted by using an Ambrell Easy Heat station coupled with a simple 

solenoid. This set-up creates an oscillating magnetic field of a specific amplitude and frequency 

which raises the temperature of the ferrofluid positioned inside the solenoid. The ferrofluid is 

provided with an insulation cover to prevent heat exchange with the surroundings. The 

temperature (T) rise with time (t) is recorded with the aid of a thermometer. The slope of T vs t 

curve provides an essential parameter for estimating the SAR of the concerned ferrofluid. The 

current passing through the circuit gives estimation on the amplitude of the magnetic field while 

the values of L and C determine the magnitude of the frequency. All our measurements had been 

recorded at a frequency of 375 kHz and under an ac magnetic field amplitude of 235 Oe. 

 

Figure 2.7 Schematic of a typical MHT system [70] 
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CHAPTER 3 

STRUCTURAL ORIGIN FOR LOW-TEMPERATURE RELAXATION FEATURES IN 

DOPED Fe3O4 NANOPARTICLES 

 

 

3.1 INTRODUCTION 

 

Fe3O4 Nanoparticles 

Fe3O4 has an inverse spinel crystal structure. The tetrahedral sites are occupied only by 

the Fe
3+

 ions while the octahedral positions have been occupied by alternating Fe
3+

 and Fe
2+

 ions 

as shown in figure 3.1 [71]. Fe3O4 nanoparticles (usually less than 20 nm) are superparamagnetic 

at the room temperature. These nanoparticles have applications ranging from magnetic recording 

to cancer research. These nanoparticles are extensively used as contrast agents for magnetic 

resonance imaging (MRI), used to target tumors inside the body and can also be utilized to treat 

cancer via hyperthermia [72]. The Ms value for bulk Fe3O4 is 92 emu/g [73] whereas the Ms 

value of 12 nm Fe3O4 nanoparticles is typically about 2/3 as large [61]. 

 

Figure 3.1 Inverse spinel structure of Fe3O4 with Fe
3+

 ions occupying the tetrahedral sites and 

Fe
2+

/Fe
3+

 ions occupying the octahedral sites alternatively [71]. 

 

 

In addition to features attributed to superparamagnetic relaxation, nanoparticles can also 

exhibit magnetic relaxation effects at lower temperatures. Disordered surface spins have been 
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proposed as one possible origin for this relaxation. Sufficiently small particles, having very large 

surface to volume ratios, typically exhibit surface structural disorder [34, 36]. This structural 

disorder can induce spin disorder. This in turn may result in glassy magnetic behavior at low 

temperatures, which can be observed in nanoparticles addition to the higher-temperature 

superparamagnetic relaxation [32]. The freezing of the disorder-induced spins on the surface of a 

nanoparticle, typically referred to as “surface spin-glass freezing” [32], is widely observed, 

including studies by Peddis et al.[37] in CoFe2O4 nanopartcles, Winkler et al.[36] in NiO 

nanoparticles, Nadeem et al.[32] , Kodama et al.[35] and Tackett et al. [74] in NiFe2O4 

nanoparticles. The model proposed by Kodama et al. considers a ferrimagnetic core of ordered 

spins surrounded by a shell consisting of spins having random orientations [35]. In this model, 

the glassy behavior is a single particle phenomenon in which the disordered surface spins 

produce the relaxation. Doping nanoparticles can also give rise to magnetic relaxation by 

introducing additional structural disorder, which can modify the local magnetic structure leading 

to spin-glass-like relaxation [75, 76]. Recently, using Mössbauer studies, Burianova et al. [77] 

have observed surface spin effects when Lanthanum (La) was doped into CoFe2O4 nanoparticles. 

However, there are also suggestions that this low temperature relaxation could arise from weak 

interparticle interactions. This magnetic relaxation driven by interactions among nanoparticles 

has been referred to as “superspin glass-like freezing” and is observed by Suzuki et al.[78] in 

Fe3O4 nanoparticles. Because of the importance of magnetic oxides in a wide range of 

applications from magnetic storage to catalysis [79], it is crucial to understand the interplay 

between structural disorder, dopants and interactions in determining the low temperature 

relaxation in Fe3O4 nanoparticles.  
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 While experimental observations of low temperature glassy behavior in magnetic 

nanoparticle systems is well established [32, 36, 74, 78] there are conflicting proposals for the 

mechanisms responsible for these effects. The goal of our study is to elucidate the materials 

properties underlying the glassy relaxation in magnetic nanoparticles by intentionally introducing 

disorder into the system. In the present work, we report the effect of doping on the low 

temperature magnetic properties of Fe3O4 nanoparticles. Metal ions including Co
2+

, Gd
3+

 and 

La
3+

 along with non-metallic B
3+

 were doped into Fe3O4 nanoparticles to probe the 

characteristics leading to this low temperature glassy behavior in magnetic nanostructures. 

 

3.2 EXPERIMENTAL PROCEDURE 

Synthesis of Fe3O4 nanoparticles 

An aqueous solution of FeCl3.6H2O (10.8 g) and FeCl2.4H2O (4.0 g) in a molar ratio of 

2:1 were initially mixed in a beaker. 1M NH4OH (500 ml) solution was then added drop wise to 

the mixture under continuous stirring. We initially obtained a brown precipitate which ultimately 

turned into black as the sample continued to oxidize. The solution was then washed with 

deionized water until it became neutral. The nanoparticle solution was then freeze-dried for 

several hours to get fine powders of Fe3O4. 

Synthesis of B, Gd, La and Co doped Fe3O4 nanoparticles 

The same procedure was used for preparing the doped Fe3O4 nanoparticles with a slight 

alteration in the molar ratio of the iron salts. For synthesizing 5 at% B–Fe3O4, Gd–Fe3O4 and La–

Fe3O4 nanoparticles, aqueous solution of FeCl3  6H2O, FeCl2  4H2O and the corresponding 

source material used for doping were mixed together in a molar ratio of 1.85 : 1.00 : 0.15, while 

the molar ratio changes to 2.00 : 0.85 : 0.15 for preparing 5 at% Co–Fe3O4 nanoparticles. The 
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final nanoparticle sample was black in all cases, indicating the formation of ferrite nanoparticles, 

with the exception of the La–Fe3O4 nanoparticles having a brownish hue, which may be 

associated with the presence of highly oxidized iron oxide nanoparticle impurity phase. 

 

3.3 RESULTS AND DISCUSSION 

3.3.1 X-ray diffraction  

The X-ray diffraction (XRD) patterns for the Fe3O4, Co-Fe3O4, B-Fe3O4, La-Fe3O4 and 

Gd-Fe3O4 nanoparticles measured at room temperature are plotted in figure 3.2. The distinct 

diffraction peaks for the undoped sample can be indexed to the crystal structure for Fe3O4 

(JCPDS card number: 85-1436), confirming the formation of single phase crystalline 

nanoparticles. The peaks for the doped samples match the XRD spectrum for undoped Fe3O4, so 

doping does not substantially modify the crystal structure of the nanoparticles. Cell refinement 

studies performed on the XRD spectra of these nanoparticles, having a cubic symmetry, reveal 

that doping has caused a contraction of the lattice. The lattice parameter for undoped Fe3O4 

nanoparticles is 8.382 Å, which is consistent with the results reported by Huan et al. [80].The 

refined lattice parameters for Co-Fe3O4, B-Fe3O4, Gd-Fe3O4 and La-Fe3O4 nanoparticles are 

estimated to be close to 8.349 Å, 8.366 Å, 8.368 Å and 8.371 Å respectively. The absence of any 

additional peaks in the XRD spectra for Co-Fe3O4 and B-Fe3O4 confirms that these samples are 

also comprised of single phase crystalline nanoparticles. However, additional peaks in the rare-

earth doped nanoparticles, indicated with arrows in figure 3.2, suggest the formation of α-

FeOOH (goethite) phase (JCPDS card number: 81-0462) along with Fe3O4 nanocrystals. The 

formation of α-FeOOH during the preparation of iron oxide nanoparticles has been previously 

attributed to the alkalinity of the synthetic medium [79]. The broadening of the (311) peak in the 
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XRD spectrum of the La doped sample is due to the overlap of the diffraction peaks 

corresponding to both Fe3O4 and α-FeOOH lattices [79] (JCPDS card numbers: 85-1436 and 81-

0462 ). 

 Fe3O4 has an inverse spinel crystal structure. The tetrahedral sites accommodate only Fe
3+

 

ions while the octahedral sites are occupied by both Fe
3+

 and Fe
2+

 ions alternatively [71]. 

Previous studies on doping in spinels find that lanthanide ions (Gd
3+

 / La
3+

) and Co
2+

 ions are 

likely to occupy the octahedral sites by replacing the Fe
3+

 and Fe
2+

 ions respectively [81-83]. 

Since the ionic radii of Gd
3+ 

(0.0938 nm) and La
3+ 

(0.106 nm) are much larger than that of Fe
3+

 

(0.064 nm), these ions are expected to cause large structural defects than Co
2+

 ion (0.072 nm) 

which has an ionic size very close to Fe
2+

 ion (0.078 nm) [82, 84-86]. Smaller trivalent ions like 

Al
3+ 

(0.051 nm) when doped into CoFe2O4 nanoparticles have a stronger affinity for occupying 

the octahedral sites by replacing the Fe
3+

 ions [87], which we also expect for B
3+

 ions (0.041 nm) 

[88]. 

 The average crystallite size of the nanoparticles was estimated by the Debye Scherrer 

equation, as d=0.9λ/cosθ, where d is the average diameter or size of the particle, λ is the X-ray 

wavelength and is the full width at half maxima of the peak corresponding to the Bragg angle θ 

[89]. The (220), (311) and (400) peaks were used to calculate the average crystalline particle size 

for the cobalt, boron and gadolinium doped nanoparticles, as well as for the undoped 

nanoparticles. The mean crystallite size estimated for the Co-Fe3O4, B-Fe3O4 and Gd-Fe3O4 

nanoparticles is approximately 14 nm, 13 nm and 23 nm respectively, compared to 12.5 nm for 

the undoped particles. Because the (311) peak for La doped nanoparticles is broadened, we used 

only the (220) peak for estimating the particle size which gave a diameter of approximately 22 

nm. These XRD measurements suggest that while boron and cobalt substitution have a negligible 
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effect on the Fe3O4 nanoparticle size, rare earth doping increases the particle size roughly by a 

factor of two, for the given synthesis conditions. This means that while the surface to volume 

ratio for the B and Co doped nanoparticles is nearly unchanged, this decreases by approximately 

a factor of two for the La and Gd doped samples.  

 

Figure 3.2 XRD spectra of (a) Fe3O4 (b) Co-Fe3O4 (c) B-Fe3O4 (d) La-Fe3O4 and (e) Gd-Fe3O4 

nanoparticles. The curves have been offset vertically for clarity.  

 

 

3.3.2 Transmission electron microscopy   

 

We also used transmission electron microscopy (TEM) imaging to more fully 

parameterize the structure of the nanoparticles. Figure 3.3 shows TEM images of the B-Fe3O4 

and Gd-Fe3O4 nanoparticles, together with high resolution images of both Gd and La substituted 

Fe3O4. The B-Fe3O4 nanoparticles (figure 3.3(a)) are roughly spherical with an average particle 

size 13-14 nm. This is very slightly larger than the size estimated from XRD, implying that there 

could be a thin amorphous layer on the surface of these nanoparticles. The TEM image for the 

Gd-Fe3O4 nanoparticles (figure 3.3(b)) show cubical or rhombohedral morphologies. This 

deviation from sphericity with gadolinium doping is similar to that reported by Drake et al. [89], 
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although they have not observed such a large change in nanoparticle size. However, for our 

nanoparticle sample, the increase in particle size suggested by XRD is confirmed by high 

resolution TEM (HRTEM) image, as illustrated in figure 3.3(c), which shows the formation of a 

crystalline Gd-Fe3O4 nanoparticle with slightly larger dimensions than those obtained from the 

XRD data. A HRTEM image for the La-Fe3O4 nanoparticles is also shown in figure 3.3(d) with 

the formation of crystal planes being clearly indicated by the encircled region. However, no 

significant defect sites or distortions in the crystal planes are located from these HRTEM images.  

The larger particle size determined using TEM as compared to XRD can potentially be 

attributed to an amorphous surface layer, as the XRD peak width reflects only the crystalline 

component. The saturation magnetization of nanoparticles is routinely found to be smaller than 

in bulk materials (on the order of 68 emu/g for nanoparticles compared to 92 emu/g [90] in bulk 

for Fe3O4), which is typically associated with a non-magnetic surface layer. The proposed 

structural amorphous layer and magnetically amorphous layer need not overlap, since a material 

can be structurally ordered but magnetically disordered. The possible presence of this 

magnetically disordered layer could be relevant for understanding the enhanced low temperature 

magnetic relaxation in certain nanoparticles.  
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Figure 3.3 TEM images of (a) B-Fe3O4 and (b) Gd-Fe3O4 nanoparticles, HRTEM images of (c) 

Gd-Fe3O4 and (d) La-Fe3O4 nanoparticles.  

 

 

3.3.3 Raman spectroscopy 

 

We have also used Raman spectroscopy to investigate the local structural properties of 

the nanoparticles, and more carefully probe for non-crystalline secondary phases, which would 

not be observed in XRD studies. Figure 3.4 plots the Raman spectra for the B-Fe3O4, Gd-Fe3O4 

and La-Fe3O4 nanoparticles. Mandal et al. [73] reported the presence of distinct peaks at 211, 

283, 490 and 682 cm
−1

 for undoped Fe3O4 nanoparticles, which correspond to the T2g, Eg, T2g 

and A1g modes respectively, while the peak corresponding to 390 cm
-1

 was associated with a 

magnon excitation. However, the interpretation of these peaks is ambiguous. Features near these 

frequencies have been assigned to α-FeOOH in Raman measurements reported by Legodi et al. 

[91]. Since our XRD data unambiguously identifies the presence of α-FeOOH in the rare-earth 

doped nanoparticles, we attribute the peaks at 219, 278, 388, 485 and 578 cm
-1

 in figure 3.4 to 

the presence of a goethite impurity phase in all the samples, even those appearing phase pure in 
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the XRD measurements. Bulk α-FeOOH is antiferromagnetic with Neel temperature, TN=393 K, 

but nanoparticles can show a non-zero magnetic moment, [1] so this impurity phase could 

possibly affect the magnetic response of the nanoparticles. According to studies by Ni et al. [92], 

the peak observed at 667 cm
-1

 in spectrum (a) of figure 3.4 for the B-Fe3O4 nanoparticle sample 

is attributed to the A1g mode in Fe3O4, which is shifted to even smaller wavenumbers, close to 

650 cm
-1

, on rare-earth doping as seen from spectra (b) and (c). The shift to lower energies may 

arise from substituting the more massive rare-earth ions into the lattice, which will decrease the 

frequency of metal-oxygen vibrations. These Raman measurements clearly identify the presence 

of some impurity phases in the nanoparticles, including those that are XRD clean, and other 

structural defects in the doped samples.  

 

 

Figure 3.4 Raman spectra of (a) B-Fe3O4 (b) Gd-Fe3O4 and (c) La-Fe3O4 nanoparticles. The 

curves have been offset vertically for clarity. 

 

Energy Dispersive Spectroscopy (EDS) measurements (not shown) confirm that 

approximately 5.4, 8.2 and 5.7 at. % of Co
2+

, Gd
3+

 and La
3+

 had been incorporated into the Fe3O4 

nanoparticles during the synthesis process. While EDS is only appropriate for semi-quantitative 
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analysis, these values are roughly consistent with the nominal initial doping percentage (5 at. %). 

Since EDS is unable to detect the presence of very light elements, including boron, we used ICP-

OES to estimate the boron content in our nanoparticle sample. The B-Fe3O4 nanoparticles, 

having a nominal B composition of 5 at.%, was dissolved in a weak nitric acid solution for the 

analysis. The ICP-OES data (not shown) reveal that approximately 2.5 at.% of B has been 

incorporated into the Fe3O4 nanoparticles. This B fraction is smaller than the initial doping 

percentage (5 at.%). The loss of boron may be attributed to its high volatility, as studies have 

found that a very small percentage of boron can get vaporized from a solution of H3BO3 in water 

[93].  

  

3.3.4 Magnetic measurements 

Figure 3.5 shows M vs H plots for the undoped, boron doped, cobalt doped and 

gadolinium doped Fe3O4 nanoparticles at room temperature. The saturation magnetization (Ms) 

values obtained for the undoped (Ms=68 emu/g), boron doped (Ms=66.5 emu/g) and cobalt doped 

(Ms=66 emu/g) Fe3O4 nanoparticles are identical within experimental uncertainties (+/-1 emu/g, 

coming mainly from the uncertainty in measuring the sample mass). Conversely, the Ms value 

obtained for Gd-Fe3O4 nanoparticles is close to 24 emu/g, a decrease by roughly 65 % compared 

to the undoped nanoparticles. This substantial decrease in saturation magnetization for Gd-Fe3O4 

nanoparticles is consistent with the value reported by Liang et al.[79], although this work does 

not provide the specific doping fraction and so a direct comparison is not possible. With doping 

less than 1 at. %, Drake et al. have reported that the Ms value for Gd-Fe3O4 nanoparticles was 

unchanged [89]. The saturation magnetization of Fe3O4 nanoparticles on rare earth doping 

appears to depend very strongly on the doping fraction. This speculation is supported by results 
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from Huan et al. [80] who found that saturation magnetization strongly suppresses in lanthanide-

doped (Eu and Sm) Fe3O4 nanoparticles, decreasing roughly by a factor of 2 to 3 at10% doping.  

                             

Figure 3.5 M vs H plots for Fe3O4, B-Fe3O4, Co-Fe3O4 and Gd-Fe3O4 nanoparticles at room 

temperature. 

 

Figure 3.6 shows χ
//
/ χ

/ 
(10K) vs T for the Fe3O4, Co-Fe3O4, Gd-Fe3O4, La-Fe3O4 and B-

Fe3O4 nanoparticles at low temperatures using a fixed excitation frequency of 10 kHz under an 

excitation field of 10 Oe. The susceptibilities were scaled to the value at 10 K to allow a direct 

comparison between the results for the different samples. For the boron, gadolinium and 

lanthanum doped samples, large and pronounced peaks in the magnetic dissipation are seen near 

35 K. These peaks indicate the onset of low temperature relaxation, typically associated with a 

glassy magnetic response [32, 36, 74, 78]. Similar features, but having much smaller amplitudes, 

are observed for both the undoped and cobalt doped Fe3O4 nanoparticles. Therefore, while 

doping with B
3+

, Gd
3+

 and La
3+

 has produced a significant enhancement in the low temperature 

magnetic relaxation in Fe3O4 nanoparticles, this relaxation is still present in the undoped parent 

compound and also in the Co
2+

 doped nanoparticles, so the magnetic dissipation is not produced 
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solely by presence of these dopants. The inset in figure 3.6 shows the χ
//
/ χ

/ 
(10K) vs T graph for 

a different set of Fe3O4 and B-Fe3O4 nanoparticle samples clearly depicting the low temperature 

magnetic features and also the superparamagnetic blocking near 200 K. We do not see any 

significant shift in the superparamagnetic relaxation temperature (TB) in these doped 

nanoparticles. Since the particle sizes for the undoped and boron doped nanoparticles are roughly 

fixed, we presume that the magnetocrystalline anisotropy is not changed substantially for small 

doping levels. This is consistent with previous studies performed on Co doped Fe3O4 

nanoparticles [94].  

 

 

Figure 3.6 χ
//
/ χ

/
(10K) vs Temperature (T) graph for (a) Fe3O4, (b) Co-Fe3O4, (c) Gd-Fe3O4, (d) 

La-Fe3O4 and (e)B-Fe3O4 nanoparticles at a specific excitation frequency of 10kHz under an 

excitation field of 10 Oe. The inset shows the χ
//
/ χ

/
(10K) vs Temperature (T) graph for a 

different set of (a) Fe3O4 and (b)B-Fe3O4 nanoparticles at a specific excitation frequency of 1kHz 

under an excitation field of 10 Oe. The curves in the inset have been offset vertically for clarity. 

 

We now consider a possible origin for this magnetic relaxation, consistent with the large 

enhancement found with B, Gd and La doping. The amplitude of the magnetic relaxation in both 

the boron and rare-earth doped nanoparticle samples increases by roughly a factor of three above 
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the undoped particles. This increase cannot be attributed to defect spins developing simply 

because of an increase in the surface to volume ratio, as these doped nanoparticles are of the 

same size or larger than the undoped particles. Motivated by the fact that there is a significant 

increase in the dissipation on B, Gd and La doping, which can produce structural defects, but not 

with Co substitution, which has roughly the same ionic radius as Fe
2+

, we suppose that structural 

defects rather than dopant magnetic moments are responsible for this low temperature relaxation.   

  Because the susceptibility peaks in the doped and undoped samples plotted in figure 3.6 

are qualitatively similar, falling at nearly the same temperature, the magnetic relaxation must not 

be sensitive to the specific nature of the structural defect, whether arising from an impurity 

dopant, or as an intrinsic defect. To more carefully parameterize the low temperature magnetic 

properties in the different nanoparticle samples, we have analyzed the temperature and frequency 

dependence of the relaxation by fitting to a thermally activated process. Figure 3.7(a) shows ln τ 

vs (1/T) plot for the undoped Fe3O4 nanoparticles. This curve is approximately linear, and can be 

fit to an Arrhenius equation with the activation energy EA/kB being equal to 570 K and a 

characteristic relaxation time of τ0 10
-9

s. Similar fits in to the data in Figures 3.7(b) and 3.7(c) 

yield the values of τ0 in the range of 10
-11

s to 10
-12 

s for B-Fe3O4 and Gd-Fe3O4 nanoparticles 

respectively with activation energies close to EA/kB = 500 K. There is some change in the 

microscopic time constant τ0 for the relaxation for these different samples, but these are within 

approximately one order of magnitude, and the activation energy changes only slightly (by 

roughly 10%) on doping. The relaxation data presented in figure 3.7 therefore suggest that the 

relaxation mechanism giving rise to the peaks in the low temperature susceptibility is unchanged 

on doping. These quantitative similarities in the relaxation dynamics suggest that the magnetic 

degrees of freedom relaxing in the doped samples are the same, or similar, to the relaxing 
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moments in the undoped nanoparticles. This is consistent with the Mössbauer measurements 

reported by Burianova et al.[77] where they observe that the doping of La into CoFe2O4 

nanoparticles gives a significant spin canting of only the Fe
3+

 ions. In this context, doping has 

produced additional structural defects in the nanoparticles leading to an increase in the amplitude 

of relaxation. XPS studies performed on Co substituted Fe3O4 show a gradual shift of the Fe 

peaks to lower binding energies, as well as peak broadening, with increasing Co concentration, 

but do not clearly demonstrate any change in the Fe
2+

/Fe
3+

 ratio (within the available resolution) 

[95]. The α-FeOOH impurity phases seen in Raman and XRD may also contribute to the 

magnetic properties of these nanoparticles. However, we attribute this low temperature 

relaxation to the intrinsic properties of Fe3O4 motivated by Mössbauer studies on the La doped 

nanoparticles.  

 

Figure 3.7 Arrhenius fits for (a) Fe3O4, (b) B-Fe3O4 and (c) Gd-Fe3O4 nanoparticles 

 

We have observed that the surface to volume ratio is roughly unchanged for the cobalt 

and boron doped nanoparticles as compared to the undoped nanoparticles, therefore, we argue 

that the intrinsic surface spin contribution (that is, the contribution arising from spins at the 
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surface of the nanoparticle) is similar. For the rare-earth doped nanoparticles, the nanoparticles 

are larger, hence the surface to volume ratio is smaller so the relative intrinsic surface disorder is 

smaller. For all of these systems, we argue that this low temperature magnetic relaxation arises 

predominantly from structural defects, whether introduced by the dopants or intrinsic to Fe3O4, 

rather than surface effects. In this context, we consider the -FeOOH phase as a type of intrinsic 

disorder. This non-magnetic secondary phase may be stabilized by the dopants (as suggested in 

the XRD and Raman data) and could also contribute to the magnetic dissipation.  

The areas under the relaxation peaks but above background are approximately 

proportional to the number of relaxing spins in the different samples. For the B-Fe3O4, Gd-Fe3O4 

and La-Fe3O4 nanoparticles, these areas are a factor of 1.5 to 2 greater than for the undoped 

Fe3O4 sample. If each B
3+

, Gd
3+

 and La
3+

 dopant ion produces a distortion leading to a moment 

participating in the relaxation in the cell in which it is located along with the nearest neighbors, a 

single dopant will affect 7 cells. Making the simplifying assumption that the dopants are 

distributed uniformly, as opposed to randomly, this means that at 5% doping, approximately 35% 

of the unit cells have moments contributing to the magnetic relaxation near 35 K. Since the 

number of relaxing spins for B, Gd and La doped particles is twice as large as for Fe3O4 

nanoparticles, we argue that the concentration of defects should also be twice as large. This 

would give a concentration of defects for undoped Fe3O4 nanoparticles of approximately 15% of 

the unit cells. This increased fraction of unit cells having a structural distortion even in undoped 

Fe3O4 nanoparticles can readily be attributed to the very large surface to volume ratio in these 

materials. For a Fe3O4 nanoparticle having a diameter of 12.5 nm, over 30 % of the unit cells are 

at the surface of the particle, and thus may be expected to show some structural defects. We 

speculate that for the pure Fe3O4 nanoparticles the majority of the disordered spins may be near 
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the magnetic amorphous layer. However, for the B-doped nanoparticles we argue that the 

structural defects are distributed throughout the volume of the nanoparticles. This is because the 

saturation magnetization (Ms) value for the B doped sample is close to undoped Fe3O4, which 

implies that the magnetically amorphous layer has approximately the same thickness. 

We argue that this low temperature relaxation is not greatly influenced by interparticle 

interactions, but rather arises from single-particle effects. This argument is based on the 

observation that dipolar interactions, generally the most prominent interactions for magnetic 

nanoparticles[33], do not differ significantly among these different samples. This can be 

observed directly for the Co and B doped samples, where the particle size and saturation 

magnetization are practically unchanged. In this case, the dipolar interactions between 

nanoparticles will also be fixed as the morphology is unchanged. This means that the strong 

enhancement in the low temperature relaxation should be attributed to single particle effects. For 

the rare-earth doped nanoparticles, the size is almost doubled while the saturation magnetization 

decreases by roughly a factor of three when compared to Fe3O4 nanoparticles. Therefore, the 

dipolar interaction energy, which varies like μ
2
/r

3
,[33] is also approximately unchanged. The 

dramatic increase in the amplitude of the low temperature magnetic relaxation anomaly in some 

of these nanoparticle samples, without any substantial change in the dipolar interactions, argues 

that the relaxation arises from single particle effects.  

 

3.4 CONCLUSIONS  

 The incorporation of Gd
3+

, B
3+

 and La
3+

 dopants into Fe3O4 nanoparticles have 

significantly enhanced the amplitude of the low temperature glassy relaxation in this system, 

contrary to doping with cobalt, which does not measurably affect the relaxation. The fact that 
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there is no significant difference in properties on doping with magnetic Gd
3+

 and non-magnetic 

B
3+

 or La
3+

 suggest that structural, rather than magnetic, defects play a major role in modifying 

the relaxation. This study strongly suggests that the low temperature magnetic relaxation 

observed in undoped nanoparticles arises from single-nanoparticle effects due to freezing of local 

moments associated with structural defects, including surface spins, rather than being driven by 

any weak interaction among different nanoparticles. In this context, we suggest that all structural 

defects, and not just surface spins, are responsible for the low-temperature glass like relaxation 

observed in many magnetic nanoparticles. This substantial defect-induced relaxation in 

nanostructures may have important implications for the design of high Q nanomagnetic devices. 
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CHAPTER 4 

INVESTIGATING INTERACTIONS IN -Fe2O3 AND Fe3O4 NANOPARTICLE 

SYSTEMS 

 

4.1 INTRODUCTION 

Recent advances in materials synthesis and preparation have made the development and 

investigation of nanoscale magnetic systems widely accessible. This has led to proposals for 

incorporating nanoscopic magnets in applications ranging from magnetic recording [96] to 

targeted drug delivery [18]. While the general behaviour of these systems is well understood in 

the context of the Néel-Brown model for single particle magnetic relaxation [29], developing a 

complete model for the behavior of a collection of interacting nanoscale magnets is an active 

topic of current research. In the non-interacting Néel-Brown model, the magnetic moments of 

each nanoparticle undergo thermally assisted transitions between the easy crystallographic 

directions. This leads to a temperature dependent relaxation time for the nanoparticle 

magnetization given by an Arrhenius equation, τ = τ0 exp (EA/kBT), where 0 is a microscopic 

time scale for the transitions, which typically lies between 10
-9

 -10
-13 

s for these non-interacting 

sysems [24, 61]. In this model, the energy barrier EA is KV, where K and V are the magneto-

crystalline anisotropy constant and volume of the nanoparticle respectively [24, 61]. The 

blocking temperature (TB) for the system is the experimental temperature at which the zero-field 

cooled magnetization exhibits a peak and is generally proportional to the energy barrier KV [2, 

97].  

 It is predicted that with increasing interactions, magnetic nanoparticles may develop a 

spin-glass state [98]. Experiments on concentrated and diluted nanoparticle samples have found 

evidence for a change in properties characterized by glassy behavior to properties associated 
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with superparamagnetic interactions with decreasing particle concentrations [98, 99]. In the case 

of dipolar interactions between nanoparticles, the two-particle dipolar energy is given by: 

d≈


, where and a are the total nanoparticle moment and the interparticle 

spacing respectively [100]. Experimentally, decreasing the spacing between iron oxide 

nanoparticles is found to shift TB to higher temperatures, as observed in studies on iron oxide 

nanoparticles in porous silicon [101], in Langmuir-Blodgett films [100, 102], and with the 

particle spacing controlled by dendrimer coatings [103]. For dipolar interactions observed in 

monodisperse Fe3O4 nanoparticles suspended in organic solvents, Bae et al. [33] have reported a 

gradual drop in the blocking temperature following an increase in the interparticle distance, 

although TB tends to saturate for much larger particle spacings. Studies on γ-Fe2O3 nanoparticles 

have also found an increase in the blocking temperature TB (or the energy barrier EA) with 

increasing particle concentrations [104] following a theoretical model proposed by Dormann et 

al. [105]. However, attempting to parameterize interaction effects through a shift in the blocking 

temperature requires preparing an additional diluted sample to determine the non-interacting 

value of TB. Pal et al. [106] have also shown that coating of gold onto the surface of Fe3O4 

nanoparticles could potentially affect interparticle interactions.        

Interaction effects can also be investigated by measuring the ac magnetic susceptibility, 

which exhibits an anomaly when the measurement frequency f is commensurate with the 

nanoparticle relaxation time. The dimensionless frequency dependent temperature shift, defined 

as α=T/[Tlog10(f)], where T is the difference in the peak temperatures corresponding to two 

different frequencies and T being the average between those temperatures, is often used to 

estimate the relative importance of interactions, with larger values of , typically above 0.13, 

being indicative of a non-interacting system, between 0.05 and 0.13, corresponds to medium or 
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weakly interacting systems, and smaller values, less than 0.05, associated with strong or glassy 

interactions [24]. Experimentally, the frequency dependent relaxation in weakly interacting 

systems is typically fit to a phenomenological Vogel-Fulcher law, τ = τ0 exp [EA/kB (T-To)] [24] , 

which differs from the Arrhenius expression by the effective interaction energy T0. Using the 

frequency dependent relaxation allows interaction effects to be estimated by measurements on a 

single sample, without the need to determine the non-interacting value of TB, at the cost of 

measuring the response at a number of different frequencies. In this work, we present results on 

interparticle interactions in both γ-Fe2O3 and Fe3O4 magnetic nanoparticles using ac 

susceptibility measurements. 

 

4.2 EXPERIMENTAL PROCEDURE 

The maghemite (γ-Fe2O3) nanoparticles were prepared using eight iterations of a matrix-

mediated precipitation reaction [107]. The synthesis was carried out by cross-linking sodium 

alginate with Fe
2+

 ions in a methanol-water solution. The Fe3O4 nanoparticles were prepared 

using a chemical co-precipitation technique [61]. Both nanoparticle samples were lypholized into 

powders for the structural and magnetic studies. The structures of the samples were measured 

using x-ray diffraction (XRD) (Rigaku MiniFlex 600 X-ray diffractometer), and transmission 

electron microscopy (JEOL FasTEM 2010 HR). The ac magnetization studies on these 

nanoparticles were conducted using the acms option on a Quantum Design Physical Property 

Measurement System (PPMS).  

 

 

 



51 
 

 
 

4.3 RESULTS AND DISCUSSION 

4.3.1 X-ray diffraction & Transmission electron microscopy      

We plot the x-ray diffraction pattern for the Fe3O4 nanoparticles in figure 4.1 (a). The 

graph shows the peaks expected for Fe3O4 (JCPDS card number: 85-1436), with no additional 

reflections, indicating the absence of any significant crystalline impurity phases. Using the 

Debye-Scherrer equation [61], we estimated the average coherent domain size [108] of Fe3O4 to 

be nearly 12 nm. The transmission electron microscope images for γ-Fe2O3 and Fe3O4 

nanoparticles are shown in figures 4.1 (b) and 4.1 (c) respectively. These show nearly spherical 

particles having diameters of approximately 6 nm (γ-Fe2O3) and 12 nm (Fe3O4), albeit with a 

relatively large degree of polydispersity. Because the samples were dissolved in alcohol and then 

deposited on a carbon coated copper grid for imaging, the particle distribution in these images 

may be different from the nanoparticle distribution during the magnetic measurements. With this 

caveat, we note that the γ-Fe2O3 nanoparticles are more widely separated than the Fe3O4 

nanoparticles, as expected for particles distributed in the alginate matrix.  

 

4.3.2 Magnetic measurements 

We plot the out-of-phase component of the magnetic susceptibility, //, corresponding to 

the loss component, as a function of temperature (T) at several different frequencies for γ -Fe2O3 

and Fe3O4 nanoparticles in figures 4.2(a) and 4.2(b) respectively. These measurements were 

done with an excitation field of 10 Oe in the absence of any applied dc field. The peak in the //
 

vs T curve occurs when the temperature independent measurement frequency ω and the 

characteristic magnetic relaxation time τ satisfy the relation ωτ =1. In the case that τ satisfies the 

Arrhenius equation, we expect to recover a straight line when ln τ is plotted as a function of 1/T, 
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with the slope and intercept of this curve giving the activation energy EA and microscopic 

relaxation time τ0 respectively. The Arrhenius fit for the γ -Fe2O3 nanoparticles yields EA/kB ≈ 

2550 K and τ0 ≈ 10
-18 

s, while the fit for the Fe3O4 nanoparticles gives EA/kB ≈ 3100 K and τ0 ≈ 10
-

12 
s. The value for the characteristic relaxation time for the Fe3O4 nanoparticles is reasonable, but 

is unphysically short [109] for the γ -Fe2O3 particles. This strongly suggests that there are 

interactions present in the γ-Fe2O3 nanoparticle sample.  

 

 

Figure 4.1 (a) XRD of Fe3O4 nanoparticles, TEM images of (b) γ -Fe2O3 and (c) Fe3O4 

nanoparticles. 
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Figure 4.2 Out-of-phase component of the ac magnetic susceptibility (
//
)
 
vs Temperature (T) 

plot for (a) γ-Fe2O3 nanoparticles in alginate matrix and (b) Fe3O4 nanoparticles at different 

frequencies under an excitation field of 10 Oe. 

 

 

To more carefully explore the possible interactions in these nanoparticle systems, we fit 

the frequency and temperature dependent relaxation peaks for both samples to a Vogel-Fulcher 

equation, as shown in figures 4.3(a) and 4.3(b). We estimate the dc blocking temperature from 

the zero-frequency extrapolation of these curves as TB=75 K for the γ -Fe2O3 nanoparticles and 

TB=160 K for the Fe3O4 nanoparticles. The fitting parameters for γ -Fe2O3 are: EA/kB ≈ 350 K, τ0 

≈ 10
-9 

s, and T0=50 K, giving a ratio of T0/TB = 0.6. This ratio of the effective interaction and 

blocking temperature is consistent with moderate interactions (for surface spin glass features in 

nickel ferrite nanoparticles [97], T0/TB = 0.9). The best-fit parameters for Fe3O4 are: EA/kB ≈ 2350 

K, 0 ≈ 10
-11 

s, and T0=20 K, giving a ratio of T0/TB = 0.12, although a range of values for T0 

roughly between 0 K and 40 K give equally good fits. These results indicate that the γ-Fe2O3 

nanoparticles are significantly more strongly interacting than the Fe3O4 nanoparticles. We also 

parameterized the interactions in terms of the dimensionless frequency shift α. We find that for γ 



54 
 

 
 

-Fe2O3 nanoparticles, α≈ 0.07, indicative of a moderately interacting system, while for the Fe3O4 

nanoparticles, α≈ 0.13, corresponding to nearly non-interacting nanoparticles. 

 Assuming that the saturation magnetizations (Ms) of Fe3O4 and γ-Fe2O3 nanoparticles are 

approximately equal, as is the case for the bulk systems [61, 109], and the mean diameter (d) for 

Fe3O4 is twice as large as the γ-Fe2O3 nanoparticles suspended in the alginate matrix, we 

estimate μ(Fe3O4) ≈ 8μ(γ-Fe2O3), using the relation μ~Msd
3
 [102]. The Fe3O4 nanoparticles are a 

single-phase powder, so we assume that the mean center-to-center interparticle spacing is 

roughly 1.5d(Fe3O4) supposing that the system is not close-packed. Conversely, the γ -Fe2O3 

nanoparticles are non-uniformly distributed in the alginate matrix, with the volume of 

nanoparticles being roughly half the total volume as determined by measurements of the 

saturation magnetization for the composite (not shown). We therefore suppose that the mean 

spacing between γ-Fe2O3 nanoparticles is closer to 2d(γ-Fe2O3). As the Fe3O4 nanoparticles have 

a diameter twice as large as the γ-Fe2O3 nanoparticles, we finally estimate that the center-to-

center mean spacing (a) between the Fe3O4 nanoparticles to be very roughly 1.5 times larger than 

between γ-Fe2O3 nanoparticles.  

 

Figure 4.3 Vogel-Fulcher fits for (a) γ-Fe2O3 nanoparticles in alginate matrix and (b) Fe3O4 

nanoparticles. 
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Using these values, the dipolar interaction energy, proportional to μ
2
/a

3
 [102], is 

approximately 20 times larger for the Fe3O4 nanoparticle ensemble as compared to the γ-Fe2O3 

nanoparticles. This analysis argues that Fe3O4 should be more strongly interacting than γ-Fe2O3, 

even scaling to the measured blocking temperature. However, this is different from what we see 

experimentally, namely that the γ-Fe2O3 nanoparticles are significantly more interacting than the 

Fe3O4 nanoparticles. This contradiction between the theoretical and experimental expectations 

for the relative interaction energies is relatively robust against changes in the interparticle 

spacing, which is the largest uncertainty in this analysis. Therefore, we conclude that the 

assumption underlying this analysis, namely that the interaction energy can be estimated from 

the mean particle spacing, is incorrect. Motivated by the fact that the effective interaction energy 

in the γ-Fe2O3 nanoparticles, which show clustering inside the alginate matrix, is larger than in 

the Fe3O4 nanoparticles, which are more uniformly distributed, we believe that fluctuations in the 

nanoparticle distribution can significantly affect the interaction energy. In turn, this implies that 

the interaction energy cannot be accurately estimated using only the mean particle spacing, but 

that the actual distribution needs to be considered. 

 

4.4 CONCLUSIONS 

The ac magnetic susceptibility measurements provide an opportunity to probe interaction 

effects in a single nanoparticle sample, without having to first determine the parameters in the 

non-interacting limit, at the expense of requiring measurements at a number of different 

frequencies. By analyzing the temperature dependent ac magnetic susceptibility data and by 

fitting it to the Vogel-Fulcher equation, we find that the γ -Fe2O3 nanoparticles in alginate exhibit 

stronger interactions than the homogeneous Fe3O4 nanoparticle sample. However, estimates of 
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the dipolar interaction energies, using the expected mean values for interparticle spacings, 

predicts that the interactions in the Fe3O4 nanoparticle ensemble should be stronger than for the 

γ-Fe2O3 nanoparticles embedded in the alginate matrix. We hypothesize that the effective 

nanoparticle interactions depend strongly on the actual distribution of the nanoparticles and not 

just on the mean spacing.  
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CHAPTER 5 

 

INVESTIGATING INTERACTIONS AND MAGNETIC RELAXATION IN BORON 

DOPED Mn3O4 NANOPARTICLES 

 

 

5.1 INTRODUCTION 

Mn3O4 Nanoparticles 

When the oxides, hydroxides, carbonates, nitrates and sulfates of Manganese are heated 

above 1000
0
 C in air, Mn3O4 gets formed as the main product [110]. The stable room-

temperature phase for Mn3O4 is tetragonal hausmannite (space group I41/amd). Mn3O4 has a 

normal spinel crystal structure where Mn
3+

 ions occupy the octahedral sites and Mn
2+

 ions 

occupy the tetrahedral sites as shown in figure 5.1 [111]. The octahedral site is distorted 

following the Jahn-Teller effect on the Mn
3+

 ions. Bulk Mn3O4 is paramagnetic at the room 

temperature but assumes ferrimagnetism below the critical transition temperature of about 42 K 

[112] [113]. Mn3O4 is an important transition metal oxide and finds applications in various fields 

like high-density magnetic storage media, catalysts, ion-exchanging materials among others 

[111-113]. It is used as a raw material for making soft magnetic materials [114]. It serves as an 

important catalyst in controlling air pollution by reducing the emission of NOx and CO. It is 

believed that Mn3O4 nanoparticles, having a greatly increased surface to volume ratio, can be 

particularly important for these applications [111, 112, 114]. 
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Figure 5.1 The normal spinel structure of Mn3O4 with Mn
2+

 ions occupying the tetrahedral sites 

(yellow) and Mn
3+

 ions occupying the octahedral sites (green) [112]. 

 

Bulk Mn3O4 is paramagnetic at room temperature but it develops ferrimagnetic order 

below the Neel temperature (TN) 42 K [34]. The formally predicted superparamagnetic blocking 

temperature (TB) for 15-25 nm sized Mn3O4 nanoparticles, using an average value for 

magnetocrystalline anisotropy calculated from the studies of Tackett et al.[38], varies from 

approximately 15 K to 65 K. Therefore, Mn3O4 nanoparticles provide a system where TB can 

overlap with TN. Two additional magnetic phase transitions, associated with the development of 

additional antiferromagnetic spin structures, are observed near 39-40 K and 33-34 K in bulk 

Mn3O4 [38, 113]. However, ac susceptibility measurements on Mn3O4 nanoparticles do not 

detect any signature of these two magnetic phase transitions, although a peak in magnetic 

dissipation is seen below 33 K in earlier studies [38, 113].The origin of these low temperature 

magnetic features in Mn3O4 nanoparticles is still under debate and has been associated with 

either superparamagnetic blocking [38] or to surface spins [113] . Our goal is to investigate 

interaction effects of Mn3O4 nanoparticles in solid-state samples. We exploited a feature of 

Mn3O4 nanoparticles namely that they readily convert to antiferromagnetic (AFM) α-Mn2O3 (80 
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K< TN < 100 K)[115] and -MnOOH (TN < 45 K)[116] under ambient conditions. This allowed 

us to prepare solid composites containing ferrimagnetic Mn3O4 particles with distinct average 

interparticle separations and therefore different interaction regimes. These samples allow us to 

explore interaction effects in nanoscale materials in a very different regime than 

superparamagnetic Fe3O4 nanoparticles, where the ferrimagnetic ordering temperature (>800 

K)[117, 118] is much larger than the superparamagnetic blocking which falls generally below 

room temperature [119].  

 

5.2 EXPERIMENTAL PROCEDURE 

Synthesis of Mn3O4 nanoparticles 

9.9 g of MnCl2.4H2O was added to 50 ml of HCl and deionized water mixed in the ratio 

of 1:9. 25 ml of NH4OH solution was added drop wise on to the mixture when light brown 

precipitate was formed. The solution containing the residual basic ions was washed several times 

with deionized water until it showed a pH value of 7. The light brown precipitate was filtered out 

and dried in a crucible in presence of air for 1h at 100
0
C. The dried powder was again heated at 

500
0
C in air for 1 h until it became dark brown. 

Synthesis of boron doped Mn3O4 nanoparticles 

For synthesizing the 5 at.% boron doped nanoparticles, the same procedure as mentioned 

above was followed with the exception that MnCl2.4H2O and H3BO3 was initially added to the 

1:9 mixture of HCl and deionized water in a molar ratio of 2.85:0.15. We obtained light brown 

precipitate, which was washed with deionized water to make the solution neutral. The precipitate 

was filtered out and dried in air at 100
0
C. The dried powder was again heated at 500

0
C in air for 

1 h when it turned to dark brown.  



60 
 

 
 

5.3 RESULTS AND DISCUSSION 

5.3.1 X-ray diffraction 

The XRD spectra of the MO and BMO nanoparticle samples are plotted in figure 5.2. 

The XRD spectrum of MO nanoparticles in figure 5.2 (a) shows the formation of Mn3O4 along 

with α-Mn2O3 and -MnOOH. (JCPDS Card Nos. 24-0734, 71-0636, 41-1379). The average 

crystallite size of the nanoparticles is estimated by the Debye Scherrer equation given by 

d=0.9λ/cosθ, where d is the average crystallite size of the particle, λ is the X-ray wavelength 

(0.154 nm) and  is the full-width at half maxima of any reference peak corresponding to a 

Bragg angle θ [113]. The size of Mn3O4 and Mn2O3 nanoparticles estimated from their most 

intense peaks are roughly 35 nm and 30 nm respectively. The unwanted production of α-Mn2O3 

and -MnOOH is widely associated with the synthesis of Mn3O4 nanoparticles [115, 120]. The 

transformation of Mn3O4 into Mn2O3 through annealing at an elevated temperature of 600
0
C was 

previously reported by Wang et al.[115] Studies have also claimed that oxidation of Mn3O4 

particles having a low surface area at temperatures above 400
0
 C always leads to the production 

of α-Mn2O3[121]. The formation of - MnOOH nanowires together with Mn3O4 nanoparticles 

via a hydrothermal treatment was also reported in earlier studies by Zhang et al. [120] When 

exposed to air under ambient conditions, Mn3O4 particles can also get converted to MnOOH 

[122]. These reports suggest that development of α-Mn2O3 and -MnOOH phases occurs 

routinely during the preparation of Mn3O4 nanoparticles. The instability of spinel Mn3O4 is also 

confirmed when XRD performed on initially phase pure nanoparticle samples held under 

ambient conditions for several years also show the production of other Mn oxide phases (not 

shown).  
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The distinct peaks in figure 5.2 (b) confirm the synthesis of crystalline nanoparticles having the 

Mn3O4 structure (JCPDS Card No.24-0734) in the boron doped sample. Rather unexpectedly, we 

find that incorporating boron does not show any noticeable shift in 2θ relative to pure Mn3O4 

nanoparticles and, more significantly, it minimizes the oxidation to other Mn oxide phases. The 

boron doped Mn3O4 nanoparticles show considerably better stability than undoped nanoparticles 

and, as confirmed with magnetic measurements shown in the following, produce phase-pure 

nanoparticles. Studies on boron substituted LiMn2O4 spinels have reported the occupancy of 

boron only in the octahedral Mn
3+

 sites [123], which we also expect for our BMO sample. Peaks 

corresponding to the diffraction planes (112), (103) and (211) have been considered in 

calculating the nanoparticle size. The average crystallite size calculated for the Mn3O4 

nanoparticles in the BMO sample using the Debye Scherrer equation is approximately 23 nm. 

Thirunakaran et al. [123] have reported the formation of borates in studies performed on boron 

substituted LiMn2O4 spinels. The stability of the boron doped sample possibly hints at the 

formation of a borate layer or coating on the surface of the particles, which could prevent the 

oxidation of Mn3O4 to other Mn oxide phases in the BMO sample. Previous studies have found 

this borate layer to be a potential candidate for the prevention of oxidation [124].  
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Figure 5.2 XRD spectra of (a) MO and (b) BMO nanoparticles. 

 

5.3.2 Transmission electron microscopy   

We further characterized the morphology of these nanoparticles using transmission 

electron microscopy (TEM). Figure 5.3 (a) shows the formation of roughly spherical 

nanostructures in the BMO sample with figure 5.3 (b) depicting the image of one such particle 

having a diameter between 26 nm and 28 nm. From the histogram showing the particle size 

distribution in the inset of figure 5.3 (b), the most probable diameter estimated for these 

nanostructures is 27 nm with a standard deviation of 4 nm. The average size of nanoparticles in 

the BMO sample extracted from TEM measurements is slightly larger than the crystallite size 
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determined by the XRD technique. This increase in the estimated particle size may be attributed 

with the formation of an amorphous layer on the surface of the nanoparticle, a typical signature 

also observed by Regmi et al. [113] for phase pure Mn3O4 nanoparticles. Several tiny particles 

having sizes approximately ranging between 2 nm to 5 nm are observed in the TEM image of the 

BMO sample in Figure 5.3(a). No such particles are found in the TEM image for the MO 

nanoparticle sample as shown in figure 5.3 (c). We therefore tentatively attribute the very small 

nanoparticles seen in figure 5.3(a) to a B2O3 impurity phase, which, because of their very small 

size, could not be detected using XRD. This was confirmed by preparing a 1 at.% boron 

substituted Mn3O4 nanoparticle sample (not shown), which still has phase-pure XRD patterns, 

but does not show any small particles in the TEM images. Based on the observations, we suggest 

that the solubility of boron in the spinel Mn3O4 structure is not more than a few at.%. Since both 

the Mn3O4 and Mn2O3 particles have roughly the same size, we believe that this approach 

synthesizes individual nanoparticles having different crystal structures rather than preparing 

nanoparticles having core-shell structures. Wang et al. [115] have also showed the existence of 

such individual Mn2O3 and Mn3O4 nanoparticles on the surface and inside of Mn2O3/Mn3O4 

nanoclusters respectively. The figure 5.3 (d) represents a high resolution TEM (HRTEM) image 

of the MO sample possibly depicting the (11-1) planes of -MnOOH (JCPDS Card No. 41-

1379). We have also performed the Wavelength Dispersive Spectroscopy (WDS) measurements 

to determine the boron content in our sample. While we could detect the presence of boron in 

BMO (not shown), we were unable to quantify its actual content due to the lack of suitable 

standards.  
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Figure 5.3 TEM images for BMO (a & b) and MO (c & d) nanoparticles. The inset in figure 

5.3(b) represents the histogram showing particle size distribution for BMO nanoparticles. The 

figure 5.3(d) shows a HRTEM image of sample MO depicting the (11-1) planes of -MnOOH. 

 

 

5.3.3 Magnetic measurements 

Figures 5.4 (a) and 5.4 (b) show M versus H plots for the MO and BMO nanoparticle 

samples measured at a temperature of 30 K, which is well below TN. These magnetization curves 

show features that can be associated with both a saturating ferrimagnetic moment together with a 

paramagnetic contribution. The ferrimagnetic response arising from Mn3O4 dominates the 

magnetization at lower fields, up to approximately 10 kOe. However, at higher magnetic fields, 

the linear magnetization curve means that the paramagnetic contribution becomes increasingly 

significant. We estimated the saturated contribution from the ferrimagnetically ordered Mn3O4 

by subtracting the paramagnetic term estimated from the high-field magnetization. The saturation 
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magnetization (Ms) for BMO, approximately Ms ≈ 23 emu g
-1

 (a volumetric saturation 

magnetization of ms≈ 115 emu cm
-3

, assuming the density of Mn3O4 nanoparticles is close to 

bulk) is substantially larger than that of the MO sample, which has Ms ≈ 8 emu g
-1

 (ms≈ 40 emu 

cm
-3

). The saturation magnetization for bulk Mn3O4 is roughly 38 emu g
-1

,[125] and somewhat 

lower for nanoparticles [38]. The relatively large Ms value for BMO confirms that the sample 

consists of almost phase pure Mn3O4 nanoparticles, while the substantially smaller saturation 

magnetization for MO is consistent with the presence of a considerable fraction of secondary 

phases.  

 

Figure 5.4 M (dc-magnetization) versus H (magnetic field) plots for (a) MO and (b) BMO 

nanoparticles recorded at 30 K. 
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We fit the linear high field portions of the magnetization curves in figure 5.4 to determine 

the effective Curie constant [117] (C) (per mole of Mn3O4 ) and from this, estimate the 

paramagnetic contribution from these nanoparticles. The Curie constant estimated for the BMO 

sample is approximately 1.7 emu K mol
-1

 Oe
-1

, representing about 40 % of the C value for 1 

mole of Mn
2+

 ions. Therefore, neglecting the distribution of Mn
2+

 and Mn
3+ 

ions in Mn3O4, we 

propose that nearly 40% of the Mn spins remain paramagnetic in BMO. This estimate is very 

much consistent with the reduction in the saturation magnetization (Ms) for these nanoparticles 

by 40% with respect to the value for bulk Mn3O4. For the MO nanoparticle sample, the Curie 

constant is calculated to be 1.2 emu K mol
-1

 Oe
-1

, which would be roughly 30% of the value 

expected for Mn
2+

 ions. Although this value is very approximate, both neglecting the mass 

difference between Mn2O3 and Mn3O4 and the mixture of Mn
2+

 and Mn
3+

 spins, this allows us to 

begin the estimate of the relative ferrimagnetic, paramagnetic, and antiferromagnetic components 

in the MO sample. The saturation magnetization (Ms) for the MO sample is reduced by nearly 80 

% relative to bulk Mn3O4. This large decrease in the ferrimagnetic signal reflects not only the 

existence of paramagnetic moments but also indicates the presence of antiferromagnetically 

ordered phases in MO, which contributes to neither the saturated moment nor the paramagnetic 

susceptibility. Based on our estimate that approximately 30% of the Mn spins in the MO sample 

remain paramagnetic, we conclude that nearly 45-50 % of the Mn ions are antiferromagnetically 

ordered in this sample, consisting of the α-Mn2O3 and -MnOOH phases. We note that both 

ferrimagnetic (Mn3O4) and antiferromagnetic (α-Mn2O3 and -MnOOH) nanoparticles are 

expected to have paramagnetic surface spins, so the volume fraction of Mn3O4 in the MO sample 

is relatively small.  
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The zero-field-cooled (ZFC) and field-cooled (FC) magnetization for the MO and BMO 

nanoparticle samples are plotted in figures 5.5 (a) and 5.5 (b) respectively. The sharp increase in 

magnetization, close to 40 K in both curves marks the paramagnetic-to-ferrimagnetic phase 

transition in the Mn3O4 nanoparticles. A much larger FC/ZFC splitting, consistent with the larger 

value for MS, is observed in the BMO sample as compared to the MO sample. Figure 5.5(c) plots 

the in-phase component of the ac susceptibility (χ
/
) versus temperature (T) for the MO and BMO 

nanoparticle samples for an excitation frequency of 10 kHz under an excitation field of 10 Oe. 

The frequency-independent peak observed near 40 K represents the ferrimagnetic ordering 

temperature corresponding to Mn3O4 nanoparticles. The Neel temperature (TN) calculated for the 

MO and BMO samples are 42 K and 41 K respectively. This slight suppression in the transition 

temperature by approximately 1 K in the boron doped sample (BMO) is also observed in the 

FC/ZFC measurements.  

Figure 5.5(c) represents in-phase component of the ac magnetic signal (χ
/
) vs temperature 

(T) for the two different Mn oxide nanoparticle samples. The magnitude of χ
/
 provides a method 

for determining the ordered Mn3O4 fraction present in the samples. The amplitude of the 

magnetic response at the ferrimagnetic transition temperature for Mn3O4 nanoparticles is taken as 

an approximate measure of the sample phase purity, although this underestimates the Mn3O4 

fraction because of the existence of a non-magnetic surface layer on the nanoparticles. The 

amplitude of χ
/ 
for the BMO sample approximately agrees with that measured for phase pure 

Mn3O4 nanoparticles reported by Regmi et al.[113] as well as values measured by Martin et 

al.[126]. These temperature dependent susceptibility measurements are therefore consistent with 

the suggestions that the BMO sample contains phase-pure Mn3O4 nanoparticles with no 

secondary phases. The marked decrease in the amplitude of χ
/
 for the MO sample is consistent 
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with results from our XRD measurement where we clearly see the formation of several other Mn 

oxide phases in addition to Mn3O4. This reduction in the magnetic signal by approximately a 

factor of three (from 6x10
-3

 emu/g-Oe in BMO to 2x10
-3

 emu/g-Oe in MO) is attributed to the 

presence of secondary paramagnetic and antiferromagnetic phases in sample MO, which do not 

show any ferrimagnetic response at TN. This is a different interpretation from some previous 

studies, where the relative decrease in the magnetic susceptibility was attributed to reduced 

interparticle interactions among Mn3O4 nanoparticles suspended in a polymer solution [127]. 

Because the impurity phases are AFM, their contribution to the ferrimagnetic signal can be 

approximately neglected. In principle, there could be signatures of additional magnetic effects at 

the interfaces between the different Mn oxide phases in the MO sample. These effects may be 

distinguished in exchange-bias measurements, which are sensitive to the interfacial spin 

arrangement. Because the ac magnetic measurements presented in the study are performed at 

zero bias field, these possible contributions have been neglected. 
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Figure 5.5 Zero-field-cooled (ZFC) and field-cooled (FC) magnetization curves for (a) MO and 

(b) BMO nanoparticles measured at 100 Oe. (c) In-phase susceptibility (χ
/
) vs Temperature (T) 

graph for MO and BMO nanoparticles at a specific frequency of 10kHz under an excitation field 

of 10 Oe.  

 

The low temperature magnetic relaxation for both the MO and BMO samples is shown in 

figure 5.6(a) for three different excitation frequencies: 100 Hz, 1 kHz and 10 kHz. The 



70 
 

 
 

pronounced peaks at low temperatures reflect the onset of magnetic relaxation in these systems. 

As the temperature range for this relaxation is very similar for both the MO and BMO systems, 

we argue that the relaxation arises solely from Mn3O4 nanoparticles, and is not affected by any 

other secondary phases. One of the primary parameters used to distinguish between an 

interacting and a non-interacting system is the dimensionless temperature dependent frequency 

shift of the relaxation peak given by α = ΔT/[TΔ(log10 f)]. Here, ΔT is the difference between two 

frequency (f) dependent temperatures and T is the mean value between them [24]. For strongly 

interacting systems, the value of α lies between 0.005 and 0.05, while weakly interacting and 

non-interacting systems are typically described by α assuming values greater than approximately 

0.05 and 0.13 respectively [24]. To analyze the nature of the magnetic relaxation, we fit the low 

temperature relaxation at frequencies of 100 Hz, 300 Hz, 1 kHz, 3 kHz, 6 kHz and 10 kHz to the 

Neel-Brown equation. For the MO nanoparticle sample, this yields 0 in the order of 10
-12

 s, as 

shown in figure 5.6(b), with the dimensionless relaxation parameter α close to 0.18. This 

relatively large magnitude of , together with the physically meaningful value for 0 rule out any 

significant interactions in the MO nanoparticle system. The magnetic relaxation for the MO 

sample containing additional secondary phases acting as non-magnetic spacers between the 

ferrimagnetic Mn3O4 cores are thus well described by the non-interacting Neel-Brown model. 

This magnetic blocking occurs below the temperature predicted for 25-35 nm sized Mn3O4 

nanoparticles. This discrepancy may be attributed to a difference in the effective particle volume 

or could reflect some modification to simple Neel-Brown theory when the blocking temperature 

overlaps with the magnetic ordering temperature.  

Converse to the non-interacting MO sample, Neel-Brown fits to the magnetic relaxation 

in the BMO nanoparticle sample (figure 5.6 (c)) extract a microscopic relaxation time 0 that is 
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unphysically small, 8×10
-16 

s. However, the low temperature magnetic relaxation can be fit to a 

Vogel-Fulcher equation (figure 5.6 (d)) giving the physically reasonably value of τ0 of roughly 

10
-12

s with To= 4.5 K and EA/kB =186 K. The value of the dimensionless interaction parameter α 

determined for the BMO sample, consisting only of phase pure Mn3O4 nanoparticles, is 

approximately 0.09. Both the values of τ0 and α correspond to weak, but not insignificant, 

interactions in the BMO sample. Additionally, the ratio of the effective interaction temperature 

from this Vogel-Fulcher fit to blocking temperature (~ 15 K), To/TB, is relatively small, only 0.3, 

again consistent with weak interactions among the Mn3O4 nanoparticles (T0/TB ≈ 0.9, signifying 

spin glass features, indicative of strong interactions, in nickel ferrite nanoparticles[74]).  
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Figure 5.6 (a) Out-of-phase susceptibility (χ
//
) vs Temperature (T) graph for MO and BMO 

nanoparticles at three different frequencies of 100 Hz (open symbols), 1kHz (half-filled symbols) 

and 10kHz (filled symbols) under an excitation field of 10 Oe. The curves have been offset 

vertically for clarity. Neel-Brown fits for (b) MO and (c) BMO nanoparticles, (d) Vogel-Fulcher 

fit for BMO nanoparticles.  

 

 

We attribute this crossover from non-interacting relaxation among the Mn3O4 

nanoparticles in the MO sample to weakly interacting magnetic relaxation for nanoparticles in 

the BMO sample to increasing average dipolar interactions among the ferrimagnetic Mn3O4 
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cores. The dipolar interaction energy (Ed) between two adjacent magnetic nanoparticles is given 

by the expression  

                                                               𝐸𝑑 =
µ𝑜µ2

4𝜋𝑎3 (
𝜋

4
)

2
                             (5.2) 

with μ=ms(πd
3
/6),where μ, ms, a and d represent the average moment, volumic saturation 

magnetization, average inter-particle separation and diameter of these nanoparticles respectively 

[33, 102]. For our nanoparticles, we estimate that ms(BMO) ≈ 3ms(MO) and d(MO) ≈ 

1.5 d(BMO) (based on the magnetization data and size estimates from XRD and TEM), leading 

to (MO) ≈ (BMO). The antiferromagnetic secondary phases (α-Mn2O3 and -MnOOH) 

present in the MO sample act as non-magnetic spacers by increasing the average spacing (a) 

between the Mn3O4 ferrimagnetic cores. Assuming an average of a single α-Mn2O3 nanoparticle 

between two adjacent Mn3O4 ferrimagnetic cores, based on the very roughly 50% volume 

fraction for each in MO sample and close-packing for the BMO nanoparticles, we used Eq.(1) to 

estimate the relative dipolar interaction energies between the ferrimagnetic Mn3O4 cores in each 

set of samples. These calcuations suggest that the average dipolar interaction energy in BMO is 

approximately a factor of 20 larger than the magnetic interaction energies in MO. This 

substantially larger magnetic interaction in the BMO sample is qualitatively consistent with our 

measurement of the ac susceptibility for these nanoparticle samples. 

 

5.4 CONCLUSIONS 

Our findings reveal that incorporating a small percentage of boron can stabilize the spinel 

structure in Mn3O4 nanoparticles and prevent the unwanted conversion to other Mn oxide phases 

possibly due to the formation of a borate layer on the surface of the nanoparticles. We find that 

phase pure Mn3O4 nanoparticles (BMO sample) show a substantially larger signal at the 
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ferrimagnetic ordering temperature than the MO sample containing secondary phases, and 

suggest that the amplitude of this anomaly can serve as a measure of sample purity. The 

relaxation dynamics observed in the MO nanoparticle sample follows simple Neel-Brown 

behaviour consistent with a non-interacting system despite the proximity between the 

ferrimagnetic ordering and superaparamagnetic blocking temperatures. This relaxation is slightly 

modified for the boron stabilized nanoparticles, where the Mn3O4 nanoparticles are not separated 

by non-magnetic oxides and we find evidence of weak interactions as a perturbation to the non-

interacting case. Although the Neel-Brown energy barrier is not fixed at the temperatures 

relevant for this magnetic relaxation, due to the temperature dependence of the 

magnetocrystalline anisotropy, the Neel-Brown model still seems to fit well for the non-

interacting system and requires only a small modification in the interacting case. These studies 

demonstrate that the magnetic dynamics of nanoparticles can also be tuned by incorporating non-

magnetic components into the sample.  
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CHAPTER-6 

MAGNETIC PROPERTIES OF GADOLINIUM DOPED Fe3O4 NANOPARTICLES 

 

6.1 INTRODUCTION 

 In the last few decades, iron oxide based nanoparticles have attracted huge attention 

because they offer applications ranging from magnetic recording to biomedicine [2, 128]. Studies 

have been conducted on several doped (Zn, Au and MgB2) Fe3O4 nanoparticles [129-131] and 

also on magnetite based nanocomposites [132-134] in an attempt to tune their magnetic and 

dielectric properties and make them more effective for technological and biomedical 

applications. Researchers have extensively studied rare-earth doped spinels as an important 

candidate which finds applications in magneto-optical recording [135] as well as in MRI contrast 

agents [136]. It has been found that introduction of Gd
3+

 to the inverse spinel cobalt ferrite 

prepared through different synthetic routes has altered the average crystallite size, lattice 

constants and more importantly the magnetic properties [137, 138]. The concentration of the 

rare-earth ions inside the spinel is found to greatly influence the saturation magnetization which 

is considered to be a crucial parameter for determining the practical applications of these 

nanostructures. Till now, prominent studies conducted on Gd
3+

 doped Fe3O4 nanoparticles have 

essentially discussed about the proposed site of Gd
3+

 entry into the spinel structure [81], their 

low temperature magnetic properties [61] and also explored this material for future biomedical 

applications [89, 136]. It has been observed that introduction of Gd
3+

 into Fe3O4 causes structural 

defects resulting in an enhancement of ac magnetic features at low temperatures [61]. Studies 

have also found these nanoparticles to be of potential interest in cancer hyperthermia for treating 

malignant tumors [89].  
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Also, gadolinium chelate complexes and iron oxide nanoparticles are the most commonly 

used contrast agents for MRI imaging [139-141]. The former are well known for enhancing the 

T1 (spin-lattice relaxation) [139-141] relaxation rates while the latter serve as an excellent T2 

(spin-spin relaxation) [139-141] contrast agent. The Gd-DTPA is the commonly used Gd based 

contrast agent for MRI purposes. In this complex, the Gd
3+

 ion having a magnetic moment of 

7B has 9 coordination sites, out of which 8 sites are occupied by 5 oxygen and 3 nitrogen atoms 

of the carboxylates and the amines groups respectively. The remaining ninth site is occupied by a 

water molecule and as a result, there is a tendency of the water molecules to remain in close 

proximity with the Gd
3+

 ions. Since the effective electron-proton interaction energy falls as d
-6

, 

so this distance of closest approach highly influences the rate of T1 relaxation [140]. Again, 

superparamagnetic Fe3O4 nanoparticles with size less than 20 nm carry huge magnetic moments 

(>10,000 B) and while diffusion through the tissues affect water molecules and can cause 

dephasing of the magnetic moments of protons which eventually enhances the T2 relaxation rate 

(1/T2) [140, 141]. Therefore, studies performed on PEGylated gadolinium doped Fe3O4 have 

found these nanoparticles favorable for T1–T2 dual-modal MRI contrast agent in the diagnosis of 

brain glioma cells [136]. Moreover, the presence of heavy metal Gd along with a highly 

magnetic component Fe could possibly make these nanoparticles a better candidate for 

multimodal imaging purposes [142, 143]. Hence, a detailed understanding regarding the 

magnetic behavior of this very unique system of Gd doped Fe3O4 nanoparticles is crucial so as to 

make it an efficient applicant for advanced biomedical purposes.  

In the present study, we aimed for investigating the effect of gadolinium doping on the 

magnetic properties of Fe3O4 nanoparticles. We found that penetration of excess Gd
3+

 ions into 

Fe3O4 spinel has significantly influenced the average crystallite size and the saturation 
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magnetization as well as the magnetic susceptibility of our nanoparticle systems. The average 

crystallite size is found to increase with an enhanced Gd
3+

 concentration, while the reverse is true 

with the saturation magnetization of these nanoparticles. The magnetic hyperthermia studies 

were also conducted on one of the doped nanoparticle samples and the specific absorption rate 

(SAR) as a function of time was recorded. 

 

6.2 EXPERIMENTAL PROCEDURE 

Both undoped and Gd doped Fe3O4 nanoparticles were synthesized by using the chemical 

co-precipitation technique. GdCl3.6H2O serves as the dopant material for the synthesis of the Gd 

doped nanoparticles. The structural and magnetic properties of these nanoparticles were studied 

by using X-ray diffraction and a Quantum Design physical property measurement system 

(PPMS). 

Synthesis of Fe3O4 nanoparticles 

An aqueous solution of FeCl3  6H2O (2.70g) and FeCl2  4H2O (1.00g) taken in a molar 

ratio of 2:1 were mixed in a beaker followed by drop-wise addition of 1(M) NH4OH (125 ml) 

into the resulting mixture under continuous stirring. The black precipitate formed at the end of 

the reaction was washed with deionized water to remove the residual basic ions and then air-

dried to produce fine powders of Fe3O4 (denoted by S1). 

Synthesis of Gd doped Fe3O4 nanoparticles 

For synthesizing 5 at.% Gd–Fe3O4 nanoparticles, aqueous solution of FeCl3  6H2O, 

FeCl2  4H2O and GdCl3  6H2O were mixed in a beaker in a molar ratio of 1.85:1.00:0.15. 

Initially, 0.27 g of GdCl3  6H2O was added to 2.50 g of FeCl3  6H2O dissolved in distilled water 

and then after few minutes of stirring, aqueous solution containing 1.00g of FeCl2  4H2O was 
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poured into it. This was followed by drop-wise addition of 1(M) NH4OH (125 ml) to the mixture 

containing the iron and gadolinium salts under continuous stirring. If the sequence in which these 

salts are added is altered, then the saturation magnetization of these nanoparticles can also get 

affected [61]. At first, a brown precipitate was obtained, which eventually turned black. The 

entire reaction was carried out in N2 atmosphere in order to avoid the partial oxidation of Fe
2+

 to 

α-FeOOH as found in a previous study [61]. The solution was then washed with deionized water 

until it reached a neutral pH of 7. The precipitate was then air dried to obtain fine powders of Gd 

doped nanoparticles. For the preparation of 1 at.% and 2.5 at.% Gd–Fe3O4 nanoparticles, 

FeCl3  6H2O, FeCl2  4H2O and GdCl3  6H2O  were mixed in a molar ratio of 1.97:1.00:0.03 

and 1.925:1.00:0.075  respectively and then the same procedure as mentioned above was 

adopted. For our simplicity, we denote the 1, 2.5 and 5 at.% doped Fe3O4 nanoparticles as S2, S3 

and S4 respectively. 

 

6.3 RESULTS AND DISCUSSION 

6.3.1 X-ray diffraction 

The figure 6.1 shows the XRD spectra of undoped and gadolinium doped Fe3O4 

nanoparticle samples. All the well-defined diffraction peaks are indexed to the formation of 

inverse spinel crystal structure of Fe3O4 (JCPDS card number: 85-1436). The absence of any 

secondary peaks in all spectra confirms the formation of phase-pure nanoparticles. Following 

earlier studies, Gd
3+

 ions are most likely to replace the Fe
3+

 ions of the octahedral sites in inverse 

spinel Fe3O4 [81]. It is evident from the XRD spectra that doping of gadolinium does not have 

any significant impact on the crystal structure of Fe3O4. Using the Debye-Scherrer equation [61], 

the average crystallite size obtained for the S1, S2, S3 and S4 nanoparticles are approximately 12 
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nm, 11.5 nm, 13.5 nm and 18 nm respectively. Therefore, it has been found that the crystals 

grow bigger with an increase in the Gd doping percentage. This significant increase in the 

average crystallite size has previously been reported in studies conducted by Peng et al. on Gd 

doped CoFe2O4 spinel [135]. The gadolinium content in S2, S3 and S4 samples were estimated 

to be around 1.3, 3.0 and 5.5 at.% respectively according to the results obtained from the energy 

dispersive spectroscopy (EDS) measurements (not shown) conducted on these doped 

nanoparticles.  

 

Figure 6.1 XRD spectra for (a) S1 (black), (b) S2 (red), (c) S3 (green) and (d) S4 (blue) 

nanoparticle samples. 

 

6.3.2 Magnetic measurements 

The magnetization (M) vs magnetic field (H) data for our nanoparticles recorded at 300K 

(room temperature) are shown in figure 6.2. The sigmoidal shape of these curves with nearly 

zero hysteresis confirms the superparamagnetic nature of these nanoparticles at the room 
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temperature. The saturation magnetization (Ms) values obtained for the S2, S3 and S4 samples 

are 65 emu/g, 51 emu/g and 45.5 emu/g respectively within the experimental uncertainties (±1 

emu g
−1

, coming mainly from the uncertainty in measuring the sample mass). The Ms value for 

undoped Fe3O4 nanoparticles (S1) is approximately 69.5 emu/g. From these data, it can certainly 

be concluded that an enhanced doping percentage of gadolinium could substantially decrease the 

saturation magnetization in Fe3O4 nanoparticles, an observation also seen in earlier studies [136]. 

The saturation magnetization decreases roughly by 35% in the S4 nanoparticles as compared to 

its undoped (S1) counterpart. This reduction in saturation magnetization at room temperature is 

attributed to the fact that magnetic Fe
3+

 ions are supposedly getting replaced by the non-magnetic 

Gd
3+

 ions (Tc ≈ 292 K) [144] in the octahedral sites of the inverse spinel Fe3O4 [135].  

 
 

Figure 6.2   M vs H plots for 1. S1 (black), 2. S2 (red), 3. S3 (green) and 4. S4 (blue) 

nanoparticle samples at 300 K. 

 

 

For understanding the ac magnetic dynamics of these nanoparticles, frequency dependent 

susceptibility measurements were performed on all samples. The real (in-phase) and the 

imaginary (out-of-phase) components of the ac susceptibilities (

and 

//
) vs temperature (T) at 
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several different frequencies were plotted and analyzed. The figure 6.3 shows the 

and 

//
 vs T 

plots for all samples conducted at a specific frequency of 500 Hz under zero dc field and an ac 

excitation field amplitude of 10 Oe. The magnitudes of 

and 

//
  are almost the same in the S1 

and S2 samples while it decreases with an increment in the Gd doping percentage as observed for 

the S3 and S4 nanoparticles. As expected, the nature of both 

and 

//
 curves for S1 (undoped) 

and S2 (1 at.% doped) samples are roughly identical, whereas the nanoparticles with an 

increased Gd content show a decrement in the susceptibility values.  This is also in good 

agreement with reduced saturation magnetization values as seen for these nanoparticles. The 

occurrence of well-defined peaks in the 
//
 vs T plots between 150 K to 200 K represent the 

superparamagnetic blocking of Fe3O4 nanoparticles [61].  

 

Figure 6.3 In-phase susceptibility (χ
/
) & Out-of-phase susceptibility (χ

//
) vs Temperature (T) 

graphs for 1. S1 (black), 2. S2 (red), 3. S3 (green) and 4. S4 (blue) nanoparticle samples at a 

specific frequency of 500 Hz under an excitation field of 10 Oe.     
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The figure 6.4 shows the 
//
 vs T plots for all samples conducted at six different 

frequencies of 500 Hz, 650 Hz, 800 Hz, 950 Hz, 1100 Hz and 1250 Hz under zero dc field and 

an ac excitation field amplitude of 10 Oe. The simplest model which describes the behavior of an 

ensemble of non-interacting and single domain magnetic nanoparticles is explained by the Neel-

Brown (NB) theory. The mean relaxation time for the magnetic moments of such individual 

nanoparticles is governed by the Arrhenius relation given by τ = τ0 exp (EA/kBT), where kB is the 

Boltzmann’s constant, T is the temperature and τ0 is the attempt time characteristic of the 

material and is of the order of 10
−13

–10
−9

 s. However, this model gets slightly modified with the 

introduction of interactions into the system and is expressed by the Vogel-Fulcher relation given 

by τ = τ0 exp [EA/kB(T-T0)], where T0 measures the strength of the interaction. The information 

obtained from these frequency dependent peaks has been fitted to the Neel-Brown equation in 

order to understand the magnetic relaxation phenomena of these nanoparticles. The ln vs 1/T 

plots shown in figure 6.5 represent the Neel-Brown fits for samples S1, S2, S3 and S4. The 

values of o and EA/kB for all the samples are represented in Table 6.1.  
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Figure 6.4 Out-of-phase susceptibility (χ
//
) vs Temperature (T) graph for S1, S2, S3 and S4 

nanoparticle samples at six different frequencies of 500 Hz (red), 650 Hz (green), 800 Hz (blue), 

950 Hz (navy), 1100 Hz (purple) and 1250 Hz (wine) under an excitation field of 10 Oe.    
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Figure 6.5 Neel-Brown fits for 1. S1 (black), 2. S2 (red), 3. S3 (green) and 4. S4 (blue) 

nanoparticle samples. 

 

                                                                           

SAMPLES o (s) EA/kB (K) 

                      S1                  9.6 x 10
-9 

                     1640 

                      S2 9.4 x10
-8 

1298 

                      S3 1.5 x 10
-7 

1305 

                      S4 8.7 x 10
-7 

1002 

 

Table 6.1 and EA/kB values for S1, S2, S3 and S4 nanoparticle samples 

 

The magnitude of o is enhanced while EA/kB roughly diminishes (although the EA/kB 

values are almost the same for S2 and S3 nanoparticles) following an increment in the Gd doping 

percentage. The value of o ≈ 10
-9

s obtained for the S1 sample falls well within the accepted NB 

range and signifies superparamagnetic blocking in these nanoparticles. The magnetic dipolar 
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interaction energy (Ed) existing amongst these nanoparticles is estimated using the relation [33, 

145] given by 

  𝐸𝑑 =
µ𝑜µ2

4𝜋𝑎3
(

𝜋

4
)

2

 

with μ=ms(πd
3
/6), where μ, ms, a and d represent the average magnetic moment, volumic 

saturation magnetization, average inter-particle separation and diameter of these nanoparticles 

respectively [145]. Considering close-packing, the magnitude of this interaction is found to be 

the highest, close to 0.031 eV at 300 K, for the S4 nanoparticle system while it revolves around 

0.02 eV (~ 0.017 eV for S2 and S3 while ~ 0.022 eV for S1 samples) for the other nanoparticle 

samples. Although a very approximate way of estimating the dipolar interactions in an ensemble 

of magnetic nanoparticles [146], however, it can certainly be concluded that the order of 

magnitude of these magnetic interactions is very much comparable with the thermal energy (~ 

0.026 eV) at the room temperature.  

 

6.3.3 Magnetic Hyperthermia Measurements (MHT) 

               The MHT studies were performed on the dextran coated S1 and S4 samples and SAR as 

a function of time was recorded. The heating curves of the ferrofluids conducted at a frequency 

of 375 KHz and under an ac magnetic field amplitude of 235 Oe are shown in figure 6.6.  The 

figure 6.7 represents the SAR corresponding to heating as a function of temperature for both the 

undoped and Gd doped samples. The SAR for our 18 nm sized S4 ferrofluid (~12 mg/ml) is 

found to be around 40 W/g near room temperature which is very much less when compared to 

the SAR (~110 W/g) obtained for 12 nm sized Fe3O4 ferrofluid (S1) (~12 mg/ml) sample taken 

under the same experimental conditions (235Oe, 375 kHz) [70, 147]. The magnitude of SAR is 

expected to increase for bigger sized particles [70], however, in this case we have seen that  
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doping of Gd (around 5 at.%) modifies the magnetic properties in such a way that the effective 

SAR decreases. This decrease in SAR for the S4 sample is attributed to the reduced values of 

saturation magnetization and EA/kB, which essentially is a measure of the magnetic anisotropy 

constant K [70]. 

 

Figure 6.6 Temperature vs time plot for heating  for A. S1 & B. S4 at a frequency 375 KHz and 

under an ac magnetic field amplitude of 235 Oe.  

 

 

 
 

Figure 6.7 Variation of SAR for heating with temperature for A. S1 & B. S4 at a frequency of 

375 KHz and under an ac magnetic field amplitude of 235 Oe. 
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6.4 CONCLUSIONS 

            The undoped and gadolinium doped Fe3O4 nanoparticles were synthesized 

successfully using the chemical co-precipitation technique. The average crystallite size estimated 

using the Debye-Scherrer equation increases with an increase in the Gd doping percentage. On 

contrary, the saturation magnetization decreases roughly by about 35 % in the S4 sample when 

compared to the undoped Fe3O4 nanoparticles. The effective SAR for the S4 sample decreases by 

a considerable amount when compared with undoped iron oxide ferrofluid. This decrease in SAR 

for the S4 sample is attributed to its reduced values of saturation magnetization and the magnetic 

anisotropy constant K. In future, we would also like to explore this material for possible 

biomedical applications in MRI as a T1–T2 dual-modal contrast agent.  
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CHAPTER 7 

INTRACELLULAR DISTRIBUTION OF BiFeO3 NANOPARTICLES INTO THE 

HUMAN PANCREATIC CARCINOMA (MIA PACA-2) CELL LINES 

 

 

7.1 INTRODUCTION 

 BiFeO3 (BFO) is a multiferroic material having a perovskite crystal structure (figure 

7.1). It shows antiferromagnetic behavior below the Neel temperature, TN = 643K and exhibits 

ferroelectricity with a ferroelectric Curie temperature, TC = 1143 K [148]. The presence of room 

temperature multiferroic behavior makes BFO a useful material with potential applications in 

data storage, spintronics, quantum electromagnets, transducers, and microelectronic devices. 

[149]. Being an antiferromagnet at room temperature, bulk BFO exhibits negligible 

magnetization; however, a finite value of Ms is recorded for BFO nanoparticles due to the 

uncompensated surface spins [150]. Previous studies have shown that doping of BFO 

nanoparticles with elements like Gd, Eu, or Co could enhance this magnetization [151, 152].  

 

Figure 7.1 Perovskite structure of BiFeO3 crystals [153] 

In the current work, we present BFO nanoparticles as a potential candidate for imaging 

applications. The BFO nanoparticles may be particularly interesting as multimodal contrast 

agents for both magnetic resonance imaging (MRI) and x-ray imaging because these combine a 
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significant magnetic susceptibility with higher atomic mass constituents. We synthesized 

BFO nanoparticles using a chemical co-precipitation technique. We measured the structural and 

morphological characteristics of these nanoparticles using XRD, TEM, and DLS, and probed the 

magnetic properties through dc magnetization studies. In order to investigate the cytotoxicity and 

intracellular distribution of these BFO nanoparticles, we cultured them with the human 

pancreatic cancer cell line (MIA PaCa-2) and used optical microscopy to investigate the 

distribution and cell growth. We discuss the cytotoxicity of these nanoparticles, which will be a 

crucial factor for determining possible biomedical applications together with a discussion of the 

cellular distribution of these nanoparticles.  

 

7.2 EXPERIMENTAL PROCEDURES 

BFO nanoparticles were synthesized using a chemical co-precipitation technique with 

oxalic acid serving as the chelating agent. The structural and morphological properties of the 

BFO nanoparticles were characterized by XRD and TEM. A Rigaku MiniFlex 600 X-ray 

diffractometer generating Cu Kα radiation at a wavelength of 1.54 Å was used for the XRD 

analysis. A JEOL-2010 FasTEM transmission electron microscope operated at 200 kV was 

employed to capture high resolution microscopy images. The UV-Visible spectrophotometer 

(Evolution 220, Thermo Scientific) was also used for the optical characterization of these 

nanostructures. The stability of the colloidal dispersion of BFO nanoparticles was determined 

using a Zetasizer (Nano ZS90, Malvern Instruments) and the hydrodynamic sizes of these 

nanoparticles were determined from the Dynamic Light Scattering (DLS) measurements. The 

intracellular distribution of these nanoparticles into the human pancreatic carcinoma (MIA PaCa-

2) cell lines was imaged with an optical microscope (Axiovert 200, Zeiss). The dc magnetic 
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measurements were also conducted on these nanoparticles by using a Quantum Design physical 

property measurement system (PPMS). 

Synthesis of BiFeO3 (BFO) nanoparticles  

The nitrate salts of bismuth and iron, Bi(NO3)3•5H2O (1.94g) and Fe(NO3)3•9H2O 

(1.60g), mixed in a molar ratio of 1:1, were initially dissolved in 2 N nitric acid. Subsequently, 

oxalic acid (1.00g), taken in a 1:1 molar ratio with respect to the cations, was poured into the 

mixture containing the nitrates under continuous stirring. The reaction ended with the formation 

of an orange precipitate, which was dried initially in a hot plate at 150
0
C for 30-45 minutes, 

followed by annealing in air at 600
0
C for 2 h to produce fine powders of bismuth ferrite. The as-

prepared powder was then collected for the structural, optical and magnetic characterizations 

followed by cell culture studies. 

Cell Culture Protocol  

MIA PaCa-2 human pancreatic cancer cells were grown on poly L-lysine-coated petri 

dishes at 37 ºC and 5 % CO2, in Dulbecco’s modified essential medium (DMEM) containing 

10% fetal bovine serum (FBS) and 5% Penicillin-Streptomycin. To split the cells and plate them 

into other cell culture petri dishes, the cell culture dishes containing MIA PaCa 2 cells were 

obtained from the incubator, and the growth media was carefully aspirated. The cells were 

washed twice with 10 ml of sterile 1X phosphate buffered saline (PBS) at pH 7.4. This was 

followed by exposure to 0.25% trypsin in PBS for 3-4 minutes inside the incubator. Media 

containing DMEM, 10% FBS, and 1% antibiotics (Penicillin –Streptomycin- Glutomine) was 

added to the dish. The resulting cell suspension was centrifuged for 4 minutes at 1,500 rpm (300 

xg), and the pellet re-suspended in 3 ml of cell growth medium. Then 1 ml of this suspension 
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was added to each new cell culture dishes containing 9 ml of media, and the dishes were placed 

in the incubator. 

 

7.3 RESULTS AND DISCUSSION 

7.3.1 X-ray diffraction 

The XRD plot of the as-prepared BFO nanoparticles demonstrated the formation of 

phase-pure nanoparticles (JCPDS Card No. 86-1518), corresponding to the rhombohedral 

perovskite structure of bismuth ferrite (figure 7.2). The average crystallite diameter was 

approximately 33 nm, as determined from the major peaks (012), (104), and (110) using the 

Debye-Scherrer equation.  

 

Figure 7.2 XRD spectra of BFO nanoparticles. 

7.3.2 Transmission electron microscopy 

 TEM images were captured to investigate the morphology, shape and crystalline structure 

of these nanoparticles. The particles were found to be roughly spherical in shape and the TEM 

image clearly showed agglomeration for our BFO nanoparticle system (figure 7.3(a)). Figure 

7.3(b) represents the high resolution TEM (HRTEM) image depicting the atomic planes 

(indicated by arrows) of the crystalline bismuth ferrite nanoparticles.  
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Figure 7.3 (a) TEM image of BFO nanoparticles (b) HRTEM image depicting the lattice planes 

of BFO . 

 

7.3.3 UV-Visible spectrometry 

 The UV-Visible spectrum supports the production of phase-pure nanoparticles with an 

absorption maximum near 528 nm corresponding to BFO (figure 7.4) [154] . 

 

Figure 7.4 UV-Visible spectrum of BFO nanoparticles 
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7.3.4 Zeta potential & Dynamic Light Scattering (DLS) measurements 

For a stable colloidal dispersion, zeta potential ( generally assumes a high positive or 

negative value, usually |40 mV. The zeta potentials for our BFO nanoparticles dispersed in 

deionized water were measured to be -12.5 ±1.5 mV (figure 7.5), and therefore these kind of low 

values of  suggest that the nanoparticles may not be well suspended in the solution.  

 

Figure 7.5 Zeta potential measurements of BFO nanoparticles dissolved in deionized water for 

two slightly different concentrations. a) = -11.6 mV and b) = -13.8 mV. 

 

The DLS measurements determine the hydrodynamic diameter of these BFO 

nanoparticles to be approximately 400 nm, which once again signifies an increased 

agglomeration or clustering for our nanoparticle sample (figure 7.6). 

 

Figure 7.6 DLS measurements of BFO nanoparticles dispersed in deionized water. The red, 

green and blue curves represent three slightly different concentrations.   
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7.3.5 Magnetic measurements  

Figure 7.7 shows the M vs H plot for BFO nanoparticles at room temperature. At very 

low fields (below 10kOe), the nanoparticles show weak magnetism with a saturation value of 

approximately 0.01emu/g, while paramagnetism dominates at much higher fields. Although BFO 

is antiferromagnetic at room temperature, the weak magnetic behavior below 10 kOe as shown in 

the inset of figure 7.7 is attributed to the uncompensated spins present on the surface of these 

nanoparticles [150]. 

 

Figure 7.7 M versus H plot for BFO nanoparticles at 300 K. The inset shows the M versus H 

plot for BFO nanoparticles at 300 K after extraction of the paramagnetic contribution. 

 

7.3.6 MIA PaCa-2 Cell studies 

The BFO nanoparticles dispersed in deionized water (100 µg/ml) were exposed to MIA 

PaCa-2 cells. The petri dishes, three for each time point, were marked as 0 h, 24 h, 48 h and 72 h. 

Four other dishes containing the MIA PaCa-2 cells were also taken with each dish serving as 

control corresponding to one particular time frame. Immediately following exposure of 
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nanoparticles to the MIA PaCa-2 cells, the 0 h petri dish and its control were imaged under an 

optical microscope. Care was taken while imaging so as to make sure that all parts of the dish 

were equally covered for maintaining uniformity and also to minimize the error during the cell 

counting process. Similarly, the petri dishes for 24 h, 48 h and 72 h along with their respective 

controls were imaged. Then the cells were counted manually (four petri dishes for each time 

frame - three with nanoparticles and one control) and an average cell count was estimated with 

the results from these dishes. The cytotoxicity studies conducted during the initial 72 h reveal 

that there is no significant change in cell viability with BFO exposure (figure 7.8). Therefore, the 

BFO nanoparticles did not cause any acute cytotoxicity. 

 

 

Figure 7.8 Cytotoxicity studies performed during the initial 72 h period demonstrate that BFO 

nanoparticles do not cause any acute cytotoxicity. 

 

From the microscopy images as shown in figure 7.9, it can be inferred that the 

nanoparticles have formed clusters which most likely prevent their entry through the cell 

membrane. Therefore, surface functionalization of these nanoparticles is an essential task to do 

away with the agglomeration in order to facilitate an easy passage of these tiny structures 

through the cell membrane.  
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Figure 7.9 The optical images of BFO nanoparticles injected to MIA PaCa-2 Cell line after 24h, 

48h and 72h showing clusters and agglomeration. 

 

 

SDS-PAGE  

Cells were lysed with 2% Triton X-100, centrifuged for 1 min at 1000 rpm. The 

supernatant was removed and the pellet containing nanoparticle-bound proteins was washed 

using PBS at pH 7.4. The nanoparticle-associated proteins were re-suspended in Laemmli 

reducing sample preparation buffer, boiled for 2 min, and used for sodium dodecyl sulfate-

polyacrylamide gel electrophoresis (SDS-PAGE) [155]. SDS-PAGE was run in order to separate 

nanoparticle-bound proteins based upon their size. The gels were stained with Coomassie Blue 

overnight, de-stained for 3-4 hours, and imaged. The gels showed bands with a greater optical 

density for the 48 hour samples, relative to the gel background. As seen in figure 7.10, the 

presence of a higher volume of proteins indicates greater nanoparticle-protein binding, and 

therefore, 48 hours may be an ideal time for clinical treatment in the future. However, this 

change in optical density may be due to differences in total protein concentration in the original 

cell homogenates. If different proteins would have associated with the nanoparticles at later 

times, then it would be evident from new protein bands in the SDS-PAGE gel. Since no new 

bands appeared at later times, the nanoparticles most likely did not internalize into the cytoplasm 

or interact with any subcellular organelles. 
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Figure 7.10 Gel image for BFO nanoparticles obtained 2-d SDS PAGE 

 

7.4 CONCLUSIONS 

 The BFO nanoparticles having an approximate crystallite size of 33 nm were synthesized 

by the chemical co-precipitation method. From the TEM images, crystallinity of the 

nanoparticles were confirmed; however, excess aggregation and clustering of these particles 

were reported. The saturation magnetization of the BFO particles was measured to be 0.01 

emu/g.  Cell binding studies on these nanoparticles were conducted using the human pancreatic 

cancer cells (MIA PaCa-2). It was observed that the BFO nanoparticles do not cause any acute 

cytotoxicity over a period of 72 h. From the microscopy images and also from the SDS- PAGE 

results, no evidence was found for the migration of these nanoparticles across the cell membrane. 

The zeta potential measurements showed instability for the aqueous suspension of these BFO 

nanoparticles.  Although our initial attempts of coating these tiny particles with dextran did not 

succeed, in future, we would like to surface functionalize these nanoparticles with suitable 

surfactants in order to avoid agglomeration and also to facilitate their entry into the cell 

membrane. The non-toxic nature of these nanoparticles leaves a possibility that if coated with 

appropriate surfactants, they can be used for multimodal imaging purposes. 
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CHAPTER 8 

 

BINDING AND ENTRY OF FITC CONJUGATED DEXTRAN COATED Fe3O4 

NANOPARTICLES INTO ARTIFICIAL LIPID MEMBRANES 

 

 

8.1 INTRODUCTION 

 Understanding the kinetics of the binding and internalization of nanoparticles in live 

human cancer cell line is still a challenging topic which needs considerable research and study 

[156-158]. Nanoparticle-cancer cell system may be very intricate with complex interactions 

between the nanoparticles and the membrane proteins, carbohydrates, and lipids [158, 159]. The 

non-specific nanoparticle-lipid interactions are fundamental in directing the nanoparticle-cell 

interaction, including binding and internalization through the plasma membrane. The surface 

distribution, binding, and entry of nanoparticles into model lipid membranes were investigated. 

The primary objective of this study was to optimize these nanoparticles for multi-modal imaging 

purposes. We have successfully synthesized FITC conjugated dextran coated Fe3O4 

nanoparticles and performed preliminary characterizations of these nanoparticles to model 

membranes.  

 

 

8.2 EXPERIMENTAL PROCEDURE 

 

Synthesis of FITC conjugated dextran coated Fe3O4 nanoparticles 

 

             An aqueous solutions of FeCl3  6H2O (5.40g) and FeCl2  4H2O (2.00g) were mixed in a 

beaker in a molar ratio of 2:1. 1 M NH4OH solution (250 ml) was added drop wise to the mixture 

containing the iron salts under continuous stirring. Initially a brown precipitate was obtained, 

which eventually turned black as the sample continued to oxidize. After 15-20 minutes, the 
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precipitate was then washed with DI water until it reached a neutral pH. One half of the resulting 

nanoparticle solution was then separated and dried in air to obtain Fe3O4 nanoparticle powder 

(~1.00g) while the other half (~1.00g of Fe3O4 in 50 ml solution) was subsequently used for 

coating with dextran. An equal amount of dextran (~1.00g) and the nanoparticles were separately 

mixed in 0.5 M NaOH solution. Then the nanoparticle solution was added to the dextran drop 

wise under continuous sonication. After sonication for 24 hours, dextran coated Fe3O4 

nanoparticle suspension was obtained. Then, 2 mL of Fe3O4 ferrofluid, 5 mL of 5 M NaOH, 1 

mL of DI water and 2 mL of epichlorohydrin was mixed for 24 hours using a rotary shaker to 

ensure proper cross-linking of dextran coated Fe3O4 with the organic phase of epichlorohydrin. 

To remove excess epichlorohydrin, the mixture was then dialyzed several times using 6-8 kDa 

cut off filters. After that, 2.5 mL of concentrated NH4OH (14 M) was added to the resulting 

solution to obtain amino functionalized dextran coated Fe3O4 nanoparticles. Finally, these 

nanoparticles were labeled with the green fluorescent dye Fluorescein isothiocyanate (FITC). 1 

mL of 0.01 M FITC in phosphate buffer saline (PBS) with pH 7.4 was added to 1 mL of amino 

functionalized dextran Fe3O4. The mixture was then kept for 1 hour at room temperature and 

dialyzed using 6-8 kDa cut off filters to do away with the excess FITC. 

 

Supported Lipid Bilayer (SLB) formed via GUV fusion 

Giant unilamellar vesicles (GUVs) of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine 

(POPC, Avanti Polar Lipids, Inc.) labeled with 0.3 mol% 1,1'-didodecyl-3,3,3',3' 

tetramethylindocarbocyanine perchlorate (DiI, Life Technologies) were formed by electro-

formation, as described briefly below and in detail by Veatch [160]. Lipid films were made by 

drying the lipids in chloroform under vacuum for an hour upon a conducting indium tin oxide 

(ITO)-coated slide. A second ITO-coated slide and silicon spacer enclosed the dried lipids into 
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an incubation chamber. A hydration buffer of 200 mM sucrose was added to the dried lipid films 

and the ITO slides were connected to an either sides of an external AC voltage source. Growth of 

the GUVs occurred over 3 hours at 55 °C at AC voltage of 10 Hz and 1 Vrms. GUVs were 

extracted from the growth chamber and stored at 55°C until use or discarded after 3 days. The 

GUVs were incubated on the glass bottom dishes for 10 minutes at room temperature. The 

interaction between the GUVs with the plasma cleaned glass coverslip resulted in bursting of the 

GUVs and the formation of a continuous supported lipid bilayer over the glass. This method of 

SLB creation proved to create more uniform SLBs over the nanoparticles than SLBs formed by 

the fusion of small unilaminar vesicles. Figure 8.1 represents a microscopic image of a supported 

lipid bilayer. 

 

 

Figure 8.1 Fluorescence image of a supported lipid bilayer (SLB) 

 

Combining SLBs and unconjugated, free FITC 

To examine the effects of free FITC on the membrane, 200 g of FITC dissolved in 1X 

PBS was added to the petri dish containing the lipid membrane. After 30 minutes of incubation, 

the resulting distribution of FITC was imaged. To test our ability to rinse away the free FITC, the 
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lipid surface was washed for 20 times (10×20 = 200 mL) with 1X PBS solution and the sample 

was imaged (figure 8.2). 

 

Combining SLBs and FITC-dextran-conjugated nanoparticles 

To examine the effects of FITC-dextran-conjugated nanoparticles on the membrane, 200 

g of FITC conjugated dextran-coated Fe3O4 nanoparticles were exposed to the artificial lipid 

membranes. After 30 minutes of incubation, the resulting distribution of nanoparticles was 

imaged. The lipid surface was washed for 10 times (10×10 = 100 mL) with 1X PBS solution and 

the sample was again imaged (figure 8.3). 

 

8.3 RESULTS AND DISCUSSION  

 A sample combining an SLB and free FITC displayed a bright green background (after 

initial 10 washings), signifying the presence of excess FITC in solution above the membrane 

(figure 8.2(a)). The removal of the unbound FITC via vigorous washing (another 10 times) 

resulted in dramatic reduction in the FITC fluorescence from the sample and the possibility of 

observing stronger nanoparticle-membrane interactions (figure 8.2(b)). However, some 

punctuate green spots were located on the membrane after washing away the free FITC (figure 

8.2(b)). This may imply that free FITC have a tendency to bind to the membrane surface and 

care has to be taken to resolve the differences between nanoparticle-membrane binding and free 

FITC-membrane binding. 

FITC-dextran-nanoparticles were exposed to the membrane and unbound nanoparticles 

were rinsed away to reveal the strong nanoparticle-membrane interactions (figure 8.3). The dark 

background in this figure implies that much of the unbounded FITC was removed and few green 
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dots were found to get stuck to the membrane. We hypothesize that the punctate green dots 

which still remain seated on the membrane surface even after repeated washings demonstrate the 

binding of FITC conjugated dextran-coated Fe3O4 nanoparticles to the lipid bilayer surface. 

However, since free FITC alone could firmly seat on the membrane surface, greater 

experimentation is necessary. Furthermore, we realized that the amount of FITC used for the 

control experiment was large as compared to the content actually present in the conjugated Fe3O4 

nanoparticles. Therefore, for a better comparison, we need to perform the control experiment 

with roughly the same amount of FITC present in the nanoparticle samples.  

 

 

Figure 8.2 Images of SLBs after FITC addition and 30 minutes of incubation (a) after 10 

washings with PBS (b) after 20 washings with PBS. 
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Figure 8.3 Image of a SLB following addition of FITC-conjugated Fe3O4 nanoparticles after 30 

minutes of incubation and 10 washings with PBS. Some of the green dots shown by arrows may 

represent the nanoparticle binding to the artificial lipid membranes. 

 

 

8.4 CONCLUSIONS 

                        FITC-conjugated dextran-coated Fe3O4 nanoparticles were successfully 

synthesized and their interactions with artificial lipid membranes were reported. It has been 

observed that even after repeated washings, the FITC-dextran-nanoparticle combination firmly 

adhere to the surface of the lipid membrane. However, we have no proper estimate on the 

percentage of free FITC and free dextran available in our sample. So purification of 

nanoparticles in order to do away with the unbounded FITC is a challenging task and needs to be 

addressed before a detailed analysis of nanoparticle-membrane binding can be performed. If 

successful, this work would further the use of dextran-coated Fe3O4 nanoparticles in biomedical 

applications and support the targeting of Fe3O4 nanoparticles for multi-modal imaging and drug 

delivery purposes.  
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CHAPTER 9 

CONCLUSIONS & FUTURE WORK 

This dissertation focuses on two major aspects of magnetic nanoparticles, (a) 

understanding their fundamental physics of dipolar interactions and the relaxation dynamics and 

(b) their interactions with human cancer cell lines and artificial lipid bilayers. In addition to 

features attributed to superparamagnetism, these nanoparticles can also exhibit additional 

magnetic relaxation effects at very low temperatures (≲ 50 K).Using ac magnetic susceptibility 

measurements, our studies show that the incorporation of boron, gadolinium, or lanthanum into 

iron oxide (Fe3O4) nanoparticles substantially enhances these low-temperature magnetic 

relaxation properties. The fact that there is no significant difference in properties on doping with 

magnetic Gd
3+

 and non-magnetic B
3+

 or La
3+

 suggest that structural, rather than magnetic, 

defects play a major role in modifying the relaxation.  These results further demonstrate that the 

low-temperature magnetic relaxation typically observed in magnetic nanoparticles is a single-

particle effect produced by structural defects and is not significantly influenced by the inter-

particle dipolar interactions.  

We have also investigated interaction effects in two different systems of iron oxide 

nanoparticles (γ-Fe2O3 in alginate matrix & Fe3O4 nanoparticles in powder form). The 

temperature dependent ac magnetic susceptibility measurements were performed to investigate 

the interactions among these nanoparticles. Our analysis showed that the characteristic 

interaction energy does not depend simply on the average spacing between the nanoparticles but 

is likely to be strongly influenced by the fluctuations in the nanoparticle size distribution.  

The magnetic interactions in phase-pure Mn3O4 and composite 

Mn2O3/Mn3O4 nanoparticle systems having different inter-particle separations between the 

Mn3O4 ferrimagnetic cores were also studied. We found that the incorporation of boron stabilizes 
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the Mn3O4 spinel structure resulting in the formation of phase-pure nanoparticles, while in the 

absence of boron, the sample consists of both Mn3O4 and antiferromagnetic 

Mn2O3 nanoparticles. We correlate the morphology of these systems with their magnetic 

properties using ac susceptibility studies. The low temperature frequency dependent relaxation 

exhibits larger magnetic interactions in the phase pure Mn3O4 nanoparticles as compared to the 

Mn3O4/Mn2O3 composites, which we attribute to differences in the separation between the 

ferrimagnetic cores in these two samples. 

We have further investigated BiFeO3 nanoparticles as a potential candidate for multi-

modal imaging purposes. When cultured with human pancreatic cancer cells (MIA PaCa-2), the 

BiFeO3 nanoparticles did not show any acute cytotoxicity over a period of 72 h. However, they 

showed a reduced value of saturation magnetization as compared to undoped iron oxide 

nanoparticles and also no evidence was found for the migration of these nanoparticles across the 

cell membrane. The nanoparticles in aqueous solution show comparatively low values of zeta 

potentials implying the instability of the suspension, which is consistent with our optical and 

electron micrographs. Although our initial attempts of coating these tiny particles with dextran 

did not succeed, future experiments will achieve better stability by improved nanoparticle 

surface functionalization so that they can serve as carriers of anti-cancer drugs.  

We have conducted a detailed investigation on the magnetic properties of Gd-doped 

Fe3O4 nanoparticles. Our studies reveal that introduction of Gd strongly influences the average 

crystallite size and the saturation magnetization of the Fe3O4 nanoparticles. The crystallite size 

gets larger while Ms is reduced following an increase in the Gd doping percentage. In case of 

magnetic hyperthermia measurements, the effective SAR decreases by a considerable amount for 

the nanoparticle sample with the highest doping concentration of Gd (~5 at.%)  when compared 
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with undoped iron oxide ferrofluid. In future, we would also like to explore this material for 

possible biomedical applications in MRI as a T1–T2 dual-modal contrast agent. 

Preliminary studies involving interactions of FITC conjugated iron oxide nanoparticles 

with artificial lipid bilayers were also reported. The purification of nanoparticles from free FITC 

was a challenging task, and, in the future, we would like to improve the purity of our 

nanoparticle samples for more detailed analysis of the nanoparticles interacting with membranes. 

Furthermore, the interactions of FITC-conjugated iron oxide based nanoparticles with live 

human cancer cells will also be studied to optimize these structures for advanced imaging and 

targeted drug/gene delivery.  

                In cellular physiology, pH is a vital parameter as most of the cellular processes are 

highly influenced by its subtle changes. Therefore, how the introduction of nanoparticles inside 

the cells affects the cellular pH could guide therapeutic strategies. The fluorescence intensity of 

the quantum dots changes with pH [161] and also these semiconductor nanoparticles exhibit low 

bleaching as compared to the pH sensitive dyes. Therefore, in future, with the aid of CdTe 

quantum dots, we would like to monitor the intracellular pH upon exposure to iron oxide 

nanoparticles. 
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ABSTRACT 

UNDERSTANDING THE PHYSICS OF MAGNETIC NANOPARTICLES AND THEIR 

APPLICATIONS IN THE BIOMEDICAL FIELD 

 

by 
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Major: Physics  

Degree: Doctor of Philosophy 

The study of magnetic nanoparticles is of great interest because of their potential uses in 

magnetic-recording, medical diagnostic and therapeutic applications. Additionally, they also 

offer an opportunity to understand the physics underlying the complex behavior exhibited by 

these materials. Two of the most important relaxation phenomena occurring in magnetic 

nanoparticles are superparamagnetic blocking and spin-glass-like freezing. In addition to features 

attributed to superparamagnetism, these nanoparticles can also exhibit magnetic relaxation 

effects at very low temperatures (≲ 50 K). Our studies suggest that all structural defects, and not 

just surface spins, are responsible for the low-temperature glass-like relaxation observed in many 

magnetic nanoparticles.  The characteristic dipolar interaction energy existing in an ensemble of 

magnetic nanoparticles does not apparently depend on the average spacing between the 

nanoparticles but is likely to be strongly influenced by the fluctuations in the nanoparticle 

distribution. Our findings revealed that incorporating a small percentage of boron can stabilize 

the spinel structure in Mn3O4 nanoparticles. We have also demonstrated that the dipolar 

interactions between the magnetic cores can be tuned by introducing non-magnetic nanoparticles. 

In particular, we studied the magnetic properties of Gd-doped Fe3O4 nanoparticles, a potential 
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applicant for T1–T2 dual-modal MRI contrast agent. We have explored the interactions of BiFeO3 

nanoparticles on live cells and the binding of FITC-conjugated Fe3O4 nanoparticles with artificial 

lipid membranes to investigate these materials as candidates in medical imaging. Taken together, 

these studies have advanced our understanding of the fundamental physical principles that 

governs magnetism in magnetic materials with a focus on developing these nanoparticles for 

advanced biomedical applications. The materials developed and studied expand the repertoire of 

tools available for multimodal imaging, using both x-ray and magnetic resonance. 
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